1
|
de Bell S, Alejandre JC, Menzel C, Sousa-Silva R, Straka TM, Berzborn S, Bürck-Gemassmer M, Dallimer M, Dayson C, Fisher JC, Haywood A, Herrmann A, Immich G, Keßler CS, Köhler K, Lynch M, Marx V, Michalsen A, Mudu P, Napierala H, Nawrath M, Pfleger S, Quitmann C, Reeves JP, Rozario K, Straff W, Walter K, Wendelboe-Nelson C, Marselle MR, Oh RRY, Bonn A. Nature-based social prescribing programmes: opportunities, challenges, and facilitators for implementation. ENVIRONMENT INTERNATIONAL 2024; 190:108801. [PMID: 38909402 DOI: 10.1016/j.envint.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Evidence on the health benefits of spending time in nature has highlighted the importance of provision of blue and green spaces where people live. The potential for health benefits offered by nature exposure, however, extends beyond health promotion to health treatment. Social prescribing links people with health or social care needs to community-based, non-clinical health and social care interventions to improve health and wellbeing. Nature-based social prescribing (NBSP) is a variant that uses the health-promoting benefits of activities carried out in natural environments, such as gardening and walking. Much current NBSP practice has been developed in the UK, and there is increasing global interest in its implementation. This requires interventions to be adapted for different contexts, considering the needs of populations and the structure of healthcare systems. METHODS This paper presents results from an expert group participatory workshop involving 29 practitioners, researchers, and policymakers from the UK and Germany's health and environmental sectors. Using the UK and Germany, two countries with different healthcare systems and in different developmental stages of NBSP practice, as case studies, we analysed opportunities, challenges, and facilitators for the development and implementation of NBSP. RESULTS We identified five overarching themes for developing, implementing, and evaluating NBSP: Capacity Building; Accessibility and Acceptability; Networks and Collaborations; Standardised Implementation and Evaluation; and Sustainability. We also discuss key strengths, weaknesses, opportunities, and threats for each overarching theme to understand how they could be developed to support NBSP implementation. CONCLUSIONS NBSP could offer significant public health benefits using available blue and green spaces. We offer guidance on how NBSP implementation, from wider policy support to the design and evaluation of individual programmes, could be adapted to different contexts. This research could help inform the development and evaluation of NBSP programmes to support planetary health from local and global scales.
Collapse
Affiliation(s)
- Siân de Bell
- Exeter HSDR Evidence Synthesis Centre, University of Exeter, 79 Heavitree Rd, Exeter EX2 4TH, United Kingdom.
| | | | - Claudia Menzel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Landau, Germany
| | - Rita Sousa-Silva
- Young Academy for Sustainability Research, Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany; Institute of Environmental Sciences, Department of Environmental Biology, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Tanja M Straka
- Institute of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
| | - Susanne Berzborn
- Black Forest National Park, Schwarzwaldhochstraße 2, 77889 Seebach, Germany
| | - Max Bürck-Gemassmer
- KLUG (German Alliance for Climate Change and Health), Hainbuchenstr. 10a, 13465, Berlin, Germany
| | | | - Chris Dayson
- Centre for Regional Economic and Social Research, Sheffield Hallam University, Sheffield S1 2LX, United Kingdom
| | - Jessica C Fisher
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NR, United Kingdom
| | - Annette Haywood
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, Sheffield S1 4DA, United Kingdom
| | - Alina Herrmann
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany; Institute for General Practice, University Hospital Cologne, Medical Faculty University of Cologne, Cologne, Germany
| | - Gisela Immich
- Chair of Public Health and Health Services Research, Faculty of Medicine, LMU Munich, Germany; Pettenkofer School of Public Health, Munich, Germany
| | - Christian S Keßler
- Institute of Social Medicine, Epidemiology and Health Economy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | | | - Mary Lynch
- Faculty of Nursing & Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Viola Marx
- Dundee City Council, Dundee, United Kingdom
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Pierpaolo Mudu
- WHO Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Hendrik Napierala
- Institute of General Practice and Family Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Nawrath
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | | | - Claudia Quitmann
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | | | - Kevin Rozario
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Straße 159, 07743 Jena, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Ecosystem Services, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany; Leipzig University, Wilhelm Wundt Institute for Psychology, Neumarkt 9, 04109 Leipzig, Germany
| | - Wolfgang Straff
- Umweltbundesamt (German Environment Agency), Wörlitzer Pl. 1, 0684 Dessau-Roßlau, Germany
| | - Katie Walter
- Ullapool Medical Practice, NHS Highland, Ullapool, United Kingdom
| | | | - Melissa R Marselle
- Environmental Psychology Research Group, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Rachel Rui Ying Oh
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecosystem Services, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Aletta Bonn
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Straße 159, 07743 Jena, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Ecosystem Services, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Lu Y, Wang S, Shen Y. Theoretical insights of the pharmaceutical compound fluoxetine in water: Role in direct photolysis and indirect photolysis by free radicals. J Environ Sci (China) 2024; 142:269-278. [PMID: 38527892 DOI: 10.1016/j.jes.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 03/27/2024]
Abstract
The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness, which may pose a major threat to the aquatic environment. In this study, photodegradation (direct and indirect photolysis) of two different dissociation states of fluoxetine (FLU) was investigated in water, mainly including the determination of photolytic transition states and products, and the mechanisms of indirect photodegradation with ·OH, CO3*- and NO3*. The main direct photolysis pathways are defluorination and C-C bond cleavage. In addition, the indirect photodegradation of FLU in water is mainly through the reactions with ·OH and NO3*, and the photodegradation reaction with CO3*- is relatively difficult to occur in the water environment. Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yifan Shen
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Paíga P, Correia-Sá L, Correia M, Figueiredo S, Vieira J, Jorge S, Silva JG, Delerue-Matos C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J Xenobiot 2024; 14:873-892. [PMID: 39051344 PMCID: PMC11270430 DOI: 10.3390/jox14030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Pharmaceuticals in the environment are a global concern, with studies in all continents highlighting their widespread occurrence and potential ecological impacts, revealing their presence, fate, and associated risks in aquatic ecosystems. Despite typically occurring at low concentrations (ranging from ng/L to µg/L), advancements in analytical methods and more sensitive equipment have enabled the detection of a higher number of pharmaceuticals. In this study, surface and wastewater samples were extracted using solid phase extraction and analyzed using ultra-high-performance liquid chromatography with tandem mass spectrometry. Among the therapeutic classes investigated, nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drugs showed a higher number of detected pharmaceuticals. Concentrations ranged from below method detection limit (
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Manuela Correia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Sónia Figueiredo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| | - Joana Vieira
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal; (J.V.)
