1
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Abzhanova A, Berntsen J, Pennington ER, Dailey L, Masood S, George I, Warren N, Martin J, Hays MD, Ghio AJ, Weinstein JP, Kim YH, Puckett E, Samet JM. Monitoring redox stress in human airway epithelial cells exposed to woodsmoke at an air-liquid interface. Part Fibre Toxicol 2024; 21:14. [PMID: 38459567 PMCID: PMC10921608 DOI: 10.1186/s12989-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Wildland fires contribute significantly to the ambient air pollution burden worldwide, causing a range of adverse health effects in exposed populations. The toxicity of woodsmoke, a complex mixture of gases, volatile organic compounds, and particulate matter, is commonly studied in vitro using isolated exposures of conventionally cultured lung cells to either resuspended particulate matter or organic solvent extracts of smoke, leading to incomplete toxicity evaluations. This study aimed to improve our understanding of the effects of woodsmoke inhalation by building an advanced in vitro exposure system that emulates human exposure of the airway epithelium. We report the development and characterization of an innovative system that permits live-cell monitoring of the intracellular redox status of differentiated primary human bronchial epithelial cells cultured at an air-liquid interface (pHBEC-ALI) as they are exposed to unfractionated woodsmoke generated in a tube furnace in real time. pHBEC-ALI exposed to freshly generated woodsmoke showed oxidative changes that were dose-dependent and reversible, and not attributable to carbon monoxide exposure. These findings show the utility of this novel system for studying the molecular initiating events underlying woodsmoke-induced toxicity in a physiologically relevant in vitro model, and its potential to provide biological plausibility for risk assessment and public health measures.
Collapse
Affiliation(s)
- Aiman Abzhanova
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa Dailey
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Syed Masood
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ingrid George
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Nina Warren
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Joseph Martin
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Michael D Hays
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Andrew J Ghio
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Jason P Weinstein
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Earl Puckett
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, EPA Human Studies Facility, Research Triangle Park, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|
3
|
de Cubas L, Mallor J, Herrera-Fernández V, Ayté J, Vicente R, Hidalgo E. Expression of the H2O2 Biosensor roGFP-Tpx1.C160S in Fission and Budding Yeasts and Jurkat Cells to Compare Intracellular H2O2 Levels, Transmembrane Gradients, and Response to Metals. Antioxidants (Basel) 2023; 12:antiox12030706. [PMID: 36978953 PMCID: PMC10045392 DOI: 10.3390/antiox12030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Intracellular hydrogen peroxide (H2O2) levels can oscillate from low, physiological concentrations, to intermediate, signaling ones, and can participate in toxic reactions when overcoming certain thresholds. Fluorescent protein-based reporters to measure intracellular H2O2 have been developed in recent decades. In particular, the redox-sensitive green fluorescent protein (roGFP)-based proteins fused to peroxiredoxins are among the most sensitive H2O2 biosensors. Using fission yeast as a model system, we recently demonstrated that the gradient of extracellular-to-intracellular peroxides through the plasma membrane is around 300:1, and that the concentration of physiological H2O2 is in the low nanomolar range. Here, we have expressed the very sensitive probe roGFP2-Tpx1.C169S in two other model systems, budding yeast and human Jurkat cells. As in fission yeast, the biosensor is ~40–50% oxidized in these cell types, suggesting similar peroxide steady-state levels. Furthermore, probe oxidation upon the addition of extracellular peroxides is also quantitatively similar, suggesting comparable plasma membrane H2O2 gradients. Finally, as a proof of concept, we have applied different concentrations of zinc to all three model systems and have detected probe oxidation, demonstrating that an excess of this metal can cause fluctuations of peroxides, which are moderate in yeasts and severe in mammalian cells. We conclude that the principles governing H2O2 fluxes are very similar in different model organisms.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Mallor
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0848; Fax: +34-93-316-0901
| |
Collapse
|
4
|
