1
|
de Diego-Otero Y, El Bekay R, García-Guirado F, Sánchez-Salido L, Giráldez-Pérez RM. Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines 2024; 12:2887. [PMID: 39767793 PMCID: PMC11673502 DOI: 10.3390/biomedicines12122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fragile X Syndrome (FXS) is associated with intellectual disability, hyperactivity, social anxiety and signs of autism. Hyperactivation of NADPH oxidase has been previously described in the brain of the male Fmr1-KO mouse. This work aims to demonstrate the efficacy of Apocynin, a specific NADPH oxidase inhibitor, in treating Fragile X mouse hallmarks. Methods: Free radicals, lipid and protein oxidation markers and behavioural and learning paradigms were measured after chronic treatment with orally administered vehicle, 10 mg/kg/day or 30 mg/kg/day of Apocynin. Results: The results revealed a reduction in testis weight, an increase in peritoneal fat, and no variation in body weight after chronic treatment. Furthermore, a reduction in hyperactivity was detected in Apocynin-treated male Fmr1-KO mice. Additionally, the higher dose of 30 mg/kg/day also improves behaviour and learning in the male Fmr1-KO mice, normalising free radical production and oxidative parameters. Moreover, a reduction in phospho-EKR1 and P47-Phox protein signals was observed in specific brain areas. Conclusions: Thus, chronic treatment with Apocynin could lead to a new therapeutic option for the Fragile X Syndrome.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| | - Rajaa El Bekay
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
- Endocrinology and Nutrition Clinic Unit, Regional University Hospital of Málaga, 29009 Málaga, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco García-Guirado
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Lourdes Sánchez-Salido
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
2
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Boonpraman N, Yi SS. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases. Neural Regen Res 2024; 19:1961-1966. [PMID: 38227522 DOI: 10.4103/1673-5374.390973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
Diseases like Alzheimer's and Parkinson's diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer's disease and Parkinson's disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
Collapse
Affiliation(s)
- Napissara Boonpraman
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Sun Shin Yi
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, South Korea
- iConnectome, Co., Ltd., Cheonan, South Korea
| |
Collapse
|
4
|
Li F, Sun X, Sun K, Kong F, Jiang X, Kong Q. Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regen Res 2024; 19:1802-1811. [PMID: 38103247 PMCID: PMC10960275 DOI: 10.4103/1673-5374.389302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00034/figure1/v/2023-12-16T180322Z/r/image-tiff Spinal cord injury-induced motor dysfunction is associated with neuroinflammation. Studies have shown that the triterpenoid lupenone, a natural product found in various plants, has a remarkable anti-inflammatory effect in the context of chronic inflammation. However, the effects of lupenone on acute inflammation induced by spinal cord injury remain unknown. In this study, we established an impact-induced mouse model of spinal cord injury, and then treated the injured mice with lupenone (8 mg/kg, twice a day) by intraperitoneal injection. We also treated BV2 cells with lipopolysaccharide and adenosine 5'-triphosphate to simulate the inflammatory response after spinal cord injury. Our results showed that lupenone reduced IκBα activation and p65 nuclear translocation, inhibited NLRP3 inflammasome function by modulating nuclear factor kappa B, and enhanced the conversion of proinflammatory M1 microglial cells into anti-inflammatory M2 microglial cells. Furthermore, lupenone decreased NLRP3 inflammasome activation, NLRP3-induced microglial cell polarization, and microglia pyroptosis by inhibiting the nuclear factor kappa B pathway. These findings suggest that lupenone protects against spinal cord injury by inhibiting inflammasomes.
Collapse
Affiliation(s)
- Fudong Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
6
|
Lu M, Shi J, Li X, Liu Y, Liu Y. Long-term intake of thermo-induced oxidized oil results in anxiety-like and depression-like behaviors: involvement of microglia and astrocytes. Food Funct 2024; 15:4037-4050. [PMID: 38533894 DOI: 10.1039/d3fo05302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Frequent consumption of fried foods has been strongly associated with a higher risk of anxiety and depression, particularly among young individuals. The existing evidence has indicated that acrylamide produced from starchy foods at high temperatures can induce anxious behavior. However, there is limited research on the nerve damage caused by thermo-induced oxidized oil (TIOO). In this study, we conducted behavioral tests on mice and found that prolonged consumption of TIOO led to significant anxiety behavior and a tendency toward depression. TIOO primarily induced these two emotional disorders by affecting the differentiation of microglia, the level of inflammatory factors, the activation of astrocytes, and glutamate circulation in brain tissue. By promoting the over-differentiation of microglia into M1 microglia, TIOO disrupted their differentiation balance, resulting in an up-regulation of inflammatory factors (IL-1β, IL-6, TNF-α, NOS2) in M1 microglia and a down-regulation of neuroprotective factors IL-4/IL-10 in M2 microglia, leading to nerve damage. Moreover, TIOO activated astrocytes, accelerating their proliferation and causing GFAP precipitation, which damaged astrocytes. Meanwhile, TIOO stimulates the secretion of the BDNF and reduces the level of the glutamate receptor GLT-1 in astrocytes, leading to a disorder in the glutamate-glutamine cycle, further exacerbating nerve damage. In conclusion, this study suggests that long-term intake of thermo-induced oxidized oil can trigger symptoms of anxiety and depression.
