1
|
Song X, Zhu X, Liu X, Wang Z, Kou Z, Liu W, Chen Y, Hu B, Ding X, Chen T, Yan T. Association of Organophosphorus Pesticide and Glyphosate Exposure with Nasal Flora and Total IgE in Solar Greenhouse Workers: A Unique Farmer Group. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125698. [PMID: 39824336 DOI: 10.1016/j.envpol.2025.125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status. We collected demographic data, urine, peripheral blood and nasal swab samples from 284 solar greenhouse workers. Six metabolites in urine were detected by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Total IgE concentration was determined by enzyme-linked immunosorbent assay (ELISA). We then evaluated the association between OPs and GLY with total IgE levels using logistic regression analysis. In addition, 66 participants received 16S rDNA sequencing of nasal flora, followed by community diversity and species difference analyses to identify distinct microbial communities between normal and abnormal total IgE groups. A total of 284 participants were included in this study, of whom 132 (46.5%) and 152 (53.5%) were male and female, respectively. The median total IgE concentration in this population was 63.52 IU/mL, of which 89 (31.3%) belonged to the elevated total IgE group. Our results suggest that dimethylphosphorodithioate (DMDTP) was a risk factor for total IgE abnormality, and glyphosate (GLY) was positively associated with total IgE abnormality. Additionally, 20 differential flora were identified between the elevated and normal IgE groups, of which at least 7 were significantly associated with OPs, GLY and its metabolites. In conclusion, there was a positive correlation between exposure to OPs and GLY and total IgE abnormalities, as well as multiple nasal pathogenic flora.
Collapse
Affiliation(s)
- Xin Song
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China.
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China
| | - Zhihui Wang
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China
| | - Zhenxia Kou
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China
| | - Wu Liu
- Jingyuan Country Center for Disease Control and Prevention, Baiyin 730699, China
| | - Yonglan Chen
- Jingyuan Country Center for Disease Control and Prevention, Baiyin 730699, China
| | - Binshuo Hu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China
| | - Xiaowen Ding
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China.
| |
Collapse
|
2
|
Aker AM, Ayotte P, Gaudreau É, Lemire M. Current-use pesticide exposures in remote Inuit communities. Int J Circumpolar Health 2024; 83:2421048. [PMID: 39460982 PMCID: PMC11514410 DOI: 10.1080/22423982.2024.2421048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The global use of pesticides is increasing; however, few studies have examined the exposure of current-use pesticide exposure in Inuit populations. Some current use pesticides are also capable of long-range transport, potentially increasing exposures to northern populations. The study aim was to analyse pesticide (chlorophenoxy, organophosphates, and pyrethroid pesticide) biomarker levels in pooled samples from an Inuit population in Nunavik, Quebec. Thirty pooled samples from the Qanuilirpitaa? 2017 survey (Q2017) from individuals aged 16-80 years were included. Creatinine-adjusted arithmetic (AM) were compared by sex, age, and region sub-groups, and geometric mean concentrations (GM) were compared to those in the Canadian Health Measures Survey (CHMS). Most analysed pesticide biomarkers were detected, and PNP (a metabolite of methyl and ethyl parathion), trans-DCCA (a metabolite of pyrethroids), and 3,5,6-TCP (a metabolite of chlorpyrifos) had the highest concentrations. Concentrations in Q2017 were largely similar to or less than CHMS concentrations. Although not significant, there was a general increase in 2,4-D (a chlorophenoxy biomarker), 3,5,6-TCP, 3-PBA (a metabolite of pyrethroids), and trans-DCCA with increasing age. Concentrations were also somewhat higher in females versus males, but these were not significant. Environmental exposures to current use pesticides were detected in Nunavik and concentrations were similar to or less than those in the general Canadian population. Regular monitoring of current use pesticide exposures is recommended given the increasing global use of pesticides.
Collapse
Affiliation(s)
- Amira M. Aker
- School of Public Health, Boston University, Boston, MA, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
| |
Collapse
|
3
|
Tian T, Liu F, Fu Y, Ao J, Lin S, Cheng Q, Kayim K, Kong F, Wang L, Long X, Wang Y, Qiao J. Environmental exposure patterns to 94 current-use pesticides in women of reproductive age who are preparing for pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174624. [PMID: 38986704 DOI: 10.1016/j.scitotenv.2024.174624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Current-use pesticides (CUPs), including insecticides, fungicides, and herbicides, are extensively employed in agriculture to manage pests, diseases, and weeds. Nonetheless, their widespread application raises significant concerns regarding potential impacts on human health, particularly with reproductive health. This study focuses on exploring the landscape of CUP exposure among pre-pregnancy women. Based on a cohort study comprising 354 pre-pregnancy women of reproductive age in Beijing, China, we measured the concentrations of 94 CUPs in serum and conducted an in-depth analysis of exposure profiles, health risks, and contributing factors. The results revealed that the serum of pre-pregnancy women was contaminated with CUPs, of which the median concentrations ranged from 0.114 (fenamiphos-sulfone) to 61.2 ng/L (mefenacet). Among the 94 CUPs, 54 exhibited detection rates higher than 50 %, including 26 insecticides, 14 fungicides, and 14 herbicides. The exposure concentration profile highlighted that the insecticides contributed 56 % to the total CUP concentration percentages, with organophosphate insecticides being the primary contributors within this category (63.0 %). The average daily intake (ADI) of CUPs ranged from 2.23 to 16,432.28 ng/kg, while diflubenzuron had the highest ADI. Health risk assessments showed that exposure to a combination of total insecticides or herbicides poses a moderate risk for 15.8 % and 30.2 % of women, with mefenacet being the most significant, which showed moderate hazard in 29.4 % of participants. The overlap analysis showed that methiocarb-sulfone, diflubenzuron, and mefenacet were the dominant pesticides. In addition, maternal age, annual income level, smoking, and vitamin B12 supplementation were associated with serum CUP concentrations. Our study contributes a novel and comprehensive exposure profile of CUPs in pre-pregnancy women in northern China, providing valuable insights for evaluating the potential consequences of pre-pregnancy exposure on reproductive health. SYNOPSIS: We provided a comprehensive exposure landscape, health effects, and influential factors of 94 current-use pesticides among pre-pregnancy women in China.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Fang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Yu Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shujian Lin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qianhui Cheng
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Kalbinur Kayim
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Fei Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; National Clinical Key Specialty Construction Program, P. R. China (2023), China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, China.