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal; (J.V.)
| | - Jaime Gabriel Silva
- Águas do Douro e Paiva, SA, Grupo Águas de Portugal, Rua de Vilar, 235 5°, 4050-626 Porto, Portugal;
- Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (L.C.-S.); (M.C.); (S.F.)
| |
Collapse
|
4
|
Blanco G, Carrete M, Navas I, García-Fernández AJ. Age and sex differences in pharmaceutical contamination in a keystone scavenger. ENVIRONMENTAL RESEARCH 2024; 251:118592. [PMID: 38442815 DOI: 10.1016/j.envres.2024.118592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Pharmaceutical contaminants have a recognized negative impact on wildlife health. However, there are still many knowledge gaps on the factors influencing exposure and metabolic processing of compound mixtures as a function of season and individual characteristics such as age and sex. We evaluated age and sex differences in a set of seventeen compounds, including eleven antibiotics, five NSAIDs and caffeine, evaluated by HPLC-MS-TOF analysis in griffon vultures (Gyps fulvus) from central Spain. Pharmaceutical cocktails (up to 10 compounds simultaneously) were found in all individuals. Lincomycin was detected in all individuals, and fluoroquinolones were found at high frequencies, while NSAIDs were at low frequencies and concentrations, including flumixin meglumine, which can be lethal to vultures. A higher total number of compounds and sum of concentrations, as well as prevalence and concentration of several of the pharmaceuticals tested was found in females than in males for both nestlings and adults. This is the first study to present evidence of sex differences in the pharmacokinetics of dietary drug contaminants in a vulture species. Chronic exposure to "medications" in entire populations can potentially have sub-lethal health effects that affect fitness differently according to age and sex, with demographic implications for population viability. Specifically, if females have higher mortality after fledging due to high pharmaceutical contamination, this should be considered when modelling the population dynamic of this species for conservation purposes.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km. 1, 41013, Sevilla, Spain
| | - Isabel Navas
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Forensic Veterinary Service, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
5
|
Wm-Bekele D, GirmaTilahun, Dadebo E, Haileslassie A, Gebremariam Z. Organochlorine, organophosphorus, and carbamate pesticide residues in an Ethiopian Rift Valley Lake Hawassa: occurrences and possible ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27749-27769. [PMID: 38517634 DOI: 10.1007/s11356-024-32848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Currently, pesticide production and use are on the rise globally. This trend is certain to continue in the coming decades with residues posing risks to the environment and human health even at low levels. Although various aspects of pesticides and their possible implications have widely been studied, such studies have mostly been carried out in developed countries leaving the rest of the world with little scientific information. We present here the results of a study on the occurrences, concentrations, and ecological risks of 30 pesticide residues (PRs) in water and sediment samples from a tropical freshwater Lake Hawassa in the Ethiopian Rift Valley. A total of 54 composite samples of water and sediment were collected from three sampling sites on three occasions. The samples were prepared by quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique, and analyzed using GC-MS at Bless Agri Food Laboratory Service located in Addis Ababa, Ethiopia. The study applied the risk quotient (RQ) method to scrutinize the risks posed to aquatic biota by the detected PRs. The results showed occurrences of 18 and 20 PRs in the water and sediment samples, respectively. The majority, 78 and 75% of the detected PRs in water and sediment samples, respectively represent the organochlorine chemical class. Concentrations of heptachlor epoxide were significantly (p ≤ 0.001) higher than those of the remaining pesticides in both matrices. Of the pesticides detected, 77% were present in water and 83% in sediment samples and pose a serious risk (RQ ≥ 1) to the Lake Hawassa biota. This calls for further research to investigate the risks to human health posed by the PRs. The findings of this study can contribute to the development of global protocols, as they support the concerns raised about the ecological and public health impacts of PRs on a global level.
Collapse
Affiliation(s)
- Daniel Wm-Bekele
- Biology Department, Environmental Toxicology Program, Hawassa University, Hawassa City, Ethiopia.
- Hawassa College of Teachers Education, Hawassa City, Ethiopia.
| | - GirmaTilahun
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| | - Elias Dadebo
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| | - Amare Haileslassie
- International Water Management Institute (IWMI)-Ethiopia, Addis Ababa, Ethiopia
| | - Zinabu Gebremariam
- Department of Aquatic Sciences, Fisheries & Aquaculture, Hawassa University, Hawassa City, Ethiopia
| |
Collapse
|
6
|
Ashraf M, Ahammad SZ, Chakma S. Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64313-64341. [PMID: 37067715 PMCID: PMC10108824 DOI: 10.1007/s11356-023-26796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The study on the fate and transport of Pharmaceuticals and Personal Care Products, PPCPs (FTP) in the environment, has received particular attention for over two decades. The PPCPs threaten ecology and human health even at low concentrations due to their synergistic effects and long-range transport. The research aims to provide an inclusive map of the scientific background of FTP research over the last 25 years, from 1996 to 2020, to identify the main characteristics, evolution, salient research themes, trends, and research hotspots in the field of interest. Bibliometric networks were synthesized and analyzed for 577 journal articles extracted from the Scopus database. Consequently, seven major themes of FTP research were identified as follows: (i) PPCPs category; (ii) hazardous effects; (iii) occurrence of PPCPs; (iv) PPCPs in organisms; (v) remediation; (vi) FTP-governing processes; and (vii) assessment in the environment. The themes gave an in-depth picture of the sources of PPCPs and their transport and fate processes in the environment, which originated from sewage treatment plants and transported further to sediment/soils/groundwater/oceans that act as the PPCPs' major sink. The article provided a rigorous analysis of the research landscape in the FTP study conducted during the specified years. The prominent research themes, content analysis, and research hotspots identified in the study may serve as the basis of real-time guidance to lead future research areas and a prior review for policymakers and practitioners.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
7
|
Fang L, Hixson R, Shelton C. Sustainability in anaesthesia and critical care: beyond carbon. BJA Educ 2022; 22:456-465. [PMID: 36406040 PMCID: PMC9669768 DOI: 10.1016/j.bjae.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- L. Fang
- North West School of Anaesthesia, Manchester, UK
| | - R. Hixson
- County Durham and Darlington NHS Foundation Trust, Darlington, UK
| | - C. Shelton
- Manchester University NHS Foundation Trust, Manchester, UK
- Lancaster Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|
8
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Karungamye P, Rugaika A, Mtei K, Machunda R. The pharmaceutical disposal practices and environmental contamination: A review in East African countries. HYDRORESEARCH 2022. [DOI: 10.1016/j.hydres.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ulvi A, Aydın S, Aydın ME. Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75609-75625. [PMID: 35655023 PMCID: PMC9162898 DOI: 10.1007/s11356-022-21131-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/23/2022] [Indexed: 05/12/2023]
Abstract
The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.
Collapse
Affiliation(s)
- Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
11
|
Salgueirinho C, Pereira H. The anesthesiologist and global climate change: An ethical obligation to act and being scientifically rigorous. Eur J Anaesthesiol 2022; 39:840. [PMID: 36101910 DOI: 10.1097/eja.0000000000001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carolina Salgueirinho
- From the Anesthesia Department, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, Porto, Portugal (CS, HP), Department of Surgery and Physiology - Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal (HP)
| | | |
Collapse
|
12
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
13
|
The impact of sewage sludge processing on the safety of its use. Sci Rep 2022; 12:12227. [PMID: 35851096 PMCID: PMC9293921 DOI: 10.1038/s41598-022-16354-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Particular attention is devoted to pharmaceutical residues in sewage sludge caused by their potential ecotoxicological effects. Diclofenac, ibuprofen and carbamazepine, 17-α-ethinylestradiol, β-estradiol, were analysed in four types of fertilizers, based on sewage sludge commercial products, in compliance with Polish requirements. The release of active pharmaceutical compounds from fertilizers to water the phase after 24 h and 27 days was analysed. Solid-water partition coefficients (Kd) and partitioning coefficient values normalized on organic carbon content (log KOC) were evaluated. The environmental risk to terrestrial ecosystems, due to the application of fertilizers onto soils, was estimated. Cumulative mass of pharmaceuticals emitted to water from fertilizers ranged from 0.4 to 30.8 µg/kg after 24 h contact. The greatest amount of the material that was released, over 70%, was observed for carbamazepine. No presence of compounds except ibuprofen was observed after 27 days of testing. The highest environmental risk in fertilizers is due to carbamazepine, risk quotation, RQ = 0.93 and diclofenac RQ = 0.17. The values of risk quotation estimated for soil were below RQ = 0.01. This fact means that no risk to terrestrial ecosystems is expected to occur. The important decrease of the concentrations of active compounds after passing from sewage sludge to fertilizers [and] to fertilized soil could be observed.