Collapse
Affiliation(s)
- Meishan Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Future Food (Bai Ma) Research Institute, 111 Baima Road, Lishui District, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Cao XS, Lin XL, Li BY, Wu RC, Zhong L. Interpretation of the phenolation and structural changes of lignin in a novel ternary deep eutectic solvent. Int J Biol Macromol 2024; 264:130475. [PMID: 38428764 DOI: 10.1016/j.ijbiomac.2024.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Deep eutectic solvents (DES) are promising green solvents for depolymerization and reconstruction of lignin. Revealing the transformations of lignin during DES treatment is beneficial for high potential lignin applications. In this study, bagasse lignin was treated with a binary DES and three ternary DESs, respectively. The results showed that net hydrogen bonding acidity(α-β) value of DES was positively correlated to the increment of phenolic hydroxyl of lignin, and the ternary DES of choline chloride-formic acid-oxalic acid (ChCl-FA-OA) exhibited the best phenolation performances. The phenolic hydroxyl content of ChCl-FA-OA treated lignin was increased by 50.4 %, reaching 2.41 mmol/g under optimum conditions (120 °C, 4 h, ChCl-FA-OA = 1:2:1). Moreover, it was found that the cleavage of β-O-4' aryl ether bond and ester bond were dominant reactions during the treatment, accompanied by condensation reactions. Additionally, the obtained lignin oil contained various syringyl and guaiacyl derived phenolic compounds. Especially, the content of acetovanillone in lignin oil reached 29.94 %, much higher than in previous studies. Finally, the degradation mechanism of lignin in ChCl-FA-OA system was proposed. The present work provided insights into the relationship between lignin phenolation and DES properties. The novel ChCl-FA-OA system can achieve efficient lignin depolymerization, and convert lignin biomass into value-added chemical products.
Collapse
Affiliation(s)
- Xian-Sheng Cao
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Xu-Liang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Bo-Ya Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Ru-Chun Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| |
Collapse
|
8
|
Chen Y, Zhu G, Yuan T, Ma R, Zhang X, Meng F, Yang A, Du T, Zhang J. Subthalamic nucleus deep brain stimulation alleviates oxidative stress via mitophagy in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:52. [PMID: 38448431 PMCID: PMC10917786 DOI: 10.1038/s41531-024-00668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) has the potential to delay Parkinson's disease (PD) progression. Whether oxidative stress participates in the neuroprotective effects of DBS and related signaling pathways remains unknown. To address this, we applied STN-DBS to mice and monkey models of PD and collected brain tissue to evaluate mitophagy, oxidative stress, and related pathway. To confirm findings in animal experiments, a cohort of PD patients was recruited and oxidative stress was evaluated in cerebrospinal fluid. When PD mice received STN stimulation, the mTOR pathway was suppressed, accompanied by elevated LC3 II expression, increased mitophagosomes, and a decrease in p62 expression. The increase in mitophagy and balance of mitochondrial fission/fusion dynamics in the substantia nigra caused a marked enhancement of the antioxidant enzymes superoxide dismutase and glutathione levels. Subsequently, fewer mitochondrial apoptogenic factors were released to the cytoplasm, which resulted in a suppression of caspase activation and reservation of dopaminergic neurons. While interfaced with an mTOR activator, oxidative stress was no longer regulated by STN-DBS, with no neuroprotective effect. Similar results to those found in the rodent experiments were obtained in monkeys treated with chronic STN stimulation. Moreover, antioxidant enzymes in PD patients were increased after the operation, however, there was no relation between changes in antioxidant enzymes and motor impairment. Collectively, our study found that STN-DBS was able to increase mitophagy via an mTOR-dependent pathway, and oxidative stress was suppressed due to removal of damaged mitochondria, which was attributed to the dopaminergic neuroprotection of STN-DBS in PD.
Collapse
Affiliation(s)
- Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
| | - Fangang Meng
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China
| | - Tingting Du
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, 100070, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China.
| |
Collapse
|
9
|
Shi G, Zhang C, Bai X, Sun J, Wang K, Meng Q, Li Y, Hu G, Hu R, Cai Q, Huang M. A potential mechanism clue to the periodic storm from microglia activation and progressive neuron damage induced by paraquat exposure. ENVIRONMENTAL TOXICOLOGY 2024; 39:1874-1888. [PMID: 38189626 DOI: 10.1002/tox.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Paraquat (PQ), is characterized by neurotoxicity, which increases the potential risk of Parkinson's disease (PD) exposure in the long-term and low doses. Triggering microglia activation and neuroinflammation is deemed an early event resulting in PD. However, the underlying pathogenesis of PD by PQ is not clear yet. In this article, C57BL/6J mice treated with PQ could successfully act out Parkinson-like. In addition, we observed the fluorescence intensity enhancement of Iba-1 activated microglia with released pro-inflammatory, all ahead of both the damage of dopaminergic neurons in the substantia nigra and corpus striatum of the brain. Surprisingly, the injection of minocycline before PQ for many hours not only can effectively improve the neurobehavioral symptoms of mice but inhibit the activation of microglia and the release of pro-inflammatory substances, even controlling the gradual damage and loss of neurons. A further mechanism of minocycline hampered the expression levels of key signaling proteins PI3K, PDK1, p-AKT, and CD11b (the receptor of microglia membrane recognition), while a large number of inflammatory factors. Our results suggested that the CD11b/PI3K/NOX2 pathway may be a clue that microglia-mediated inflammatory responses and neuronal damage in a PQ-induced abnormal behavior Parkinson-like mouse.
