1
|
Thorwald M, Godoy-Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi-Sanabria R, Forman HJ, Finch CE. Iron associated lipid peroxidation in Alzheimers disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534324. [PMID: 37034750 PMCID: PMC10081222 DOI: 10.1101/2023.03.28.534324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimers disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed postmortem human brain and ApoEFAD mice. AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. ApoE4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron to AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. These novel molecular pathways in iron mediated damage during AD.
Collapse
|
2
|
Wilson JN, Mendez DA, Dhoro F, Shevchenko N, Mascal M, Lund K, Fitzgerald R, DiPatrizio NV, Ortiz RM. Pseudocannabinoid H4CBD improves glucose response during advanced metabolic syndrome in OLETF rats independent of increase in insulin signaling proteins. Am J Physiol Regul Integr Comp Physiol 2024; 326:R100-R109. [PMID: 37899754 PMCID: PMC11283894 DOI: 10.1152/ajpregu.00125.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Cannabidiol (CBD) use has grown exponentially more popular in the last two decades, particularly among older adults (>55 yr), though very little is known about the effects of CBD use during age-associated metabolic dysfunction. In addition, synthetic analogues of CBD have generated great interest because they can offer a chemically pure product, which is free of plant-associated contaminants. To assess the effects of a synthetic analogue of CBD (H4CBD) on advanced metabolic dysfunction, a cohort of 41-wk-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered 200 mg H4CBD/kg by oral gavage for 4 wk. Animals were fed ad libitum and monitored alongside vehicle-treated OLETF and Long-Evans Tokushima Otsuka (LETO) rats, the lean-strain controls. An oral glucose-tolerance test (oGTT) was performed after 4 wk of treatment. When compared with vehicle-treated, OLETF rats, H4CBD decreased body mass (BM) by 15%, which was attributed to a significant loss in abdominal fat. H4CBD reduced glucose response (AUCglucose) by 29% (P < 0.001) and insulin resistance index (IRI) by 25% (P < 0.05) compared with OLETF rats. However, H4CBD did not statically reduce fasting blood glucose or plasma insulin, despite compensatory increases in skeletal muscle native insulin receptor (IR) protein expression (54%; P < 0.05). H4CBD reduced circulating adiponectin (40%; P < 0.05) and leptin (47%; P < 0.05) and increased ghrelin (75%; P < 0.01) compared with OLETF. Taken together, a chronic, high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of the profound loss of visceral adiposity.NEW & NOTEWORTHY Cannabis product use has grown in the last two decades despite the lack of research on Cannabidiol (CBD)-mediated effects on metabolism. Here, we provide seminal data on CBD effects during age-associated metabolic dysfunction. We gave 41-wk-old OLETF rats 200 mg H4CBD/kg by mouth for 4 wk and noted a high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of loss of visceral adiposity.
Collapse
Affiliation(s)
- Jessica N Wilson
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| | - Dora A Mendez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| | - Francis Dhoro
- Department of Chemistry, University of California, Davis, California, United States
| | - Nikolay Shevchenko
- Department of Chemistry, University of California, Davis, California, United States
| | - Mark Mascal
- Department of Chemistry, University of California, Davis, California, United States
| | - Kyle Lund
- Department of Pathology, University of California, San Diego, California, United States
| | - Robert Fitzgerald
- Department of Pathology, University of California, San Diego, California, United States
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, United States
| | - Rudy M Ortiz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| |
Collapse
|
3
|
Lin X, Wang X, Feng W, Wan Y, Chai J, Li F, Xu M. The Counteracting Effects of Ang II and Ang-(1-7) on the Function andGrowth of Insulin-secreting NIT-1 Cells. Curr Diabetes Rev 2024; 20:e010124225112. [PMID: 38173074 DOI: 10.2174/0115733998276291231204115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION China now has the highest number of diabetes in the world. Angiotensin II (Ang II) causes insulin resistance by acting on the insulin signaling pathway of peripheral target tissues. However, its effect on islet β-cells remains unclear. The possible role of Angiotensin-( 1-7) [Ang-(1-7)] as an antagonist to the effects of Ang II and in treating diabetes needs to be elucidated. OBJECTIVES To assess the effects of Ang II and Ang-(1-7) on the function and growth of islet β cell line NIT-1, which is derived from the islets of non-obese diabetic/large T-antigen (NOD/LT) mice with insulinoma. METHODS NIT-1 cells were treated with Ang II, Ang-(1-7) and their respective receptor antagonists. The impact on cell function and growth was then evaluated. RESULTS Ang II significantly reduced insulin-stimulated IR-β-Tyr and Akt-Ser; while Ang-(1-7), saralasin (an Ang II receptor antagonist), and diphenyleneiodonium [DPI, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) antagonist] reversed the inhibiting effect. Conversely, Ang II significantly increased insulin-stimulated intracellular H2O2 and P47 phox, while saralasin and DPI reverted the effect. Furthermore, Ang-(1-7) reduced the elevated concentrations of ROS and MDA while increasing the proliferation rate that was reduced by high glucose, all of which were reversed by A-779, an antagonist of the Mas receptor (MasR). CONCLUSION Angiotensin II poses a negative regulatory effect on insulin signal transduction, increases oxidative stress, and may inhibit the transcription of insulin genes stimulated by insulin in NIT-1 cells. Meanwhile, angiotensin-(1-7) blocked these effects via MasR. These results corroborate the rising potential of the renin-angiotensin system (RAS) in treating diabetes.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, People's Republic of China
| | - Weilian Feng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiani Chai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Yuan P, Zhang Q, Fu Y, Hou Y, Gao L, Wei Y, Feng W, Zheng X. Acacetin inhibits myocardial mitochondrial dysfunction by activating PI3K/AKT in SHR rats fed with fructose. J Nat Med 2023; 77:262-275. [PMID: 36520340 DOI: 10.1007/s11418-022-01666-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
To explore the effect of acacetin on myocardial mitochondrial dysfunction in spontaneously hypertensive rats (SHR) with insulin resistance (IR), and the possible mechanism. Rapid IR was first induced in fructose-fed SHR, and they were then treated with acacetin (25, 50 mg/kg). After 7 weeks, the rats were tested for hypertension, IR, cardiac function, and mitochondrial damage status. Potential mechanisms of action were explored in terms of oxidative stress, mitochondrial fission and division, apoptosis, and the insulin signaling pathway. Subsequently, the PI3K gene was silenced, after intervention with acacetin (5 μM) for 24 h, and H2O2 was used to stimulate H9c2 for 4 h, it was evaluated whether silencing PI3K would affect the therapeutic effect of acacetin. In SHR fed with fructose, acacetin can improve hypertension, IR, cardiac function (LVEF, LVFS), and mitochondrial damage (mitochondria number, ATP); inhibit oxidative stress (ROS, SOD, Nrf2, Keap1), mitochondrial fission (MFF, Drp1), and myocardial cell apoptosis (apoptosis rate, Bax, Bcl-2, cytochrome c); promote mitochondrial fusion (Mfn2) and activate insulin signaling pathways (PI3K/AKT). However, silencing PI3K inhibited the abovementioned effects of acacetin. In conclusion, acacetin improved myocardial mitochondrial dysfunction through regulating oxidative stress, mitochondrial fission and fusion, and mitochondrial pathway apoptosis mediated by PI3K/AKT signaling pathway in hypertensive rats with IR.
Collapse
Affiliation(s)
- Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Hou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Liyuan Gao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yaxin Wei
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
6
|
Glucose Increases Hepatic Mitochondrial Antioxidant Enzyme Activities in Insulin Resistant Rats Following Chronic Angiotensin Receptor Blockade. Int J Mol Sci 2022; 23:ijms231810897. [PMID: 36142809 PMCID: PMC9505141 DOI: 10.3390/ijms231810897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to 20% of the world’s population. Overactivation of the angiotensin receptor type 1 (AT1) contributes to metabolic dysfunction and increased oxidant production, which are associated with NAFLD and impaired hepatic lipid metabolism. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the expression of antioxidant phase II genes by binding to the antioxidant response element (ARE); however, the mechanisms by which AT1 contributes to this pathway during the progression of NAFLD remain unresolved. To investigate hepatic Nrf2 response to a hyperglycemic challenge, we studied three groups of rats (male, 10-weeks-old): (1) untreated, lean Long Evans Tokushima Otsuka (LETO), (2) untreated, obese Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + angiotensin receptor blocker (OLETF + ARB; 10 mg olmesartan/kg/d × 6 weeks). Livers were collected after overnight fasting (T0; baseline), and 1 h and 2 h post-oral glucose load. At baseline, chronic AT1 blockade increased nuclear Nrf2 content, reduced expression of glutamate-cysteine ligase catalytic (GCLC) subunit, glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2), mitochondrial catalase activity, and hepatic 4-hydroxy-2-nonenal (4-HNE) content. The expression of hepatic interleukin-1 beta (IL-1β) and collagen type IV, which are associated with liver fibrosis, were decreased with AT1 blockade. Glucose increased Nrf2 translocation in OLETF but was reduced in ARB, suggesting that glucose induces the need for antioxidant defense that is ameliorated with ARB. These results suggest that overactivation of AT1 promotes oxidant damage by suppressing Nrf2 and contributing to hepatic fibrosis associated with NAFLD development.
