1
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
2
|
Wu Y, Xiong F, Ling J. The role of heat shock protein B8 in neuronal protection against oxidative stress and mitochondrial dysfunction: A literature review. Int Immunopharmacol 2024; 140:112836. [PMID: 39094362 DOI: 10.1016/j.intimp.2024.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Excessive oxidative stress triggers cerebrovascular and neurodegenerative diseases resulting in acute and chronic brain injury. However, the underlying mechanisms remain unknown. Levels of small heat shock protein B8 (HSPB8), which is highly expressed in the brain, are known to be significantly elevated in cerebral injury models. Exogenous HSPB8 protects the brain against mitochondrial damage. One potential mechanism underlying this protection is that HSPB8 overexpression alleviates the mitochondria-dependent pathways of apoptosis; mitochondrial biogenesis, fission, and mitophagy. Overexpression of HSPB8 may therefore have potential as a clinical therapy for cerebrovascular and neurodegenerative diseases. This review provides an overview of advances in the protective effects of HSPB8 against excessive cerebral oxidative stress, including the modulation of mitochondrial dysfunction and potent signaling pathways.
Collapse
Affiliation(s)
- Yanqing Wu
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
3
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
5
|
Ouyang A, Chen T, Feng Y, Zou J, Tu S, Jiang M, Sun H, Zhou H. The Hemagglutinin of Influenza A Virus Induces Ferroptosis to Facilitate Viral Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404365. [PMID: 39159143 PMCID: PMC11497066 DOI: 10.1002/advs.202404365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is a novel form of cell death caused by the accumulation of lipid peroxides in an iron-dependent manner. However, the precise mechanism underlying the exploitation of ferroptosis by influenza A viruses (IAV) remains unclear. The results demonstrate that IAV promotes its own replication through ferritinophagy by sensitizing cells to ferroptosis, with hemagglutinin identified as a key trigger in this process. Hemagglutinin interacts with autophagic receptors nuclear receptor coactivator 4 (NCOA4) and tax1-binding protein 1 (TAX1BP1), facilitating the formation of ferritin-NCOA4 condensates and inducing ferritinophagy. Further investigation shows that hemagglutinin-induced ferritinophagy causes cellular lipid peroxidation, inhibits aggregation of mitochondrial antiviral signaling protein (MAVS), and suppresses the type I interferon response, thereby contributing to viral replication. Collectively, a novel mechanism by which IAV hemagglutinin induces ferritinophagy resulting in cellular lipid peroxidation, consequently impairing MAVS-mediated antiviral immunity, is revealed.
Collapse
Affiliation(s)
- Aotian Ouyang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Tong Chen
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yi Feng
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jiahui Zou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Meijun Jiang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Huimin Sun
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionWuhanHubei430070China
- Hubei Hongshan LaboratoryWuhanHubei430070China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Provincethe Cooperative Innovation Center for Sustainable Pig ProductionWuhanHubei430070China
| |
Collapse
|
6
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024:1-24. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
8
|
Zhang XL, An ZY, Lu GJ, Zhang T, Liu CW, Liu MQ, Wei QX, Quan LH, Kang JD. MCT1-mediated transport of valeric acid promotes porcine preimplantation embryo development by improving mitochondrial function and inhibiting the autophagic AMPK-ULK1 pathway. Theriogenology 2024; 225:152-161. [PMID: 38805997 DOI: 10.1016/j.theriogenology.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.
Collapse
Affiliation(s)
- Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Cheng-Wei Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Meng-Qi Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Qing-Xin Wei
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
9
|
Ramgopal A, Braverman EL, Sun LK, Monlish D, Wittmann C, Kemp F, Qin M, Ramsey MJ, Cattley R, Hawse W, Byersdorfer CA. AMPK drives both glycolytic and oxidative metabolism in murine and human T cells during graft-versus-host disease. Blood Adv 2024; 8:4149-4162. [PMID: 38810258 PMCID: PMC11345362 DOI: 10.1182/bloodadvances.2023010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024] Open
Abstract
ABSTRACT Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia effects. In the current studies, murine AMPK knock-out (KO) T cells decreased oxidative metabolism at early time points posttransplant and lacked a compensatory increase in glycolysis after inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), with enzyme assays confirming impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma upon antigenic restimulation and a decrease in the total number of donor CD4 T cells recovered at later times posttransplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and after expansion in vivo. Xenogeneic GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Erica L. Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Darlene Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
- School of Medicine, Tsinghua University, Beijing, China
| | - Manda J. Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Richard Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - William Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
10
|
Wang CR, Gong JH, Zhao ZB, Zhu Q, Shu B, Hu JJ, Cai D, Liu XY, Dai X, Qiu C, Gong JP, Zhong GC. m 6A demethylation of FOSL1 mRNA protects hepatoma cells against necrosis under glucose deprivation. Cell Death Differ 2024; 31:1029-1043. [PMID: 38762597 PMCID: PMC11303728 DOI: 10.1038/s41418-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Stress-adaptive mechanisms enabling cancer cells to survive under glucose deprivation remain elusive. N6-methyladenosine (m6A) modification plays important roles in determining cancer cell fate and cellular stress response to nutrient deficiency. However, whether m6A modification functions in the regulation of cancer cell survival under glucose deprivation is unknown. Here, we found that glucose deprivation reduced m6A modification levels. Increasing m6A modification resulted in increased hepatoma cell necrosis under glucose deprivation, whereas decreasing m6A modification had an opposite effect. Integrated m6A-seq and RNA-seq revealed potential targets of m6A modification under glucose deprivation, including the transcription factor FOSL1; further, glucose deprivation upregulated FOSL1 by inhibiting FOSL1 mRNA decay in an m6A-YTHDF2-dependent manner through reducing m6A modification in its exon1 and 5'-UTR regions. Functionally, FOSL1 protected hepatoma cells against glucose deprivation-induced necrosis in vitro and in vivo. Mechanistically, FOSL1 transcriptionally repressed ATF3 by binding to its promoter. Meanwhile, ATF3 and MAFF interacted via their leucine zipper domains to form a heterodimer, which competed with NRF2 for binding to antioxidant response elements in the promoters of NRF2 target genes, thereby inhibiting their transcription. Consequently, FOSL1 reduced the formation of the ATF3-MAFF heterodimer, thereby enhancing NRF2 transcriptional activity and the antioxidant capacity of glucose-deprived-hepatoma cells. Thus, FOSL1 alleviated the necrosis-inducing effect of glucose deprivation-induced reactive oxygen species accumulation. Collectively, our study uncovers the protective role of m6A-FOSL1-ATF3 axis in hepatoma cell necrosis under glucose deprivation, and may provide new targets for cancer therapy.