Collapse
Affiliation(s)
- Ge Shi
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xinghua Bai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - KaiDong Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Kong E, Geng X, Wu F, Yue W, Sun Y, Feng X. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain in elderly mice. J Cell Mol Med 2024; 28:e18090. [PMID: 38140846 PMCID: PMC10844686 DOI: 10.1111/jcmm.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1β, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.
Collapse
Affiliation(s)
- Erliang Kong
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Feixiang Wu
- Department of Intensive Care Unit, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Yue
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Yuming Sun
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xudong Feng
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| |
Collapse
|
11
|
Dos Santos JCC, Rebouças CDSM, Oliveira LF, Cardoso FDS, Nascimento TDS, Oliveira AV, Lima MPP, de Andrade GM, de Castro Brito GA, de Barros Viana GS. The role of gut-brain axis in a rotenone-induced rat model of Parkinson's disease. Neurobiol Aging 2023; 132:185-197. [PMID: 37837734 DOI: 10.1016/j.neurobiolaging.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative condition affecting millions globally. This investigation centered on the gut-brain axis in a rotenone-induced PD rat model. Researchers monitored behavioral shifts, histological modifications, neurodegeneration, and inflammation markers throughout the rats' bodies. Results revealed that rotenone-treated rats displayed reduced exploration (p = 0.004) and motor coordination (p < 0.001), accompanied by decreased Nissl staining and increased alpha-synuclein immunoreactivity in the striatum (p = 0.009). Additionally, these rats exhibited weight loss (T3, mean = 291.9 ± 23.67; T19, mean = 317.5 ± 17.53; p < 0.05) and substantial intestinal histological alterations, such as shortened villi, crypt architecture loss, and inflammation. In various regions, researchers noted elevated immunoreactivity to ionized binding adapter molecule (IBA)-1 (p < 0.05) and reduced immunoreactivity to glial fibrillary acidic protein (p < 0.05) and S100B (p < 0.001), indicating altered glial cell activity. Overall, these findings imply that PD is influenced by gut-brain axis changes and may originate in the intestine, impacting bidirectional gut-brain communication.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Medical School of the Christus University Center-UNICHRISTUS, Fortaleza, CE, Brazil; Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil.
| | - Conceição da Silva Martins Rebouças
- Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Fabrizio Dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| | | | - Alfaete Vieira Oliveira
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Geanne Matos de Andrade
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | - Gerly Anne de Castro Brito
- Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | |
Collapse
|
12
|
Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YYI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115550. [PMID: 37832486 PMCID: PMC10807506 DOI: 10.1016/j.ecoenv.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ziyang Guo
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaomeng Zhang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Tian
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Song
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
13
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
14
|
Hou L, Liu J, Sun F, Huang R, Chang R, Ruan Z, Wang Y, Zhao J, Wang Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase-NLRP3 inflammasome axis-dependent microglial activation. J Neuroinflammation 2023; 20:42. [PMID: 36804009 PMCID: PMC9938991 DOI: 10.1186/s12974-023-02732-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
INTRODUCTION The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.
Collapse
Affiliation(s)
- Liyan Hou
- grid.411971.b0000 0000 9558 1426Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044 China
| | - Jianing Liu
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ruixue Huang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Rui Chang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Zhengzheng Ruan
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ying Wang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. .,School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
15
|
Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol 2023; 14:1106515. [PMID: 36814920 PMCID: PMC9939898 DOI: 10.3389/fimmu.2023.1106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.
Collapse
Affiliation(s)
- Iswarya Muthukumarasamy
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sharleen M. Buel
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jennifer M. Hurley
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
16
|
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES. SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. J Neurosci Res 2023; 101:952-975. [PMID: 36717481 DOI: 10.1002/jnr.25171] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida, USA
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
17
|
Soraci L, Gambuzza ME, Biscetti L, Laganà P, Lo Russo C, Buda A, Barresi G, Corsonello A, Lattanzio F, Lorello G, Filippelli G, Marino S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: mechanisms and therapeutic implications. J Neurol 2023; 270:1346-1360. [PMID: 36460875 PMCID: PMC9971082 DOI: 10.1007/s00415-022-11491-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder characterized by motor and non-motor disturbances as a result of a complex and not fully understood pathogenesis, probably including neuroinflammation, oxidative stress, and formation of alpha-synuclein (α-syn) aggregates. As age is the main risk factor for several neurodegenerative disorders including PD, progressive aging of the immune system leading to inflammaging and immunosenescence may contribute to neuroinflammation leading to PD onset and progression; abnormal α-syn aggregation in the context of immune dysfunction may favor activation of nucleotide-binding oligomerization domain-like receptor (NOD) family pyrin domain containing 3 (NLRP3) inflammasome within microglial cells through interaction with toll-like receptors (TLRs). This process would further lead to activation of Caspase (Cas)-1, and increased production of pro-inflammatory cytokines (PC), with subsequent impairment of mitochondria and damage to dopaminergic neurons. All these phenomena are mediated by the translocation of nuclear factor kappa-B (NF-κB) and enhanced by reactive oxygen species (ROS). To date, drugs to treat PD are mainly aimed at relieving clinical symptoms and there are no disease-modifying options to reverse or stop disease progression. This review outlines the role of the TLR/NLRP3/Cas-1 pathway in PD-related immune dysfunction, also focusing on specific therapeutic options that might be used since the early stages of the disease to counteract neuroinflammation and immune dysfunction.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (INRCA-IRCCS), 60121, Ancona, Italy.