Ye Z, Liang R, Wang B, Yu L, Liu W, Wang X, Xiao L, Ma J, Zhou M, Chen W. Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120331. [PMID: 36195192 DOI: 10.1016/j.envpol.2022.120331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The link between zinc exposure and glucose metabolism or the development of type 2 diabetes (T2D) is controversial, and underlying mechanisms are unclear. This study aimed to explore the associations of zinc exposure with glucose-insulin homeostasis traits and the long-term effects of zinc on the development of T2D, and further to estimate the potential roles of inflammation and oxidative damage in such relationships. We investigated 3890 urban adults from the Wuhan-Zhuhai cohort, and followed up every three years. Mixed linear model was applied to estimate dose-response associations between urinary zinc and glycemia traits [fasting plasma insulin (FPI), fasting plasma glucose (FPG), insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR), and β-cell dysfunction (homeostasis model assessment of β-cell function, HOMA-B)], as well as zinc and biomarkers for systemic inflammation (C-reactive protein) and oxidative damage (8-isoprostane and 8-hydroxy-2'-deoxyguanosine). Logistic regression model and Cox regression model were conducted to evaluate the relationships between urinary zinc and prevalence and incidence of T2D, respectively. We further performed mediation analysis to assess the roles of inflammation and oxidative damage biomarkers in above associations. At baseline, we observed significant dose-response relationships of elevated urinary zinc with increased FPI, FPG, HOMA-IR, and T2D prevalence and decreased HOMA-B, and such associations could be strengthened by increased C-reactive protein, 8-isoprostane, and 8-hydroxy-2'-deoxyguanosine. Elevated C-reactive protein significantly mediated 9.09% and 17.67% of the zinc-related FPG and HOMA-IR increments, respectively. In longitudinal analysis, a significantly positive association between urinary zinc and T2D incidence was observed among subjects with persistent high urinary zinc levels when compared with those with persistent low zinc levels. Our results suggested that high levels of zinc exposure adversely affected on glucose-insulin homeostasis and further contributed to increased risk of T2D cross-sectionally and longitudinally. Moreover, inflammatory response might play an important role in zinc-related glucose metabolic disorder.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Vincent R, Kumarathasan P, Goegan P, Bjarnason SG, Guénette J, Karthikeyan S, Thomson EM, Adamson IY, Watkinson WP, Battistini B, Miller FJ. Acute cardiovascular effects of inhaled ambient particulate matter: Chemical composition-related oxidative stress, endothelin-1, blood pressure, and ST-segment changes in Wistar rats. CHEMOSPHERE 2022; 296:133933. [PMID: 35157883 DOI: 10.1016/j.chemosphere.2022.133933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Short-term increases in particulate matter (PM) are associated with heightened morbidity and mortality from cardiovascular causes. Inhalation of PM is known to increase endothelin (ET)-1 levels. Yet, less is known about particle composition-related changes at the molecular level including the endothelinergic system and relationship with cardiovascular function changes. In this work, adult Wistar male rats were exposed for 4 h by nose-only inhalation to clean air, Ottawa urban particles (EHC-93, 48 mg/m3) and water-leached (EHC-93L, 49 mg/m3) particles, to examine the effect of particle compositional changes on oxidative stress, circulating ETs, blood pressure, and heart electrophysiology. Particle deposition in the respiratory compartment was estimated at 85 μg (25 ng/cm2). Lung cell proliferation was low in both treatment groups, indicating absence of acute injury. Inhalation of EHC-93 caused statistically significant elevations (p < 0.05) of oxidative stress markers, ET-1, ET-3, blood pressure, and a decrease of ST-segment duration in the ECG at 1.5 days post-exposure. Leached particles (EHC-93L) caused rapid but transient elevation (p < 0.05) of oxidative stress, ET-1, ET-2, and ET-3 at earlier time points, with no changes in blood pressure or ST-segment. These results demonstrate that inhalation of urban particles at an internal dose inadequate to cause acute lung injury can induce oxidative stress, enhance vasoactive endothelins, leading to vasopressor response, affecting cardiac electrophysiology in Wistar rats, consistent with the cardiovascular impacts of ambient particles in human populations. Change in particle potency after removal of soluble species, notably cadmium, zinc and polar organics suggests that the toxicodynamics of cardiovascular effects can be modified by physicochemical properties of particles.
Collapse
Affiliation(s)
- Renaud Vincent
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Patrick Goegan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Stephen G Bjarnason
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada.
