1
|
Tan Z, Chen W, Wei X, Qiu Z, Zhuang W, Zhang B, Xie J, Lin Y, Ren Y, Preis S, Wei C, Zhu S. Virus-bacterium interaction involved in element cycles in biological treatment of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131839. [PMID: 39557096 DOI: 10.1016/j.biortech.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts. The auxiliary metabolic genes (AMGs) focused on element cycles, including metabolisms of carbon (fadA), nitrogen (glnA), sulfur (mddA and cysK) and phosphorus (phoH). Other AMGs were involved in toxic tolerance of hosts, improving their cell membrane and wall robustness, antioxidant, DNA repair and cobalamin biosynthesis. Vice versa, the bloomed host provided fitness advantages for viruses. Dissolved oxygen was found to be the key factor shaping the distributions of viral community and AMGs. Summarizing, the study exposed the mutual virus-bacterium interaction in the AOHO combination providing stable treatment efficiency.
Collapse
Affiliation(s)
- Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xinyi Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhaoji Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weixiong Zhuang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2024:d4cb00221k. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
3
|
Yu Y, Poulsen SA, Di Trapani G, Tonissen KF. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid Redox Signal 2024; 41:957-975. [PMID: 38970427 DOI: 10.1089/ars.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target. Antioxid. Redox Signal. 41, 957-975.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | | | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Clérin E, Aït-Ali N, Sahel JA, Léveillard T. Restoration of Rod-Derived Metabolic and Redox Signaling to Prevent Blindness. Cold Spring Harb Perspect Med 2024; 14:a041284. [PMID: 37848252 PMCID: PMC11529851 DOI: 10.1101/cshperspect.a041284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Vision is initiated by capturing photons in highly specialized sensory cilia known as the photoreceptor outer segment. Because of its lipid and protein composition, the outer segments are prone to photo-oxidation, requiring photoreceptors to have robust antioxidant defenses and high metabolic synthesis rates to regenerate the outer segments every 10 days. Both processes required high levels of glucose uptake and utilization. Retinitis pigmentosa is a prevalent form of inherited retinal degeneration characterized by initial loss of low-light vision caused by the death of rod photoreceptors. In this disease, rods die as a direct effect of an inherited mutation. Following the loss of rods, cones eventually degenerate, resulting in complete blindness. The progression of vision loss in retinitis pigmentosa suggested that rod photoreceptors were necessary to maintain healthy cones. We identified a protein secreted by rods that functions to promote cone survival, and we named it rod-derived cone viability factor (RdCVF). RdCVF is encoded by an alternative splice product of the nucleoredoxin-like 1 (NXNL1) gene, and RdCVF was found to accelerate the uptake of glucose by cones. Without RdCVF, cones eventually die because of compromised glucose uptake and utilization. The NXNL1 gene also encodes for the thioredoxin RdCVFL, which reduces cysteines in photoreceptor proteins that are oxidized, providing a defense against radical oxygen species. We will review here the main steps of discovering this novel intercellular signaling currently under translation as a broad-spectrum treatment for retinitis pigmentosa.
Collapse
Affiliation(s)
- Emmanuelle Clérin
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Najate Aït-Ali
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - José-Alain Sahel
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of OphthalmoloUPMC Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
5
|
Alt TB, Smith MM, Moran GR. Probing the site of glutathione reduction by thioredoxin/glutathione reductase from Schistosoma mansoni under anaerobic conditions. Arch Biochem Biophys 2024; 761:110162. [PMID: 39322101 DOI: 10.1016/j.abb.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) is a multifunctional enzyme that catalyzes the reduction of glutathione (GSSG) and thioredoxin, as well as the deglutathionylation of peptide and non-peptide substrates. SmTGR structurally resembles known glutathione reductases (GR) and thioredoxin reductases (TrxR) but with an appended N-terminal domain that has a typical glutaredoxin (Grx) fold. Despite structural homology with known GRs, the site of GSSG reduction has frequently been reported as the Grx domain, based primarily on aerobic, steady-state kinetic measurements and x-ray crystallography. Here, we present an anaerobic characterization of a series of variant SmTGRs to establish the site of GSSG reduction as the cysteine pair most proximal to the FAD, Cys154/Cys159, equivalent to the site of GSSG reduction in GRs. Anaerobic steady-state analysis of U597C, U597S, U597C + C31S, and I592STOP SmTGR demonstrate that the Grx domain is not involved in the catalytic reduction of GSSG, as redox silencing of the C-terminus results in no modulation of the observed turnover number (∼0.025 s-1) and redox silencing of the Grx domain results in an increased observed turnover number (∼0.08 s-1). Transient-state single turnover analysis of these variants corroborates this, as the slowest rate observed titrates hyperbolically with GSSG concentration and approaches a limit that coincides with the respective steady-state turnover number for each variant. Numerical integration fitting of the transient state data can only account for the observed trends when competitive binding of the C-terminus is included, indicating that the partitioning of electrons to either substrate occurs at the Cys154/Cys159 disulfide rather than the previously proposed Cys596/Sec597 sulfide/selenide. Paradoxically, truncating the C-terminus at Ile592 results in a loss of GR activity, indicating a crucial non-redox role for the C-terminus.