| | - Pasqualina Laganà
- Biomedical, Dental, Morphological and Functional Imaging Department, University of Messina, 98124 Messina, Italy
| | - Carmela Lo Russo
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Annamaria Buda
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giada Barresi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (INRCA-IRCCS), 60121 Ancona, Italy
| | - Giuseppe Lorello
- Unit of Internal Medicine, Polyclinic G Martino Hospital, 98125 Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| |
Collapse
|
18
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
19
|
Liu C, Liu Z, Fang Y, Du Z, Yan Z, Yuan X, Dai L, Yu T, Xiong M, Tian Y, Li H, Li F, Zhang J, Meng L, Wang Z, Jiang H, Zhang Z. Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. CHEMOSPHERE 2022; 308:136344. [PMID: 36087732 DOI: 10.1016/j.chemosphere.2022.136344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.
Collapse
Affiliation(s)
- Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanyan Fang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhen Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P, Zhang J, He H, Mao G, Lu Y, Lin X, Yu Z, Pi H, Cheng Y, Xu S, Zhou Z. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. ENVIRONMENT INTERNATIONAL 2022; 169:107512. [PMID: 36108500 DOI: 10.1016/j.envint.2022.107512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in the world and a well-known potent neurotoxin for humans. PQ exposure has been linked to increase the risk of Parkinson's disease (PD). However, the mechanism underlying its neurotoxic effects in PD pathogenesis is unclear. In our present study, C57BL/6J mice treated with PQ manifested severe motor deficits indicated by the significant reductions in suspension score, latency to fall from rotarod, and grip strength at 8 weeks after PQ exposure. Pathological hallmarks of Parkinsonism in the midbrain such as dopaminergic neuron loss, increased α-synuclein protein, and dysregulated PD-related genes were observed. Non-targeted lipidome analysis demonstrated that PQ exposure alters lipid profile and abundance, increases pro-inflammatory lipids.27 significantly altered subclasses of lipids belonged to 6 different lipid categories. Glycerophospholipids, sphingolipids, and glycerides were the most abundant lipids. Abundance of pro-inflammatory lipids such as Cer, LPC, LPS, and LPI was significantly increased in the midbrain. mRNA expressions of genes regulating ceramide biosynthesis in the midbrain were markedly up-regulated. Moreover, PQ exposure increased serum pro-inflammatory cytokines and provoked neuroinflammation in the midbrain. Pro-inflammatory lipids and cytokines in the midbrain were positively correlated with motor deficits. PQ poisoning in humans significantly also elevated serum pro-inflammatory cytokines and induced an intense systemic inflammation. In summary, we presented initial investigations of PQ induced molecular events related to the PD pathogenesis, capturing aspects of disturbed lipid metabolism, neuroinflammation, impairment of dopaminergic neurons in the midbrain, and an intense systemic inflammation. These neurotoxic effects of PQ exposure may mechanistically contribute to the pathogenesis of PQ induced Parkinsonism. Results of this study also strongly support the hypothesis that ever-increasing prevalence of Parkinson's disease is etiologically linked to the health risk of exposure to neurotoxic environmental pollutants.
Collapse
Affiliation(s)
- Tong Tong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Yudong Xu
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Gaofeng Mao
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Xiqin Lin
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yong Cheng
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China.
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China.
| | - Zhou Zhou
- Department of Emergency Medicine of First Affiliated Hospital and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
21
|
Zelentsova AS, Deykin AV, Soldatov VO, Ulezko AA, Borisova AY, Belyaeva VS, Skorkina MY, Angelova PR. P2X7 Receptor and Purinergic Signaling: Orchestrating Mitochondrial Dysfunction in Neurodegenerative Diseases. eNeuro 2022; 9:ENEURO.0092-22.2022. [PMID: 36376084 PMCID: PMC9665882 DOI: 10.1523/eneuro.0092-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dysfunction is one of the basic hallmarks of cellular pathology in neurodegenerative diseases. Since the metabolic activity of neurons is highly dependent on energy supply, nerve cells are especially vulnerable to impaired mitochondrial function. Besides providing oxidative phosphorylation, mitochondria are also involved in controlling levels of second messengers such as Ca2+ ions and reactive oxygen species (ROS). Interestingly, the critical role of mitochondria as producers of ROS is closely related to P2XR purinergic receptors, the activity of which is modulated by free radicals. Here, we review the relationships between the purinergic signaling system and affected mitochondrial function. Purinergic signaling regulates numerous vital biological processes in the CNS. The two main purines, ATP and adenosine, act as excitatory and inhibitory neurotransmitters, respectively. Current evidence suggests that purinergic signaling best explains how neuronal activity is related to neuronal electrical activity and energy homeostasis, especially in the development of Alzheimer's and Parkinson's diseases. In this review, we focus on the mechanisms underlying the involvement of the P2RX7 purinoreceptor in triggering mitochondrial dysfunction during the development of neurodegenerative disorders. We also summarize various avenues by which the purine signaling pathway may trigger metabolic dysfunction contributing to neuronal death and the inflammatory activation of glial cells. Finally, we discuss the potential role of the purinergic system in the search for new therapeutic approaches to treat neurodegenerative diseases.