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Ian Y Adamson
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | - Frederick J Miller
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
6
|
Masood S, Pennington ER, Simmons SO, Bromberg PA, Shaikh SR, Rice RL, Gold A, Zhang Z, Samet JM. Live cell imaging of oxidative stress in human airway epithelial cells exposed to isoprene hydroxyhydroperoxide. Redox Biol 2022; 51:102281. [PMID: 35306372 PMCID: PMC8933716 DOI: 10.1016/j.redox.2022.102281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Exposure to respirable air particulate matter (PM2.5) in ambient air is associated with morbidity and premature deaths. A major source of PM2.5 is the photooxidation of volatile plant-produced organic compounds such as isoprene. Photochemical oxidation of isoprene leads to the formation of hydroperoxides, environmental oxidants that lead to inflammatory (IL-8) and adaptive (HMOX1) gene expression in human airway epithelial cells (HAEC). To examine the mechanism through which these oxidants alter intracellular redox balance, we used live-cell imaging to monitor the effects of isoprene hydroxyhydroperoxides (ISOPOOH) in HAEC expressing roGFP2, a sensor of the glutathione redox potential (EGSH). Non-cytotoxic exposure of HAEC to ISOPOOH resulted in a rapid and robust increase in EGSH that was independent of the generation of intracellular or extracellular hydrogen peroxide. Our results point to oxidation of GSH through the redox relay initiated by glutathione peroxidase 4, directly by ISOPOOH or indirectly by ISOPOOH-generated lipid hydroperoxides. We did not find evidence for involvement of peroxiredoxin 6. Supplementation of HAEC with polyunsaturated fatty acids enhanced ISOPOOH-induced glutathione oxidation, providing additional evidence that ISOPOOH initiates lipid peroxidation of cellular membranes. These findings demonstrate that ISOPOOH is a potent environmental airborne hydroperoxide with the potential to contribute to oxidative burden of human airway posed by inhalation of secondary organic aerosols.
Collapse
Affiliation(s)
- Syed Masood
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L Rice
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Wei S, Xu T, Jiang T, Yin D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10911-10922. [PMID: 34355568 DOI: 10.1021/acs.est.1c02048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air pollution composed of the complex interactions among particular matter, chemicals, and pathogens is an emerging and global environmental issue that closely correlates with a variety of diseases and adverse health effects, especially increasing incidences of neurodegenerative diseases. However, as one of the prevalent health outcomes of air pollution, chemosensory dysfunction has not attracted enough concern until recently. During the COVID-19 pandemic, multiple scientific studies emphasized the plausibly essential roles of the chemosensory system in the airborne transmission airway of viruses into the human body, which can also be utilized by pollutants. In this Review, in addition to summarizing current progress regarding the contributions of traditional air pollutants to chemosensory dysfunction, we highlight the roles of emerging contaminants. We not only sum up clarified mechanisms, such as inflammation and apoptosis but also discuss some not yet completely identified mechanisms, e.g., disruption of olfactory signal transduction. Although the existing evidence is not overwhelming, the chemosensory system is expected to be a useful indicator in neurotoxicology and neural diseases based on accumulating studies that continually excavate the deep link between chemosensory dysfunction and neurodegenerative diseases. Finally, we argue the importance of studies concerning chemosensory dysfunction in understanding the health effects of air pollution and provide comments for some future directions of relevant research.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Neuro-Ethology Team, 59 Bd Pinel, 69500 Bron, France
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
8
|
Faber SC, McNabb NA, Ariel P, Aungst ER, McCullough SD. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol Sci 2021; 177:140-155. [PMID: 32525552 DOI: 10.1093/toxsci/kfaa085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a target and a mediator of the adverse effects of inhaled chemical exposures despite being separated from the inhaled material by an epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects should be considered in inhalation toxicology research and testing.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology and Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nicole A McNabb
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Emily R Aungst
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Shaun D McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| |