Collapse
Affiliation(s)
- Tyler B Alt
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Madison M Smith
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, USA.
| |
Collapse
|
6
|
Li YR, Cai W, Zhang YX, Zhang NX, Huang QL, Lu YT, Yuan TT. A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis. Int J Mol Sci 2024; 25:11455. [PMID: 39519008 PMCID: PMC11546484 DOI: 10.3390/ijms252111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Ying-Rui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Ya-Xuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning-Xin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao-Ling Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Li C, Yan W, Yan H. Oxidative Stress, Glutaredoxins, and Their Therapeutic Potential in Posterior Capsular Opacification. Antioxidants (Basel) 2024; 13:1210. [PMID: 39456463 PMCID: PMC11504336 DOI: 10.3390/antiox13101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by the marked upregulation of inflammatory and growth factors post-surgery. Recently, research on the role of redox environments has gained considerable attention. LECs, which are in direct contact with the aqueous humour after cataract surgery, are subjected to oxidative stress due to decreased levels of reduced glutathione and increased oxygen content compared to contact with the outer fibre layer of the lens before surgery. In this review, we examine the critical role of oxidative stress in PCO formation. We also focus on glutaredoxins (Grxs), which are antioxidative enzymes produced via deglutathionylation, their protective role against PCO formation, and their therapeutic potential. Furthermore, we discuss the latest advancements in PCO therapy, particularly the development of advanced antioxidative pharmacological agents, and emphasise the importance and approaches of anti-inflammatory and antioxidant treatments in PCO management. In conclusion, this review highlights the significant roles of oxidative stress in PCO, the protective effects of Grxs against PCO formation, and the potential of anti-inflammatory and antioxidant therapies in treating PCO.
Collapse
Affiliation(s)
- Chenshuang Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an 710004, China;
| | - Weijia Yan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University Eye Hospital, Hangzhou 310009, China;
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an 710004, China;
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
8
|
Li C, Chen X, Zhang S, Liang C, Deng Q, Li X, Yan H. Pericyte loss via glutaredoxin2 downregulation aggravates diabetes-induced microvascular dysfunction. Exp Eye Res 2024; 247:110025. [PMID: 39117135 DOI: 10.1016/j.exer.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss and blindness among working-age adults. Pericyte loss is an early pathological feature of DR. Under hyperglycemic conditions, reactive oxygen species (ROS) production increases, leading to oxidative stress and subsequent mitochondrial dysfunction and apoptosis. Dysfunctional pericyte can cause retinal vascular leakage, obliteration, and neovascularization. Glutaredoxin 2 (Grx2) is a mitochondrial glutathione-dependent oxidoreductase which protects cells against oxidative insults by safeguarding mitochondrial function. Whether Grx2 plays a protective role in diabetes-induced microvascular dysfunction remains unclear. Our findings revealed that diabetes-related stress reduced Grx2 expression in pericytes, but not in endothelial cells. Grx2 knock-in ameliorated diabetes-induced microvascular dysfunction in vivo DR models. Decreased Grx2 expression led to significant pericyte apoptosis, and pericyte dysfunction, namely reduced pericyte recruitment towards endothelial cells and increased endothelial cell permeability. Conversely, upregulating Grx2 reversed these effects. Furthermore, Grx2 regulated pericyte apoptosis by modulating complex I activity, which is crucial for pericyte mitochondrial function. Overall, our study uncovered a novel mechanism whereby high glucose inhibited Grx2 expression in vivo and in vitro. Grx2 downregulation exacerbated pericyte apoptosis, pericyte dysfunction, and retinal vascular dysfunction by inactivating complex I and mediating mitochondrial dysfunction in pericytes.
Collapse
Affiliation(s)
- Chenshuang Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Xi Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| | - Siqi Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Chen Liang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Qi Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| | - Xinnan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| |
Collapse
|
9
|
Anjou C, Royer M, Bertrand É, Bredon M, Le Bris J, Salgueiro IA, Caulat LC, Dupuy B, Barbut F, Morvan C, Rolhion N, Martin-Verstraete I. Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota. NPJ Biofilms Microbiomes 2024; 10:86. [PMID: 39284817 PMCID: PMC11405772 DOI: 10.1038/s41522-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Auranofin (AF), a former rheumatoid polyarthritis treatment, gained renewed interest for its use as an antimicrobial. AF is an inhibitor of thioredoxin reductase (TrxB), a thiol and protein repair enzyme, with an antibacterial activity against several bacteria including C. difficile, an enteropathogen causing post-antibiotic diarrhea. Several studies demonstrated the effect of AF on C. difficile physiology, but the crucial questions of resistance mechanisms and impact on microbiota remain unaddressed. We explored potential resistance mechanisms by studying the impact of TrxB multiplicity and by generating and characterizing adaptive mutations. We showed that if mutants inactivated for trxB genes have a lower MIC of AF, the number of TrxBs naturally present in clinical strains does not impact the MIC. All stable mutations isolated after AF long-term exposure were in the anti-sigma factor of σB and strongly affect physiology. Finally, we showed that AF has less impact on human gut microbiota than vancomycin.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marie Royer
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Unité Écologie et Évolution de la Résistance aux Antibiotiques, Paris, France
| | - Émilie Bertrand
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marius Bredon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral, École Doctorale Complexité du Vivant, 75005, Paris, France
| | - Iria Alonso Salgueiro
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Léo C Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Frédéric Barbut
- Université Paris Cité, INSERM, UMR-1139, Paris, France
- National Reference Laboratory for C. difficile, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Antoine, 75012, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
10
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
11
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
12
|
Schomakers BV, Jillings SL, van Weeghel M, Vaz FM, Salomons GS, Janssens GE, Houtkooper RH. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J 2024; 291:3317-3330. [PMID: 38245827 DOI: 10.1111/febs.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.