Collapse
Affiliation(s)
- Chun-Rui Wang
- Department of Infectious Diseases, Institute for Viral Hepatitis, the Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Hua Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Bo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhu
- Department of Nutrition and Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Bian Shu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie-Jun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Yi Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Choi EJ, Oh HT, Lee SH, Zhang CS, Li M, Kim SY, Park S, Chang TS, Lee BH, Lin SC, Jeon SM. Metabolic stress induces a double-positive feedback loop between AMPK and SQSTM1/p62 conferring dual activation of AMPK and NFE2L2/NRF2 to synergize antioxidant defense. Autophagy 2024:1-21. [PMID: 38953310 DOI: 10.1080/15548627.2024.2374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Co-occurring mutations in KEAP1 in STK11/LKB1-mutant NSCLC activate NFE2L2/NRF2 to compensate for the loss of STK11-AMPK activity during metabolic adaptation. Characterizing the regulatory crosstalk between the STK11-AMPK and KEAP1-NFE2L2 pathways during metabolic stress is crucial for understanding the implications of co-occurring mutations. Here, we found that metabolic stress increased the expression and phosphorylation of SQSTM1/p62, which is essential for the activation of NFE2L2 and AMPK, synergizing antioxidant defense and tumor growth. The SQSTM1-driven dual activation of NFE2L2 and AMPK was achieved by inducing macroautophagic/autophagic degradation of KEAP1 and facilitating the AXIN-STK11-AMPK complex formation on the lysosomal membrane, respectively. In contrast, the STK11-AMPK activity was also required for metabolic stress-induced expression and phosphorylation of SQSTM1, suggesting a double-positive feedback loop between AMPK and SQSTM1. Mechanistically, SQSTM1 expression was increased by the PPP2/PP2A-dependent dephosphorylation of TFEB and TFE3, which was induced by the lysosomal deacidification caused by low glucose metabolism and AMPK-dependent proton reduction. Furthermore, SQSTM1 phosphorylation was increased by MAP3K7/TAK1, which was activated by ROS and pH-dependent secretion of lysosomal Ca2+. Importantly, phosphorylation of SQSTM1 at S24 and S226 was critical for the activation of AMPK and NFE2L2. Notably, the effects caused by metabolic stress were abrogated by the protons provided by lactic acid. Collectively, our data reveal a novel double-positive feedback loop between AMPK and SQSTM1 leading to the dual activation of AMPK and NFE2L2, potentially explaining why co-occurring mutations in STK11 and KEAP1 happen and providing promising therapeutic strategies for lung cancer.Abbreviations: AMPK: AMP-activated protein kinase; BAF1: bafilomycin A1; ConA: concanamycin A; DOX: doxycycline; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; LN: low nutrient; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NSCLC: non-small cell lung cancer; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; PPP2/PP2A: protein phosphatase 2; ROS: reactive oxygen species; PPP3/calcineurin: protein phosphatase 3; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TCL: total cell lysate; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Eun-Ji Choi
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
| | - Hyun-Taek Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| | - Seon-Hyeong Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Sunghyouk Park
- Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung-Hoon Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, Xiamen, China
| | - Sang-Min Jeon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Korea
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
12
|
Wang M, Li B, Meng W, Chen Y, Liu H, Zhang Z, Li L. System Xc - exacerbates metabolic stress under glucose depletion in oral squamous cell carcinoma. Oral Dis 2024; 30:2952-2964. [PMID: 37856618 DOI: 10.1111/odi.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Emerging evidence suggests that glucose depletion (GD)-induced cell death depends on system Xc-, a glutamate/cystine antiporter extensively studied in ferroptosis. However, the underlying mechanism remains debated. Our study confirmed the correlation between system Xc- and GD-induced cell death and provided a strategic treatment for oral squamous cell carcinoma (OSCC). METHODS qPCR and Western blotting were performed to detect changes in xCT and CD98 expression after glucose withdrawal. Then, the cell viability of OSCCs under the indicated conditions was measured. To identify the GD-responsible transcriptional factors of SLC7A11, we performed a luciferase reporter assay and a ChIP assay. Further, metabolomics was conducted to identify changes in metabolites. Finally, mitochondrial function and ATP production were evaluated using the seahorse assay, and NADP+/NADPH dynamics were measured using a NADP+/NADPH kit. RESULTS In OSCCs, system Xc- promoted GD-induced cell death by increasing glutamate consumption, which promoted NADPH exhaustion and TCA blockade. Moreover, GD-induced xCT upregulation was governed by the p-eIF2α/ATF4 axis. CONCLUSIONS System Xc- overexpression compromised the metabolic flexibility of OSCC under GD conditions, and thus, glucose starvation therapy is effective for killing OSCC cells.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Li M, Huang W, Zhang Y, Du Y, Zhao S, Wang L, Sun Y, Sha B, Yan J, Ma Y, Tang J, Shi J, Li P, Jia L, Hu T, Chen P. Glucose deprivation triggers DCAF1-mediated inactivation of Rheb-mTORC1 and promotes cancer cell survival. Cell Death Dis 2024; 15:409. [PMID: 38862475 PMCID: PMC11166663 DOI: 10.1038/s41419-024-06808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.
Collapse
Affiliation(s)
- Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Huang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Zhang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Du
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shan Zhao
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Longhao Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Jie Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yangcheng Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu Tang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Lv T, Fan X, He C, Zhu S, Xiong X, Yan W, Liu M, Xu H, Shi R, He Q. SLC7A11-ROS/αKG-AMPK axis regulates liver inflammation through mitophagy and impairs liver fibrosis and NASH progression. Redox Biol 2024; 72:103159. [PMID: 38642501 PMCID: PMC11047786 DOI: 10.1016/j.redox.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
The changes of inflammation and metabolism are two features in nonalcoholic steatohepatitis (NASH). However, how they interact to regulate NASH progression remains largely unknown. Our works have demonstrated the importance of solute carrier family 7 member 11 (SLC7A11) in inflammation and metabolism. Nevertheless, whether SLC7A11 regulates NASH progression through mediating inflammation and metabolism is unclear. In this study, we found that SLC7A11 expression was increased in liver samples from patients with NASH. Upregulated SLC7A11 level was also detected in two murine NASH models. Functional studies showed that SLC7A11 knockdown or knockout had augmented steatohepatitis with suppression of inflammatory markers in mice. However, overexpression of SLC7A11 dramatically alleviated diet-induced NASH pathogenesis. Mechanically, SLC7A11 decreased reactive oxygen species (ROS) level and promoted α-ketoglutarate (αKG)/prolyl hydroxylase (PHD) activity, which activated AMPK pathway. Furthermore, SLC7A11 impaired expression of NLRP3 inflammasome components through AMPK-mitophagy axis. IL-1β release through NLRP3 inflammasome recruited myeloid cells and promoted hepatic stellate cells (HSCs) activation, which contributed to the progression of liver injury and fibrosis. Anti-IL-1β and anakinra might attenuate the hepatic inflammatory response evoked by SLC7A11 knockdown. Moreover, the upregulation of SLC7A11 in NASH was contributed by lipid overload-induced JNK-c-Jun pathway. In conclusions, SLC7A11 acts as a protective factor in controlling the development of NASH. Upregulation of SLC7A11 is protective by regulating oxidation, αKG and energy metabolism, decreasing inflammation and fibrosis.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chang He
- Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suwei Zhu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaofeng Xiong
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Yan
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Qin He
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
15
|
Kato K, Yasui H, Sato-Akaba H, Emoto MC, Fujii HG, Kmiec MM, Kuppusamy P, Mizuno Y, Kuge Y, Nagane M, Yamashita T, Inanami O. Feasibility study of multimodal imaging for redox status and glucose metabolism in tumor. Free Radic Biol Med 2024; 218:57-67. [PMID: 38574976 DOI: 10.1016/j.freeradbiomed.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.