Collapse
|
14
|
Aydın S, Ulvi A, Aydın ME. Monitoring and ecological risk of illegal drugs before and after sewage treatment in an area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:294. [PMID: 35332403 DOI: 10.1007/s10661-022-09974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the occurrence of illicit drugs and their metabolites in the sewerage systems and in the influent and effluent of wastewater treatment plant (WWTP) in Konya, Turkey, was presented. The drug removal efficiencies of the central WWTP were investigated. Potential ecotoxicological risks for algae, fish, and Daphnia magna in the receiving environments were also evaluated. The highest estimated mean illicit drug use was obtained for cannabis (marijuana) at 280 ± 12 mg/day/1000 inhabitants and 430 ± 20 g/day/1000 inhabitants (15-64 years). Amphetamine was found to be the second most consumed drug of abuse. While cannabis and ecstasy consumption values were higher during the weekend, cocaine use dominated on weekdays. The removal efficiencies for THC-COOH and THC-OH were 100% in the WWTP. The average removal of cocaine, amphetamine, methamphetamine, MDMA, MDA, and methadone varied between 46 ± 7 and 87 ± 3%. The maximum concentration level of MDMA found can pose some low risk for Daphnia magna. The rest of the compounds detected in effluents did not show any toxic effects on fish, Daphnia magna, or algae. However, when the cumulative estimated risk quotient values were evaluated, there might be a low risk for Daphnia magna and algae in the receiving environment.
Collapse
Affiliation(s)
- Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
15
|
Javaid A, Latif S, Imran M, Hussain N, Bilal M, Iqbal HMN. MXene-based hybrid composites as photocatalyst for the mitigation of pharmaceuticals. CHEMOSPHERE 2022; 291:133062. [PMID: 34856238 DOI: 10.1016/j.chemosphere.2021.133062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Environmental contamination is a burning issue and has gained global attention in the present era. Pharmaceuticals are emerging contaminants affecting the natural environment worldwide owing to their extensive consumption particularly in developing countries where self-medication is a common practice. These pharmaceuticals or their degraded active metabolites enter water bodies via different channels and are continuous threat to the whole ecological system. There is a dire need to find efficient approaches for their removal from all environmental matrices. Photocatalysis is one of the most effective and simple approach, however, finding a suitable photocatalyst is a challenging task. Recently, MXenes (two-dimensional transition metal carbides/nitrides), a relatively new material has attracted increasing interest as photocatalysts due to their exceptional properties, such as large surface area, appreciable safety, huge interlayer spacing, thermal conductivity, and environmental flexibility. This review describes the recent advancements of MXene-based composites and their photocatalytic potential for the elimination of pharmaceuticals. Furthermore, present limitations and future research requirements are recommended to attain more benefits of MXene-based composites for the purification of wastewater.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP, 64849, Mexico.
| |
Collapse
|
16
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
17
|
Sengar A, Vijayanandan A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150677. [PMID: 34599960 DOI: 10.1016/j.scitotenv.2021.150677] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/20/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) in environmental waters has become an urgent issue due to their pseudo-persistent traits. The present study was undertaken to conduct a screening-level risk assessment of 98 PPCPs, detected in different water matrices (treated wastewater, surface water, and groundwater) of India, for evaluating ecological risk (risk to fish, daphnia, and algae), human health risk, and antimicrobial resistance (AMR) selection risk by following risk quotient (RQ) based methodology. In the present study, 47% of the detected PPCPs in Indian waters were found to exert a possible risk (RQ > 1) to either aquatic species and human health, or cause AMR selection risk. 17 out of 25 antibiotics detected in the environmental waters were found to pose a threat of AMR selection. 11 out of 49 pharmaceuticals were found to exert human health risk from ingesting contaminated surface water, whereas only 2 pharmaceuticals out of 25 were found to exert risk from the intake of groundwater. Very high RQs (>1000) for few pharmaceuticals were obtained, signifying a great potential of the detected PPCPs in causing severe health concern, aquatic toxicity, and AMR spread. Within India, special attention needs to be given to the pharmaceutical hubs, as the environmental waters in these regions were found to be severely contaminated with drug residues resulting in extremely high RQs. The present study will be helpful in prioritizing the detected PPCPs in the environmental waters of India, for which immediate attention and enforceable guidelines are required.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
18
|
Adeola AO, Forbes PBC. Antiretroviral Drugs in African Surface Waters: Prevalence, Analysis, and Potential Remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:247-262. [PMID: 34033688 DOI: 10.1002/etc.5127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The sources, ecotoxicological impact, and potential remediation strategies of antiretroviral drugs (ARVDs) as emerging contaminants in surface waters are reviewed based on recent literature. The occurrence of ARVDs in water bodies raises concern because many communities in Africa depend on rivers for water resources. Southern Africa is a potential hotspot regarding ARVD contamination due to relatively high therapeutic application and detection thereof in water bodies. Efavirenz and nevirapine are the most persistent in effluents and are prevalent in surface water based on environmental concentrations. Whereas the highest concentration of efavirenz reported in Kenya was 12.4 µg L-1 , concentrations as high as 119 and 140 µg L-1 have been reported in Zambia and South Africa, respectively. Concentrations of ARVDs ranging from 670 to 34 000 ng L-1 (influents) and 540 to 34 000 ng L-1 (effluents) were determined in wastewater treatment plants in South Africa, compared with Europe, where reported concentrations range from less than limit of detection (LOD) to 32 ng L-1 (influents) and less than LOD to 22 ng L-1 (effluents). The present African-based review suggests the need for comprehensive toxicological and risk assessment of these emerging pollutants in Africa, with the intent of averting environmental hazards and the development of sustainable remediation strategies. Environ Toxicol Chem 2022;41:247-262. © 2021 SETAC.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
19
|
Alvarado-Flores C, Encina-Montoya F, Tucca F, Vega-Aguayo R, Nimptsch J, Oberti C, Carmona ER, Lüders C. Assessing the ecological risk of active principles used currently by freshwater fish farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144716. [PMID: 33631559 DOI: 10.1016/j.scitotenv.2020.144716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The global aquaculture industry has grown exponentially in recent years using to control of infections and diseases, a variety of veterinary drugs (VMP) are used, including antibiotics, antifungals and antiparasitics, which have different routes of emission, environmental persistence and side effects to aquatic organisms, becoming one of the main concerns in its use of veterinary drugs (VMP) and its potential toxicological impact on the environment, in this context, Chile is considered one of the main salmon producers. Ecological risk assessment of active principles used infreshwater fish farms worldwide and in Chile were investigated. We recollect a physical - chemical properties of active principles used by fish farms and we could estimate the relative hazard a priori. Later active principles grouped as antibiotics (n = 6), antiparasitics (n = 5), anesthetics (n = 3), and disinfectants (n = 7) were assessed using a mass balance model based on fugacity was developed for each active principle under treatments via immersion and food administration in fish, while a volumetric model for disinfectants and sodium chloride was used for estimating the predicted environmental concentration (PEC), under a real smolt farming scenario in fish farms. Ecotoxicological data were collected from open literature to predict the no-effect concentration (PNEC). The ecological risk assessment was characterized using a risk quotient (RQ = PEC/PNEC) based in two assessment tiers. Results revealed that 12 active ingredients showed a high risk (RQ ≥ 1), thus indicating that adverse effects could occur and further investigation with measured concentrations in the field are required to reduce exposure in surface waters.