Collapse
|
9
|
Zhou M, Xiao L, Yang S, Wang B, Shi T, Tan A, Wang X, Mu G, Chen W. Cross-sectional and longitudinal associations between urinary zinc and lung function among urban adults in China. Thorax 2020; 75:771-779. [DOI: 10.1136/thoraxjnl-2019-213909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
BackgroundExposure to zinc was suggested to be associated with pulmonary damage, but whether zinc exposure affects lung function remains unclear.ObjectivesTo quantify the association between urinary zinc and lung function and explore the potential mechanisms.MethodsUrinary zinc and lung function were measured in 3917 adults from the Wuhan-Zhuhai cohort and were repeated after 3 years of follow-up. Indicators of systemic inflammation (C reactive protein), lung epithelium integrity (club cell secretory protein-16) and oxidative damage (8-hydroxy-2′-deoxyguanosine and 8-isoprostane) were measured at baseline. Linear mixed models were used to estimate the exposure–response relationship between urinary zinc and lung function. Mediation analyses were conducted to assess mediating roles of inflammation and oxidative damage in above relationships.ResultsEach 1-unit increase in log-transformed urinary zinc values was associated with a 35.72 mL decrease in forced vital capacity (FVC) and a 24.89 mL decrease in forced expiratory volume in 1 s (FEV1) in the baseline analyses. In the follow-up analyses, there was a negative association between urinary zinc and FVC among participants with persistent high urinary zinc levels, with an estimated change of −93.31 mL (95% CI −178.47 to −8.14). Furthermore, urinary zinc was positively associated with restrictive ventilatory impairment. The mediation analyses suggested that C reactive protein mediated 8.62% and 8.71% of the associations of urinary zinc with FVC and FEV1, respectively.ConclusionUrinary zinc was negatively associated with lung function, and the systemic inflammation may be one of the underlying mechanisms.
Collapse
|
10
|
Samet JM, Chen H, Pennington ER, Bromberg PA. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med 2020; 151:26-37. [PMID: 31877355 PMCID: PMC7803379 DOI: 10.1016/j.freeradbiomed.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.
Collapse
Affiliation(s)
- James M Samet
- Environmental Public Health Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Corteselli EM, Gibbs-Flournoy E, Simmons SO, Bromberg P, Gold A, Samet JM. Long chain lipid hydroperoxides increase the glutathione redox potential through glutathione peroxidase 4. Biochim Biophys Acta Gen Subj 2019; 1863:950-959. [PMID: 30844486 DOI: 10.1016/j.bbagen.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/08/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Peroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood. METHODS Live cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH. RESULTS Exposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH). CONCLUSIONS Long chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation. SIGNIFICANCE These results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Philip Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Gutierrez DB, Gant-Branum RL, Romer CE, Farrow MA, Allen JL, Dahal N, Nei YW, Codreanu SG, Jordan AT, Palmer LD, Sherrod SD, McLean JA, Skaar EP, Norris JL, Caprioli RM. An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis. J Proteome Res 2018; 17:3396-3408. [PMID: 30114907 DOI: 10.1021/acs.jproteome.8b00302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteomics, metabolomics, and transcriptomics generate comprehensive data sets, and current biocomputational capabilities allow their efficient integration for systems biology analysis. Published multiomics studies cover methodological advances as well as applications to biological questions. However, few studies have focused on the development of a high-throughput, unified sample preparation approach to complement high-throughput omic analytics. This report details the automation, benchmarking, and application of a strategy for transcriptomic, proteomic, and metabolomic analyses from a common sample. The approach, sample preparation for multi-omics technologies (SPOT), provides equivalent performance to typical individual omic preparation methods but greatly enhances throughput and minimizes the resources required for multiomic experiments. SPOT was applied to a multiomics time course experiment for zinc-treated HL-60 cells. The data reveal Zn effects on NRF2 antioxidant and NFkappaB signaling. High-throughput approaches such as these are critical for the acquisition of temporally resolved, multicondition, large multiomic data sets such as those necessary to assess complex clinical and biological concerns. Ultimately, this type of approach will provide an expanded understanding of challenging scientific questions across many fields.