Collapse
Affiliation(s)
- Kazuhiro Kato
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan.
| | - Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Hirotada G Fujii
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Maciej M Kmiec
- Departments of Radiology and Radiation Oncology, Geisel School of Medicine, Dartmouth College, NH, USA
| | - Periannan Kuppusamy
- Departments of Radiology and Radiation Oncology, Geisel School of Medicine, Dartmouth College, NH, USA
| | - Yuki Mizuno
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
16
|
Sizek H, Deritei D, Fleig K, Harris M, Regan PL, Glass K, Regan ER. Unlocking Mitochondrial Dysfunction-Associated Senescence (MiDAS) with NAD + - a Boolean Model of Mitochondrial Dynamics and Cell Cycle Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572194. [PMID: 38187609 PMCID: PMC10769269 DOI: 10.1101/2023.12.18.572194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The steady accumulation of senescent cells with aging creates tissue environments that aid cancer evolution. Aging cell states are highly heterogeneous. 'Deep senescent' cells rely on healthy mitochondria to fuel a strong proinflammatory secretome, including cytokines, growth and transforming signals. Yet, the physiological triggers of senescence such as the reactive oxygen species (ROS) can also trigger mitochondrial dysfunction, and sufficient energy deficit to alter their secretome and cause chronic oxidative stress - a state termed Mitochondrial Dysfunction-Associated Senescence (MiDAS). Here, we offer a mechanistic hypothesis for the molecular processes leading to MiDAS, along with testable predictions. To do this we have built a Boolean regulatory network model that qualitatively captures key aspects of mitochondrial dynamics during cell cycle progression (hyper-fusion at the G1/S boundary, fission in mitosis), apoptosis (fission and dysfunction) and glucose starvation (reversible hyper-fusion), as well as MiDAS in response to SIRT3 knockdown or oxidative stress. Our model reaffirms the protective role of NAD + and external pyruvate. We offer testable predictions about the growth factor- and glucose-dependence of MiDAS and its reversibility at different stages of reactive oxygen species (ROS)-induced senescence. Our model provides mechanistic insights into the distinct stages of DNA-damage induced senescence, the relationship between senescence and epithelial-to-mesenchymal transition in cancer and offers a foundation for building multiscale models of tissue aging. Highlights Boolean regulatory network model reproduces mitochondrial dynamics during cell cycle progression, apoptosis, and glucose starvation. Model offers a mechanistic explanation for the positive feedback loop that locks in Mitochondrial Dysfunction-Associated Senescence (MiDAS), involving autophagy-resistant, hyperfused, dysfunctional mitochondria. Model reproduces ROS-mediated mitochondrial dysfunction and suggests that MiDAS is part of the early phase of damage-induced senescence. Model predicts that cancer-driving mutations that bypass the G1/S checkpoint generally increase the incidence of MiDAS, except for p53 loss.
Collapse
|
17
|
Ji Y, Zhang Z, Zhao X, Li Z, Hu X, Zhang M, Pan X, Wang X, Chen W. IL-1α facilitates GSH synthesis to counteract oxidative stress in oral squamous cell carcinoma under glucose-deprivation. Cancer Lett 2024; 589:216833. [PMID: 38548217 DOI: 10.1016/j.canlet.2024.216833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the intrinsic mechanisms underpinning cancer metabolism and therapeutic resistance is of central importance for effective nutrition-starvation therapies. Here, we report that Interleukin 1A (IL1A) mRNA and IL-1α protein facilitate glutathione (GSH) synthesis to counteract oxidative stress and resistance against nutrition-starvation therapy in oral squamous cell carcinoma (OSCC). The expression of IL1A mRNA was elevated in the case of OSCC associated with unfavorable clinical outcomes. Both IL1A mRNA and IL-1α protein expression were increased under glucose-deprivation in vitro and in vivo. The transcription of IL1A mRNA was regulated in an NRF2-dependent manner in OSCC cell lines under glucose-deprivation. Moreover, the IL-1α conferred resistance to oxidative stress via GSH synthesis in OSCC cell lines. The intratumoral administration of siRNAs against IL1A mRNA markedly reversed GSH production and sensitized OSCC cells to Anlotinib in HN6 xenograft models. Overall, the current study demonstrates novel evidence that the autocrine IL-1α favors endogenous anti-oxidative process and confers therapeutic resistance to nutrition-starvation in OSCCs.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinran Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhiyin Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xin Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Mi Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| |
Collapse
|
18
|
Bendzunas GN, Byrne DP, Shrestha S, Daly LA, Oswald SO, Katiyar S, Venkat A, Yeung W, Eyers CE, Eyers PA, Kannan N. Redox Regulation of Brain Selective Kinases BRSK1/2: Implications for Dynamic Control of the Eukaryotic AMPK family through Cys-based mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561145. [PMID: 38586025 PMCID: PMC10996518 DOI: 10.1101/2023.10.05.561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications (PTMs), including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related Brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
Collapse
Affiliation(s)
- George N. Bendzunas
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sally O. Oswald
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Patrick A Eyers
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
19
|
Murthy D, Dutta D, Attri KS, Samanta T, Yang S, Jung KH, Latario SG, Putluri V, Huang S, Putluri N, Park JH, Kaipparettu BA. CD24 negativity reprograms mitochondrial metabolism to PPARα and NF-κB-driven fatty acid β-oxidation in triple-negative breast cancer. Cancer Lett 2024; 587:216724. [PMID: 38373689 PMCID: PMC11068061 DOI: 10.1016/j.canlet.2024.216724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
CD24 is a well-characterized breast cancer (BC) stem cell (BCSC) marker. Primary breast tumor cells having CD24-negativity together with CD44-positivity is known to maintain high metastatic potential. However, the functional role of CD24 gene in triple-negative BC (TNBC), an aggressive subtype of BC, is not well understood. While the significance of CD24 in regulating immune pathways is well recognized in previous studies, the significance of CD24 low expression in onco-signaling and metabolic rewiring is largely unknown. Using CD24 knock-down and over-expression TNBC models, our in vitro and in vivo analysis suggest that CD24 is a tumor suppressor in metastatic TNBC. Comprehensive in silico gene expression analysis of breast tumors followed by lipidomic and metabolomic analyses of CD24-modulated cells revealed that CD24 negativity induces mitochondrial oxidative phosphorylation and reprograms TNBC metabolism toward the fatty acid beta-oxidation (FAO) pathway. CD24 silencing activates PPARα-mediated regulation of FAO in TNBC cells. Further analysis using reverse-phase protein array and its validation using CD24-modulated TNBC cells and xenograft models nominated CD24-NF-κB-CPT1A signaling pathway as the central regulatory mechanism of CD24-mediated FAO activity. Overall, our study proposes a novel role of CD24 in metabolic reprogramming that can open new avenues for the treatment strategies for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Divya Murthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kuldeep S Attri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sarah G Latario
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Ding F, Wang H, Li Y, Leng X, Gao J, Huang D. Polystyrene microplastics with absorbed nonylphenol induce intestinal dysfunction in human Caco-2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104426. [PMID: 38527597 DOI: 10.1016/j.etap.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Due to the massive production and use of plastic, the chronic and evolving exposure to microplastics in our daily lives is omnipresent. Nonylphenol (NP), a persistent organic pollutant, may change toxicity when it co-exists with microplastics. In this study, polystyrene microplastics (PS-MPs), either alone or with pre-absorbed NP, generated oxidative stress and inflammatory lesions to Caco-2 cells, as well as affecting proliferation via the MAPK signaling pathway and causing apoptosis. Damage to cell membrane integrity and intestinal barrier (marked by lower transepithelial electric resistance, greater bypass transport, and tight junction structural changes) leads to enhanced internalization risk of PS-MPs. Some important intestinal functions including nutrient absorption and xenobiotic protection were also harmed. It is worth noting that the exposure of PS-MPs with a diameter of 0.1 μm improved intestinal functions quickly but acted as a chemosensitizer for a long time, inhibiting cell perception of other toxic substances and making the cells more vulnerable.
Collapse
Affiliation(s)
- Fangfang Ding
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resource, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
21
|
Gotvaldová K, Špačková J, Novotný J, Baslarová K, Ježek P, Rossmeislová L, Gojda J, Smolková K. BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria. Cancer Metab 2024; 12:10. [PMID: 38532464 DOI: 10.1186/s40170-024-00335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells. METHODS We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites. RESULTS Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status. CONCLUSIONS Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.