Collapse
|
22
|
L. F. Nascimento A, O. S. Medeiros P, F. A. T. Pedrão L, Queiroz VC, Oliveira LM, Novaes LS, Caetano AL, Munhoz CD, Takakura AC, Falquetto B. Oxidative stress inhibition via apocynin prevents contributes to medullary respiratory neurodegeneration and respiratory pattern dysfunction in 6-OHDA animal model of Parkinson's disease. Neuroscience 2022; 502:91-106. [DOI: 10.1016/j.neuroscience.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
23
|
Zhang X, Tu D, Li S, Li N, Li D, Gao Y, Tian L, Liu J, Zhang X, Hong JS, Hou L, Zhao J, Wang Q. A novel synthetic peptide SVHRSP attenuates dopaminergic neurodegeneration by inhibiting NADPH oxidase-mediated neuroinflammation in experimental models of Parkinson's disease. Free Radic Biol Med 2022; 188:363-374. [PMID: 35760232 DOI: 10.1016/j.freeradbiomed.2022.06.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Current treatment of Parkinson's disease (PD) ameliorates symptoms but fails to block disease progression. This study was conducted to explore the protective effects of SVHRSP, a synthetic heat-resistant peptide derived from scorpion venom, against dopaminergic neurodegeneration in experimental models of PD. Results showed that SVHRSP dose-dependently reduced the loss of dopaminergic neuron in the nigrostriatal pathway and motor impairments in both rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse PD models. Microglial activation and imbalance of M1/M2 polarization were also abrogated by SVHRSP in both models. In rotenone-treated primary midbrain neuron-glial cultures, loss of dopaminergic neuron and microglial activation were mitigated by SVHRSP. Furthermore, lipopolysaccharide (LPS)-elicited microglial activation, M1 polarization and related dopaminergic neurodegeneration in primary cultures were also abrogated by SVHRSP, suggesting that inhibition of microglial activation contributed to SVHRSP-afforded neuroprotection. Mechanistic studies revealed that SVHRSP blocked both LPS- and rotenone-induced microglial NADPH oxidase (NOX2) activation by preventing membrane translocation of cytosolic subunit p47phox. NOX2 knockdown by siRNA markedly attenuated the inhibitory effects of SVHRSP against LPS- and rotenone-induced gene expressions of proinflammatory factors and related neurotoxicity. Altogether, SVHRSP protects dopaminergic neurons by blocking NOX2-mediated microglial activation in experimental PD models, providing experimental basis for the screening of clinical therapeutic drugs for PD.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Dezhen Tu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Donglai Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yun Gao
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lu Tian
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Liyan Hou
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
24
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
25
|
Abd El-Aal SA, AbdElrahman M, Reda AM, Afify H, Ragab GM, El-Gazar AA, Ibrahim SSA. Galangin Mitigates DOX-induced Cognitive Impairment in Rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-α/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022; 92:77-90. [PMID: 35843304 DOI: 10.1016/j.neuro.2022.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2mg/kg, once/week, i.p.) and GAL (50mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index and BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1β, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon 51001, Iraq; Department of Clinical Pharmacy, Badr University Hospital, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | |
Collapse
|
26
|
Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother 2022; 150:112936. [PMID: 35421784 DOI: 10.1016/j.biopha.2022.112936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury (CRI) is a common pathological damage in chronic renal disease, and the therapeutic options for preventing its progression are limited at present. Ginsenoside Rg1 (Rg1) is reported to have a protective effect on renal injury by improving oxidative stress and inflammation. Lipopolysaccharide (LPS) plays important roles in inducing inflammatory and high-dose LPS is often used to perform acute renal injury. However, little is known about the effect of low-dose LPS on CRI, and the protective effect of Rg1 against chronic LPS-induced CRI. Here, we reported the protective effect and mechanism of Rg1 against LPS-induced CRI in mice. In this study, the results demonstrated that low-dose LPS (0.25 mg/kg) exposure for 14 days significantly induced renal function impairment and renal injury and fibrosis. Meanwhile, LPS exposure significantly increased reactive oxygen species (ROS) generation, NADPH oxidase 4 (NOX4) and NLRP3 inflammasome expression in renal cortex. However, treatment with Rg1, tempol (a superoxide dismutase mimetic), and apocynin (a NOX inhibitor) significantly improved renal function impairment and renal fibrosis, and significantly decreased the levels of TGF-β, IL-1β, KIM-1, β-Gal, and collagen IV in the kidneys. And Rg1 treatment also significantly reduced ROS generation and inhibited the activation of NOX4 and NLRP3 inflammasome. Overall, these results suggest that Rg1 treatment can ameliorate LPS-induced chronic kidney injury and renal fibrosis, the mechanisms may be involved in reducing NOX2-mediated oxidative stress and inhibiting NLRP1 inflammasome.
Collapse
Affiliation(s)
- Duoduo Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Pengmin Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huimin Zhou
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liangliang Kong
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
27
|
Pre-Exposure to Environmental Enrichment Protects against Learning and Memory Deficits Caused by Infrasound Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6208872. [PMID: 35620581 PMCID: PMC9129996 DOI: 10.1155/2022/6208872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
With the development of industrialization in recent years, infrasound has become an important component of public noise. To date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16 Hz, 130 dB infrasound for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53 level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-inflammatory, and antiapoptosis capacities.