Collapse
|
13
|
Faber SC, McCullough SD. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. ACTA ACUST UNITED AC 2018; 4:115-128. [PMID: 31380467 DOI: 10.1089/aivt.2018.0002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
14
|
Samet JM, Wages PA. Oxidative Stress from Environmental Exposures. CURRENT OPINION IN TOXICOLOGY 2018; 7:60-66. [PMID: 30079382 PMCID: PMC6069528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oxidative stress is arguably the most common mechanism in the toxicology of environmental agents, unifying the action of broad classes of physichochemically disparate environmental pollutants, including oxidant gases, organic compounds, particulate surfaces, and metal ions. As advances in redox biology identify previously unrecognized targets for disruption by exposure to xenobiotics, redox toxicology has emerged as a new field of investigation. Environmental contaminants can induce oxidative stress on cells through mechanisms that are direct, indirect or involve the disruption of metabolic or bioenergetic processes that are regulated by thiol redox switches. Live-cell imaging has proven to be a powerful approach to the study of environmental oxidative stress. Cells are equipped with multiple complementary energy-dependent systems for maintaining redox homeostasis in the face of environmental oxidative stress.
Collapse
Affiliation(s)
- James M. Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27707
| | - Phillip A. Wages
- Department of Chemistry, Vanderbilt University, Nashville, TN 49795
| |
Collapse
|
15
|
Corteselli EM, Samet JM, Gibbs-Flournoy EA. Imaging Approaches to Assessments of Toxicological Oxidative Stress Using Genetically-encoded Fluorogenic Sensors. J Vis Exp 2018. [PMID: 29443110 DOI: 10.3791/56945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While oxidative stress is a commonly cited toxicological mechanism, conventional methods to study it suffer from a number of shortcomings, including destruction of the sample, introduction of potential artifacts, and a lack of specificity for the reactive species involved. Thus, there is a current need in the field of toxicology for non-destructive, sensitive, and specific methods that can be used to observe and quantify intracellular redox perturbations, more commonly referred to as oxidative stress. Here, we present a method for the use of two genetically-encoded fluorogenic sensors, roGFP2 and HyPer, to be used in live-cell imaging studies to observe xenobiotic-induced oxidative responses. roGFP2 equilibrates with the glutathione redox potential (EGSH), while HyPer directly detects hydrogen peroxide (H2O2). Both sensors can be expressed into various cell types via transfection or transduction, and can be targeted to specific cellular compartments. Most importantly, live-cell microscopy using these sensors offers high spatial and temporal resolution that is not possible using conventional methods. Changes in the fluorescence intensity monitored at 510 nm serves as the readout for both genetically-encoded fluorogenic sensors when sequentially excited by 404 nm and 488 nm light. This property makes both sensors ratiometric, eliminating common microscopy artifacts and correcting for differences in sensor expression between cells. This methodology can be applied across a variety of fluorometric platforms capable of exciting and collecting emissions at the prescribed wavelengths, making it suitable for use with confocal imaging systems, conventional wide-field microscopy, and plate readers. Both genetically-encoded fluorogenic sensors have been used in a variety of cell types and toxicological studies to monitor cellular EGSH and H2O2 generation in real-time. Outlined here is a standardized method that is widely adaptable across cell types and fluorometric platforms for the application of roGFP2 and HyPer in live-cell toxicological assessments of oxidative stress.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency;
| | - Eugene A Gibbs-Flournoy
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency; Oak Ridge Institute for Science and Education
| |
Collapse
|
16
|
|
17
|
Lavrich KS, Corteselli EM, Wages PA, Bromberg PA, Simmons SO, Gibbs-Flournoy EA, Samet JM. Investigating mitochondrial dysfunction in human lung cells exposed to redox-active PM components. Toxicol Appl Pharmacol 2018; 342:99-107. [PMID: 29407367 DOI: 10.1016/j.taap.2018.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | | | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Tanaka KI, Shimoda M, Kawahara M. Pyruvic acid prevents Cu 2+/Zn 2+-induced neurotoxicity by suppressing mitochondrial injury. Biochem Biophys Res Commun 2017; 495:1335-1341. [PMID: 29180015 DOI: 10.1016/j.bbrc.2017.11.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022]
Abstract