| |
Collapse
|
4
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
5
|
Boon D, Burns CJ. Biomonitoring of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide: A global view. Regul Toxicol Pharmacol 2024; 152:105687. [PMID: 39168368 DOI: 10.1016/j.yrtph.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
We conducted a literature review of urinary 2,4-D in populations not associated with a herbicide application. Of the 33 studies identified, the median/mean concentrations were similar for children, adults, and pregnant women regardless of geography. Individuals with highest concentrations may have had opportunities to directly contact 2,4-D outside of an application. Most studies were conducted in populations in North America and did not examine potential sources of 2,4-D, or what factors might influence higher or lower urinary 2,4-D concentrations. In the future, prioritizing the examination of 2,4-D biomonitoring in other regions and collecting information on sources and factors influencing exposures would better our understanding of 2,4-D exposures globally. In all the studies reviewed the concentrations of urinary 2,4-D observed were orders of magnitude below the US regulatory endpoints, suggesting that people are not being exposed to 2,4-D at levels high enough to result in adverse health effects.
Collapse
Affiliation(s)
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Thompsonville, MI, 49683 USA.
| |
Collapse
|
6
|
Dang T, Sehgal N, Barr DB, Panuwet P, Liang D, Smarr M, Naksen W, Fiedler N, Promkam N, Prapamontol T, Suttiwan P, Sittiwang S, Eick SM. Association of prenatal chlorpyrifos exposure with sexually dimorphic differences in anogenital distance among Thai farmworker children. ENVIRONMENTAL RESEARCH 2024; 248:118325. [PMID: 38286251 PMCID: PMC11023773 DOI: 10.1016/j.envres.2024.118325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Organophosphate (OP) insecticides are some of the most abundantly used insecticides, and prenatal exposures have been linked to adverse maternal and child health outcomes. Anogenital distance (AGD) has emerged as an early marker of androgen activity, and later reproductive outcomes, that is sensitive to alteration by environmental chemicals. Here, we examined associations between prenatal exposure to chlorpyrifos, an OP insecticide, with AGD. Pregnant farmworkers were enrolled in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE; N = 104) between 2017 and 2019 in Northern Thailand. Concentrations of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of chlorpyrifos, were measured in composited urine samples obtained from each trimester of pregnancy. AGD was measured at 12 months of age. Sex-specific adjusted linear regression models were used to examine associations between average and trimester-specific TCPy levels and AGD. In adjusted models for females and males, increasing TCPy was consistently associated with a modest, non-significant reduction in AGD. Across both strata of sex, associations were greatest in magnitude for trimester 3 (females: β = -2.17, 95 % confidence interval (CI) = -4.99, 0.66; males: β = -3.02, 95 % CI = -6.39, 0.35). In the SAWASDEE study, prenatal chlorpyrifos exposure was not strongly associated with AGD at 12 months of age.
Collapse
Affiliation(s)
- Thomas Dang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Nancy Fiedler
- Rutgers University, Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | | | | | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
van Wendel de Joode B, Peñaloza-Castañeda J, Mora AM, Corrales-Vargas A, Eskenazi B, Hoppin JA, Lindh CH. Pesticide exposure, birth size, and gestational age in the ISA birth cohort, Costa Rica. Environ Epidemiol 2024; 8:e290. [PMID: 38617432 PMCID: PMC11008631 DOI: 10.1097/ee9.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
Purpose To examine associations of prenatal biomarkers of pesticide exposure with birth size measures and length of gestation among newborns from the Infants' Environmental Health (ISA) birth cohort, Costa Rica. Methods We included 386 singleton liveborn newborns with data on birth size measures, length of gestation, and maternal urinary biomarkers of chlorpyrifos, synthetic pyrethroids, mancozeb, pyrimethanil, and 2, 4-D during pregnancy. We associated biomarkers of exposure with birth outcomes using multivariate linear regression and generalized additive models. Results Concentrations were highest for ethylene thiourea (ETU, metabolite of mancozeb), median = 3.40; p10-90 = 1.90-6.79 µg/L, followed by 3,5,6-trichloro-2-pyridinol (TCP, metabolite of chlorpyrifos) p50 = 1.76 p10-90 = 0.97-4.36 µg/L, and lowest for 2,4-D (p50 = 0.33 p10-90 = 0.18-1.07 µg/L). Among term newborns (≥37 weeks), higher prenatal TCP was associated with lower birth weight and smaller head circumference (e.g., β per 10-fold-increase) during the second half of pregnancy = -129.6 (95% confidence interval [CI] = -255.8, -3.5) grams, and -0.61 (95% CI = -1.05, -0.17) centimeters, respectively. Also, among term newborns, prenatal 2,4-D was associated with lower birth weight (β per 10-fold-increase = -125.1; 95% CI = -228.8, -21.5), smaller head circumference (β = -0.41; 95% CI = -0.78, -0.03), and, during the second half of pregnancy, with shorter body length (β = -0.58; 95% CI = -1.09, -0.07). Furthermore, ETU was nonlinearly associated with head circumference during the second half of pregnancy. Biomarkers of pyrethroids and pyrimethanil were not associated with birth size, and none of the biomarkers explained the length of gestation. Conclusions Prenatal exposure to chlorpyrifos and 2,4-D, and, possibly, mancozeb/ETU, may impair fetal growth.