Collapse
|
28
|
2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Attenuates Reactive Oxygen Species-Dependent Inflammation and Apoptosis in Porphyromonas gingivalis-Infected Brain Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040740. [PMID: 35453424 PMCID: PMC9024880 DOI: 10.3390/antiox11040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
We recently reported that the periodontopathic bacteria Porphyromonas gingivalis (P. gingivalis) initiates an inflammatory cascade that disrupts the balance of reactive oxygen species (ROS), resulting in apoptotic cell death in brain endothelial cells. An extract from Polygonum multiflorum Thunb., 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside (THSG) has been well-reported to diminish the inflammation in many disease models. However, the effects of THSG in the area of the brain–oral axis is unknown. In this study, we examined the effects of THSG in P. gingivalis-stimulated inflammatory response and apoptotic cell death in brain endothelial cells. THSG treatment remarkably lessened the upregulation of IL-1β and TNF-α proteins in bEnd.3 cells infected with P. gingivalis. Treatment of THSG further ameliorated brain endothelial cell death, including apoptosis caused by P. gingivalis. Moreover, the present study showed that the inhibitory effects on NF-κB p65 and antiapoptotic properties of THSG is through inhibiting the ROS pathway. Importantly, the ROS inhibitory potency of THSG is similar to a ROS scavenger N-Acetyl-L-Cysteine (NAC) and NADPH oxidase inhibitor apocynin. Furthermore, the protective effect of THSG from P. gingivalis infection was further confirmed in primary mouse brain endothelial cells. Taken together, this study indicates that THSG attenuates an ROS-dependent inflammatory response and cell apoptosis in P. gingivalis-infected brain endothelial cells. Our results also suggest that THSG could be a potential herbal medicine to prevent the risk of developing cerebrovascular diseases from infection of periodontal bacteria.
Collapse
|
29
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
30
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
31
|
Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23052793. [PMID: 35269933 PMCID: PMC8910886 DOI: 10.3390/ijms23052793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic neuroinflammation has been considered to be involved in the progressive dopaminergic neurodegeneration in Parkinson’s disease (PD). However, the mechanisms remain unknown. Accumulating evidence indicated a key role of the blood–brain barrier (BBB) dysfunction in neurological disorders. This study is designed to elucidate whether chronic neuroinflammation damages dopaminergic neurons through BBB dysfunction by using a rotenone-induced mouse PD model. Results showed that rotenone dose-dependently induced nigral dopaminergic neurodegeneration, which was associated with increased Evans blue content and fibrinogen accumulation as well as reduced expressions of zonula occludens-1 (ZO-1), claudin-5 and occludin, three tight junction proteins for maintaining BBB permeability, in mice, indicating BBB disruption. Rotenone also induced nigral microglial activation. Depletion of microglia or inhibition of microglial activation by PLX3397 or minocycline, respectively, greatly attenuated BBB dysfunction in rotenone-lesioned mice. Mechanistic inquiry revealed that microglia-mediated activation of matrix metalloproteinases-2 and 9 (MMP-2/-9) contributed to rotenone-induced BBB disruption and dopaminergic neurodegeneration. Rotenone-induced activation of MMP-2/-9 was significantly attenuated by microglial depletion and inactivation. Furthermore, inhibition of MMP-2/-9 by a wide-range inhibitor, SB-3CT, abrogated elevation of BBB permeability and simultaneously increased tight junctions expression. Finally, we found that microglial depletion and inactivation as well as inhibition of MMP-2/-9 significantly ameliorated rotenone-elicited nigrostriatal dopaminergic neurodegeneration and motor dysfunction in mice. Altogether, our findings suggested that microglial MMP-2/-9 activation-mediated BBB dysfunction contributed to dopaminergic neurodegeneration in rotenone-induced mouse PD model, providing a novel view for the mechanisms of Parkinsonism.
Collapse
|
32
|
Guo Z, Ruan Z, Zhang D, Liu X, Hou L, Wang Q. Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. CHEMOSPHERE 2022; 291:132982. [PMID: 34822863 DOI: 10.1016/j.chemosphere.2021.132982] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Rotenone is a neurotoxic pesticide widely used in agriculture. Dopaminergic neuron has long been considered as the target of rotenone. We recently reported that rotenone exposure also resulted in hippocampal and cortical neurodegeneration and cognitive dysfunction in mice. However, the mechanisms remain unknown. Here, we elucidated whether blood brain barrier (BBB) disruption and subsequent neuronal apoptosis mediated by microglial activation were involved in rotenone-elicited cognitive impairments. Results showed that rotenone dose-dependently elevated evens blue extravasation, fibrinogen accumulation and reduced expressions of tight junction proteins in the hippocampus and cortex of mice. Interestingly, microglial depletion and inactivation by PLX3397 and minocycline, respectively, markedly attenuated rotenone-elicited increase of BBB permeability, indicating a critical role of microglia. Furthermore, microglial depletion and inactivation were shown to abrogate rotenone-induced activation of matrix metalloproteinases 2 and 9 (MMP-2/-9), two important factors to regulate tight junction degradation and BBB permeability, in mice. Moreover, SB-3CT, a widely used MMP-2/-9 inhibitor, increased BBB integrity and simultaneously elevated expressions of tight junction proteins in rotenone-intoxicated mice. Finally, we found that SB-3CT significantly mitigated rotenone-induced neuronal apoptosis and synaptic loss as well as learning and memory impairments in mice. Altogether, this study revealed that rotenone elicited cognitive impairments in mice through microglia-mediated BBB disruption and neuronal apoptosis via MMP-2/-9, providing a novel aspect for the pathogenesis of pesticide-induced neurotoxicity and Parkinson's disease (PD)-related dementia.