Zinc (Zn) is known as a co-factor for over 300 metalloproteins or enzymes, and has essential roles in many physiological functions. However, excessively high Zn concentrations are induced in pathological conditions such as interruption of blood flow in stroke or transient global ischemia-induced neuronal cell death. Furthermore, we recently found that copper (Cu2+) significantly exacerbates Zn2+ neurotoxicity in mouse hypothalamic neuronal cells, suggesting that Zn2+ interaction with Cu2+ is important for the development of neurological disease. Meanwhile, organic acids such as pyruvic acid and citric acid are reported to prevent neuronal cell death induced by various stresses. Thus, in this study, we focused on organic acids and searched for compounds that inhibit Cu2+/Zn2+-induced neurotoxicity. Initially, we examined the protective effect of various organic acids on Cu2+/Zn2+-induced neurotoxicity, and found that pyruvic acid clearly suppresses Cu2+/Zn2+-induced neurotoxicity in GT1-7 cells. Next, we examined the protective mechanisms of pyruvic acid against Cu2+/Zn2+-induced neurotoxicity. Specifically, we examined the possibilities that pyruvic acid chelates Cu2+ and Zn2+ or suppresses the ER stress response, but found that neither was suppressed by pyruvic acid treatment. In contrast, pyruvic acid significantly suppressed cytochrome c release into cytoplasm, an index of mitochondrial injury, in a dose-dependent manner. These results suggest that pyruvic acid prevents Cu2+/Zn2+-induced neuronal cell death by suppressing mitochondrial injury. Based on our results, we assume that pyruvic acid may be therapeutically beneficial for neurological diseases involving neuronal cell death such as vascular dementia.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
19
|
DeMarini DM, Warren SH, Lavrich K, Flen A, Aurell J, Mitchell W, Greenwell D, Preston W, Schmid JE, Linak WP, Hays MD, Samet JM, Gullett BK. Mutagenicity and oxidative damage induced by an organic extract of the particulate emissions from a simulation of the deepwater horizon surface oil burns. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:162-171. [PMID: 28370325 PMCID: PMC6121736 DOI: 10.1002/em.22085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 05/22/2023]
Abstract
Emissions from oil fires associated with the "Deepwater Horizon" explosion and oil discharge that began on April 20, 2010 in the Gulf of Mexico were analyzed chemically to only a limited extent at the time but were shown to induce oxidative damage in vitro and in mice. To extend this work, we burned oil floating on sea water and performed extensive chemical analyses of the emissions (Gullett et al., Marine Pollut Bull, in press, ). Here, we examine the ability of a dichloromethane extract of the particulate material with an aerodynamic size ≤ 2.5 µm (PM2.5 ) from those emissions to induce oxidative damage in human lung cells in vitro and mutagenicity in 6 strains of Salmonella. The extract had a percentage of extractable organic material (EOM) of 7.0% and increased expression of the heme oxygenase (HMOX1) gene in BEAS-2B cells after exposure for 4 hr at 20 µg of EOM/ml. However, the extract did not alter mitochondrial respiration rate as measured by extracellular flux analysis. The extract was most mutagenic in TA100 +S9, indicative of a role for polycyclic aromatic hydrocarbons (PAHs), reflective of the high concentrations of PAHs in the emissions (1 g/kg of oil consumed). The extract had a mutagenicity emission factor of 1.8 ± 0.1 × 105 revertants/megajoulethermal in TA98 +S9, which was greater than that of diesel exhaust and within an order of magnitude of open burning of wood and plastic. Thus, organics from PM2.5 of burning oil can induce oxidative responses in human airway epithelial cells and are highly mutagenic. Environ. Mol. Mutagen. 58:162-171, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katelyn Lavrich
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexis Flen
- Student Services Contractor, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - William Mitchell
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Dale Greenwell
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Judith E. Schmid
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - William P. Linak
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Michael D. Hays
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - James M. Samet
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Brian K. Gullett
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
20
|
Avelelas F, Martins R, Oliveira T, Maia F, Malheiro E, Soares AMVM, Loureiro S, Tedim J. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:164-174. [PMID: 28280946 DOI: 10.1007/s10126-017-9740-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC50 = 123 μg/L) and compared with free biocide (LC50 = 211 μg/L) and unloaded material (LC50 > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.