Collapse
Affiliation(s)
- Berna van Wendel de Joode
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Jorge Peñaloza-Castañeda
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Ana M. Mora
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Andrea Corrales-Vargas
- Infants’ Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley
| | - Jane A. Hoppin
- Center for Human Health and the Environment, North Carolina State University, North Carolina
- Department of Biological Sciences, North Carolina State University, North Carolina
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| |
Collapse
|
8
|
Liu J, Yang T, Li Y, Li S, Li Y, Xu S, Xia W. Associations of maternal exposure to 2,4-dichlorophenoxyacetic acid during early pregnancy with steroid hormones among one-month-old infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169414. [PMID: 38114038 DOI: 10.1016/j.scitotenv.2023.169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used hormonal herbicide, may disrupt steroid hormone homeostasis. However, evidence from population-based studies is limited, especially for one-month-old infants whose steroid hormones are in a state of adjustment to extrauterine life and can be important indicators of endocrine development. This study aimed to explore the associations between maternal 2,4-D exposure during early pregnancy and infant steroid hormone levels. METHODS The 885 mother-infant pairs were from a birth cohort in Wuhan, China. Maternal exposure to 2,4-D was determined in urine samples from early pregnancy, and nine steroid hormones were determined in infant urine. The associations of maternal 2,4-D exposure with infant steroid hormones and their product-to-precursor ratios were estimated based on generalized linear models, and bioinformatic analysis was conducted with public databases to explore the potential mechanisms involved. RESULTS The detection frequency of 2,4-D was 99.32 %, and the detection frequency of steroid hormones ranged from 98.42 % to 100.00 %. After adjusting for covariates, an interquartile range increase in 2,4-D concentrations was associated with a 7.84 % decrease in 11-deoxycortisol (95 % confidence interval, CI: -14.12 %, -1.10 %), an 8.09 % decrease in corticosterone (95 % CI: -14.56 %, -1.14 %), an 8.67 % decrease in cortisol (95 % CI: -14.43 %, -2.52 %), a 13.00 % decrease in cortisone (95 % CI: -20.64 %, -4.62 %), and an 11.17 % decrease in aldosterone (95 % CI: -19.62 %, -1.83 %). Maternal 2,4-D was also associated with lower infant cortisol/17α-OH-progesterone, cortisol/pregnenolone, and aldosterone/pregnenolone ratios. In bioinformatic analysis, pathways/biological processes related to steroid hormone synthesis and secretion were enriched from target genes of 2,4-D exposure. CONCLUSIONS Maternal urinary 2,4-D during early pregnancy was associated with lower infant urinary 11-deoxycortisol, corticosterone, cortisol, cortisone, and aldosterone, reflecting that 2,4-D exposure may interfere with infant steroid hormone homeostasis. Further efforts are still needed to study the relevant health effects of exposure to 2,4-D, particularly for vulnerable populations.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Taylor KW, Howdeshell KL, Bommarito PA, Sibrizzi CA, Blain RB, Magnuson K, Lemeris C, Tracy W, Baird DD, Jackson CL, Gaston SA, Rider CV, Walker VR, Rooney AA. Systematic evidence mapping informs a class-based approach to assessing personal care products and pubertal timing. ENVIRONMENT INTERNATIONAL 2023; 181:108307. [PMID: 37948866 DOI: 10.1016/j.envint.2023.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Personal care products (PCPs) contain many different compounds and are a source of exposure to endocrine disrupting chemicals (EDCs), including phthalates and phenols. Early-life exposure to EDCs commonly found in PCPs has been linked to earlier onset of puberty. OBJECTIVE To characterize the human and animal evidence on the association between puberty-related outcomes and exposure to PCPs and their chemical constituents and, if there is sufficient evidence, identify groups of chemicals and outcomes to support a systematic review for a class-based hazard or risk assessment. METHODS We followed the OHAT systematic review framework to characterize the human and animal evidence on the association between puberty-related health outcomes and exposure to PCPs and their chemical constituents. RESULTS Ninety-eight human and 299 animal studies that evaluated a total of 96 different chemicals were identified and mapped by key concepts including chemical class, data stream, and puberty-related health outcome. Among these studies, phthalates and phenols were the most well-studied chemical classes. Most of the phthalate and phenol studies examined secondary sex characteristics and changes in estradiol and testosterone levels. Studies evaluating PCP use and other chemical classes (e.g., parabens) had less data. CONCLUSIONS This systematic evidence map identified and mapped the published research evaluating the association between exposure to PCPs and their chemical constituents and puberty-related health outcomes. The resulting interactive visualization allows researchers to make evidence-based decisions on the available research by enabling them to search, sort, and filter the literature base of puberty-related studies by key concepts. This map can be used by researchers and regulators to prioritize and target future research and funding to reduce uncertainties and address data gaps. It also provides information to inform a class-based hazard or risk assessment on the association between phthalate and phenol exposures and puberty-related health outcomes.
Collapse
Affiliation(s)
- Kyla W Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Kembra L Howdeshell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Paige A Bommarito
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | - Donna D Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chandra L Jackson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; National Institute on Minority Health and Health Disparities, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Symielle A Gaston
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Vickie R Walker
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Andrew A Rooney
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Lin S, Li J, Yan X, Pei L, Shang X. Maternal pesticide exposure and risk of preterm birth: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2023; 178:108043. [PMID: 37364307 DOI: 10.1016/j.envint.2023.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Maternal pesticide exposure might be associated with adverse pregnancy outcomes through triggering inflammation and oxidative stress and disrupting endocrine functions. Yet the association between prenatal pesticide exposure and risk of preterm birth remains inconclusive. OBJECTIVES To conduct a systematic review and meta-analysis of human observational studies using the Office of Health Assessment and Translation (OHAT) framework to explore the association of per ten-fold increase of pesticide concentrations in maternal biological samples during pregnancy with risk of preterm birth and length of gestational age at birth. DATA SOURCE Five English (PubMed, Embase, Cochrane Library, Web of Science and Scopus) and 3 Chinese databases (China national knowledge infrastructure (CNKI), Wanfang Data, and Chinese Biomedical Literature Database (CBM)) were searched till Jan 18th, 2023. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS To be included, pesticide exposure should be measured in maternal biological samples during pregnancy and in log-transformed forms. The primary outcome was preterm birth and the secondary outcome was gestational age at birth. STUDY APPRAISAL, SYNTHESIS METHODS AND CONFIDENCE ASSESSMENT Quality of studies was evaluated using OHAT Risk of Bias Tool. Evidence was quantitatively synthesized with Correlated and Hierarchical Effects (CHE) model. The confidence rating in the body of evidence was done using OHAT. RESULTS A total of 21 studies reported by 18 papers were included, with 7 studies for preterm birth and 19 for gestational age at birth. The meta-analysis found a ten-fold increase of pesticide concentrations was potentially associated with risk of preterm birth (pooled OR = 1.28; 95%CI: 0.93, 1.78) and shortened gestational age at birth (β = -0.10; 95%CI: -0.21, 0.01). Sampling biospecimens in different trimesters was identified as a potential modifier in the association between pesticide exposure and length of gestational age (F = 2.77, P < 0.05). For studies that collected samples at any time during pregnancy, pesticide exposure was found to be associated with shortened length of gestational age (β = -0.43; 95%CI: -0.81, -0.06). The confidence rating in the body of evidence was "moderate" and "very low" for preterm birth and gestational age at birth, respectively. CONCLUSION Our result suggested moderate evidence of an association between pesticide exposure and higher risk of preterm birth. Yet more studies are still needed with larger sample size and careful considerations of confounders and accuracy of outcome measurements. Attention is also required on other pesticide compounds in addition to organochlorine and organophosphorus pesticides, and on windows of susceptibility.