Collapse
Affiliation(s)
- Klára Gotvaldová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Jitka Špačková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Jiří Novotný
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Kamila Baslarová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic
| | - Jan Gojda
- Third Faculty of Medicine, Franco-Czech Laboratory for Clinical Research on Obesity, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, Vídeňská 1083, 142 20, Prague 4 - Krč, Czech Republic.
| |
Collapse
|
22
|
Gu M, Chen YJ, Feng YR, Tang ZP. LanGui tea, an herbal medicine formula, protects against binge alcohol-induced acute liver injury by activating AMPK-NLRP3 signaling. Chin Med 2024; 19:41. [PMID: 38439080 PMCID: PMC10910869 DOI: 10.1186/s13020-024-00906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND LanGui tea, a traditional Chinese medicine formulation comprising of Gynostemma pentaphyllum (Thunb.) Makino, Cinnamomum cassia (L.) J. Presl, and Ampelopsis grossedentata (Hand-Mazz) W.T. Wang, has yet to have its potential contributions to alcoholic liver disease (ALD) fully elucidated. Consequently, the objective of this research is to investigate the protective properties of LanGui tea against binge alcohol-induced ALD and the mechanisms underlying its effects. METHODS An experimental model of acute alcohol-induced liver disease was performed to assess the protective effects of extract of LanGui tea (ELG) at both 50 and 100 mg.kg-1 dosages on male C57BL/6 mice. Various parameters, including hepatic histological changes, inflammation, lipids content, as well as liver enzymes and interleukin 1β (IL-1β) in the serum were measured. The pharmacological mechanisms of ELG, specifically its effects on adenosine monophosphate-(AMP)-activated protein kinase (AMPK) and NLR family pyrin domain containing 3 (NLRP3) signaling, were investigated through Western blotting, qRT-PCR, ELISA, immunohistochemistry, immunofluorescence analyses, and by blocking the AMPK activity. RESULTS ELG demonstrated a mitigating effect on fatty liver, inflammation, and hepatic dysfunction within the mouse model. This effect was achieved by activating AMPK signaling and inhibitingNLRP3 signaling in the liver, causing a reduction in IL-1β generation. In vitro studies further confirmed that ELG inhibited cell damage and IL-1β production in ethanol-induced hepatocytes by enhancing AMPK-NLRP3 signaling. Conversely, the pharmacological inhibition of AMPK activity nearly abrogated such alteration. CONCLUSIONS Thus, LanGui tea emerges as a promising herbal therapy for ALD management involving AMPK-NLRP3 signaling.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yu-Jun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ya-Ru Feng
- The Third People's Hospital Affiliated to Nantong University, Nantong, 226006, Jiangsu Province, China
| | - Zhi-Peng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
23
|
Jia C, Wu Y, Gao F, Liu W, Li N, Chen Y, Sun L, Wang S, Yu C, Bao Y, Song Z. The opposite role of lactate dehydrogenase a (LDHA) in cervical cancer under energy stress conditions. Free Radic Biol Med 2024; 214:2-18. [PMID: 38307156 DOI: 10.1016/j.freeradbiomed.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Due to insufficient and defective vascularization, the tumor microenvironment is often nutrient-depleted. LDHA has been demonstrated to play a tumor-promoting role by facilitating the glycolytic process. However, whether and how LDHA regulates cell survival in the nutrient-deficient tumor microenvironment is still unclear. Here, we sought to investigate the role and mechanism of LDHA in regulating cell survival and proliferation under energy stress conditions. Our results showed that the aerobic glycolysis levels, cell survival and proliferation of cervical cancer cells decreased significantly after inhibition of LDHA under normal culture condition while LDHA deficiency greatly inhibited glucose starvation-induced ferroptosis and promoted cell proliferation and tumor formation under energy stress conditions. Mechanistic studies suggested that glucose metabolism shifted from aerobic glycolysis to mitochondrial OXPHOS under energy stress conditions and LDHA knockdown increased accumulation of pyruvate in the cytosol, which entered the mitochondria and upregulated the level of oxaloacetate by phosphoenolpyruvate carboxylase (PC). Importantly, the increase in oxaloacetate production after absence of LDHA remarkably activated AMP-activated protein kinase (AMPK), which increased mitochondrial biogenesis and mitophagy, promoted mitochondrial homeostasis, thereby decreasing ROS level. Moreover, repression of lipogenesis by activation of AMPK led to elevated levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which effectively resisted ROS-induced cell ferroptosis and enhanced cell survival under energy stress conditions. These results suggested that LDHA played an opposing role in survival and proliferation of cervical cancer cells under energy stress conditions, and inhibition of LDHA may not be a suitable treatment strategy for cervical cancer.
Collapse
Affiliation(s)
- Chaoran Jia
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Yulun Wu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Wei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Na Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Yao Chen
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China; National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, 130024, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
24
|
Wang Z, Xu T, Sun Y, Zhang X, Wang X. AMPK/PGC-1α and p53 modulate VDAC1 expression mediated by reduced ATP level and metabolic oxidative stress in neuronal cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:162-173. [PMID: 38298056 PMCID: PMC10984866 DOI: 10.3724/abbs.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 02/02/2024] Open
Abstract
Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.
Collapse
Affiliation(s)
- Zhitong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Department of PharmacyPeking University Third HospitalInstitute for Drug EvaluationPeking University Health Science CenterTherapeutic Drug Monitoring and Clinical Toxicology CenterPeking UniversityBeijing100191China
| | - Tingting Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
25
|
Choudhury C, Gill MK, McAleese CE, Butcher NJ, Ngo ST, Steyn FJ, Minchin RF. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction. Pharmacol Rev 2024; 76:300-320. [PMID: 38351074 DOI: 10.1124/pharmrev.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Collapse
Affiliation(s)
- Chandra Choudhury
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Melinder K Gill
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Courtney E McAleese
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Neville J Butcher
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences (C.C., M.K.G., C.E.M., N.J.B., F.J.S., R.F.M.) and Australian Institute for Bioengineering and Nanotechnology (S.T.N.), University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Zhang L, Liu L, Li D, Wu J, Gao S, Song F, Zhou Y, Liu D, Mei W. Heat Shock Protein 22 Attenuates Nerve Injury-induced Neuropathic Pain Via Improving Mitochondrial Biogenesis and Reducing Oxidative Stress Mediated By Spinal AMPK/PGC-1α Pathway in Male Rats. J Neuroimmune Pharmacol 2024; 19:5. [PMID: 38319409 DOI: 10.1007/s11481-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
Heat shock protein 22 (hsp22) plays a significant role in mitochondrial biogenesis and redox balance. Moreover, it's well accepted that the impairment of mitochondrial biogenesis and redox imbalance contributes to the progress of neuropathic pain. However, there is no available evidence indicating that hsp22 can ameliorate mechanical allodynia and thermal hyperalgesia, sustain mitochondrial biogenesis and redox balance in rats with neuropathic pain. In this study, pain behavioral test, western blotting, immunofluorescence staining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Dihydroethidium staining are applied to confirm the role of hsp22 in a male rat model of spared nerve injury (SNI). Our results indicate that hsp22 was significantly decreased in spinal neurons post SNI. Moreover, it was found that intrathecal injection (i.t.) with recombinant heat shock protein 22 protein (rhsp22) ameliorated mechanical allodynia and thermal hyperalgesia, facilitated nuclear respiratory factor 1 (NRF1)/ mitochondrial transcription factor A (TFAM)-dependent mitochondrial biogenesis, decreased the level of reactive oxygen species (ROS), and suppressed oxidative stress via activation of spinal adenosine 5'monophosphate-activated protein kinase (AMPK)/ peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) pathway in male rats with SNI. Furthermore, it was also demonstrated that AMPK antagonist (compound C, CC) or PGC-1α siRNA reversed the improved mechanical allodynia and thermal hyperalgesia, mitochondrial biogenesis, oxidative stress, and the decreased ROS induced by rhsp22 in male rats with SNI. These results revealed that hsp22 alleviated mechanical allodynia and thermal hyperalgesia, improved the impairment of NRF1/TFAM-dependent mitochondrial biogenesis, down-regulated the level of ROS, and mitigated oxidative stress through stimulating the spinal AMPK/PGC-1α pathway in male rats with SNI.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
27
|
Paoli A, Tinsley GM, Mattson MP, De Vivo I, Dhawan R, Moro T. Common and divergent molecular mechanisms of fasting and ketogenic diets. Trends Endocrinol Metab 2024; 35:125-141. [PMID: 38577754 DOI: 10.1016/j.tem.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 04/06/2024]
Abstract
Intermittent short-term fasting (ISTF) and ketogenic diets (KDs) exert overlapping but not identical effects on cell metabolism, function, and resilience. Whereas health benefits of KD are largely mediated by the ketone bodies (KBs), ISTF engages additional adaptive physiological responses. KDs act mainly through inhibition of histone deacetylases (HDACs), reduction of oxidative stress, improvement of mitochondria efficiency, and control of inflammation. Mechanisms of action of ISTF include stimulation of autophagy, increased insulin and leptin sensitivity, activation of AMP-activated protein kinase (AMPK), inhibition of the mechanistic target of rapamycin (mTOR) pathway, bolstering mitochondrial resilience, and suppression of oxidative stress and inflammation. Frequent switching between ketogenic and nonketogenic states may optimize health by increasing stress resistance, while also enhancing cell plasticity and functionality.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy.