Collapse
Affiliation(s)
- Francisco Avelelas
- Smallmatek - Small Materials and Technologies, Lda, Rua Canhas, 3810-075, Aveiro, Portugal
| | - Roberto Martins
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Tânia Oliveira
- Smallmatek - Small Materials and Technologies, Lda, Rua Canhas, 3810-075, Aveiro, Portugal
| | - Frederico Maia
- Smallmatek - Small Materials and Technologies, Lda, Rua Canhas, 3810-075, Aveiro, Portugal
| | - Eliana Malheiro
- Smallmatek - Small Materials and Technologies, Lda, Rua Canhas, 3810-075, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
21
|
Låg M, Øvrevik J, Totlandsdal AI, Lilleaas EM, Thormodsæter A, Holme JA, Schwarze PE, Refsnes M. Air pollution-related metals induce differential cytokine responses in bronchial epithelial cells. Toxicol In Vitro 2016; 36:53-65. [PMID: 27427241 DOI: 10.1016/j.tiv.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
Different transition metals have been shown to induce inflammatory responses in lung. We have compared eight different metal ions with regard to cytokine responses, cytotoxicity and signalling mechanisms in a human lung epithelial cell model (BEAS-2B). Among the metal ions tested, there were large differences with respect to pro-inflammatory potential. Exposure to Cd(2+), Zn(2+) and As(3+) induced CXCL8 and IL-6 release at concentrations below 100μM, and Mn(2+) and Ni(2+) at concentrations above 200μM. In contrast, VO4(3-), Cu(2+) and Fe(2+) did not induce any significant increase of these cytokines. An expression array of 20 inflammatory relevant genes also showed a marked up-regulation of CXCL10, IL-10, IL-13 and CSF2 by one or more of the metal ions. The most potent metals, Cd(2+), Zn(2+) and As(3+) induced highest levels of oxidative activity, and ROS appeared to be central in their CXCL8 and IL-6 responses. Activation of the MAPK p38 seemed to be a critical mediator. However, the NF-κB pathway appeared predominately to be involved only in Zn(2+)- and As(3+)-induced CXCL8 and IL-6 responses. Thus, the most potent metals Cd(2+), Zn(2+) and As(3+) seemed to induce a similar pattern for the cytokine responses, and with some exceptions, via similar signalling mechanisms.
Collapse
Affiliation(s)
- M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway.
| | - J Øvrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A I Totlandsdal
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - E M Lilleaas
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - A Thormodsæter
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - J A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - P E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| | - M Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
22
|
Dandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, Bonner JC. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure. Part Fibre Toxicol 2016; 13:29. [PMID: 27278808 PMCID: PMC4899913 DOI: 10.1186/s12989-016-0141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/02/2016] [Indexed: 01/07/2023] Open
Abstract
Background Atomic layer deposition (ALD) is a method for applying conformal nanoscale coatings on three-dimensional structures. We hypothesized that surface functionalization of multi-walled carbon nanotubes (MWCNTs) with polycrystalline ZnO by ALD would alter pro-inflammatory cytokine expression by human monocytes in vitro and modulate the lung and systemic immune response following oropharyngeal aspiration in mice. Methods Pristine (U-MWCNTs) were coated with alternating doses of diethyl zinc and water over increasing ALD cycles (10 to 100 ALD cycles) to yield conformal ZnO-coated MWCNTs (Z-MWCNTs). Human THP-1 monocytic cells were exposed to U-MWCNTs or Z-MWCNTs in vitro and cytokine mRNAs measured by Taqman real-time RT-PCR. Male C57BL6 mice were exposed to U- or Z-MWCNTs by oropharyngeal aspiration (OPA) and lung inflammation evaluated at one day post-exposure by histopathology, cytokine expression and differential counting of cells in bronchoalveolar lavage fluid (BALF) cells. Lung fibrosis was evaluated at 28 days. Cytokine mRNAs (IL-6, IL-1β, CXCL10, TNF-α) in lung, heart, spleen, and liver were quantified at one and 28 days. DNA synthesis in lung tissue was measured by bromodeoxyuridine (BrdU) uptake. Results ALD resulted in a conformal coating of MWCNTs with ZnO that increased proportionally to the number of coating cycles. Z-MWCNTs released Zn+2 ions in media and increased IL-6, IL-1β, CXCL10, and TNF-α mRNAs in THP-1 cells in vitro. Mice exposed to Z-MWCNTs by OPA had exaggerated lung inflammation and a 3-fold increase in monocytes and neutrophils in BALF compared to U-MWCNTs. Z-MWCNTs, but not U-MWCNTs, induced IL-6 and CXCL10 mRNA and protein in the lungs of mice and increased IL-6 mRNA in heart and liver. U-MWCNTs but not Z-MWCNTs stimulated airway epithelial DNA synthesis in vivo. Lung fibrosis at 28 days was not significantly different between mice treated with U-MWCNT or Z-MWCNT. Conclusions Pulmonary exposure to ZnO-coated MWCNTs produces a systemic acute phase response that involves the release of Zn+2, lung epithelial growth arrest, and increased IL-6. ALD functionalization with ZnO generates MWCNTs that possess increased risk for human exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erinn C Dandley