Collapse
Affiliation(s)
- Claudia Alvarado-Flores
- Department of Agricultural, Livestock and Aquiculture Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Doctoral Program of Agricultural and Livestock Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Francisco Encina-Montoya
- Nucleus of Environmental Sciences (NEA), Universidad Católica de Temuco, Temuco, Chile; Department of Environmental Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile.
| | - Felipe Tucca
- Norwegian Institute for Water Research (NIVA), Puerto Varas, Chile
| | - Rolando Vega-Aguayo
- Department of Agricultural, Livestock and Aquiculture Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Nucleus of Food Production (NIPA) Universidad Católica de Temuco, Temuco, Chile
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Edificio Emilio Pugin, Campus Isla Teja, Valdivia, Chile
| | - Carlos Oberti
- Department of Environmental Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, Temuco, Chile
| | - Erico R Carmona
- Faculty of Natural Resources, Universidad Arturo Prat, Av. Arturo Prat s/n Campus Huayquique, Iquique, Chile
| | - Carlos Lüders
- Department of Veterinary Sciences, Faculty of Natural Resources, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| |
Collapse
|
20
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
21
|
Wang J, Li S, He B. Chinese physicians' attitudes toward eco-directed sustainable prescribing from the perspective of ecopharmacovigilance: a cross-sectional study. BMJ Open 2020; 10:e035502. [PMID: 32487575 PMCID: PMC7265008 DOI: 10.1136/bmjopen-2019-035502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Eco-directed sustainable prescribing (EDSP) is an effective upstream way to reduce the environmental footprints of active pharmaceutical ingredients (APIs), a kind of emerging contaminants, from the patients' excretion. EDSP is one of the key steps in the programme of ecopharmacovigilance (EPV), a drug administration route on API pollution. OBJECTIVE To assess the attitudes of physicians prescribing medicines regarding EDSP from the perspective of EPV. DESIGN A cross-sectional study conducted from March 2019 to June 2019. SETTING 5 government general hospitals in Hubei province, China. PARTICIPANTS 405 physicians were randomly selected and 262 valid questionnaires were obtained. OUTCOME MEASURES A self-developed questionnaire, which inquired about the participant characteristics, perceptions and attitudes toward API pollution, EPV and EDSP from an EPV perspective, was emailed to collect data from physicians. RESULTS Most physicians agreed the existence of APIs in environment, worried about the potential environmental and ecological risks of API residues, supported the effectiveness and necessity of EDSP under an EPV perspective in decreasing environmental exposure of excreted APIs, and showed their willingness to participate in the EDSP practices. Nevertheless, no respondent identified the environmental impacts as the aspects regarding medicines affecting his(her) prescription decision, none was satisfied with knowledge on EDSP and showed confidence toward EDSP. The most important barrier to the effective implementation of EDSP was identified as 'poor awareness of EDSP and EPV'. Most responding physicians (97%) reported that they held the wait-and-see or conservative attitudes towards EDSP practice. The biggest concerns in low-dose prescribing and prescribing of drugs possessing environment-friendly excretion profiles, two EDSP approaches, were the possible negative impact on therapeutic outcomes and too complicated and professional drug evaluation process, respectively. CONCLUSIONS Chinese physicians had positive attitudes towards EDSP from the perspective of EPV. However, their environmental consciousness during prescribing and the related education were insufficient.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Bingshu He
- Orthopedic Surgery, Hubei Province Woman and Child Hospital, Wuhan, Hubei, China
| |
Collapse
|
22
|
Bownik A, Ślaska B, Dudka J. Cisplatin affects locomotor activity and physiological endpoints of Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121259. [PMID: 31699481 DOI: 10.1016/j.jhazmat.2019.121259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Cisplatin (CPL) is a common antineoplastic drug used in human medicine for treatment of various cancer types. Since the knowledge about its effects on crustacean behavioral and physiological parameters is very scarce, the aim of our study was to determine the influence of CPL at concentrations of 125 μg/L, 200 μg/L, 500 μg/L and 1000 μg/L on swimming behavior (swimming speed, distance travelled, hopping frequency, propelling efficiency index - a novel parameter) and physiological parameters (heart rate, thoracic limb activity) of Daphnia magna with the use of video digital analysis. The results showed that distance travelled, swimming speed, hopping frequency and propelling efficiency were inhibited as early as after 24 h in concentration- and time-dependent manner. On the other hand, heart rate was stimulated in the animals treated with 125 μg/L of CPL after 48 h, 72 h and 120 h of the exposure, however it was decreased at the higher concentrations. Although thoracic limb activity was considerably increased in daphnids exposed to 125 μg/L and 200 μg/L after 72 h, it was inhibited at the higher concentrations of the drug. The study suggests that since CPL affected daphnid parameters at the environmental concentration, it should be considered as hazardous to zooplankton.
Collapse
Affiliation(s)
- Adam Bownik
- Depertment of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-62 Lublin, Poland.
| | - Brygida Ślaska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950 Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Str, Lublin, Poland
| |
Collapse
|
23
|
Aydin S, Aydin ME, Ulvi A. Monitoring the release of anti-inflammatory and analgesic pharmaceuticals in the receiving environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36887-36902. [PMID: 31745804 DOI: 10.1007/s11356-019-06821-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The occurrence of anti-inflammatory and analgesic pharmaceuticals (AIAPs) in the effluents of 16 hospitals, influent and effluent of wastewater treatment plant (WWTP), the contribution and mass load of each hospital to WWTP influent, and the removal efficiencies in WWTP were investigated. Environmental risk was also evaluated by toxicity tests using organisms from three different trophic levels. Acetaminophen had the highest concentration in summer and winter samples, followed by ketoprofen, ibuprofen, and naproxen. The total daily load of AIAPs detected in influent of WWTP was 1677 mg/day/1000 inhabitants in summer and 5074 mg/day/1000 inhabitants in winter. The contribution of 16 hospitals to the total AIAP load in influent of WWTP was 11.30% in summer and 7.09% in winter. The highest mass loads were calculated as 203 mg/bed.day in general hospital in summer and 300 mg/bed.day in pediatric hospital in winter. The removal efficiencies of AIAPs in WWTP ranged between 13% and 100% in summer and 0.88% and 99% in winter. WWTP is not sufficient to remove all the AIAPs. Diclofenac (in summer), mefenamic acid, indomethacin, and phenylbutazone exhibited poor removal below 50%. The effluents of the WWTP exhibited a low risk for fish and Daphnia magna and an insignificant risk for algae.
Collapse
Affiliation(s)
- Senar Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey.
| | - Mehmet Emin Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - Arzu Ulvi
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
24
|
Zapata-Ospina JP. La responsabilidad: un principio para retomar en la reflexión bioética. IATREIA 2019. [DOI: 10.17533/udea.iatreia.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
La ciencia y su brazo, la tecnología, pueden centrarse en una lógica antropocéntrica en la medida en que se empecinen en satisfacer únicamente las necesidades humanas a expensas del dominio (o destrucción) de la naturaleza y las especies coexistentes. También es posible que se pongan al servicio de poderes económicos y políticos y se investigue únicamente bajo una lógica centrada en la ganancia. En medio de este panorama, se hace un llamado a un acto de conciencia para retomar la propuesta del filósofo alemán Hans Jonas sobre el principio de responsabilidad, según el cual, es necesaria una reflexión más allá de las relaciones inmediatas, que incluya a la naturaleza, los animales y las generaciones futuras en la formulación de una nueva ética que debe enseñarse y practicarse desde la academia.