Collapse
Affiliation(s)
- Shiqi Lin
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Jiajia Li
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Xiaojin Yan
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China
| | - Lijun Pei
- Institute of Population Research/China Center on Population Health and Development, Peking University, Beijing 100871, China.
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210002, China
| |
Collapse
|
11
|
Kumar D, Sinha SN, Vasudev K. Development and Validation of a New UFLC-MS/MS Method for the Detection of Organophosphate Pesticide Metabolites in Urine. Molecules 2023; 28:5800. [PMID: 37570770 PMCID: PMC10421278 DOI: 10.3390/molecules28155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
To monitor human exposure to pesticides, experts commonly measure their metabolites in urine, particularly dialkyl phosphates (DAPs), which include diethyl phosphate (DEP), Diethyl thiophosphate (DETP), diethyl dithiophosphate (DEDTP), dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP) and dimethyl dithiophosphate (DMDTP)to monitor the metabolites of organophosphates. These DAP metabolites are a urinary biomarker for assessing pesticide exposure and potential health risks. This study presented a new screening method combining ultrafast liquid chromatography with tandem mass spectrometry (UFLC-MS/MS) to detect six DAP metabolites in human urine. The study also compared standard sample extraction methods, namely, liquid-liquid extraction (LLE); quick, easy, cheap, effective, ruggedand safe (QuEChERS); and lyophilization. After a comprehensive analysis of the methods used to extract the analytes, including recovery rate, repeatability and reproducibility, the liquid-liquid extraction (LLE) method was found to be the best. It had a high recovery rate, was easy to handle, required less sample volume and had a short extraction time. Therefore, the LLE method was chosen for further analysis. The results showed excellent performance with high recoveries between 93% and 102%, precise repeatability (RSD) between 0.62% and 5.46% and acceptable reproducibility values (RSD) between 0.80% and 11.33%. The method also had limits of detection (LOD) ranging from 0.0201 ng/mL to 0.0697 ng/mL and limits of quantification (LOQ) ranging from 0.0609 ng/mL to 0.2112 ng/mL. Furthermore, the UFLC-MS/MS method was validated based on the SANTE guidance and successfully analyzed 150 urine samples from farmers and non-farmers. This validated method proved useful for biomonitoring studies focusing on OP pesticide exposure. It offers several advantages, such as a reduced need for samples, chemicals and materials, and a shorter analysis time. The method is sensitive and selective in detecting metabolites in human urine, making it a valuable approach for the practical and efficient assessment of pesticide exposure.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
- Department of Biochemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Kasturi Vasudev
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| |
Collapse
|
12
|
Gimenez-Asensio MJ, Hernandez AF, Romero-Molina D, Gonzalez-Alzaga B, Pérez-Luzardo O, Henríquez-Hernández LA, Boada LD, García-Cortés H, Lopez-Flores I, Sanchez-Piedra MD, Aguilar-Garduño C, Lacasaña M. Effect of prenatal exposure to organophosphates and pyrethroid pesticides on neonatal anthropometric measures and gestational age. ENVIRONMENTAL RESEARCH 2023:116410. [PMID: 37315756 DOI: 10.1016/j.envres.2023.116410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Several studies have examined the association between prenatal exposure to organophosphate and pyrethroid pesticides and their impact on foetal growth and newborn anthropometry; however, the available evidence is limited and inconclusive. This study examined whether prenatal organophosphate and pyrethroid pesticide exposure was associated with anthropometric measures at birth (weight, length, head circumference), ponderal index, gestational age, and prematurity in 537 mother-child pairs. These were randomly selected from the 800 pairs participating in the prospective birth cohort GENEIDA (Genetics, early life environmental exposures and infant development in Andalusia). Six non-specific organophosphate metabolites (dialkylphosphates, DAPs), one metabolite relatively specific to chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy) and a common metabolite to several pyrethroids (3-phenoxybenzoic acid, 3-PBA) were measured in maternal urine from the 1st and 3rd pregnancy trimesters. Information on anthropometric measures at birth, gestational age and prematurity was retrieved from medical records. The sum on a molar basis of DAPs with methyl (ƩDMs) and ethyl (ƩDEs) moieties and the sum of the 6 DAPs metabolites (ƩDAPs) was calculated for both trimesters of pregnancy. High urinary levels of dimethyl phosphate (DMP) during the 3rd trimester were associated with a decrease in birth weight (β = -0.24; 95% CI: 0.41; -0.06) and birth length (β = -0.20; 95% CI: 0.41; 0.02). Likewise, ΣDMs during 3rd trimester were near-significantly associated with decreased birth weight (β = -0.18; 95% CI: 0.37; 0.01). In turn, increased urinary TCPy during 1st trimester was associated with a decreased head circumference (β = -0.31; 95% CI: 0.57; -0.06). Finally, an increase in 3-PBA in the 1st trimester was associated with a decreased gestational age (β = -0.36 95% CI: 0.65-0.08), whereas increased 3-PBA at 1st and 3rd trimester was associated with prematurity. These results indicate that prenatal exposure to organophosphate and pyrethroid insecticides could affect normal foetal growth, shorten gestational age and alter anthropometric measures at birth.