Collapse
Affiliation(s)
- Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Sonia L Jillings
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| |
Collapse
|
13
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
14
|
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis. Int J Mol Sci 2024; 25:7827. [PMID: 39063068 PMCID: PMC11276820 DOI: 10.3390/ijms25147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
15
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
16
|
Zheng Q, Zhu H, Lv C, Zhu Z, Cui H, Fan Z, Sun J, Huang Z, Shi P. Clioquinol rescues yeast cells from Aβ42 toxicity via the inhibition of oxidative damage. Biotechnol J 2024; 19:e2300662. [PMID: 38863126 DOI: 10.1002/biot.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aβ42 were investigated. We found that CQ could reduce Aβ42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aβ42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.
Collapse
Affiliation(s)
- Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongzheng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chunyi Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hanyue Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Qin XL, Wang SY, Li QL, Wang JJ, Yao ZW, Zhu JH, Chen LX, Huo JG, Li SL, Zhou J, Zhu H. A robust ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of 10 components in glutathione cycle. J Sep Sci 2024; 47:e2400247. [PMID: 39031562 DOI: 10.1002/jssc.202400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.
Collapse
Affiliation(s)
- Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Long Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Jie Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhong-Wei Yao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin-Xia Chen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie-Ge Huo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Anjou C, Lotoux A, Morvan C, Martin-Verstraete I. From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environ Microbiol 2024; 26:e16668. [PMID: 38899743 DOI: 10.1111/1462-2920.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Li Q, Lin J, Ma H, Yuan L, Liu X, Xiong J, Miao W, Yang M, Ge F. Identification and Functional Analysis of Lysine 2-Hydroxyisobutyrylation in Cyanobacteria. J Proteome Res 2024; 23:1689-1701. [PMID: 38565891 DOI: 10.1021/acs.jproteome.3c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.
Collapse
Affiliation(s)
- Qiaoya Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Jie Xiong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Miao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Smith MM, Moran GR. Building on a theme: The redox hierarchy of pyridine nucleotide-disulfide oxidoreductases. Arch Biochem Biophys 2024; 755:109966. [PMID: 38537870 DOI: 10.1016/j.abb.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate.
Collapse
Affiliation(s)
- Madison M Smith
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States.
| |
Collapse
|
21
|
Kireina D, Parreira VR, Goodridge L, Farber JM. Survival and Expression of rpoS and grxB of Cronobacter sakazakii in Powdered Infant Formula Under Simulated Gastric Conditions of Newborns. J Food Prot 2024; 87:100269. [PMID: 38519033 DOI: 10.1016/j.jfp.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Cronobacter sakazakii can cause severe illnesses in infants, predominantly in preterm newborns, with consumption of contaminated powdered infant formula (PIF) being the major vehicle of infection. Using a dynamic human gastrointestinal simulator called the SHIME, this study examined the effects of gastric acidity and gastric digestion time of newborns on the survival and expression of stress genes of C. sakazakii. Individual strains, inoculated at 7 log CFU/mL into reconstituted PIF, were exposed to gastric pH values of 4.00, 5.00 and 6.00 for 4 h with gradual acidification. The survival results showed that C. sakazakii grew in the stomach portion of the SHIME during a 4-h exposure to pH 4.00, 5.00 and 6.00 by 0.96-1.05, 1.02-1.28 and 1.11-1.73 log CFU/mL, respectively. The expression of two stress genes, rpoS and grxB, throughout gastric digestion was evaluated using reverse transcription qPCR. The upregulation of rpoS and grxB during the 4-h exposure to simulated gastric fluid at pH 4.00 showed that C. sakazakii strains may be experiencing the most stress in the pH 4.00 treatment. The gene expression results also suggest that C. sakazakii strains appeared to develop an acid adaptation response during the 4-h exposure that may facilitate their survival. Altogether, this study highlights that a combination of low gastric acidity, long digestion time in the presence of reconstituted PIF, created a favorable environment for the adaptation and survival of C. sakazakii in the simulation of a newborn's stomach. This study gives directions for future research to further advance our understanding of the behavior of C. sakazakii in the GI tract of newborns.
Collapse
Affiliation(s)
- Devita Kireina
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
22
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
23
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
24
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
25
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
26
|
Gong Y, Lou Y, Han X, Chen K, Zhao Y, Zhang H, Zhang J, Xiong Y, Fu W, Ding S. Serum proteomic profiling of precancerous gastric lesions and early gastric cancer reveals signatures associated with systemic inflammatory response and metaplastic differentiation. Front Mol Biosci 2024; 11:1252058. [PMID: 38584705 PMCID: PMC10995311 DOI: 10.3389/fmolb.2024.1252058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The noninvasive detection technique using serum for large-scale screening is useful for the early diagnosis of gastric cancer (GC). Herein, we employed liquid chromatography mass spectrometry to determine the serum proteome signatures and related pathways in individuals with gastric precancerous (pre-GC) lesions and GC and explore the effect of Helicobacter pylori (H. pylori) infection. Differentially expressed proteins in GC and pre-GC compared with non-atrophic gastritis (NAG) group were identified. APOA4, a protein associated with metaplastic differentiation, and COMP, an extracellular matrix protein, were increased in the serum of patients with pre-GC lesions and GC. In addition, several inflammation-associated proteins, such as component C3, were decreased in the GC and pre-GC groups, which highlight a tendency for the inflammatory response to converge at the gastric lesion site during the GC cascade. Moreover, the abundance of proteins associated with oxidant detoxification was higher in the GC group compared with that in the NAG group, and these proteins were also increased in the serum of the H. pylori-positive GC group compared with that in the H. pylori-negative GC patients, reflecting the importance of oxidative stress pathways in H. pylori infection. Collectively, the findings of this study highlight pathways that play important roles in GC progression, and may provide potential diagnostic biomarkers for the detection of pre-GC lesions.