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ravi Dhawan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| |
Collapse
|
28
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
29
|
Liu W, Xie J, Jiang H, Zhou J, Lu X, Zuo D, Dong L, Chen Q. Mannose attenuates intestinal epithelial tight junction damage in experimental colitis mice by activating the AXIN-AMPK pathway. Int Immunopharmacol 2024; 127:111319. [PMID: 38064812 DOI: 10.1016/j.intimp.2023.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Mannose is a unique natural sugar that can be found in a variety of fruits and vegetables. During the past decades, mannose has been reported to be effective in promoting immune tolerance and suppressing inflammatory diseases. Metabolic dysfunction and altered inflammation have clear implications for the development and progression of inflammatory diseases. Herein, we intended to reveal the molecular mechanism of mannose in protecting against intestinal epithelial damage in experimental colitis. We showed that mannose treatment significantly attenuated dextran sodium sulfate (DSS)-induced intestinal barrier damage. The AMPK pathway was responsible for the mannose-mediated protective effect in DSS-induced intestinal epithelial damage. Mechanistically, mannose promoted the axis inhibition protein (AXIN)-based AMPK activation, thereby preventing mitochondrial dysfunction and tight junction disruption in response to the DSS challenge. Cumulatively, the results indicate the use of mannose as a novel approach to treat IBD and other diseases involving tight junction dysfunction. The therapeutic effect of mannose is related to its regulatory function in AMPK pathway activation.
Collapse
Affiliation(s)
- Wenxin Liu
- Clinical Research Institute of Zhanjiang, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524045, China
| | - Jingwen Xie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Honglian Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong 510030, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Dong
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qingyun Chen
- Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510080, Guangdong 519041, China.
| |
Collapse
|
30
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Braverman EL, McQuaid MA, Schuler H, Qin M, Hani S, Hippen K, Monlish DA, Dobbs AK, Ramsey MJ, Kemp F, Wittmann C, Ramgopal A, Brown H, Blazar B, Byersdorfer CA. Overexpression of AMPKγ2 increases AMPK signaling to augment human T cell metabolism and function. J Biol Chem 2024; 300:105488. [PMID: 38000657 PMCID: PMC10825059 DOI: 10.1016/j.jbc.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.
Collapse
Affiliation(s)
- Erica L Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Margaret A McQuaid
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Herbert Schuler
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Sophia Hani
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlene A Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manda J Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harrison Brown
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
32
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X, Shan G. A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305902. [PMID: 37953462 PMCID: PMC10787103 DOI: 10.1002/advs.202305902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiaolin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Liang Shi
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Boqiang Liu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Zhiyong Sheng
- School of Life ScienceBengbu Medical CollegeBengbu233030China
| | - Shuhui Chang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiujun Cai
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Ge Shan
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
33
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
34
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
36
|
Li YX, Shu J, Kou NN, Chen HB, Guo LM, Yuan Y, He SX, Zhao G. FGF1 reduces cartilage injury in osteoarthritis via regulating AMPK/Nrf2 pathway. J Mol Histol 2023; 54:427-438. [PMID: 37659992 DOI: 10.1007/s10735-023-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
Osteoarthritis (OA) is a systemic joint degenerative disease involving a variety of cytokines and growth factors. In this study, we investigated the protective effect of fibroblast growth factor 1 (FGF1) knockdown on OA and its underlying mechanisms in vitro. In addition, we evaluated the effect of FGF1 knockout on the destabilization of the medial meniscus (DMM) and examined the anterior and posterior cruciate ligament model in vivo. FGF1 affects OA cartilage destruction by increasing the protein expression of Nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which is associated with the phosphorylation of AMPK and its substrates. Our study showed that FGF1 knockdown could reverse the oxidative damage associated with osteoarthritis. Nrf2 knockdown eliminated the antioxidant effect of FGF1 knockdown on chondrocytes. Furthermore, AMPK knockdown could stop the impact of FGF1 knockdown on osteoarthritis. These findings suggested that FGF1 knockdown could effectively prevent and reverse osteoarthritis by activating AMPK and Nrf2 in articular chondrocytes.
Collapse
Affiliation(s)
- Yun-Xuan Li
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Jun Shu
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Nan-Nan Kou
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Han-Bo Chen
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Li-Min Guo
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yong Yuan
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Shao-Xuan He
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Gang Zhao
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
37
|
Zhan H, Zhang Q, Zhang C, Cheng J, Yang Y, Liu C, Li S, Wang C, Yang J, Ge H, Zhou D, Li B, Wei H, Hu C. Targeted Activation of HNF4α by AMPK Inhibits Apoptosis and Ameliorates Neurological Injury Caused by Cardiac Arrest in Rats. Neurochem Res 2023; 48:3129-3145. [PMID: 37338793 PMCID: PMC10471732 DOI: 10.1007/s11064-023-03957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Previous studies have shown that AMPK plays an important role in cerebral ischemia-reperfusion injury by participating in apoptosis, but the exact mechanism and target of action remains unclear. This study aimed to investigate the protective mechanism of AMPK activation on brain injury secondary to cardiac arrest. HE, Nills and TUNEL assays were used to evaluate neuronal damage and apoptosis. The relationships between AMPK, HNF4α and apoptotic genes were verified by ChIP-seq, dual-luciferase and WB assays. The results showed that AMPK improved the 7-day memory function of rats, and reduced neuronal cell injury and apoptosis in the hippocampal CA1 region after ROSC, while the use of HNF4α inhibitor weakened the protective effect of AMPK. Further research found that AMPK positively regulated the expression of HNF4α, and AMPK could promote the expression of Bcl-2 and inhibit the expression of Bax and Cleaved-Caspase 3. In vitro experiments showed that AMPK ameliorated neuronal injury by inhibiting apoptosis through the activation of HNF4α. Combined with ChIP-seq, JASPAR analysis and Dual-luciferase assay, the binding site of HNF4α to the upstream promoter of Bcl-2 was found. Taken together, AMPK attenuates brain injury after CA by activating HNF4α to target Bcl-2 to inhibit apoptosis.