Collapse
Affiliation(s)
- María José Gimenez-Asensio
- Andalusian School of Public Health, Granada, Spain; Fundación para La Investigación Biosanitaria de Andalucía Oriental (FIBAO), Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain
| | - Antonio F Hernandez
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Desire Romero-Molina
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Statistics and Operations Research Department, Faculty of Sciences, University of Granada, Granada, Spain
| | - Beatriz Gonzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain; Fundación para La Investigación Biosanitaria de Andalucía Oriental (FIBAO), Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Octavio Pérez-Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Luis D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Helena García-Cortés
- Andalusian School of Public Health, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain
| | - Inmaculada Lopez-Flores
- Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | - Marina Lacasaña
- Andalusian School of Public Health, Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.GRANADA. Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| |
Collapse
|
13
|
Lesseur C, Kaur K, Kelly SD, Hermetz K, Williams R, Hao K, Marsit CJ, Caudle WM, Chen J. Effects of prenatal pesticide exposure on the fetal brain and placenta transcriptomes in a rodent model. Toxicology 2023; 490:153498. [PMID: 37019170 PMCID: PMC10152924 DOI: 10.1016/j.tox.2023.153498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Organophosphate and pyrethroid pesticides are among the most extensively used insecticides worldwide. Prenatal exposures to both classes of pesticides have been linked to a wide range of neurobehavioral deficits in the offspring. The placenta is a neuroendocrine organ and the crucial regulator of the intrauterine environment; early-life toxicant exposures could impact neurobehavior by disrupting placental processes. Female C57BL/6 J mice were exposed via oral gavage to an organophosphate, chlorpyrifos (CPF) at 5 mg/kg, a pyrethroid, deltamethrin (DM), at 3 mg/kg, or vehicle only control (CTL). Exposure began two weeks before breeding and continued every three days until euthanasia at gestational day 17. The transcriptomes of fetal brain (CTL n = 18, CPF n = 6, DM n = 8) and placenta (CTL n = 19, CPF n = 16, DM n = 12) were obtained through RNA sequencing, and resulting data was evaluated using weighted gene co-expression networks, differential expression, and pathway analyses. Fourteen brain gene co-expression modules were identified; CPF exposure disrupted the module related to ribosome and oxidative phosphorylation, whereas DM disrupted the modules related to extracellular matrix and calcium signaling. In the placenta, network analyses revealed 12 gene co-expression modules. While CPF exposure disrupted modules related to endocytosis, Notch and Mapk signaling, DM exposure dysregulated modules linked to spliceosome, lysosome and Mapk signaling pathways. Overall, in both tissues, CPF exposure impacted oxidative phosphorylation, while DM was linked to genes involved in spliceosome and cell cycle. The transcription factor Max involved in cell proliferation was overexpressed by both pesticides in both tissues. In summary, gestational exposure to two different classes of pesticide can induce similar pathway-level transcriptome changes in the placenta and the brain; further studies should investigate if these changes are linked to neurobehavioral impairments.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Kirtan Kaur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Sean D Kelly
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Randy Williams
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
14
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
15
|
Guimarães J, Bracchi I, Pinheiro C, Moreira NX, Coelho CM, Pestana D, Prucha MDC, Martins C, Domingues VF, Delerue-Matos C, Dias CC, Azevedo LFR, Calhau C, Leite JC, Ramalho C, Keating E, Fernandes VC. Association of 3-Phenoxybenzoic Acid Exposure during Pregnancy with Maternal Outcomes and Newborn Anthropometric Measures: Results from the IoMum Cohort Study. TOXICS 2023; 11:125. [PMID: 36851000 PMCID: PMC9958656 DOI: 10.3390/toxics11020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The aims of this study were to characterize the exposure of pregnant women living in Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018 to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry (GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) µg/g creatinine (n = 145). 3-PBA excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049), and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter (p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a putative 3-PBA-thyroid hormone antagonistic effect. 3-PBA levels were not associated with the anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal clinical features.
Collapse
Affiliation(s)
- Juliana Guimarães
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabella Bracchi
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cátia Pinheiro
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nara Xavier Moreira
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Nutrition and Dietetics (MND), Faculty of Nutrition Emília de Jesus Ferreiro (FNEJF), Fluminense Federal University (UFF), Niterói 20010-010, RJ, Brazil
| | - Cláudia Matta Coelho
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Diogo Pestana
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria do Carmo Prucha
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Cristina Martins
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| | - Cláudia C. Dias
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Filipe R. Azevedo
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Conceição Calhau
- CINTESIS@RISE, Nutrition and Metabolism, NOVA Medical School│FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - João Costa Leite
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Carla Ramalho
- Department of Obstetrics, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
- Department of Ginecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisa Keating
- CINTESIS@RISE, Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Politécnico do Porto, 4249-015 Porto, Portugal
| |
Collapse
|
16
|