Collapse
|
7
|
Godoy-Lugo JA, Mendez DA, Rodriguez R, Nishiyama A, Nakano D, Soñanez-Organis JG, Ortiz RM. Improved lipogenesis gene expression in liver is associated with elevated plasma angiotensin 1-7 after AT1 receptor blockade in insulin-resistant OLETF rats. Mol Cell Endocrinol 2022; 555:111729. [PMID: 35921918 DOI: 10.1016/j.mce.2022.111729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.
Collapse
Affiliation(s)
- Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, CA, USA.
| | - Dora A Mendez
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Ruben Rodriguez
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Jose G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Navojoa, Sonora, Mexico
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
8
|
Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats. Antioxidants (Basel) 2022; 11:antiox11050927. [PMID: 35624791 PMCID: PMC9137621 DOI: 10.3390/antiox11050927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The onset of type II diabetes increases the heart’s susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart’s redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.
Collapse
|
9
|
Yan Y, Gao R, Zhang S, Gao Z, Chen A, Wang J, Zhang S, Dai W, Li F, Li X, Yang G, Liu L, Chen X. Hemoglobin A1c and Angiographic Severity with Coronary Artery Disease: A Cross-Sectional Study. Int J Gen Med 2022; 15:1485-1495. [PMID: 35210822 PMCID: PMC8857977 DOI: 10.2147/ijgm.s346525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Many studies have shown that glycated hemoglobin (HbA1c) is associated with coronary artery disease (CAD). HbA1c was independently related to angiographic severity in Chinese patients with CAD after adjusting for other covariates. Some traditional cardiovascular drugs may have an impact on this relationship. Methods This retrospective study enrolled a total of 572 CAD patients who underwent their coronary angiography and had their HbA1c levels measured at the Chinese Hospital. The complexity of the coronary artery lesions was evaluated using the Syntax score, and the subjects were divided into 4 inter quartiles according to HbA1c levels. Covariates included history of traditional cardiovascular drugs. Results The average age of selected participants was 61.00 ± 9.15 years old, and about 54.72% of them were male. Result of fully adjusted linear regression showed that HbA1c was positively associated with Syntax score after adjusting confounders (β = 1.09, 95% CI: 0.27, 1.91, P = 0.0096). By interaction and stratified analyses, the interactions were observed based on our specification including with the medication history of statins and angiotensin receptor blockers (ARBs) (P values for interaction <0.05). Conclusion In this study, we found a positive correlation between the HbA1c levels and the SYNTAX score among CAD individuals, and oral statins and ARBs medication could affect the correlation. Thus, HbA1c measurement could be used for the evaluation of the severity and complexity of coronary lesions among CAD patients.