Collapse
|
25
|
Mir-Tutusaus JA, Parladé E, Villagrasa M, Barceló D, Rodríguez-Mozaz S, Martínez-Alonso M, Gaju N, Sarrà M, Caminal G. Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J Biol Eng 2019; 13:47. [PMID: 31160922 PMCID: PMC6542094 DOI: 10.1186/s13036-019-0179-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Hospital wastewater is commonly polluted with high loads of pharmaceutically active compounds, which pass through wastewater treatment plants (WWTPs) and end up in water bodies, posing ecological and health risks. White-rot fungal treatments can cope with the elimination of a wide variety of micropollutants while remaining ecologically and economically attractive. Unfortunately, bacterial contamination has impeded so far a successful implementation of fungal treatment for real applications. RESULTS This work embodied a 91-day long-term robust continuous fungal operation treating real non-sterile hospital wastewater in an air pulsed fluidized bed bioreactor retaining the biomass. The hydraulic retention time was 3 days and the ageing of the biomass was avoided through partial periodic biomass renovation resulting in a cellular retention time of 21 days. Evolution of microbial community and Trametes abundance were evaluated. CONCLUSIONS The operation was able to maintain an average pharmaceutical load removal of over 70% while keeping the white-rot fungus active and predominant through the operation.
Collapse
Affiliation(s)
- Josep Anton Mir-Tutusaus
- Departament d’Enginyeria Química Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marta Villagrasa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
| | - Maira Martínez-Alonso
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Núria Gaju
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Montserrat Sarrà
- Departament d’Enginyeria Química Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
26
|
Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD, García-Doncel P, Nozal Martínez L, Galassi DMP, Iepure S. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. CHEMOSPHERE 2019; 220:227-236. [PMID: 30583214 DOI: 10.1016/j.chemosphere.2018.12.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 05/20/2023]
Abstract
In this study we aimed at assessing: (i) the environmental risk posed by mixtures of caffeine and propranolol to the freshwater ecosystems of Spain; (ii) the sensitivity of freshwater copepod species to the two compounds; (iii) if the toxicity of caffeine and propranolol to freshwater copepods contributes to the environmental risk posed by the two compounds in the freshwater bodies of Spain. The environmental risk was computed as the ratio of MECs (i.e. the measured environmental concentrations) to PNECs (i.e. the respective predicted no-effect concentrations). The effects of caffeine and propranolol on the freshwater cyclopoid Diacyclops crassicaudis crassicaudis were tested both individually and in binary mixtures. Propranolol posed an environmental risk in some but not in all the surface water ecosystems of Spain investigated in this study, while caffeine posed an environmental risk to all the investigated freshwater bodies, both as single compound and in the mixture with propranolol. Propranolol was the most toxic compound to D. crassicaudis crassicaudis, while caffeine was non-toxic to this species. The CA model predicted the toxicity of the propranolol and caffeine mixture for this species. D. crassicaudis crassicaudis was much less sensitive than several other aquatic species to both compounds. The sensitivity of D. crassicaudis crassicaudis does not increase the environmental risk posed by the two compounds in the freshwater bodies of Spain, however, further testing is recommended since the effect of toxicants on freshwater copepods can be more pronounced under multiple stressors and temperature increasing due to climate change.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Andrea Castaño-Sánchez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Walter Darío Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
| | - Patricia García-Doncel
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Leonor Nozal Martínez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán Martínez, 2, 46980, Paterna, Valencia, Spain; University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
27
|
Villota N, Lombraña JI, Cruz-Alcalde A, Marcé M, Esplugas S. Kinetic study of colored species formation during paracetamol removal from water in a semicontinuous ozonation contactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1434-1442. [PMID: 30308912 DOI: 10.1016/j.scitotenv.2018.08.417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Paracetamol aqueous solutions, when ozonized, acquired a strong red coloration depending on the applied ozone dose and the initial pH of the aqueous solution. Then, this color loses intensity and turns to yellow. Color formation is favored when operating at initial pH0 = 12.0 and ozone flow-rate 4.2 mg/min. A mechanism describing color formation was proposed, being the main pathway involved an initial paracetamol hydroxylation to yield 3-hydroxyacetaminophen followed by the formation of 2-amino-5-hydroxyacetofenone. Then, these compounds are degraded to colored oxidation by-products. A model describing color evolution was also proposed, considering first-order kinetics for both color formation and degradation. The corresponding kinetic constant values were determined to be kf = 0.01 (1/min) and kd = 0.03 pH -0.055 (1/min), respectively. A relationship between aromaticity loss and color changes during the reaction has been estimated considering the parameter α=kA/kf, being α = 1.62 pH + 3.5 and the first-order rate constant for aromaticity loss given by kA = 0.0162 pH + 0.035 (1/min).
Collapse
Affiliation(s)
- N Villota
- Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería de Vitoria-Gasteiz, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006, Araba, Spain
| | - J I Lombraña
- Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940, Bizkaia, Spain
| | - A Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain.
| | - M Marcé
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| | - S Esplugas
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
28
|
dos Santos C, Nardocci A. Prioritization of pharmaceuticals in drinking water exposure based on toxicity and environmental fate assessment by in silico tools: An integrated and transparent ranking. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Aydin S, Aydin ME, Ulvi A, Kilic H. Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:544-558. [PMID: 30406596 DOI: 10.1007/s11356-018-3563-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 05/25/2023]
Abstract
The study presented the occurrence of antibiotics in 16 different hospital effluents, the removal of antibiotics in urban wastewater treatment plant (WWTP), and the potential ecotoxicological risks of the effluent discharge on the aquatic ecosystem. The total concentration of antibiotics in hospital effluents was ranged from 21.2 ± 0.13 to 4886 ± 3.80 ng/L in summer and from 497 ± 3.66 to 322,735 ± 4.58 ng/L in winter. Azithromycin, clarithromycin, and ciprofloxacin were detected the highest concentrations among the investigated antibiotics. The total antibiotic load to the influent of the WWTP from hospitals was 3.46 g/day in summer and 303.2 g/day in winter. The total antibiotic contribution of hospitals to the influent of the WWTP was determined as 13% in summer and 28% in winter. The remaining 87% in summer and 72% in winter stems from the households. The total antibiotic removal by conventional physical and biological treatment processes was determined as 79% in summer, whereas it decreased to 36% in winter. When the environmental risk assessment was performed, azithromycin and clarithromycin in the effluent from the treatment plant in winter posed a high risk (RQ > 10) for the aquatic organisms (algae and fish) in the receiving environment. According to these results, the removal efficiency of antibiotics at the WWTP is inadequate and plant should be improved to remove antibiotics by advanced treatment processes.
Collapse
Affiliation(s)
- Senar Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey.
| | - Mehmet Emin Aydin
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - Arzu Ulvi
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| | - Havva Kilic
- Environmental Engineering Department, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
30
|
Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review. Catalysts 2018. [DOI: 10.3390/catal8120673] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Catalytic wet peroxide oxidation (CWPO) is emerging as an advanced oxidation process (AOP) of significant promise, which is mainly due to its efficiency for the decomposition of recalcitrant organic compounds in industrial and urban wastewaters and relatively low operating costs. In current study, we have systemised and critically discussed the feasibility of CWPO for industrial and urban wastewater treatment. More specifically, types of catalysts the effect of pH, temperature, and hydrogen peroxide concentrations on the efficiency of CWPO were taken into consideration. The operating and maintenance costs of CWPO applied to wastewater treatment and toxicity assessment were also discussed. Knowledge gaps were identified and summarised. The main conclusions of this work are: (i) catalyst leaching and deactivation is one of the main problematic issues; (ii) majority of studies were performed in semi-batch and batch reactors, while continuous fixed bed reactors were not extensively studied for treatment of real wastewaters; (iii) toxicity of wastewaters treated by CWPO is of key importance for possible application, however it was not studied thoroughly; and, (iv) CWPO can be regarded as economically viable for wastewater treatment, especially when conducted at ambient temperature and natural pH of wastewater.