Lehmler HJ, Simonsen D, Garcia AQ, Irfan NM, Dean L, Wang H, von Elsterman M, Li X. A systematic review of human biomonitoring studies of 3-phenoxybenzoic acid, a urinary biomarker pyrethroid insecticide exposure, 1997 to 2019. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100018. [PMID: 36644572 PMCID: PMC9838198 DOI: 10.1016/j.heha.2022.100018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrethroid insecticides are used, for example, in agriculture, indoor environments, and mosquito control programs, resulting in human exposure. Urinary 3-phenoxybenzoic acid (3-PBA) is a nonspecific biomarker for exposure to many pyrethroids. This systematic review identified human biomonitoring studies with 3-PBA that characterize environmental pyrethroid exposures in children and adolescents, pregnant women, and adults or occupational pyrethroid exposures relative to the National Health and Nutrition Examination Survey (NHANES) populations in the United States (US). PubMed, Embase, and SciFinder were searched for "3-phenoxybenzoic acid ", CAS No. 3739-38-6, and urine or urinary or urine level. Duplicate studies and studies meeting the exclusion criteria were removed from the search results based on predetermined exclusion criteria. This screening process identified 57 papers. Twenty-one, thirteen, twenty-two, and eleven manuscripts reported urinary 3-PBA levels in children, pregnant women, environmentally exposed adults, and occupationally exposed adults, respectively. Median 3-PBA levels ranged from 0.2 to 4.7 μg/g creatinine in children (1999-2016), 0.23-1.55 μg/g creatinine in pregnant women (1997-2014), and 0.11-3.34 μg/g creatinine in environmentally exposed adults (1999-2017). 3-PBA levels in occupationally exposed adults were significantly higher than in environmentally exposed populations, ranging from 0.43 to 14 μg/g creatinine (2004-2017). 3-PBA levels in children and adults from the general North American population increased significantly with the sampling year. A decrease in 3-PBA levels was noted in the adult cohorts from PR China and Japan. 3-PBA levels in most studies appeared to be comparable to levels in the NHANES populations; however, some smaller studies had high pyrethroid exposures. Factors contributing to higher 3-PBA levels in the general population included primarily dietary exposures and residential and agricultural pyrethroid applications. These findings demonstrate that pyrethroid exposures are near-ubiquitous worldwide and, in some regions, appear to increase over time. Thus, exposures to pyrethroid insecticides represent a continuing public health concern.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: The University of Iowa, Department of Occupational and Environmental Health, University of Iowa Research Park, #221 IREH, Iowa City, IA 52242-5000, USA, (H.-J. Lehmler)
| | - Derek Simonsen
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA
| | - Alana Quintero Garcia
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nafis Md Irfan
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Dean
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Alcala CS, Lichtveld MY, Wickliffe JK, Zijlmans W, Shankar A, Rokicki E, Covert H, Abdoel Wahid FZ, Hindori-Mohangoo AD, van Sauers-Muller A, van Dijk C, Roosblad J, Codrington J, Wilson MJ. Characterization of Urinary Pesticide Metabolite Concentrations of Pregnant Women in Suriname. TOXICS 2022; 10:toxics10110679. [PMID: 36355970 PMCID: PMC9695383 DOI: 10.3390/toxics10110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Prenatal exposure to pesticides and the association with adverse health outcomes have been examined in several studies. However, the characterization of pesticide exposure among Surinamese women during pregnancy has not been assessed. As part of the Caribbean Consortium of Research in Environmental and Occupational Health research program, 214 urine samples were collected from pregnant women living in three regions in Suriname with different agricultural practices: capital Paramaribo, the rice producing district Nickerie, and the tropical rainforest, the Interior. We used isotope dilution tandem mass spectrometry to quantify urinary concentrations of biomarkers of three pesticide classes, including phenoxy acid herbicides and organophosphate and pyrethroid insecticides, all of which are commonly used in agricultural and residential settings in Suriname. We observed that participants residing in Nickerie had the highest urinary metabolite concentrations of 2,4-dichlorophenoxyacetic acid and pyrethroids compared to those from Paramaribo or the Interior. Paramaribo had the highest concentrations of organophosphate metabolites, specifically dialkyl phosphate metabolites. Para-nitrophenol was detected in samples from Paramaribo and the Interior. Samples from Nickerie had higher median urinary pesticide concentrations of 2,4-dichlorophenoxyacetic acid (1.06 μg/L), and the following metabolites, 3,5,6-trichloro-2-pyridinol (1.26 μg/L), 2-isopropyl-4-methyl-6-hydroxypyrimidine (0.60 μg/L), and 3-phenoxybenzoic acid (1.34 μg/L), possibly due to residential use and heavy rice production.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maureen Y. Lichtveld
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Jeffrey K. Wickliffe
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Arti Shankar
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ellen Rokicki
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hannah Covert
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Firoz Z. Abdoel Wahid
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
- Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Ashna D. Hindori-Mohangoo
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Foundation for Perinatal Interventions and Research in Suriname (Perisur), Paramaribo, Suriname
| | - Alies van Sauers-Muller
- Pesticide Division, Ministry of Agriculture, Animal Husbandry, and Fisheries of Suriname, Paramaribo, Suriname
| | - Carmen van Dijk
- Pesticide Division, Ministry of Agriculture, Animal Husbandry, and Fisheries of Suriname, Paramaribo, Suriname
| | - Jimmy Roosblad
- Clinical Chemical Laboratory, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - John Codrington
- Clinical Chemical Laboratory, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Mark J. Wilson
- Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
19
|
Wang Y, Wan Y, Cao M, Wang A, Mahai G, He Z, Xu S, Xia W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. CHEMOSPHERE 2022; 304:135266. [PMID: 35688197 DOI: 10.1016/j.chemosphere.2022.135266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Widespread exposure to herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) could have potential adverse health effects on pregnant women. However, related data are scarce. This study aimed to characterize 2,4-D exposure among three trimesters of pregnancy and to explore the relationship of 2,4-D with oxidative stress biomarkers [i.e., 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxy guanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA)] in urine. The present study analyzed 3675 urine samples of 1225 women (across the three trimesters of pregnancy) in Wuhan, central China. 2,4-D was detectable in 97.4% of the urine samples. The median unadjusted concentration of 2,4-D was 0.12 ng/mL, and the corresponding concentration adjusted by urinary specific gravity (SG-adjusted) was 0.13 ng/mL. The intraclass correlation coefficient of 2,4-D (SG-adjusted concentrations) was 0.07 across the three trimesters. Significantly higher urinary levels of 2,4-D were found in samples from younger pregnant women/samples collected during winter. In addition, significantly positive association between urinary concentrations of oxidative stress biomarkers and 2,4-D were found in repeated analysis; an interquartile range increase in 2,4-D was significantly (p < 0.001) associated with a 20.8% increase in 8-OHG, a 26.7% increase in 8-OHdG, and a 30.7% increase in HNEMA, respectively. Such associations were also found in trimester-specific analyses. This is the first time to quantify the urinary 2,4-D of pregnant women in China, and this study found significantly positive associations of 2,4-D with oxidative stress biomarkers. Further studies are needed to verify such associations and explore other potential adverse effects of 2,4-D exposure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
20
|