Collapse
Affiliation(s)
- Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yaxin Lou
- Medical and Health Analytical Center, Peking University, Beijing, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Keyan Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ying Xiong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
27
|
Gong X, Huang M, Chen L. NRF1 mitigates motor dysfunction and dopamine neuron degeneration in mice with Parkinson's disease by promoting GLRX m 6 A methylation through upregulation of METTL3 transcription. CNS Neurosci Ther 2024; 30:e14441. [PMID: 37735974 PMCID: PMC10916419 DOI: 10.1111/cns.14441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The feature of Parkinson's disease (PD) is the heavy dopaminergic neuron loss of substantia nigra pars compacta (SNpc), while glutaredoxin (GLRX) has been discovered to modulate the death of dopaminergic neurons. In this context, this study was implemented to uncover the impact of GRX1 on motor dysfunction and dopamine neuron degeneration in PD mice and its potential mechanism. METHODS A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. After gain- and loss-of-function assays in mice, motor coordination was assessed using rotarod, pole, and open-field tests, and neurodegeneration in mouse SNpc tissues was determined using immunohistochemistry of tyrosine hydroxylase and Nissl staining. NRF1, methyltransferase-like 3 (METTL3), and GLRX expression in SNpc tissues were evaluated using qRT-PCR, Western blot, and immunohistochemistry. The N6-methyladenosine (m6 A) levels of GLRX mRNA were examined using MeRIP. The relationship among NRF1, METTL3, and GLRX was determined by RIP, ChIP, and dual luciferase assays. RESULTS Low GLRX, METTL3, and NRF1 expression were observed in MPTP-induced mice, accompanied by decreased m6 A modification level of GLRX mRNA. GLRX overexpression alleviated motor dysfunction and dopamine neuron degeneration in MPTP-induced mice. METTL3 promoted m6 A modification and IGF2BP2-dependent stability of GLRX mRNA, and NRF1 increased METTL3 expression by binding to METTL3 promoter. NRF1 overexpression increased m6 A modification of GLRX mRNA and repressed motor dysfunction and dopamine neuron degeneration in MPTP-induced mice, which was counteracted by METTL3 knockdown. CONCLUSION Conclusively, NRF1 constrained motor dysfunction and dopamine neuron degeneration in MPTP-induced PD mice by activating the METTL3/GLRX axis.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP.R. China
| |
Collapse
|
28
|
Slivka JP, Bauer C, Younsi A, Wong MBF, Chan MKS, Skutella T. Exploring the Molecular Tapestry: Organ-Specific Peptide and Protein Ultrafiltrates and Their Role in Therapeutics. Int J Mol Sci 2024; 25:2863. [PMID: 38474110 DOI: 10.3390/ijms25052863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to characterize the proteome composition of organ-derived protein extracts from rabbits. Protein isolation was performed using soft homogenization and size exclusion via ultrafiltration. The proteome analysis of the ultrafiltrates was conducted using gel electrophoresis, and the mass spectrometry data were subjected to gene ontology analysis. Proteomic profiling revealed comprehensive protein profiles associated with RNA regulation, fatty acid binding, inflammatory response, oxidative stress, and metabolism. Additionally, our results demonstrate the presence of abundant small proteins, as observed in the mass spectrometry datasets. Small proteins and peptides are crucial in transcription modulation and various biological processes. The protein networks identified in the ultrafiltrates have the potential to enhance and complement biological therapeutic interventions. Data are available via ProteomeXchange with identifier PXD050039.
Collapse
Affiliation(s)
| | | | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michelle B F Wong
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Mike K S Chan
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
30
|
Benedetto A, Robotti E, Belay MH, Ghignone A, Fabbris A, Goggi E, Cerruti S, Manfredi M, Barberis E, Peletto S, Arillo A, Giaccio N, Masini MA, Brandi J, Cecconi D, Marengo E, Brizio P. Multi-Omics Approaches for Freshness Estimation and Detection of Illicit Conservation Treatments in Sea Bass ( Dicentrarchus Labrax): Data Fusion Applications. Int J Mol Sci 2024; 25:1509. [PMID: 38338789 PMCID: PMC10855268 DOI: 10.3390/ijms25031509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Fish freshness consists of complex endogenous and exogenous processes; therefore, the use of a few parameters to unravel illicit practices could be insufficient. Moreover, the development of strategies for the identification of such practices based on additives known to prevent and/or delay fish spoilage is still limited. The paper deals with the identification of the effect played by a Cafodos solution on the conservation state of sea bass at both short-term (3 h) and long-term (24 h). Controls and treated samples were characterized by a multi-omic approach involving proteomics, lipidomics, metabolomics, and metagenomics. Different parts of the fish samples were studied (muscle, skin, eye, and gills) and sampled through a non-invasive procedure based on EVA strips functionalized by ionic exchange resins. Data fusion methods were then applied to build models able to discriminate between controls and treated samples and identify the possible markers of the applied treatment. The approach was effective in the identification of the effect played by Cafodos that proved to be different in the short- and long-term and complex, involving proteins, lipids, and small molecules to a different extent.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
- Department of Chemistry, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Arianna Ghignone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Alessia Fabbris
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Eleonora Goggi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Cerruti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Alessandra Arillo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Nunzia Giaccio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| | - Maria Angela Masini
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (M.H.B.); (A.G.); (A.F.); (E.G.); (S.C.); (E.B.); (M.A.M.); (E.M.)