Collapse
|
31
|
Ncube S, Madikizela LM, Chimuka L, Nindi MM. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. WATER RESEARCH 2018; 145:231-247. [PMID: 30142521 DOI: 10.1016/j.watres.2018.08.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 05/27/2023]
Abstract
The therapeutic efficacy of antiretroviral drugs as well as challenges and side effects against the human immunodeficiency virus is well documented and reviewed. Evidence is available in literature indication that antiretrovirals are only partially transformed and become completely excreted from the human body in their original form and/or as metabolites in urine and feces. The possibility of massive release of antiretrovirals through human excreta that enters surface water through surface runoff and wastewater treatment plant effluents is now of environmental concern because the public might be experiencing chronic exposure to antiretrovirals. The primary concern of this review is limited data concerning environmental fate and ecotoxicity of antiretrovirals and their metabolites. The review aims to provide a comprehensive insight into the evaluation of antiretrovirals in environmental samples. The objective is therefore to assess the extent of analysis of antiretrovirals in environmental samples and also look at strategies including instrumentation and predictive models that have been reported in literature on the fate and ecotoxicological effects due to presence of antiretrovirals in different environmental compartments. The review also looks at current challenges and offers possible areas of exploration that could help minimize the presence of antiretrovirals in the environment.
Collapse
Affiliation(s)
- Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mathew M Nindi
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| |
Collapse
|
32
|
Occupational exposure to cytotoxic drugs: the importance of surface cleaning to prevent or minimise exposure. Arh Hig Rada Toksikol 2018; 69:238-249. [DOI: 10.2478/aiht-2018-69-3137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Healthcare workers who prepare or administer cytotoxic agents run the risk of exposure, and the risks for health are real even at doses lower than those applied in cancer patients, because, in theory, no dose is safe. The most common and problematic route of exposure is through the skin, especially as work surfaces can remain contaminated even after cleaning. This pilot study aimed to demonstrate the importance of having an effective surface decontamination protocol by determining surface contamination with cyclophosphamide, 5-fluorouracil, and paclitaxel as the most common cytotoxic drugs in an oncology day service. Samples were collected before and after drug handling and analysed with high performance liquid chromatography with diode array detection (HPLC-DAD). Of the 29 samples collected before drug handling 23 were contaminated, five of which with more than one drug. Of the 30 samples collected after drug handling 25 were contaminated, eight of which with more than one drug. The two time points did not significantly differ, which evidences a widespread contamination and ineffective cleaning. This calls for revising the cleaning protocol and handling procedure to place contamination under control as much as possible.
Collapse
|
33
|
Gajski G, Ladeira C, Gerić M, Garaj-Vrhovac V, Viegas S. Genotoxicity assessment of a selected cytostatic drug mixture in human lymphocytes: A study based on concentrations relevant for occupational exposure. ENVIRONMENTAL RESEARCH 2018; 161:26-34. [PMID: 29100207 DOI: 10.1016/j.envres.2017.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Cytostatic drugs are highly cytotoxic agents used in cancer treatment and although their benefit is unquestionable, they have been recognized as hazardous to healthcare professionals in occupational settings. In a working environment, simultaneous exposure to cytostatics may occur creating a higher risk than that of a single substance. Hence, the present study evaluated the combined cyto/genotoxicity of a mixture of selected cytostatics with different mechanisms of action (MoA; 5-fluorouracil, cyclophosphamide and paclitaxel) towards human lymphocytes in vitro at a concentration range relevant for occupational as well as environmental exposure. The results suggest that the selected cytostatic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. This indicates not only that such mixture may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the prediction of toxicity in a complex working environment. The presence of drugs in different amounts and with different MoA suggests the need to study the relationship between the presence of genotoxic components in the mixture and the resulting effects, taking into account the MoA of each component by itself. Therefore, this study provides new data sets necessary for scientifically-based risk assessments of cytostatic drug mixtures in occupational as well as environmental settings.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Carina Ladeira
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Grupo de Investigação em Genética e Metabolismo, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Susana Viegas
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
34
|
Díaz-Garduño B, Pintado-Herrera MG, Biel-Maeso M, Rueda-Márquez JJ, Lara-Martín PA, Perales JA, Manzano MA, Garrido-Pérez C, Martín-Díaz ML. Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. WATER RESEARCH 2017; 119:136-149. [PMID: 28454009 DOI: 10.1016/j.watres.2017.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Emerging contaminants (ECs) and regulated compounds (RCs) from three different WWTP effluents were measured in the current study. The efficiency of two tertiary treatments, Photobiotreatment (PhtBio) and Multi-Barrier Treatment (MBT), for removing contaminants was determined. Results indicated different percentages of removal depending on the treatment and the origin of the effluent. Risk Quotients (RQs) were determined for different species of algae, Daphnia, and fish. RQ results revealed diverse risk values depending on the bioindicator species. Tonalide, galaxolide (fragrances), and ofloxacin (antibiotic) were the most persistent and harmful substances in tested effluents. "Negligible risk" category was reached since a wide diversity of ECs were removed by MBT with high removal percentages. Contrarily, PhtBio was effective only in the depuration of certain chemical compounds, and its efficiency depended on the composition of the raw effluent.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - M G Pintado-Herrera
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - M Biel-Maeso
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - J J Rueda-Márquez
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - P A Lara-Martín
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - J A Perales
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - M A Manzano
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnologías Marinas (CACYTMAR), Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
35
|
Mir-Tutusaus JA, Parladé E, Llorca M, Villagrasa M, Barceló D, Rodriguez-Mozaz S, Martinez-Alonso M, Gaju N, Caminal G, Sarrà M. Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. WATER RESEARCH 2017; 116:65-75. [PMID: 28314209 DOI: 10.1016/j.watres.2017.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Hospital wastewaters are a main source of pharmaceutical active compounds, which are usually highly recalcitrant and can accumulate in surface and groundwater bodies. Fungal treatments can remove these contaminants prior to discharge, but real wastewater poses a problem to fungal survival due to bacterial competition. This study successfully treated real non-spiked, non-sterile wastewater in a continuous fungal fluidized bed bioreactor coupled to a coagulation-flocculation pretreatment for 56 days. A control bioreactor without the fungus was also operated and the results were compared. A denaturing gradient gel electrophoresis (DGGE) and sequencing approach was used to study the microbial community arisen in both reactors and as a result some bacterial degraders are proposed. The fungal operation successfully removed analgesics and anti-inflammatories, and even the most recalcitrant pharmaceutical families such as antibiotics and psychiatric drugs.
Collapse
Affiliation(s)
- J A Mir-Tutusaus
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - E Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - M Llorca
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain
| | - M Villagrasa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain
| | - M Martinez-Alonso
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - N Gaju
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - G Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
36
|
Baena-Nogueras RM, González-Mazo E, Lara-Martín PA. Photolysis of Antibiotics under Simulated Sunlight Irradiation: Identification of Photoproducts by High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3148-3156. [PMID: 28192997 DOI: 10.1021/acs.est.6b03038] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is growing concern regarding the widespread use of antibiotics and their presence in the aqueous environment. Their removal in the water column is mediated by different types of degradation processes for which the mechanisms are still unclear. This research is focused on characterizing the photodegradation kinetics and pathways of two largely employed antibiotics families: sulfonamides (9 SDs) and fluoroquinolones (6 FQs). Degradation percentages and rates were measured in pure water exposed to simulated natural sunlight at a constant irradiance value (500 W m-2) during all the experiments, and the main photoproducts formed were characterized through accurate mass measurement using ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-QToF-MS). Over 200 different phototransformation products were identified for SDs and FQs, 66% of them, to the best of our knowledge, have not been described before. Their sequential formation and disappearance over the course of the experiments reveals the existence of several pathways for the degradation of target antibiotics. Occurrence of new photoproducts derived from desulfonation and/or denitrification, as well as hydroxylation of photo-oxidized heterocyclic rings, have been identified during photodegradation of SDs, whereas a new pathway yielding oxidation of the benzene ring after the cleavage of the piperazine ring (e.g., CIP product with m/z 280) is described for FQs.