Collapse
Affiliation(s)
- Ziyang Guo
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, 116044, China; Public Health Development Branch, Shaoxing Yuecheng People's Hospital, Shaoxing, 312000, China
| | - Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China; Xi'an Center for Disease Control and Prevention, Xi'an, 710018, China
| | - Xiaohui Liu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
33
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
34
|
Jaiswal G, Kumar P. Neuroprotective role of apocynin against pentylenetetrazole kindling epilepsy and associated comorbidities in mice by suppression of ROS/RNS. Behav Brain Res 2022; 419:113699. [PMID: 34856299 DOI: 10.1016/j.bbr.2021.113699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
Epilepsy is a neurological disease that transpires due to the unusual synchronized neuronal discharge within the central nervous system, which drives repetitious unprovoked seizures. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex enzyme accountable for reactive oxygen species (ROS) production, neurodegeneration, neurotoxicity, memory impairment, vitiates normal cellular processes, long term potentiation, and thus, implicated in the pathogenesis of epilepsy. Therefore, the present study was sketched to examine the neuroprotective effect of apocynin, NADPH oxidase inhibitor in pentylenetetrazole kindling epilepsy, and induced comorbidities in mice. Mice (either sex) were given pentylenetetrazole (35 mg/kg, i.p.) every other day up to 29 days, and a challenge test was executed on the 33rd day. Pretreatment with apocynin (25, 50, and 100 mg/kg, i.p.) was carried out from 1st to 33rd day. Rotarod and open field test were performed on the 1st, 10th, 20th, and 30th days of the study. Animals were tutored on the morris water maze from 30th to 33rd day, and the retention was registered on the 34th day. Tail suspension test and elevated plus maze were sequentially performed on the 32nd and 33rd day of the study. On the 34th day, animals were sacrificed, and their brains were isolated to conduct biochemical estimation. NADPH oxidase activation due to chronic pentylenetetrazole treatment resulted in generalized tonic-clonic seizures, enhanced oxidative stress, remodeled neurotransmitters' level, and resulted in comorbidities (anxiety, depression, and memory impairment). Pretreatment with apocynin significantly restricted the pentylenetetrazole induced seizure severity, ROS production, neurotransmitter alteration, and comorbid conditions by inhibiting the NADPH oxidase enzyme.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India.
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India; Department of Pharmacology, Central University of Punjab, Bathinda (Punjab), India.
| |
Collapse
|
35
|
Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR. Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Mol Neurobiol 2022; 59:1543-1559. [PMID: 35000153 DOI: 10.1007/s12035-022-02723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3β/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Monique Patricio Singulani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurosciences - LIM27, Department & Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112604. [DOI: 10.1016/j.msec.2021.112604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
|
37
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
38
|
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J, Xiong N, Wang T. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Front Immunol 2021; 12:719807. [PMID: 34691027 PMCID: PMC8531525 DOI: 10.3389/fimmu.2021.719807] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson's disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.
Collapse
Affiliation(s)
- Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants (Basel) 2021; 10:antiox10111658. [PMID: 34829529 PMCID: PMC8614843 DOI: 10.3390/antiox10111658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- Institute of Health Sciences, University of O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua 2820000, Chile
| | - Pamela V. Arias
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Simón A. Aguilar
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Esteban G. Figueroa
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Roberto V. Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Aníbal J. Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
| | - Emilio A. Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
- Correspondence: ; Tel.: +56-2-2977-0543
| |
Collapse
|
40
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Auriemma R, Sponchioni M, Capasso Palmiero U, Manfredini N, Razavi Dinani FS, Moscatelli D. Synthesis of a Diapocynin Prodrug for Its Prolonged Release from Zwitterionic Biodegradable Nanoparticles. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renato Auriemma
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Via Mancinelli 7 Milano 20131 Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Via Mancinelli 7 Milano 20131 Italy
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir‐Prelog‐Weg 1‐5/10 Zürich 8093 Switzerland
| | - Nicolò Manfredini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Via Mancinelli 7 Milano 20131 Italy
| | - Fatemeh Sadat Razavi Dinani
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Via Mancinelli 7 Milano 20131 Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Via Mancinelli 7 Milano 20131 Italy
| |
Collapse
|
42
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Qiu X, Wang Q, Hou L, Zhang C, Wang Q, Zhao X. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson's disease model. Toxicol Lett 2021; 349:1-11. [PMID: 34052309 DOI: 10.1016/j.toxlet.2021.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Pesticides exposure can lead to damage of dopaminergic neurons, which are associated with increased risk of Parkinson's disease (PD). However, the etiology of PD remains poorly understood and no therapeutic strategy is available. Previous studies suggested the involvement of NLRP3 inflammasome in the onset of PD. This study was designed to investigate whether glibenclamide, an inhibitor of NLRP3 inflammasome, could offer a reliable protective strategy for PD in a mouse PD model induced by paraquat and maneb. We found that glibenclamide exerted potent neuroprotection against paraquat and maneb-induced upregulation of α-synuclein, dopaminergic neurodegeneration and motor impairment in brain of mice. Mechanistically, glibenclamide treatment blocked NLRP3 inflammasome activation evidenced by reduced expressions of NLRP3, activated caspase-1 and mature interleukin-1β in glibenclamide co-treated mice compared with those in paraquat and maneb group mice. Furthermore, glibenclamide treatment mitigated paraquat and maneb-induced microglial M1 proinflammatory response and nuclear factor-κB activation in mice. Finally, the increased superoxide production, lipid peroxidation, protein levels of NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) induced by paraquat and maneb were all attenuated by glibenclamide. Overall, our findings demonstrated that glibenclamide protected dopaminergic neurons in a mouse PD model induced by combined exposures of paraquat and maneb through suppression of NLRP3 inflammasome activation, microglial M1 polarization and oxidative stress.