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (S.P.); (A.A.); (N.G.); (P.B.)
| |
Collapse
|
31
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Janelt K, Matysiak N. Glutaredoxin 2 Protein (Grx2) as an Independent Prognostic Factor Associated with the Survival of Colon Adenocarcinoma Patients. Int J Mol Sci 2024; 25:1060. [PMID: 38256132 PMCID: PMC10816802 DOI: 10.3390/ijms25021060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can catalyze the oxidation and S-glutathionylation of membrane-bound thiol proteins in mitochondria. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of Grx2 protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of Grx2 and tumor histological grade, depth of invasion, regional lymph node involvement, angioinvasion, staging, and PCNA immunohistochemical expression. It was found that 87% of patients with stage I had high levels of Grx2 expression. In contrast, only 33% of patients with stage II and 1% of patients with stage III had high levels of Grx2 expression. Moreover, the multivariate analysis revealed that the immunohistochemical expression of Grx2 protein apart from the grade of tumor differentiation was an independent prognostic factors for the survival of patients with colon adenocarcinoma. Studies analyzing Grx2 levels in patients' blood confirmed that the highest levels of serum Grx2 protein was also found in stage I patients, which was reflected in the survival curves. A higher level of Grx2 in the serum has been associated with a more favorable outcome. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western Blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
- Zabrze Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed-Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (N.M.)
| |
Collapse
|
32
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Matysiak N, Czuba Z. A Prognostic Activity of Glutaredoxin 1 Protein (Grx1) in Colon Cancer. Int J Mol Sci 2024; 25:1007. [PMID: 38256082 PMCID: PMC10816104 DOI: 10.3390/ijms25021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
33
|
Kojima R, Paslawski W, Lyu G, Arenas E, Zhang X, Svenningsson P. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson's Disease Patients with GBA1 Mutations. Int J Mol Sci 2024; 25:683. [PMID: 38203854 PMCID: PMC10779269 DOI: 10.3390/ijms25010683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.
Collapse
Affiliation(s)
- Rika Kojima
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (R.K.)
| |
Collapse
|
34
|
Van Tran T, Nguyen H, Vu L, Lee C. Structural conservation in the glutathione binding in Sphingomonas sp. glutaredoxin Grx3 and variations for cold adaptation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140971. [PMID: 37935252 DOI: 10.1016/j.bbapap.2023.140971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Glutaredoxin 3 (Grx3), a redox protein with a thioredoxin-fold structure, maintains structural integrity and glutathione (GSH) binding capabilities across varying habitat temperatures. The cis-Pro loop, essential for GSH binding, relies on the Arg-Asp salt bridge (α2-α3) and Gln-His hydrogen bond (β3-β4) for its conformation. In some psychrophilic Grx3 variants, Arg in α2 is replaced with Tyr, and His in β4 is replaced with Phe. This study examines the roles of these bonds in Grx3's structure, function, and cold adaptation, using SpGrx3 from the Arctic bacterium Sphingomonas sp. Despite its cold habitat, SpGrx3 maintains the Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond. The R51Y substitution disrupts the α2-α3 salt bridge, while the H63F and H63Y substitutions hinder the salt bridge through cation-π interactions with Arg51, involving Phe63/Tyr63, thereby enhancing flexibility. Conversely, mutations that disrupt the hydrogen bond (Q56A, H63A, and H63F) reduce thermal stability. In the psychrophilic Grx3 configuration A48T/R51Y/H63F, a Thr48-Gln56 hydrogen bond stabilizes the cis-Pro loop, enhancing flexibility by disrupting both bonds. Furthermore, all mutants exhibit reduced α-helical content and catalytic efficiency. In summary, the highly conserved Arg51-Asp69 salt bridge and Gln56-His63 hydrogen bond are crucial for stabilizing the cis-Pro loop and catalytic activity in SpGrx3. His63 is favored as it avoids cation-π interactions with Arg51, unlike Phe63/Tyr63. Psychrophilic Grx3 variants have adapted to cold environments by reducing GSH binding and increasing structural flexibility. These findings deepen our understanding of the structural conservation in Grx3 for GSH binding and the critical alterations required for cold adaptation.
Collapse
Affiliation(s)
- Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Hoa Nguyen
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Luyen Vu
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea.
| |
Collapse
|
35
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
36
|
Birocco F, Gonzalez LN, Guerrero SA, Iglesias AA, Arias DG. On the occurrence of a glutaredoxin-like small protein in the anaerobic protozoan parasite Entamoeba histolytica. Biochim Biophys Acta Gen Subj 2023; 1867:130489. [PMID: 37827204 DOI: 10.1016/j.bbagen.2023.130489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Entamoeba histolytica, an intestinal parasitic protozoan that usually lives and multiplies within the human gut, is the causative agent of amoebiasis. To date, de novo glutathione biosynthesis and its associated enzymes have not been identified in the parasite. Cysteine has been proposed to be the main intracellular thiol. METHODS Using bioinformatics tools to search for glutaredoxin homologs in the E. histolytica genome database, we identified a coding sequence for a putative Grx-like small protein (EhGLSP) in the E. histolytica HM-1:IMSS genome. We produced the recombinant protein and performed its biochemical characterization. RESULTS Through in vitro experiments, we observed that recombinant EhGLSP could bind GSH and L-Cys as ligands. However, the protein exhibited very low GSH-dependent disulfide reductase activity. Interestingly, via UV-Vis spectroscopy and chemical analysis, we detected that recombinant EhGLSP (freshly purified from Escherichia coli cells by IMAC) was isolated together with a redox-labile [FeS] bio-inorganic complex, suggesting that this protein could have some function linked to the metabolism of this cofactor. Western blotting showed that EhGLSP protein levels were modulated in E. histolytica cells exposed to exogenous oxidative species and metronidazole, suggesting that this protein cooperates with the antioxidant mechanisms of this parasite. CONCLUSIONS AND GENERAL SIGNIFICANCE Our findings support the existence of a new metabolic actor in this pathogen. To the best of our knowledge, this is the first report on this protein class in E. histolytica.