Collapse
Affiliation(s)
- Rosa María Baena-Nogueras
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI·MAR, University of Cadiz , Puerto Real, 11510, Spain
| | - Eduardo González-Mazo
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI·MAR, University of Cadiz , Puerto Real, 11510, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI·MAR, University of Cadiz , Puerto Real, 11510, Spain
| |
Collapse
|
37
|
Gajski G, Gerić M, Domijan AM, Garaj-Vrhovac V. Combined cyto/genotoxic activity of a selected antineoplastic drug mixture in human circulating blood cells. CHEMOSPHERE 2016; 165:529-538. [PMID: 27681109 DOI: 10.1016/j.chemosphere.2016.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Antineoplastic drugs are highly cytotoxic chemotherapeutic agents that can often interfere directly or indirectly with the cell's genome. In an environmental or medical setting simultaneous exposure may occur. Such multiple exposures may pose a higher risk than it could be assumed from the studies evaluating the effect of a single substance. Therefore, in the present study we tested the combined cyto/genotoxicity of a mixture of selected antineoplastic drugs with different mechanisms of action (5-fluorouracil, etoposide, and imatinib mesylate) towards human lymphocytes in vitro. The results suggest that the selected antineoplastic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. Moreover, the changes in the measured oxidative stress parameters suggest the participation of reactive oxygen species in the cyto/genotoxicity of the selected mixture. The obtained results indicate not only that such mixtures may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the predicting toxicity in a complex environment. Altogether, the results emphasise the need for further toxicological screening of antineoplastic drug mixtures, especially at low environmentally relevant concentrations, as to avoid any possible adverse effects on the environment and human health.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Gajski G, Gerić M, Žegura B, Novak M, Nunić J, Bajrektarević D, Garaj-Vrhovac V, Filipič M. Genotoxic potential of selected cytostatic drugs in human and zebrafish cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14739-14750. [PMID: 25943512 DOI: 10.1007/s11356-015-4592-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Due to their increasing use, the residues of anti-neoplastic drugs have become emerging pollutants in aquatic environments. Most of them directly or indirectly interfere with the cell's genome, which classifies them into a group of particularly dangerous compounds. The aim of the present study was to conduct a comparative in vitro toxicological characterisation of three commonly used cytostatics with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP] and etoposide [ET]) towards zebrafish liver (ZFL) cell line, human hepatoma (HepG2) cells and human peripheral blood lymphocytes (HPBLs). Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. All three drugs induced time- and dose-dependent decreases in cell viability. The sensitivity of ZFL and HepG2 cells towards the cytotoxicity of 5-FU was comparable (half maximal inhibitory concentration (IC50) 5.3 to 10.4 μg/mL). ZFL cells were more sensitive towards ET- (IC50 0.4 μg/mL) and HepG2 towards CDDP- (IC50 1.4 μg/mL) induced cytotoxicity. Genotoxicity was determined by comet assay and cytokinesis block micronucleus (CBMN) assay. ZFL cells were the most sensitive, and HPBLs were the least sensitive. In ZFL cells, induction of DNA strand breaks was a more sensitive genotoxicity endpoint than micronuclei (MNi) induction; the lowest effective concentration (LOEC) for DNA strand break induction was 0.001 μg/mL for ET, 0.01 μg/mL for 5-FU and 0.1 μg/mL for CDDP. In HepG2 cells, MNi induction was a more sensitive genotoxicity endpoint. The LOEC values were 0.01 μg/mL for ET, 0.1 μg/mL for 5-FU and 1 μg/mL for CDDP. The higher sensitivity of ZFL cells to cytostatic drugs raises the question of the impact of such compounds in aquatic ecosystem. Since little is known on the effect of such drugs on aquatic organisms, our results demonstrate that ZFL cells provide a relevant and sensitive tool to screen genotoxic potential of environmental pollutant in the frame of hazard assessment.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Ljubljanska ulica 9, 2000, Maribor, Slovenia
| | - Jana Nunić
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Džejla Bajrektarević
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
39
|
Trombini C, Garcia da Fonseca T, Morais M, Rocha TL, Blasco J, Bebianno MJ. Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2016; 119:12-21. [PMID: 27183200 DOI: 10.1016/j.marenvres.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Antineoplastic drugs used in chemotherapy were detected in aquatic environment: despite the very low concentrations (ng L(-1) to ug L(-1)), due to their potent mechanism of action they could have adverse effects on non-target aquatic organisms particularly under chronic exposure. Cisplatin (CDDP) is one of the most effective anticancer drug currently in use but information on its ecotoxicological effects is very limited. In this study, Mytilus galloprovincialis was used to investigate the toxic effects related to CDDP exposure. Mussels were exposed to cisplatin (100 ng L(-1)) for 14 days: antioxidant (superoxide dismutase, catalase, total and selenium-dependent glutathione peroxidase) and phase II (glutathione-S-transferase) enzymes activities, oxidative damage (lipid peroxidation), genotoxicity (DNA damage) and neurotoxicity (acetylcholinesterase) was evaluated. Results indicate that CDDP at tested concentration induce changes in the antioxidant capacity, oxidative stress in target organs (digestive gland and gills) as well as DNA damage in mussel hemocytes and neurotoxicity representing a risk for non-target organisms.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Taina Garcia da Fonseca
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Matilde Morais
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Thiago Lopes Rocha
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Maria João Bebianno
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| |
Collapse
|
40
|
Trombini C, Hampel M, Blasco J. Evaluation of acute effects of four pharmaceuticals and their mixtures on the copepod Tisbe battagliai. CHEMOSPHERE 2016; 155:319-328. [PMID: 27135693 DOI: 10.1016/j.chemosphere.2016.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
The individual and combined toxicities of acetaminophen, carbamazepine, diclofenac and ibuprofen have been examined in neonate nauplii (<24 h-old) of the harpacticoid copepod Tisbe battagliai. Based on acute toxicity data (LC50) obtained, diclofenac was the most toxic compound with an LC50 value of 9.5 mg·L(-1); this is between 5 and 7 times lower than the LC50 value for acetaminophen, carbamazepine and ibuprofen (67.8 mg·L(-1), 59 mg·L(-1) and 49.7 mg·L(-1) respectively). The environmental risk posed by the selected pharmaceuticals was assessed by calculating risk quotients (RQs) based on MEC (the highest exposure concentration of the compound in the medium)/PNEC (predicted no effect concentration) ratios. Results suggest that, at environmental concentrations, none of the compounds is harmful for the aquatic environment (low or no risk). Toxicity data obtained for mixtures were compared with predictions derived from three different models: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). The classical modeling approaches CA and IA failed to predict the observed mixture toxicity, thus indicating that single compound toxicity data are not sufficient to predict toxicity of drug mixtures on Tisbe species. However, the use of the CI seems to provide better predictions of pharmaceutical toxicity.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Miriam Hampel
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR), Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
41
|
Kralova M, Levchuk I, Kasparek V, Sillanpaa M, Cihlar J. Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60943-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Campanha MB, Awan AT, de Sousa DNR, Grosseli GM, Mozeto AA, Fadini PS. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7936-7947. [PMID: 25516246 DOI: 10.1007/s11356-014-3929-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
This manuscript reports a 3-year study on occurrence of pharmaceuticals, hormones, and triclosan in surface waters of a central urban region of São Paulo State of Southeast Brazil (the Monjolinho River in São Carlos). Water samples collected once at every 2 months were pre-concentrated by solid-phase extraction (SPE) and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The most frequently detected compounds in higher concentrations were caffeine, paracetamol, and atenolol (maximum concentrations 129,585, 30,421, and 8199 ng L(-1), respectively), while hormones estrone and 17-β-estradiol were the least detected, in levels up to 14.8 ng L(-1). There was an increasing trend in concentrations of most of the compounds along the river course, especially downstream of the river where there is discharge of both wastewater treatment plant effluent and raw sewage from a particular region of São Carlos city. Concentrations of contaminants were higher during dry periods as a result of decline in the water levels. Decrease in concentrations near the river mouth occurred to different extents for each compound. It was high for caffeine and atenolol, but was very low for carbamazepine and diclofenac. The present study reports the first data about the occurrence of some major emerging contaminants in the Monjolinho River. Besides its regional significance, this work may assist in composing a dataset for water contamination diagnosis focusing on emerging contaminants, both in the Brazilian as well as in the Global studies related to aquatic ecosystems. Such datasets can be helpful for making future public policies on water quality, since these compounds are not yet legally regulated.