Higher proportion of agricultural land use around the residence is associated with higher urinary concentrations of AMPA, a glyphosate metabolite. Int J Hyg Environ Health 2022; 246:114039. [DOI: 10.1016/j.ijheh.2022.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
|
21
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
22
|
Elser BA, Hing B, Stevens HE. A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Crit Rev Toxicol 2022; 52:371-388. [PMID: 36345971 PMCID: PMC9930199 DOI: 10.1080/10408444.2022.2122769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Pyrethroid insecticides are broadly used in agriculture and household products throughout the world. Exposure to this class of insecticides is widespread, and while generally believed to be safe for use, there is increasing concern regarding their effects on neurodevelopment. Due to the critical roles that molecular targets of pyrethroids play in the regulation of neurodevelopment, particular focus has been placed on evaluating the effects of in utero and childhood pyrethroid exposure on child cognition and behavior. As such, this narrative review synthesizes an assessment of converging study types; we review reports of neonatal pyrethroid levels together with current epidemiological literature that convergently address the risk for developmental toxicity linked to exposure to pyrethroid insecticides. We first address studies that assess the degree of direct fetal exposure to pyrethroids in utero through measurements in cord blood, meconium, and amniotic fluid. We then focus on the links between prenatal exposure to these insecticides and child neurodevelopment, fetal growth, and other adverse birth outcomes. Furthermore, we assess the effects of postnatal exposure on child neurodevelopment through a review of the data on pediatric exposures and child cognitive and behavioral outcomes. Study quality was evaluated individually, and the weight of evidence was assessed broadly to characterize these effects. Overall, while definitive conclusions cannot be reached from the currently available literature, the available data suggest that the potential links between pyrethroid exposure and child neurodevelopmental effects deserve further investigation.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
23
|
Yusà V, F Fernández S, Dualde P, López A, Lacomba I, Coscollà C. Exposure to non-persistent pesticides in the Spanish population using biomonitoring: A review. ENVIRONMENTAL RESEARCH 2022; 205:112437. [PMID: 34838757 DOI: 10.1016/j.envres.2021.112437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Although Spain does not have a regular national human biomonitoring program yet, different research groups are active in evaluating the exposure of children and adults to chemicals. In the last seven years, several studies in Spain have evaluated the internal exposure of the population to currently used pesticides. The present review analyzes the scope of these studies, the employed analytical methods and the main results of the exposure and risk, mainly for children and mothers. The frequency of exposure to biomarkers of exposure to organophosphate pesticides is high. Some non-specific dialkyl phosphate metabolites (DAPs), such as the diethyl phosphate (DEP), present Detection Frequencies (DFs) in the range of 65-92% in various studies. Also, the specific biomarker of the chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy), achieves Detection Frequencies between 74% and 100% in many studies. For pyrethroids, the metabolite 3-phenoxybenzoic acid (PBA) is present, in general, in more than the 65% of the studied samples. Highly polar herbicides were only assessed in one study and both glyphosate and its metabolite aminomethylphosphonic acid showed Detection Frequencies around 60%. However, putting the biomonitoring data in a risk assessment context, the mean Hazard Quotient (HQ), used as a metric for the individual risk, ranges from 0.0006 (glyphosate) to 0.93 in farm workers (parathion), which means that is unlike that the exposure poses a health concern (HQ < 1).
Collapse
Affiliation(s)
- Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| |
Collapse
|
24
|
Baumert BO, Fiedler N, Prapamontol T, Naksen W, Panuwet P, Hongsibsong S, Wongkampaun A, Thongjan N, Lee G, Sittiwang S, Dokjunyam C, Promkam N, Pingwong S, Suttiwan P, Siriwong W, Barry Ryan P, Boyd Barr D. Urinary Concentrations of Dialkylphosphate Metabolites of Organophosphate pesticides in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE). ENVIRONMENT INTERNATIONAL 2022; 158:106884. [PMID: 34583095 PMCID: PMC8688265 DOI: 10.1016/j.envint.2021.106884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Measurements of urinary dialkyl phosphate (DAP) metabolites are often used to characterize exposures to organophosphate (OP) insecticides; however, some challenges to using urinary DAP metabolites as an exposure measure exist. OP insecticides have short biological half-lives with measurement in a single urine sample typically only reflecting recent exposure within the last few days. Because of the field staff and participant burden of longitudinal sample collection and the high cost of multiple measurements, typically only one or two urine samples have been used to evaluate OP insecticide exposure during pregnancy, which is unlikely to capture an accurate picture of prenatal exposure. METHODS We recruited pregnant farmworker women in Chom Thong and Fang, two districts of Chiang Mai province in northern Thailand (N = 330) into the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) from 2017 to 2019. We collected up to 6 serial urine samples per participant during gestation and composited the samples to represent early, mid, and late pregnancy. We measured concentrations of urinary DAP metabolites in the composited urine samples and evaluated the within- and between-participant variability of these levels. We also investigated predictors of OP insecticide exposure. RESULTS DAP metabolite concentrations in serial composite samples were weakly to moderately correlated. Spearman correlations indicated that composite urine samples were more highly correlated in Fang participants than in Chom Thong participants. The within-person variances (0.064-0.65) exceeded the between-person variances for DETP, DEP, ∑DEAP, DMP, DMTP, ∑DMAP, ∑DAP. The intraclass correlations (ICCs) for the volume-based individual metabolite levels (ng/mL) ranged from 0.10 to 0.66. For ∑DEAP, ∑DMAP, and ∑DAP the ICCs were, 0.47, 0.17, 0.45 respectively. We observed significant differences between participants from Fang compared to those from Chom Thong both in demographic and exposure characteristics. Spearman correlations of composite samples from Fang participants ranged from 0.55 to 0.66 for the ∑DEAP metabolite concentrations in Fang indicating moderate correlation between pregnancy periods. The ICCs were higher for samples from Fang participants, which drove the overall ICCs. CONCLUSIONS Collecting multiple (∼6) urine samples during pregnancy rather than just 1 or 2 improved our ability to accurately assess exposure during the prenatal period. By compositing the samples, we were able to still obtain trimester-specific information on exposure while keeping the analytic costs and laboratory burden low. This analysis also helped to inform how to best conduct future analyses within the SAWASDEE study. We observed two different exposure profiles in participants in which the concentrations and variability in data were highly linked to the residential location of the participants.