Collapse
Affiliation(s)
- Franco Birocco
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lihue N Gonzalez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
37
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
38
|
Wang S, Dong Y, Gu L, Chen X, Zhang C, Long L, Wang J, Yang M. Identification and adaptive evolution analysis of glutaredoxin genes in Populus spp. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1154-1170. [PMID: 37703550 DOI: 10.1111/plb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Glutaredoxin (GRX) is a class of small redox proteins widely involved in cellular redox homeostasis and the regulation of various cellular processes. The role of GRX gene in the differentiation of Populus spp. is rarely reported. We compared the similarities and differences of GRX genes among four sections of poplar using bioinformatics, corrected the annotations of some GRX genes, and focused on analysing their transcript profiling and adaptive evolution in Populus spp. A total of 219 GRX genes were identified in four sections of poplar, among which annotations for 13 genes were corrected. Differences in GRX genes were found between sect. Turanga, represented by P. euphratica, and other poplar sections. Most notably, P. euphratica had the smallest number of duplication events for GRX genes (n = 9) and no tandem duplications, whereas there were >25 duplication events for all other poplars. Furthermore, we detected 18 pairs of GRX genes under positive selection pressure in various sections of poplar, and identified two groups of GRX genes in the Salicaceae that potentially underwent positive selection. Expression profiling results showed that the PtrGRX34 and its orthologous genes were upregulated under stress treatments. In summary, the GRX gene family underwent expansion during poplar differentiation, and some genes underwent rapid evolution during this process, which may be beneficial for Populus spp. to adapt to environmental changes. This study may provide more insights into the molecular mechanisms of Populus spp. adaptation to environmental changes and the adaptive evolution of GRX genes.
Collapse
Affiliation(s)
- S Wang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Y Dong
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - L Gu
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - X Chen
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - C Zhang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - L Long
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - J Wang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - M Yang
- Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
39
|
Xu Y, Xia Y, Liu Q, Jing X, Tang Q, Zhang J, Jia Q, Zhang Z, Li J, Chen J, Xiong Y, Li Y, He J. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites. J Pharm Anal 2023; 13:1548-1561. [PMID: 38223455 PMCID: PMC10785153 DOI: 10.1016/j.jpha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 01/16/2024] Open
Abstract
Excessive N-acetyl-p-benzoquinone imine (NAPQI) formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen (APAP) overdose caused acute liver failure (ALF). S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity. Glutaredoxin-1 (Glrx1), a glutathione-specific thioltransferase, is a primary enzyme to catalyze deglutathionylation. The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP. The Glrx1 knockout mice (Glrx1-/-) and liver-specific overexpression of Glrx1 (AAV8-Glrx1) mice were produced and underwent APAP-induced ALF. Pirfenidone (PFD), a potential inducer of Glrx1, was administrated preceding APAP to assess its protective effects. Our results revealed that the hepatic total protein S-glutathionylation (PSSG) increased and the Glrx1 level reduced in mice after APAP toxicity. Glrx1-/- mice were more sensitive to APAP overdose, with higher oxidative stress and more toxic metabolites of APAP. This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p450 3a11 (Cyp3a11), which likely increased the activity of Cyp3a11. Conversely, AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11, which reduced the toxic metabolites of APAP and oxidative stress. PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress. We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose. Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.
Collapse
Affiliation(s)
| | | | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
41
|
Chen X, Chen Y, Li C, Li J, Zhang S, Liang C, Deng Q, Guo Z, Guo C, Yan H. Glutaredoxin 2 protects lens epithelial cells from epithelial-mesenchymal transition by suppressing mitochondrial oxidative stress-related upregulation of integrin-linked kinase. Exp Eye Res 2023; 234:109609. [PMID: 37541331 DOI: 10.1016/j.exer.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/09/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Glutaredoxin 2 (Grx2), a mitochondrial glutathione-dependent oxidoreductase, is crucial for maintaining redox homeostasis and cellular functions in the lens. The oxidative stress-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is related to posterior capsule opacification. In this study, we investigated the effects of Grx2 on oxidative stress-induced EMT in LECs during posterior capsule opacification. We found that Grx2 expression was substantially decreased during the EMT of LECs and in a mouse model of cataract surgery. Deletion of Grx2 aggravated the generation of reactive oxygen species, including those that are mitochondria-derived, and promoted the proliferation and EMT of the LECs. This was reversed by Grx2 overexpression. In vivo, proteomic liquid chromatography-mass spectrometry analysis showed that integrin-linked kinase (ILK) was significantly upregulated in the lens posterior capsule of a Grx2 knockout (KO) mouse model. Compared with that of the wild-type group, the expression of ILK and EMT markers was increased in the Grx2 KO group which was reversed in the Grx2 knock-in group. Inhibition of ILK partially blocked Grx2 knockdown-induced EMT and prevented the increased phosphorylation of Akt and GSK-3β and the nuclear translocation of β-catenin in the Grx2 KO group. Finally, inhibition of the Wnt/β-catenin pathway partially blocked the Grx2 knockdown-induced EMT. In conclusion, we demonstrated that Grx2 protects LECs from oxidative stress-related EMT by regulating the ILK/Akt/GSK-3β axis.