Collapse
Affiliation(s)
- Yugang Yan
- School of Medical Engineering, Jining Medical University, Jining, Shandong, People’s Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ronghua Gao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Shaohui Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Zhencai Gao
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Anyong Chen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Jianjun Wang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Shufang Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Wen Dai
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Fen Li
- Electrocardiogram Room, Jining First People’s Hospital, Jining, Shandong, People’s Republic of China
| | - Xiangting Li
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Guoliang Yang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Lixin Liu
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Xueying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, People’s Republic of China
- Correspondence: Xueying Chen, Department of Cardiology, Affiliated Hospital of Jining Medical University, No. 89 Guhuai Road, Jining, 272029, Shandong, People’s Republic of China, Tel +86- 537- 2903508, Fax +86 537-2213030, Email
| |
Collapse
|
10
|
Godoy-Lugo JA, Thorwald MA, Hui DY, Nishiyama A, Nakano D, Soñanez-Organis JG, Ortiz RM. Chronic angiotensin receptor activation promotes hepatic triacylglycerol accumulation during an acute glucose challenge in obese-insulin-resistant OLETF rats. Endocrine 2022; 75:92-107. [PMID: 34327606 PMCID: PMC8763929 DOI: 10.1007/s12020-021-02834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Angiotensin receptor blockers (ARBs) can ameliorate metabolic syndrome (MetS)-associated dyslipidemia, hepatic steatosis, and glucose intolerance, suggesting that angiotensin receptor (AT1) over-activation contributes to impaired lipid and glucose metabolism, which is characteristic of MetS. The aim of this study was to evaluate changes in the lipid profile and proteins of fatty acid uptake, triacylglycerol (TAG) synthesis, and β-oxidation to better understand the links between AT1 overactivation and non-alcoholic fatty liver disease (NAFLD) during MetS. METHODS Four groups of 25-week-old-rats were used: (1) untreated LETO, (2) untreated OLETF, (3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 weeks) and (4) OLETF ± ARB (MINUS; 10 mg olmesartan/kg/d × 4 weeks, then removed until dissection). To investigate the dynamic shifts in metabolism, animals were dissected after an oral glucose challenge (fasting, 3 and 6 h post-glucose). RESULTS Compared to OLETF, plasma total cholesterol and TAG remained unchanged in ARB. However, liver TAG was 55% lesser in ARB than OLETF, and remained lower throughout the challenge. Basal CD36 and ApoB were 28% and 29% lesser, respectively, in ARB than OLETF. PRDX6 abundance in ARB was 45% lesser than OLETF, and it negatively correlated with liver TAG in ARB. CONCLUSIONS Chronic blockade of AT1 protects the liver from TAG accumulation during glucose overload. This may be achieved by modulating NEFA uptake and increasing TAG export via ApoB. Our study highlights the contributions of AT1 signaling to impaired hepatic substrate metabolism and the detriments of a high-glucose load and its potential contribution to steatosis during MetS.
Collapse
Affiliation(s)
- Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, CA, USA.
| | - Max A Thorwald
- School of Natural Sciences, University of California, Merced, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - David Y Hui
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Jose G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Navojoa, Sonora, Mexico
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
11
|
Rodriguez R, Lee AY, Godoy-Lugo JA, Martinez B, Ohsaki H, Nakano D, Parkes DG, Nishiyama A, Vázquez-Medina JP, Ortiz RM. Chronic AT 1 blockade improves hyperglycemia by decreasing adipocyte inflammation and decreasing hepatic PCK1 and G6PC1 expression in obese rats. Am J Physiol Endocrinol Metab 2021; 321:E714-E727. [PMID: 34658252 PMCID: PMC8782654 DOI: 10.1152/ajpendo.00584.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Inappropriate activation of the renin-angiotensin system decreases glucose uptake in peripheral tissues. Chronic angiotensin receptor type 1 (AT1) blockade (ARB) increases glucose uptake in skeletal muscle and decreases the abundance of large adipocytes and macrophage infiltration in adipose. However, the contributions of each tissue to the improvement in hyperglycemia in response to AT1 blockade are not known. Therefore, we determined the static and dynamic responses of soleus muscle, liver, and adipose to an acute glucose challenge following the chronic blockade of AT1. We measured adipocyte morphology along with TNF-α expression, F4/80- and CD11c-positive cells in adipose and measured insulin receptor (IR) phosphorylation and AKT phosphorylation in soleus muscle, liver, and retroperitoneal fat before (T0), 60 (T60) and 120 (T120) min after an acute glucose challenge in the following groups of male rats: 1) Long-Evans Tokushima Otsuka (LETO; lean control; n = 5/time point), 2) obese Otsuka Long Evans Tokushima Fatty (OLETF; n = 7 or 8/time point), and 