Collapse
Affiliation(s)
- Mariele B Campanha
- Departamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, Rod. Washington Luiz km 235, 13565-905, São Carlos, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Oldenkamp R, Huijbregts MAJ, Hollander A, Ragas AMJ. Environmental impact assessment of pharmaceutical prescriptions: Does location matter? CHEMOSPHERE 2014; 115:88-94. [PMID: 24508156 DOI: 10.1016/j.chemosphere.2014.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
A methodology was developed for the assessment and comparison of the environmental impact of two alternative pharmaceutical prescriptions. This methodology provides physicians with the opportunity to include environmental considerations in their choice of prescription. A case study with the two antibiotics ciprofloxacin and levofloxacin at three locations throughout Europe showed that the preference for a pharmaceutical might show spatial variation, i.e. comparison of two pharmaceuticals might yield different results when prescribed at different locations. This holds when the comparison is based on both the impact on the aquatic environment and the impact on human health. The relative impacts of ciprofloxacin and levofloxacin on human health were largely determined by the local handling of secondary sludge, agricultural disposal practices, the extent of secondary sewage treatment, and local food consumption patterns. The relative impacts of ciprofloxacin and levofloxacin on the aquatic environment were mostly explained by the presence of specific sewage treatment techniques, as effluents from sewage treatment plants (STPs) are the most relevant emission pathway for the aquatic environment.
Collapse
Affiliation(s)
- Rik Oldenkamp
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Anne Hollander
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; Department of Ecological Risk Assessment, National Institute for Public Health and The Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
44
|
Hamdi El Najjar N, Touffet A, Deborde M, Journel R, Karpel Vel Leitner N. Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, formation of transformation products and toxicity. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Daughton CG. Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:392-404. [PMID: 24956075 DOI: 10.1016/j.scitotenv.2014.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Active pharmaceutical ingredients (APIs) from the purchase and use of medications are recognized as ubiquitous contaminants of the environment. Ecological impacts can range from subtle to overt--resulting from multi-generational chronic exposure to trace levels of multiple APIs (such as in the aquatic environment) or acute exposure to higher levels (such as with wildlife ingestion of improperly discarded waste). Reducing API entry to the environment has relied solely on conventional end-of-pipe pollution control measures such as wastewater treatment and take-back collections of leftover, unwanted drugs (to prevent disposal by flushing to sewers). An exclusive focus on these conventional approaches has ignored the root sources of the problem and may have served to retard progress in minimizing the environmental footprint of the healthcare industry. Potentially more effective and less-costly upstream pollution prevention approaches have long been considered imprudent, as they usually involve the modification of long-established norms in the practice of clinical prescribing. The first pollution prevention measure to be proposed as feasible (reducing the dose or usage of certain select medications) is followed here by an examination of another possible approach--one that would rely on the excretion profiles of APIs. These two approaches combined could be termed eco-directed sustainable prescribing (EDSP) and may hold the potential for achieving the largest reductions in API entry to the environment--largely by guiding prescribers' decisions regarding drug selection. EDSP could reduce API entry to the environment by minimizing the need for disposal (as a consequence of avoiding leftover, unwanted medications) and reducing the excretion of unmetabolized APIs (by preferentially prescribing APIs that are more extensively metabolized). The potential utility of the Biopharmaceutics Drug Disposition Classification System (BDDCS) is examined for the first time as a guide for API prescribing decisions by revealing relative API quantities entering sewage via excretion.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 944 East Harmon Ave, Las Vegas, NV 89119, United States.
| |
Collapse
|
46
|
Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E. Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:365-76. [PMID: 24951894 DOI: 10.1016/j.scitotenv.2014.05.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/19/2014] [Accepted: 05/25/2014] [Indexed: 05/20/2023]
Abstract
Hospital effluents contribute to the occurrence of emerging contaminants in the environment due to their high load of pharmaceutical active compounds (PhACs) and some endocrine disruptor compounds (EDCs). Nowadays, hospital wastewaters are co-treated with urban wastewater; however, the dilution factor and the inefficiency of wastewater treatment plants in the removal of PhACs and EDCs make inappropriate the co-treatment of both effluents. In this paper, a new alternative to pre-treat hospital wastewater concerning the removal of PhACs and EDCs is presented. The treatment was carried out in a batch fluidized bed bioreactor under sterile and non-sterile conditions with Trametes versicolor pellets. Results on non-sterile experiments pointed out that 46 out of the 51 detected PhACs and EDCs were partially to completely removed. The total initial PhAC amount into the bioreactor was 8185 μg in sterile treatment and 8426 μg in non-sterile treatment, and the overall load elimination was 83.2% and 53.3% in their respective treatments. In addition, the Microtox test showed reduction of wastewater toxicity after the treatment. Hence, the good efficiency of the fungal treatment regarding removal of the wide diversity of PhACs and EDCs detected in hospital effluents is demonstrated.
Collapse
Affiliation(s)
- Carles Cruz-Morató
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Daniel Lucas
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain
| | - Marta Llorca
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain
| | - Marina Gorga
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| |
Collapse
|
47
|
Implementing AACN's Recommendations for Environmental Sustainability in Colleges of Nursing: From Concept to Impact. J Prof Nurs 2014; 30:196-202. [DOI: 10.1016/j.profnurs.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Indexed: 11/24/2022]
|
48
|
Jiang W, Zhang H, Li X, Liu X, Zhang S, Shi W, Shen J, Wang Z. Monoclonal antibody production and the development of an indirect competitive enzyme-linked immunosorbent assay for screening spiramycin in milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10925-10931. [PMID: 24147865 DOI: 10.1021/jf404027b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To monitor spiramycin (SP) residue in milk, a monoclonal antibody (mAb)-based indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed. This study described the preparation of three immunogens and the production of a high-affinity mAb. After optimization, the 50% inhibition concentration (IC50) for the developed icELISA was estimated as 0.97 ng/mL in the assay buffer, and the limit of detection and limit of quantitation were 2.51 and 4.40 μg/L in the milk matrix. The newly developed assay demonstrated negligible cross-reactivity with 15 other macrolide antibiotics, but not with kitasamycin (23.4%). The mean recoveries ranged from 81 to 103% for the spiked samples (5, 10, and 50 μg/L), and the coefficient of variation ranged from 5.4 to 9.6%. The icELISA was validated by LC-MS/MS method, and all results demonstrated that it was a suitable screening method for detecting SP residue in milk without requiring a cleanup process.
Collapse
Affiliation(s)
- Wenxiao Jiang
- College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Location, Location, Location. Public Health 2013; 127:299-300. [DOI: 10.1016/j.puhe.2013.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|