Collapse
Affiliation(s)
- Xi Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Ying Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenshuang Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiankui Li
- Department of Gynecology & Obstetrics, NO. 960 Hospital of PLA, Jinan, 250000, Shandong, China
| | - Siqi Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chen Liang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qi Deng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
42
|
Tran TV, Hoang T, Jang SH, Lee C. Unraveling the roles of aromatic cluster side-chain interactions on the structural stability and functional significance of psychrophilic Sphingomonas sp. glutaredoxin 3. PLoS One 2023; 18:e0290686. [PMID: 37651358 PMCID: PMC10470887 DOI: 10.1371/journal.pone.0290686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigates the impact of aromatic cluster side-chain interactions in Grx3 (SpGrx3) from the psychrophilic Arctic bacterium Sphingomonas sp. Grx3 is a class I oxidoreductase with a unique parallel arrangement of aromatic residues in its aromatic cluster, unlike the tetrahedral geometry observed in Trxs. Hydrophilic-to-hydrophobic substitutions were made in the aromatic cluster, in β1 (E5V and Y7F), adjacent β2 (Y32F and Y32L), both β1 and β2 (E5V/Y32L), and short α2 (R47F). The hydrophobic substitutions, particularly those at or near Tyr7 (E5V, Y7F, Y32F, and R47F), increased melting temperatures and conformational stability, whereas disrupting β1-β2 interactions (Y32L and E5V/Y32L) led to structural instability of SpGrx3. However, excessive hydrophobic interactions (Y7F and E5V/Y32L) caused protein aggregation at elevated temperatures. All mutations resulted in a reduction in α-helical content and an increase in β-strand content. The R47F mutant, which formed dimers and exhibited the highest β-strand content, showed increased conformational flexibility and a significant decrease in catalytic rate due to the disturbance of β1-α2 interactions. In summary, the configuration of the aromatic cluster, especially Tyr7 in the buried β1 and Arg47 in the short α2, played crucial roles in maintaining the active conformation of SpGrx3 and preventing its protein aggregation. These modifications, reducing hydrophobicity in the central β-sheet, distinguish Grx3 from other Trx-fold proteins, highlighting evolutionary divergence within the Trx-fold superfamily and its functional versatility.
Collapse
Affiliation(s)
- Trang Van Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
43
|
Teixeira V, Mohamed I, Lavoie JC. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants (Basel) 2023; 12:1361. [PMID: 37507901 PMCID: PMC10376486 DOI: 10.3390/antiox12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In premature infants receiving parenteral nutrition, oxidative stress is a trigger for the development of bronchopulmonary dysplasia, which is an important factor in the development of adult lung diseases. Neonatal vitamin C and glutathione deficiency is suspected to induce permanent modification of redox metabolism favoring the development of neonatal and adult lung diseases. A total of 64 3-day-old guinea pigs were fed an oral diet that was either complete or deficient in vitamin C (VCD), cysteine (CD) (glutathione-limiting substrate) or both (DD) for 4 days. At 1 week of age, half of the animals were sacrificed while the other started a complete diet until 12 weeks of age. At 1 week, the decrease in lung GSH in all deficient groups was partially explained by the oxidation of liver methionine-adenosyltransferase. mRNA levels of kelch-like ECH-associated protein 1 (Keap1), glutathione-reductase (Gsr) and glutaredoxin-1 (Glrx) were significantly lower only in CD but not in DD. At 12 weeks, glutathione levels were increased in VCD and CD. Keap1, Gsr and Glrx mRNA were increased, while glutathione-reductase and glutaredoxin proteins were lower in CD, favoring a higher glutathionylation status. Both neonatal deficiencies result in a long-term change in glutathione metabolism that could contribute to lung diseases' development.
Collapse
Affiliation(s)
- Vitor Teixeira
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
44
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
45
|
Liu L, Li X, Su M, Shi J, Zhang Q, Liu X. LeGRXS14 Reduces Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2320. [PMID: 37375946 PMCID: PMC10305512 DOI: 10.3390/plants12122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salt stress represents a significant abiotic stressor for plants and poses a severe threat to agricultural productivity. Glutaredoxins (GRXs) are small disulfide reductases that can scavenge cellular reactive oxygen species and are crucial for plant growth and development, particularly under stressful circumstances. Although CGFS-type GRXs were found to be involved in various abiotic stresses, the intrinsic mechanism mediated by LeGRXS14, a tomato (Lycopersicon esculentum Mill.) CGFS-type GRX, is not yet fully understood. We discovered that LeGRXS14 is relatively conserved at the N-terminus and exhibits an increase in expression level under salt and osmotic stress conditions in tomatoes. The expression levels of LeGRXS14 in response to osmotic stress peaked relatively rapidly at 30 min, while the response to salt stress only peaked at 6 h. We constructed LeGRXS14 overexpression Arabidopsis thaliana (OE) lines and confirmed that LeGRXS14 is located on the plasma membrane, nucleus, and chloroplasts. In comparison to the wild-type Col-0 (WT), the OE lines displayed greater sensitivity to salt stress, resulting in a profound inhibition of root growth under the same conditions. Analysis of the mRNA levels of the WT and OE lines revealed that salt stress-related factors, such as ZAT12, SOS3, and NHX6, were downregulated. Based on our research, it can be concluded that LeGRXS14 plays a significant role in plant tolerance to salt. However, our findings also suggest that LeGRXS14 may act as a negative regulator in this process by exacerbating Na+ toxicity and the resulting oxidative stress.