3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 7 or 8/time point). AT1 blockade decreased adipocyte TNF-α expression and F4/80- and CD11c-positive cells. In retroperitoneal fat at T60, IR phosphorylation was 155% greater in ARB than in OLETF. Furthermore, in retroperitoneal fat AT1 blockade increased glucose transporter-4 (GLUT4) protein expression in ARB compared with OLETF. IR phosphorylation and AKT phosphorylation were not altered in the liver of OLETF, but AT1 blockade decreased hepatic Pck1 and G6pc1 mRNA expressions. Collectively, these results suggest that chronic AT1 blockade improves obesity-associated hyperglycemia in OLETF rats by improving adipocyte function and by decreasing hepatic glucose production via gluconeogenesis.NEW & NOTEWORTHY Inappropriate activation of the renin-angiotensin system increases adipocyte inflammation contributing to the impairment in adipocyte function and increases hepatic Pck1 and G6pc1 mRNA expression in response to a glucose challenge. Ultimately, these effects may contribute to the development of glucose intolerance.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Andrew Y Lee
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Jose A Godoy-Lugo
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California, Merced, California
| |
Collapse
|
12
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 Activation and Downstream Effects: Focus on Parkinson's Disease and Brain Angiotensin. Antioxidants (Basel) 2021; 10:antiox10111649. [PMID: 34829520 PMCID: PMC8614768 DOI: 10.3390/antiox10111649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.
Collapse
Affiliation(s)
- Juan A. Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| | - Ana I. Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.I.R.-P.); (M.G.-G.); (J.R.-P.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson’s Disease, CIMUS, Department of Morphological Sciences, University of Santiago de Compostela, R/ San Francisco s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (J.A.P.); (J.L.L.-G.)
| |
Collapse
|
13
|
Phenolic Compounds from Mori Cortex Ameliorate Sodium Oleate-Induced Epithelial-Mesenchymal Transition and Fibrosis in NRK-52e Cells through CD36. Molecules 2021; 26:molecules26206133. [PMID: 34684716 PMCID: PMC8540367 DOI: 10.3390/molecules26206133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial–mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 μmol/L sodium oleate were given 10 μmoL/L moracin-P-2″-O-β-d-glucopyranoside (Y-1), moracin-P-3′-O-β-d-glucopyranoside (Y-2), moracin-P-3′-O-α-l-arabinopyranoside (Y-3), and moracin-P-3′-O-[β-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1β), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-β, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-β-d-glucopyranoside and moracin-P-3′-O-β-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36.
Collapse
|
14
|
Areola ED, Adewuyi IJ, Usman TO, Tamunoibuomi G, Arogundade LK, Olaoye B, Matt-Ojo DD, Jeje AO, Oyabambi AO, Afolayan EA, Olatunji LA. Sildenafil augments fetal weight and placental adiponectin in gestational testosterone-induced glucose intolerant rats. Toxicol Rep 2021; 8:1358-1368. [PMID: 34277360 PMCID: PMC8271103 DOI: 10.1016/j.toxrep.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Testosterone induces intra-uterine growth restriction (IUGR) with maternal glucose dysregulation and oxidant release in various tissues. Adiponectin, which modulates the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is expressed in the placenta and affects fetal growth. Sildenafil, a phosphodiesterase type 5 inhibitor (PDE5i), used mainly in erectile dysfunction has been widely studied as a plausible pharmacologic candidate in IUGR. Therefore, the present study sought to determine the effect of PDE5i on placental adiponectin/Nrf2 pathway in gestational testosterone-induced impaired glucose tolerance and fetal growth. Fifteen pregnant Wistar rats were allotted into three groups (n = 5/group) receiving vehicles (Ctr; distilled water and olive oil), testosterone propionate (Tes; 3.0 mg/kg; sc) or combination of testosterone propionate (3.0 mg/kg; sc) and sildenafil (50.0 mg/kg; po) from gestational day 14-19. On gestational day 20, plasma and placenta homogenates were obtained for biochemical analysis as well as fetal biometry. Pregnant rats exposed to testosterone had 4-fold increase in circulating testosterone compared with control (20.9 ± 2.8 vs 5.1 ± 1.7 ng/mL; p < 0.05) whereas placenta testosterone levels were similar in testosterone- and vehicle-treated rats. Exposure to gestational testosterone caused reduction in fetal and placental weights, placental Nrf2 and adiponectin. Moreover, impaired glucose tolerance, elevated plasma triglyceride-glucose (TyG) index, placental triglyceride, total cholesterol, lactate, malondialdehyde and alanine aminotransferase were observed in testosterone-exposed rats. Treatment with sildenafil improved glucose tolerance, plasma TyG index, fetal and placental weights and reversed placental adiponectin in testosterone-exposed pregnant rats without any effect on placental Nrf2. Therefore, in testosterone-exposed rats, sildenafil improves impaired glucose tolerance, poor fetal outcome which is accompanied by augmented placental adiponectin regardless of depressed Nrf2.