Collapse
Affiliation(s)
- Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Junqin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanmei Ge
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dawang Zhou
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Littleflower AB, Antony GR, Parambil ST, Subhadradevi L. Metabolic Phenotype Intricacies on Altered Glucose Metabolism of Breast Cancer Cells upon Glut-1 Inhibition and Mimic Hypoxia In Vitro. Appl Biochem Biotechnol 2023; 195:5838-5854. [PMID: 36708494 DOI: 10.1007/s12010-023-04373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Breast cancer is the frequently diagnosed cancer and the leading cancer death among women. The growing tumour of the breast is composed of both normoxic and hypoxic cells, and the heterogeneity of tumour affects the targeted treatment strategies against breast cancer. The functional and therapeutic status of the Warburg effect is mostly recognized, and the genes involved in glycolysis have become a target for anticancer therapeutic strategies. Glut-1 is essential for basal glucose uptake among the glucose transporters and could act as a potential target for anticancer therapy. In the present study, we explored the alteration in the metabolic phenotype of SKBR-3 cells, representing HER-2 overexpressed breast cancer cell line, with Glut-1 inhibition by a synthetic small molecule inhibitor WZB117 in the presence or absence of cobalt chloride (CoCl2) induced biochemical hypoxia in vitro. We found that WZB117 and CoCl2 in combination could inhibit metabolic phenotype characteristics such as glucose uptake, cell migration, lactate and ATP production in SKBR-3 cells. Also, Glut-1 inhibition induced apoptosis and cell cycle arrest at the G0-G1 phase even under CoCl2-induced mimic hypoxia. Our findings suggest that Glut-1 inhibition by WZB117 could overcome the protective effect of CoCl2 mimic hypoxia by regulating glycolysis and altering the metabolic phenotype of breast cancer cells. The considering excellent efficacy and minimal toxicity suggest that WZB117 may be a promising anticancer drug to the current therapies.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala-695011, India.
| |
Collapse
|
39
|
Kong P, Yang M, Wang Y, Yu KN, Wu L, Han W. Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury. Redox Biol 2023; 66:102857. [PMID: 37611494 PMCID: PMC10466894 DOI: 10.1016/j.redox.2023.102857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Radiation-induced intestinal injury (RIII), a common gastrointestinal complication caused by radiotherapy on pelvic, abdominal and retroperitoneal tumors, seriously affects the life quality of patients and may result in termination of radiotherapy. At present, the pathogenesis of RIII has not been fully understood. Herein, we demonstrated that ferroptosis played a critical role in RIII occurrence. The RNA sequencing analysis strongly hinted ferroptosis was involved in RIII mice. In line with this, the levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), markers of lipid peroxidation, remarkably increased in RIII mice. And the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), improved the mice survival and alleviated intestinal fibrosis in vivo. Moreover, our results revealed that arachidonic acid (AA) enhanced ferroptosis in cultured intestinal epithelial cells (IECs) and organoids in vitro after irradiation, and AA gavage aggravated RIII in mice. Mechanistic studies revealed the level of ACSL4 protein significantly increased in mouse jejunums and IECs after irradiation. Radiation-induced ferroptosis in IECs was also prevented following ACSL4 knockdown or with the function inhibitor of ACSL4. Furthermore, we found that transcription of ACSL4 induced by irradiation was regulated by STAT1/IRF1 axis, and AMPK activation triggered by AA negatively regulated radiation-induced ferroptosis. Taken together, our results suggest that ferroptosis mediates RIII and reducing dietary AA intake as well as targeting the STAT1-IRF1-ACSL4 axis or AMPK may be the potential approaches to alleviate RIII.
Collapse
Affiliation(s)
- Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230011, PR China; Anhui Public Health Clinical Center, Hefei, 230011, PR China
| | - Ying Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077, Hong Kong, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
40
|
Chowdhury A, Boshnakovska A, Aich A, Methi A, Vergel Leon AM, Silbern I, Lüchtenborg C, Cyganek L, Prochazka J, Sedlacek R, Lindovsky J, Wachs D, Nichtova Z, Zudova D, Koubkova G, Fischer A, Urlaub H, Brügger B, Katschinski DM, Dudek J, Rehling P. Metabolic switch from fatty acid oxidation to glycolysis in knock-in mouse model of Barth syndrome. EMBO Mol Med 2023; 15:e17399. [PMID: 37533404 PMCID: PMC10493589 DOI: 10.15252/emmm.202317399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Dewpoint Therapeutics GmbHDresdenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Abhishek Aich
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Aditi Methi
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ana Maria Vergel Leon
- Department of Cardiovascular PhysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Ivan Silbern
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical Chemistry, University Medical Center GöttingenGöttingenGermany
| | | | - Lukas Cyganek
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- DZHK (German Center for Cardiovascular Research) partner site GöttingenGöttingenGermany
- Stem Cell Unit, Clinic for Cardiology and PneumologyUniversity Medical Center Göttingen, Georg‐August University GöttingenGöttingenGermany
| | - Jan Prochazka
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Radislav Sedlacek
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Jiri Lindovsky
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Dominic Wachs
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Zuzana Nichtova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Dagmar Zudova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - Gizela Koubkova
- Czech Centre for PhenogenomicsInstitute of Molecular Genetics of the CASPragueCzech Republic
| | - André Fischer
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Henning Urlaub
- The Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Institute for Clinical Chemistry, University Medical Center GöttingenGöttingenGermany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Dörthe M Katschinski
- Department of Cardiovascular PhysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan Dudek
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- Max Planck Institute for Multidisciplinary ScienceGöttingenGermany
| |
Collapse
|
41
|
Liang H, Liu G, Fan Q, Nie Z, Xie S, Zhang R. Limonin, a novel AMPK activator, protects against LPS-induced acute lung injury. Int Immunopharmacol 2023; 122:110678. [PMID: 37481848 DOI: 10.1016/j.intimp.2023.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
AMP-activated protein kinase (AMPK) activation plays crucial roles in the treatment of many oxidative stress- and inflammation-induced diseases, including acute lung injury (ALI). Limonin is a naturally occurring tetracyclic triterpenoid extracted from the plants of Rutaceae and Meliaceae. Limonin also serves as an AMPK activator with anti-inflammatory and anti-oxidation effects. However, the potential beneficial effects of limonin on ALI and the possible mechanisms have never been disclosed till now. Here, the effects of limonin on lipopolysaccharide (LPS)-induced ALI in C57 BL/6 mice, plus bone marrow-derived macrophages (BMDM) stimulated with LPS to induce in vitro ALI model were investigated. Limonin significantly improved pulmonary function and alleviated lung pathological injury in LPS-induced mice. Meanwhile, limonin also markedly decreased inflammation and oxidative stress in lung tissues from LPS-treated mice. In vitro experiments also unveiled that limonin could decrease inflammation and oxidative stress in LPS-induced BMDM in a concentration-dependent manner. Mechanically, limonin could promote the activation of AMPKα and upregulate the expression of nuclear factor erythroid 2-related factor 2 (NRF2) in lung tissues and BMDM. Pharmacological inhibition of AMPKα by Compound C or AMPKα knockout could abolish the pulmonary protection from limonin during ALI. In conclusion, limonin mediates the activation of AMPKα/NRF2 pathway, providing an attractive therapeutic target for ALI in the future.