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Alexia J Taylor
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, North Carolina, 27695-7633, USA
| | - Katherine S Duke
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, North Carolina, 27695-7633, USA
| | - Mark D Ihrie
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, North Carolina, 27695-7633, USA
| | - Kelly A Shipkowski
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, North Carolina, 27695-7633, USA
| | - Gregory N Parsons
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, North Carolina, 27695-7633, USA.
| |
Collapse
|
23
|
Hou W, Xu X, Lei Y, Cao J, Zhang Y, Chen L, Huo X. The role of the PM2.5-associated metals in pathogenesis of child Mycoplasma Pneumoniae infections: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10604-10614. [PMID: 27040534 DOI: 10.1007/s11356-016-6535-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 02/05/2023]
Abstract
The peak occurrence of Mycoplasma pneumoniae (M. pneumoniae) infections in childhood and haze episodes is concurrent. Together, the prevalence of macrolide-resistant M. pneumoniae varies among countries might also be related to the concentration of ambient fine particulate mass (aerodynamic diameter ≤2.5 μm, PM2.5). Numerous cohort studies have identified consistent associations between ambient PM2.5 and cardiorespiratory morbidity and mortality. PM2.5 is a carrier of the heavy metals. The relationship between PM2.5-associated metals and M. pneumoniae infections in childhood has been increasingly drawing public attention. First, we reviewed original articles and review papers in Pubmed and Web of Science regarding M. pneumoniae and PM2.5-associated metal and analyzed the structural basis of PM2.5-associated metal interaction with M. pneumoniae. Then, the possible mechanisms of action between them were conjectured. Mechanisms of oxidative stress induction and modulation of the host immune system and inflammatory responses via Toll-like receptors (TLRs) and/or the nuclear factor-kappa B (NF-κB) pathway are postulated to be the result of PM2.5-associated metal complex interaction with M. pneumoniae. In addition, a heavy metal effect on M. pneumoniae-expressed community-acquired respiratory distress syndrome (CARDS) toxin, and activation of the aryl hydrocarbon receptor (AhR) and TLRs to induce the differentiation of T helper (Th) cells are also regarded as important reasons for the influence of the heavy metals on the severity of M. pneumoniae pneumonia and the initial onset and exacerbation of M. pneumoniae associated asthma. PM2.5-associated metals via complex mechanisms can exert a great impact on the host through interaction with M. pneumoniae.
Collapse
Affiliation(s)
- Wei Hou
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- People's Hospital of New District Longhua Shenzhen, Shenzhen, 518109, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yongge Lei
- People's Hospital of New District Longhua Shenzhen, Shenzhen, 518109, Guangdong, China
| | - Junjun Cao
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Liang Chen
- People's Hospital of New District Longhua Shenzhen, Shenzhen, 518109, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Currier JM, Cheng WY, Menendez D, Conolly R, Chorley BN. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells. PLoS One 2016; 11:e0155875. [PMID: 27195669 PMCID: PMC4873291 DOI: 10.1371/journal.pone.0155875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2–10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the importance of characterizing molecular mechanisms around the tipping point of adverse responses to better inform HTS paradigms.
Collapse
Affiliation(s)
- Jenna M. Currier
- Oak Ridge Institute for Science and Education at U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education at U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Rory Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Brian N. Chorley
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
26
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|