Collapse
Affiliation(s)
- Emmanuel Damilare Areola
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ifeoluwa Jesufemi Adewuyi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Taofeek Olumayowa Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Cardiovascular Unit, Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - God’sgift Tamunoibuomi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lucy Kemi Arogundade
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Barakat Olaoye
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Deborah Damilayo Matt-Ojo
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulrazaq Olatunji Jeje
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adewumi Oluwafemi Oyabambi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Enoch Abiodun Afolayan
- Department of Pathology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Corresponding author at: Department of Physiology, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria.
| |
Collapse
|
15
|
Oliveira-Junior SAD, Muzili NDA, Carvalho MRD, Ota GE, Morais CSD, Vieira LFDC, Ortiz MO, Campos DHS, Cezar MDM, Okoshi MP, Okoshi K, Cicogna AC, Martinez PF. AT1Receptor Blockade Improves Myocardial Functional Performance in Obesity. Arq Bras Cardiol 2020; 115:17-28. [PMID: 32401842 PMCID: PMC8384332 DOI: 10.36660/abc.20190131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Fundamento A obesidade tem sido associada com ativação crônica do sistema renina-angiotensina-aldosterona e importantes alterações no desempenho cardíaco. Objetivo Avaliar a influência do bloqueio de receptores de angiotensina-II do tipo 1 (AT1) sobre a morfologia e desempenho cardíaco de ratos obesos por dieta Métodos Ratos Wistar (n=48) foram submetidos a dieta controle (2,9 kcal/g) ou hiperlipídica (3,6 kcal/g) durante 20 semanas. Após a 16ª semana, foram distribuídos em quatro grupos: Controle (CO), Obeso (OB), Controle Losartan (CL) e Obeso Losartan (OL). CL e OL receberam losartan (30 mg/kg/dia) na água durante quatro semanas. Posteriormente, foram analisadas composição corporal, pressão arterial sistólica (PAS) e ecocardiograma. A função de músculos papilares foi avaliada em situação basal com concentração de cálcio ([Ca2+]o) de 2,50 mM e após manobras inotrópicas: potencial pós-pausa (PPP), elevação da [Ca2+]o e durante estimulação beta-adrenérgica com isoproterenol. A análise dos resultados foi feita por meio de Two-Way ANOVA e teste de comparações apropriado. O nível de significância considerado foi de 5%. Resultados Embora a alteração da PAS não tenha se mantido ao final do experimento, a obesidade se associou com hipertrofia cardíaca e maior velocidade de encurtamento da parede posterior do ventrículo esquerdo.No estudo de músculos papilares em condição basal, CL mostrou menor velocidade máxima de variação negativa da tensão desenvolvida (-dT/dt) do que CO. O PPP de 60s promoveu menor -dT/dt e pico de tensão desenvolvida (TD) em OB e CL, comparados ao CO, e maior variação relativa de TD e velocidade máxima de variação positiva (+dT/dt) no OL em relação a CL e OB. Sob 1,5, 2,0 e 2,5mM de [Ca2+]o, o grupo OL exibiu maior -dT/dt do que CL. Conclusão Losartan melhora a função miocárdica de ratos com obesidade induzida por dieta. (Arq Bras Cardiol. 2020; 115(1):17-28)
Collapse
Affiliation(s)
| | | | | | - Gabriel Elias Ota
- Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | | | | | | | | | - Marina Politi Okoshi
- Departamento de Medicina Interna, Universidade Estadual de São Paulo, Botucatu, SP, Brasil
| | - Katashi Okoshi
- Faculdade de Medicina, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil
| | | | | |
Collapse
|
16
|
Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, Li J, Chang B, Chang B. Acute Hyperglycemia May Induce Renal Tubular Injury Through Mitophagy Inhibition. Front Endocrinol (Lausanne) 2020; 11:536213. [PMID: 33424763 PMCID: PMC7793649 DOI: 10.3389/fendo.2020.536213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