Collapse
Affiliation(s)
- Hui Liang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
42
|
Li GZ, Meng GX, Pan GQ, Zhang X, Yan LJ, Li RZ, Ding ZN, Tan SY, Wang DX, Tian BW, Yan YC, Dong ZR, Hong JG, Li T. MALAT1/ mir-1-3p mediated BRF2 expression promotes HCC progression via inhibiting the LKB1/AMPK signaling pathway. Cancer Cell Int 2023; 23:188. [PMID: 37653482 PMCID: PMC10472681 DOI: 10.1186/s12935-023-03034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to play a vital role in the occurrence and development of various tumors. However, the underlying mechanism of MALAT1 in hepatocellular carcinoma (HCC) has not been thoroughly elucidated. METHODS The expression levels of MALAT1 in HCC tissues and different cell lines were detected by qRT-PCR. Antisense oligonucleotides (ASO)-MALAT1 transfected cells were used to explore the biological effects of MALAT1 in HCC cells by cell counting kit 8 (CCK-8), colony formation, transwell, wound healing, and flow cytometry analysis. Western blotting was performed to measure AMPK and apoptosis-related protein levels. Dual-luciferase reporter assay was performed to verify the relationship between MALAT1 and its specific targets. RESULTS We found that MALAT1 was upregulated in HCC, and MALAT1 knockdown in HCC cells inhibited cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Further studies demonstrated that MALAT1 positively regulated the expression of transcription factor II B‑related factor 2 (BRF2), which was associated with tumor recurrence, large tumor size, and poor prognosis in HCC. Mechanistically, MALAT1 was found to act as a competitive endogenous RNA to sponge has-miR-1-3p, which upregulated BRF2 expression. Knockdown of BRF2 inhibited the progression of HCC by activating the LKB1/AMPK signaling pathway. Overexpression of BRF2 reversed the inhibitory effect of MALAT1 knockdown on HCC cell viability. Moreover, ASO targeting MALAT1 inhibited the growth of xenograft tumors. CONCLUSIONS Our results demonstrate a novel MALAT1/miR-1-3p/BRF2/LKB1/AMPK regulatory axis in HCC, which may provide new molecular therapeutic targets for HCC in the future.
Collapse
Affiliation(s)
- Guang-Zhen Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guo-Qiang Pan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Rui-Zhe Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, China.
| |
Collapse
|
43
|
He M, Guo R, Chen G, Xiong C, Yang X, Wei Y, Chen Y, Qiu J, Zhang Q. Comprehensive Response of Rhodosporidium kratochvilovae to Glucose Starvation: A Transcriptomics-Based Analysis. Microorganisms 2023; 11:2168. [PMID: 37764012 PMCID: PMC10534369 DOI: 10.3390/microorganisms11092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Microorganisms adopt diverse mechanisms to adapt to fluctuations of nutrients. Glucose is the preferred carbon and energy source for yeast. Yeast cells have developed many strategies to protect themselves from the negative impact of glucose starvation. Studies have indicated a significant increase of carotenoids in red yeast under glucose starvation. However, their regulatory mechanism is still unclear. In this study, we investigated the regulatory mechanism of carotenoid biosynthesis in Rhodosporidium kratochvilovae YM25235 under glucose starvation. More intracellular reactive oxygen species (ROS) was produced when glucose was exhausted. Enzymatic and non-enzymatic (mainly carotenoids) antioxidant systems in YM25235 were induced to protect cells from ROS-related damage. Transcriptome analysis revealed massive gene expression rearrangement in YM25235 under glucose starvation, leading to alterations in alternative carbon metabolic pathways. Some potential pathways for acetyl-CoA and then carotenoid biosynthesis, including fatty acid β-oxidation, amino acid metabolism, and pyruvate metabolism, were significantly enriched in KEGG analysis. Overexpression of the fatty acyl-CoA oxidase gene (RkACOX2), the first key rate-limiting enzyme of peroxisomal fatty acid β-oxidation, demonstrated that fatty acid β-oxidation could increase the acetyl-CoA and carotenoid concentration in YM25235. These findings contribute to a better understanding of the overall response of red yeast to glucose starvation and the regulatory mechanisms governing carotenoid biosynthesis under glucose starvation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.H.); (R.G.); (G.C.); (C.X.); (X.Y.); (Y.W.); (Y.C.); (J.Q.)
| |
Collapse
|
44
|
Fan K, Chen K, Zan X, Zhi Y, Zhang X, Zhang X, Qiu J, Liu G, Li L, Tang L, Hu K, Wan J, Gong X, Yang Y, Zhang L. Negative regulation of pro-apoptotic AMPK/JNK pathway by itaconate in mice with fulminant liver injury. Cell Death Dis 2023; 14:486. [PMID: 37524706 PMCID: PMC10390640 DOI: 10.1038/s41419-023-06001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Accumulating evidence indicates that metabolic responses are deeply integrated into signal transduction, which provides novel opportunities for the metabolic control of various disorders. Recent studies suggest that itaconate, a highly concerned bioactive metabolite catalyzed by immune responsive gene 1 (IRG1), is profoundly involved in the regulation of apoptosis, but the underlying mechanisms have not been fully understood. In the present study, the molecular mechanisms responsible for the apoptosis-modulatory activities of IRG1/itaconate have been investigated in mice with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced apoptotic liver injury. The results indicated that LPS/D-Gal exposure upregulated the level of IRG1 and itaconate. Deletion of IRG1 resulted in exacerbated hepatocytes apoptosis and liver injury. The phospho-antibody microarray analysis and immunoblot analysis indicated that IRG1 deletion enhanced the activation of AMP-activated protein kinase (AMPK)/c-jun-N-terminal kinase (JNK) pathway in LPS/D-Gal exposed mice. Mechanistically, IRG1 deficiency impaired the anti-oxidative nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and then enhanced the activation of the redox-sensitive AMPK/JNK pathway that promotes hepatocytes apoptosis. Importantly, post-insult supplementation with 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, resulted in beneficial outcomes in fulminant liver injury. Therefore, IRG1/itaconate might function as a negative regulator that controls AMPK-induced hepatocyte apoptosis in LPS/D-Gal-induced fulminant liver injury.
Collapse
Affiliation(s)
- Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xinyue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jinghuan Qiu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Li R, Kato H, Nakata T, Yamawaki I, Yamauchi N, Imai K, Taguchi Y, Umeda M. Essential amino acid starvation induces cell cycle arrest, autophagy, and inhibits osteogenic differentiation in murine osteoblast. Biochem Biophys Res Commun 2023; 672:168-176. [PMID: 37354610 DOI: 10.1016/j.bbrc.2023.06.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
This study investigates the effects of essential amino acid (EAA) starvation on murine osteoblasts cells and the underlying mechanisms. We performed and observed the cell proliferation, autophagy, and osteogenic differentiation under deprivation of EAA in vitro. The results showed that EAA starvation resulted in cell cycle arrest via phosphorylation of the MAPK signaling pathway, leading to inhibition of cell proliferation and osteogenic differentiation. Additionally, the LKB1-AMPK signaling pathway was also found to be phosphorylated, inducing autophagy. These findings highlight the significant role of EAA in regulating cellular processes. Furthermore, this study contributes to our understanding of the effects of nutrient deprivation on cellular physiology and may aid in the development of novel therapeutic strategies for diseases associated with amino acid metabolism.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Japan
| | - Takaya Nakata
- Department of Periodontology, Osaka Dental University, Japan
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University, Japan
| | | | - Kazutaka Imai
- Department of Periodontology, Osaka Dental University, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Japan
| |
Collapse
|
46
|
Ramgopal A, Braverman EL, Sun LK, Monlish D, Wittmann C, Ramsey MJ, Caitley R, Hawse W, Byersdorfer CA. AMPK Drives Both Glycolytic and Oxidative Metabolism in T Cells During Graft-versus-host Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544686. [PMID: 37398326 PMCID: PMC10312647 DOI: 10.1101/2023.06.12.544686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process reliant on the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine T cells lacking AMPK decreased oxidative metabolism at early timepoints post-transplant and were also unable to mediate a compensatory increase in glycolysis following inhibition of the electron transport chain. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo in a modified model of GVHD. Immunoprecipitation of proteins from day 7 allogeneic T cells, using an antibody specific to phosphorylated AMPK targets, recovered lower levels of multiple glycolysis-related proteins including the glycolytic enzymes aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Functionally, murine T cells lacking AMPK exhibited impaired aldolase activity following anti-CD3/CD28 stimulation and a decrease in GAPDH activity on day 7 post-transplant. Importantly, these changes in glycolysis correlated with an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells during GVHD and endorse further study of AMPK inhibition as a potential target for future clinical therapies. KEY POINTS AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD)Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production.