Collapse
Affiliation(s)
- Lulu Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Xiaofei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Mengke Su
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Jiaping Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Qing Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| | - Xunyan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China; (X.L.); (M.S.); (J.S.); (Q.Z.)
| |
Collapse
|
46
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
47
|
Costa CF, Lismont C, Chornyi S, Li H, Hussein MAF, Waterham HR, Fransen M. Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells. Antioxidants (Basel) 2023; 12:1236. [PMID: 37371965 DOI: 10.3390/antiox12061236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome interior and how the glutathione antioxidant system balances with peroxisomal protein thiols. So far, only one human peroxisomal glutathione-consuming enzyme has been identified: glutathione S-transferase 1 kappa (GSTK1). To study the role of this enzyme in peroxisomal glutathione regulation and function, a GSTK1-deficient HEK-293 cell line was generated and fluorescent redox sensors were used to monitor the intraperoxisomal GSSG/GSH and NAD+/NADH redox couples and NADPH levels. We provide evidence that ablation of GSTK1 does not change the basal intraperoxisomal redox state but significantly extends the recovery period of the peroxisomal glutathione redox sensor po-roGFP2 upon treatment of the cells with thiol-specific oxidants. Given that this delay (i) can be rescued by reintroduction of GSTK1, but not its S16A active site mutant, and (ii) is not observed with a glutaredoxin-tagged version of po-roGFP2, our findings demonstrate that GSTK1 contains GSH-dependent disulfide bond oxidoreductase activity.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515 Asyut, Egypt
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Jie YK, Ma HL, Jiang JJ, Cheng CH, Deng YQ, Liu GX, Fan SG, Guo ZX. Glutaredoxin 2 in the mud crab Scylla paramamosain: Identification and functional characterization under hypoxia and pathogen challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104676. [PMID: 36889371 DOI: 10.1016/j.dci.2023.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that plays a key role in antioxidant defense. In this study, a novel Grx2 gene (SpGrx2) was identified from the mud crab Scylla paramamosain, which consists of a 196 bp 5' untranslated region, a 357 bp open reading frame, and a 964 bp 3' untranslated region. The putative SpGrx2 protein has a typical single Grx domain with the active center sequence C-P-Y-C. The expression analysis revealed that the SpGrx2 mRNA was most abundant in the gill, followed by the stomach and hemocytes. Both mud crab dicistrovirus-1 and Vibrioparahaemolyticus infection as well as hypoxia could differentially induce the expression of SpGrx2. Furthermore, silencing SpGrx2 in vivo affected the expression of a series of antioxidant-related genes after hypoxia treatment. Additionally, SpGrx2 overexpression significantly increased the total antioxidant capacity of Drosophila Schneider 2 cells after hypoxia, resulting in a reduction of reactive oxygen species and malondialdehyde content. The subcellular localization results indicated that SpGrx2 was localized in both the cytoplasm and the nucleus of Drosophila Schneider 2 cells. These results indicate that SpGrx2 plays a crucial role as an antioxidant enzyme in the defense system of mud crabs against hypoxia and pathogen challenge.
Collapse
Affiliation(s)
- Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
49
|
Li C, Chen X, Zhang S, Liang C, Ma X, Zhang R, Yan H. Glutaredoxin 1 protects lens epithelial cells from epithelial-mesenchymal transition by preventing casein kinase 1α S-glutathionylation during posterior capsular opacification. Redox Biol 2023; 62:102676. [PMID: 36989576 PMCID: PMC10074848 DOI: 10.1016/j.redox.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Oxidative stress drives protein S-glutathionylation, which regulates the structure and function of target proteins and is implicated in the pathogenesis of many diseases. Glutaredoxin 1 (Grx1), a cytoplasmic deglutathionylating enzyme, maintains a reducing environment within the cell under various conditions by reversing S-glutathionylation. Grx1 performs a wide range of antioxidant activities in the lens and prevents protein-thiol mixed disulfide accumulation, reducing protein-protein aggregation, insolubilization, and apoptosis of lens epithelial cells. Oxidative stress is related to epithelial-mesenchymal transition (EMT) during posterior capsular opacification (PCO). However, whether Grx1-regulated protein S-glutathionylation plays an essential role in PCO remains unclear. In this study, we revealed that Grx1 expression was decreased in mice following cataract surgery. Furthermore, the absence of Grx1 elevated oxidative stress and protein S-glutathionylation and aggravated EMT in both in vitro and in vivo models. Concurrently, these results could be reversed by Grx1 overexpression. Notably, liquid chromatography-tandem mass spectrometry results showed that casein kinase 1α (CK1α) was susceptible to S-glutathionylation under oxidative stress, and CK1α S-glutathionylation (CK1α-SSG) was mediated at Cys249. The absence of Grx1 upregulated CK1α-SSG, subsequently decreasing the CK1α-induced phosphorylation of β-catenin at Ser45. The consequential downregulation of degradative β-catenin and upregulation of its nuclear translocation activated the Wnt/β-catenin signaling pathway and aggravated EMT. In conclusion, the downregulated expression of Grx1 in mice following cataract surgery aggravated EMT by upregulating the extent of CK1α-SSG. To the best of our knowledge, our study is the first to report how S-glutathionylation regulates CK1α activity under oxidative stress.
Collapse
|
50
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|