AIM Acute hyperglycemia is closely related to kidney injury. Oxidative stress activation and notable mitochondria damages were found under acute hyperglycemia treatment in our previous work. In the present study, we explored the dose-effect relationship and the pivotal role of mitophagy in acute hyperglycemia induced tubular injuries. METHODS Forty non-diabetic SD rats were randomly divided and treated with different concentrations of hyperglycemia respectively during the 6-h clamp experiment. Renal morphological and functional alterations were detected. Rat renal tubular epithelial cells were treated with different concentrations of glucose for 6 h. Markers and the regulation pathway of mitophagy were analyzed. RESULTS Significant tubular injuries but not glomeruli were observed under both light and electron microscope after acute hyperglycemia treatment, which manifested as enlargement of tubular epithelial cells, disarrangement of epithelial cell labyrinths and swelling of mitochondria. Urinary microalbumin, β2-MG, CysC, NAG, GAL, and NGAL were increased significantly with the increase of blood glucose (P < 0.05). ROS was activated, mitochondrial membrane potential and LC3-II/LC3-I ratio were decreased but P62 and BNIP3L/Nix were increased in hyperglycemia groups (P < 0.05), which were reversed by AMPK activation or mTOR inhibition. CONCLUSION Acute hyperglycemia causes obvious tubular morphological and functional injuries in a dose-dependent manner. Acute hyperglycemia could inhibit mitophagy through AMPK/mTOR pathway, which would aggravate mitochondria damage and renal tubular impairment.
Collapse
Affiliation(s)
- Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaodan Yue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ziyan Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaofang Jin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiao Cui
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jing Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bai Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Baocheng Chang, ; Bai Chang,
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Baocheng Chang, ; Bai Chang,
| |
Collapse
|
17
|
Antioxidant Effects of Oral Ang-(1-7) Restore Insulin Pathway and RAS Components Ameliorating Cardiometabolic Disturbances in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5868935. [PMID: 31396301 PMCID: PMC6664692 DOI: 10.1155/2019/5868935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
In prevention studies of metabolic syndrome (MetS), Ang-(1-7) has shown to improve the insulin signaling. We evaluated the HPβCD/Ang-(1-7) treatment on lipid metabolism, renin-angiotensin system (RAS) components, oxidative stress, and insulin pathway in the liver and gastrocnemius muscle and hepatic steatosis in rats with established MetS. After 7 weeks of high-fat (FAT) or control (CT) diets, rats were treated with cyclodextrin (HPβCD) or HPβCD/Ang-(1-7) in the last 6 weeks. FAT-HPβCD/empty rats showed increased adiposity index and body mass, gene expression of ACE/ANG II/AT1R axis, and oxidative stress. These results were accompanied by imbalances in the insulin pathway, worsening of liver function, hyperglycemia, and dyslipidemia. Oral HPβCD/Ang-(1-7) treatment decreased ACE and AT1R, increased ACE2 gene expression in the liver, and restored thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD), insulin receptor substrate (Irs-1), glucose transporter type 4 (GLUT4), and serine/threonine kinase 2 (AKT-2) gene expression in the liver and gastrocnemius muscle improving hepatic function, cholesterol levels, and hyperglycemia in MetS rats. Overall, HPβCD/Ang-(1-7) treatment restored the RAS components, oxidative stress, and insulin signaling in the liver and gastrocnemius muscle contributing to the establishment of blood glucose and lipid homeostasis in MetS rats.