Collapse
Affiliation(s)
- Xiaofei Qiu
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, 266033, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qinghui Wang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Cuili Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Xiulan Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
44
|
Li Y, Zhang D, Li L, Han Y, Dong X, Yang L, Li X, Li W, Li W. Ginsenoside Rg1 ameliorates aging‑induced liver fibrosis by inhibiting the NOX4/NLRP3 inflammasome in SAMP8 mice. Mol Med Rep 2021; 24:801. [PMID: 34523690 PMCID: PMC8456316 DOI: 10.3892/mmr.2021.12441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Aging is often accompanied by liver injury and fibrosis, eventually leading to the decline in liver function. However, the mechanism of aging‑induced liver injury and fibrosis is still not fully understood, to the best of our knowledge, and there are currently no effective treatment options available for liver aging. Ginsenoside Rg1 (Rg1) has been reported to exert potent anti‑aging effects due to its potential antioxidant and anti‑inflammatory activity. The present study aimed to investigate the protective effect and underlying mechanism of action of Rg1 in aging‑induced liver injury and fibrosis in senescence‑accelerated mouse prone 8 (SAMP8) mice treated for 9 weeks. The histopathological results showed that the arrangement of hepatocytes was disordered, vacuole‑like degeneration occurred in the majority of cells, and collagen IV and TGF‑β1 expression levels, that were detected via immunohistochemistry, were also significantly upregulated in the SAMP8 group. Rg1 treatment markedly improved aging‑induced liver injury and fibrosis, and significantly downregulated the expression levels of collagen IV and TGF‑β1. In addition, the dihydroethylene staining and western blotting results showed that Rg1 treatment significantly reduced the levels of reactive oxygen species (ROS) and IL‑1β, and downregulated the expression levels of NADPH oxidase 4 (NOX4), p47phox, p22phox, phosphorylated‑NF‑κB, caspase‑1, apoptosis‑associated speck‑like protein containing a C‑terminal caspase recruitment domain and the NLR family pyrin domain containing 3 (NLRP3) inflammasome, which were significantly upregulated in the liver tissues of elderly SAMP8 mice. In conclusion, the findings of the present study suggested that Rg1 may attenuate aging‑induced liver injury and fibrosis by reducing NOX4‑mediated ROS oxidative stress and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Duoduo Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liu Yang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuewang Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
45
|
Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4'-Hydroxy-3'-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines 2021; 9:biomedicines9091146. [PMID: 34572332 PMCID: PMC8464932 DOI: 10.3390/biomedicines9091146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Apocynin (aPO, 4'-Hydroxy-3'-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current-voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.
Collapse
|
46
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
47
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
49
|
Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, Ding X, Liu J, Chen M, Song M, Ding J, Lu M, Wu G, Hu G. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ 2021; 28:1822-1836. [PMID: 33686256 PMCID: PMC8184754 DOI: 10.1038/s41418-020-00704-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/14/2023] Open
Abstract
Although β-arrestins (ARRBs) regulate diverse physiological and pathophysiological processes, their functions and regulation in Parkinson's disease (PD) remain poorly defined. In this study, we show that the expression of β-arrestin 1 (ARRB1) and β-arrestin 2 (ARRB2) is reciprocally regulated in PD mouse models, particularly in microglia. ARRB1 ablation ameliorates, whereas ARRB2 knockout aggravates, the pathological features of PD, including dopaminergic neuron loss, neuroinflammation and microglia activation in vivo, and microglia-mediated neuron damage in vitro. We also demonstrate that ARRB1 and ARRB2 produce adverse effects on inflammation and activation of the inflammatory STAT1 and NF-κB pathways in primary cultures of microglia and macrophages and that two ARRBs competitively interact with the activated form of p65, a component of the NF-κB pathway. We further find that ARRB1 and ARRB2 differentially regulate the expression of nitrogen permease regulator-like 3 (Nprl3), a functionally poorly characterized protein, as revealed by RNA sequencing, and that in the gain- and loss-of-function studies, Nprl3 mediates the functions of both ARRBs in microglia inflammatory responses. Collectively, these data demonstrate that two closely related ARRBs exert opposite functions in microglia-mediated inflammation and the pathogenesis of PD which are mediated at least in part through Nprl3 and provide novel insights into the understanding of the functional divergence of ARRBs in PD.
Collapse
Affiliation(s)
- Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Shanshan Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Xiao Ding
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Mengmeng Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
50
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|