Collapse
|
47
|
Li L, Yang M, Pu X, Tang Y, Fei F, Li Z, Hou H, Chen Q, Wang Q, Wu Y, Zhang Y, Ren C, Gong A. ALKBH5-PYCR2 Positive Feedback Loop Promotes Proneural-Mesenchymal Transition Via Proline Synthesis In GBM. J Cancer 2023; 14:1579-1591. [PMID: 37325047 PMCID: PMC10266253 DOI: 10.7150/jca.84213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023] Open
Abstract
AlkB homolog 5, RNA demethylase (ALKBH5) is abnormally highly expressed in glioblastoma multiforme (GBM) and is negatively correlated with overall survival in GBM patients. In this study, we found a new mechanism that ALKBH5 and pyrroline-5-carboxylate reductase 2 (PYCR2) formed a positive feedback loop involved in proline synthesis in GBM. ALKBH5 promoted PYCR2 expression and PYCR2-mediated proline synthesis; while PYCR2 promoted ALKBH5 expression through the AMPK/mTOR pathway in GBM cells. In addition, ALKBH5 and PYCR2 promoted GBM cell proliferation, migration, and invasion, as well as proneural-mesenchymal transition (PMT). Furthermore, proline rescued AMPK/mTOR activation and PMT after silencing PYCR2 expression. Our findings reveal an ALKBH5-PYCR2 axis linked to proline metabolism, which plays an important role in promoting PMT in GBM cells and may be a promising therapeutic pathway for GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Xufeng Pu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Yu Tang
- Department of Pathology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Caifang Ren
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiang Su Province, China
| |
Collapse
|
48
|
Wang K, Lu H, Wang X, Liu Q, Hu J, Liu Y, Jin M, Kong D. Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Front Pharmacol 2023; 14:1200538. [PMID: 37284309 PMCID: PMC10239820 DOI: 10.3389/fphar.2023.1200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer.
Collapse
Affiliation(s)
- Kaixuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xinmiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinxia Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Luo M, Zheng Y, Tang S, Gu L, Zhu Y, Ying R, Liu Y, Ma J, Guo R, Gao P, Zhang C. Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol 2023; 14:1166178. [PMID: 37251336 PMCID: PMC10213330 DOI: 10.3389/fphar.2023.1166178] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The incidence of glycolipid metabolic diseases is extremely high worldwide, which greatly hinders people's life expectancy and patients' quality of life. Oxidative stress (OS) aggravates the development of diseases in glycolipid metabolism. Radical oxygen species (ROS) is a key factor in the signal transduction of OS, which can regulate cell apoptosis and contribute to inflammation. Currently, chemotherapies are the main method to treat disorders of glycolipid metabolism, but this can lead to drug resistance and damage to normal organs. Botanical drugs are an important source of new drugs. They are widely found in nature with availability, high practicality, and low cost. There is increasing evidence that herbal medicine has definite therapeutic effects on glycolipid metabolic diseases. Objective: This study aims to provide a valuable method for the treatment of glycolipid metabolic diseases with botanical drugs from the perspective of ROS regulation by botanical drugs and to further promote the development of effective drugs for the clinical treatment of glycolipid metabolic diseases. Methods: Using herb*, plant medicine, Chinese herbal medicine, phytochemicals, natural medicine, phytomedicine, plant extract, botanical drug, ROS, oxygen free radicals, oxygen radical, oxidizing agent, glucose and lipid metabolism, saccharometabolism, glycometabolism, lipid metabolism, blood glucose, lipoprotein, triglyceride, fatty liver, atherosclerosis, obesity, diabetes, dysglycemia, NAFLD, and DM as keywords or subject terms, relevant literature was retrieved from Web of Science and PubMed databases from 2013 to 2022 and was summarized. Results: Botanical drugs can regulate ROS by regulating mitochondrial function, endoplasmic reticulum, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), erythroid 2-related factor 2 (Nrf-2), nuclear factor κB (NF-κB), and other signaling pathways to improve OS and treat glucolipid metabolic diseases. Conclusion: The regulation of ROS by botanical drugs is multi-mechanism and multifaceted. Both cell studies and animal experiments have demonstrated the effectiveness of botanical drugs in the treatment of glycolipid metabolic diseases by regulating ROS. However, studies on safety need to be further improved, and more studies are needed to support the clinical application of botanical drugs.
Collapse
Affiliation(s)
- Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linsen Gu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Hur W, Park Y, Seo E, Son SE, Kim S, Seo H, Seong GH. Multicomponent metal-organic framework nanocomposites for tumor-responsive synergistic therapy. J Colloid Interface Sci 2023; 645:663-675. [PMID: 37167915 DOI: 10.1016/j.jcis.2023.04.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Targeted tumor therapy through tumor microenvironment (TME)-responsive nanoplatforms is an emerging treatment strategy used to enhance tumor-specificity to selectively kill cancer cells. Here, we introduce a nanosized zeolitic imidazolate framework-8 (ZIF-8) that simultaneously contains natural glucose oxidase (GOx) and Prussian blue nanoparticles (PBNPs) to construct multi-component metal-organic framework nanocomposites (denoted as ZIF@GOx@PBNPs), which possess cascade catalytic activity selectively within the TME. Once reaching a tumor site, GOx and PBNPs inside the nanocomposites are sequentially released and participate in the cascade catalytic reaction. In weak acidic TME, GOx, which effectively catalyzes the oxidation of intratumoral glucose to hydrogen peroxide (H2O2) and gluconic acid, not only initiates starvation therapy by cutting off the nutrition source for cancer cells but also produces the reactant for sequential Fenton reaction for chemodynamic therapy. Meanwhile, PBNPs, which are released from the ZIF-8 framework dissociated by acidified pH due to the produced gluconic acid, convert the generated H2O2 into harmful radicals to melanomas. In this way, the cascade catalytic reactions of ZIF@GOx@PBNPs enhance reactive oxygen species production and cause oxidative damage to DNA in cancer cells, resulting in remarkable inhibition of tumor growth. The tumor specificity is endowed by using the biomolecules overexpressed in TME as a "switch" to initiate the first catalytic reaction by GOx. Given the significant antitumor efficiency both in vitro and in vivo, ZIF@GOx@PBNPs could be applied as a promising therapeutic platform enabling starvation/chemodynamic synergism, high therapeutic efficiency, and minimal side effects.
Collapse
Affiliation(s)
- Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Yeongwon Park
- Department of Molecular & Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Eunbi Seo
- Department of Molecular & Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seongnyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|