Collapse
|
18
|
Thorwald MA, Godoy-Lugo JA, Rodriguez GJ, Rodriguez MA, Jamal M, Kinoshita H, Nakano D, Nishiyama A, Forman HJ, Ortiz RM. Nrf2-related gene expression is impaired during a glucose challenge in type II diabetic rat hearts. Free Radic Biol Med 2019; 130:306-317. [PMID: 30316779 DOI: 10.1016/j.freeradbiomed.2018.10.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
Abstract
Diabetic hearts are susceptible to damage from inappropriate activation of the renin angiotensin system (RAS) and hyperglycemic events both of which contribute to increased oxidant production. Prolonged elevation of oxidants impairs mitochondrial enzyme function, further contributing to metabolic derangement. Nuclear factor erythriod-2-related factor 2 (Nrf2) induces antioxidant genes including those for glutathione (GSH) synthesis following translocation to the nucleus. We hypothesized that an acute elevation in glucose impairs Nrf2-related gene expression in diabetic hearts, while AT1 antagonism would aid in Nrf2-mediated antioxidant production and energy replenishment. We used four groups (n = 6-8/group) of 25-week-old rats: 1) LETO (lean strain-control), 2) type II diabetic OLETF, 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 wks), and 4) ARBM (4 weeks on ARB, 4 weeks off) to study the effects of acutely elevated glucose on cardiac mitochondrial function and Nrf2 signaling in the diabetic heart. Animals were gavaged with a glucose bolus (2 g/kg) and groups were dissected at T0, T180, and T360 minutes. Nrf2 mRNA was 32% lower in OLETF rats compared to LETO and remained suppressed in response to glucose. LETO Nrf2 mRNA increased 25% at T360 in response to glucose while no changes were observed in diabetic hearts. GCLC and GCLM mRNA decreased in diabetic hearts 33% and 44% respectively and remained suppressed in response to glucose while ARB treatment increased GCLM transcripts 90% at T180. These data illustrate that during T2DM and in response to glucose, cardiac Nrf2's adaptive response to environmental stressors such as glucose is impaired in diabetic hearts and that ARB treatment may aid Nrf2's impaired dynamic response.
Collapse
Affiliation(s)
- Max A Thorwald
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| | - Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, United States
| | - Gema J Rodriguez
- School of Natural Sciences, University of California, Merced, United States
| | | | - Mostofa Jamal
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Henry J Forman
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, United States
| |
Collapse
|
19
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med 2018; 129:394-406. [PMID: 30315936 DOI: 10.1016/j.freeradbiomed.2018.10.409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Collapse
Affiliation(s)
- Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
20
|
Wang Y, Wei RB, Yang Y, Su TY, Huang MJ, Li P, Chen XM. Valsartan Alleviates Insulin Resistance in Skeletal Muscle of Chronic Renal Failure Rats. Med Sci Monit 2018; 24:2413-2419. [PMID: 29679000 PMCID: PMC5933205 DOI: 10.12659/msm.909910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Studies on insulin resistance (IR) in chronic kidney disease (CKD) patients are rare, and its exact mechanism remains unclear. In this study, we explored the molecular mechanism of IR with chronic renal failure (CRF) and interventions to alleviate IR in patients with CRF. MATERIAL AND METHODS In vivo and in vitro models of CRF were established by 5/6 nephrectomy and urea stimulation C2C12 cells, respectively. Based on the CRF model, angiotensin II (Ang II) and valsartan groups were established to observe the effect of drug intervention on IR. Western blot assays were performed to detect the expression and phosphorylation of IRS-1 and Akt, which are 2 critical proteins in the insulin signaling pathway. RESULTS Both urea stimulation and 5/6 nephrectomy induced glucose uptake disorder in skeletal muscle cells (P<0.01). Skeletal muscle IR was aggravated in the Ang II group (P<0.05) but alleviated in the valsartan group (P<0.01). Regardless of the experimental method (in vivo or in vitro), tyrosine phosphorylation of IRS-1 and Akt were significantly lower (P<0.01) and serine phosphorylation was significantly higher (P<0.01) in the model group than in the sham/control group. Compared to the model group, additional Ang II aggravated abnormal phosphorylation (P<0.05); conversely, additional valsartan alleviated abnormal phosphorylation to some extent (P<0.05). CONCLUSIONS There is skeletal muscle insulin resistance in the presence of CRF. This phenomenon can be aggravated by Ang II and partially relieved by valsartan. One of the mechanisms of IR in CRF patients may be associated with the critical proteins in the IRS-PI3k-Akt pathway by changing their phosphorylation levels.
Collapse
Affiliation(s)
- Yang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ri-Bao Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Yue Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
- Renal Division of China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting-Yu Su
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Meng-Jie Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ping Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| |
Collapse
|