Collapse
Affiliation(s)
- Brittney O Baumert
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University, Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Parinya Panuwet
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Surat Hongsibsong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Anchalee Wongkampaun
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Nathaporn Thongjan
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Grace Lee
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | | | - Chayada Dokjunyam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Sureewan Pingwong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | | | - Wattasit Siriwong
- Chulalongkorn University, College of Public Health Sciences, Bangkok, Thailand
| | - P Barry Ryan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| |
Collapse
|
25
|
van den Dries MA, Keil AP, Tiemeier H, Pronk A, Spaan S, Santos S, Asimakopoulos AG, Kannan K, Gaillard R, Guxens M, Trasande L, Jaddoe VWV, Ferguson KK. Prenatal Exposure to Nonpersistent Chemical Mixtures and Fetal Growth: A Population-Based Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117008. [PMID: 34817287 PMCID: PMC8612241 DOI: 10.1289/ehp9178] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of nonpersistent chemicals is universal. Most studies examining these chemicals in association with fetal growth have been restricted to single exposure models, ignoring their potentially cumulative impact. OBJECTIVE We aimed to assess the association between prenatal exposure to a mixture of phthalates, bisphenols, and organophosphate (OP) pesticides and fetal measures of head circumference, femur length, and weight. METHODS Within the Generation R Study, a population-based cohort in Netherlands (n=776), urinary concentrations of 11 phthalate metabolites, 3 bisphenols, and 5 dialkylphosphate (DAP) metabolites were measured at <18, 18-25, and >25 weeks of gestation and averaged. Ultrasound measures of head circumference, femur length, and estimated fetal weight (EFW) were taken at 18-25 and >25 weeks of gestation, and measurements of head circumference, length, and weight were performed at delivery. We estimated the difference in each fetal measurement per quartile increase in all exposures within the mixture with quantile g-computation. RESULTS The average EFW at 18-25 wk and >25wk was 369 and 1,626g, respectively, and the average birth weight was 3,451g. Higher exposure was associated with smaller fetal and newborn growth parameters in a nonlinear fashion. At 18-25 wk, fetuses in the second, third, and fourth quartiles of exposure (Q2-Q4) had 26g [95% confidence intervals (CI):-38, -13], 35g (95% CI: -55, -15), and 27g (95% CI: -54, 1) lower EFW compared with those in the first quartile (Q1). A similar dose-response pattern was observed at >25wk, but all effect sizes were smaller, and no association was observed comparing Q4 to Q1. At birth, we observed no differences in weight between Q1-Q2 or Q1-Q3. However, fetuses in Q4 had 91g (95% CI: -258, 76) lower birth weight in comparison with those in Q1. Results observed at 18-25 and >25wk were similar for femur length; however, no differences were observed at birth. No associations were observed for head circumference. DISCUSSION Higher exposure to a mixture of phthalates, bisphenols, and OP pesticides was associated with lower EFW in the midpregnancy period. In late pregnancy, these differences were similar but less pronounced. At birth, the only associations observed appeared when comparing individuals from Q1 and Q4. This finding suggests that even low levels of exposure may be sufficient to influence growth in early pregnancy, whereas higher levels may be necessary to affect birth weight. Joint exposure to nonpersistent chemicals may adversely impact fetal growth, and because these exposures are widespread, this impact could be substantial. https://doi.org/10.1289/EHP9178.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anjoeka Pronk
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Suzanne Spaan
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
- Robert F. Wagner School of Public Service, New York University, New York, New York, USA
- School of Global Public Health, New York University, New York, New York, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
26
|
Balalian AA, Liu X, Herbstman JB, Daniel S, Whyatt R, Rauh V, Calafat AM, Wapner R, Factor-Litvak P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. ENVIRONMENTAL RESEARCH 2021; 201:111539. [PMID: 34174256 PMCID: PMC8478820 DOI: 10.1016/j.envres.2021.111539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Organophosphate insecticides and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) are used to protect crops or control weeds. Pyrethroids are used to manage pests both in agriculture and in residences, and to reduce the transmission of insect-borne diseases. Several studies have reported inverse associations between exposure to organophosphates (as a larger class) and birth outcomes but these associations have not been conclusive for pyrethroids or 2,4-D, specifically. We aimed to investigate the association between birth outcomes and urinary biomarkers of pyrethroids, organophosphates and 2,4-D among healthy pregnant women living in New York City. METHODS We quantified urinary biomarkers of 2,4-D and of organophosphate and pyrethroid insecticides from 269 women from two cohorts: a) Thyroid Disruption And Infant Development (TDID) and b) Sibling/Hermanos cohort (S/H). We used weighted quantile sum regression and multivariable linear regression models to evaluate the associations between a mixture of urinary creatinine-adjusted biomarker concentrations and birth outcomes of length, birthweight and head circumference, controlling for covariates. We also used linear regression models and further classified biomarkers concentrations into three categories (i: non-detectable; ii: between the limit of detection and median; and iii: above the median) to investigate single pesticides' association with these birth outcomes. Covariates considered were delivery mode, ethnicity, marital status, education, income, employment status, gestational age, maternal age and pre-pregnancy BMI. Analyses were conducted separately for each cohort and stratified by child sex within each cohort. RESULTS In TDID cohort, we found a significant inverse association between weighted quantile sum of mixture of pesticides and head circumference among boys. We found that the urinary biomarkers of organophosphate chlorpyrifos, TCPy, and 2,4-D had the largest contribution to the overall mixture effect in the TDID cohort among boys (b = -0.57, 95%CI: -0.92, -0.22) (weights = 0.81 and 0.16 respectively) but not among girls. In the multivariable linear regression models, we found that among boys, for each log unit increase in 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of organophosphate chlorpyrifos) in maternal urine, there was a -0.56 cm decrease in head circumference (95%CI: -0.92, -0.19). Among boys in the TDID cohort, 2,4-D was associated with smaller head circumference in the second (b = -1.57; 95%CI: -2.74, -0.39) and third (b = -1.74, 95%CI: -2.98, -0.49) concentration categories compared to the first. No associations between pyrethroid and organophosphate biomarkers and birth outcomes were observed in girls analyzed in WQS regression or individually in linear regression models in TDID cohort. In the S/H cohort, head circumference increased with higher concentrations of 3-phenoxybenzoic acid (3-PBA, a biomarker of several pyrethroids) (b = 0.53, 95%CI: 0.03, 1.04) among boys and head circumference was lower among girls in the high compared to low category of 2,4-D (b = -2.27, 95%CI: - 3.98, -0.56). Birth length was also positively associated with the highest concentration of 2,4-D compared to the lowest among boys (b = 4.01, 95%CI: 0.02,8.00). CONCLUSIONS Weighted quantile sum of pesticides was negatively associated with head circumference among boys in one cohort. Nonetheless, due to directional homogeneity assumption in WQS no positive associations were detected. In linear regression models with individual pesticides, concentrations of TCPy were inversely associated with head circumference in boys and higher concentrations of 2,4-D was inversely associated with head circumference among girls; 2,4-D concentrations were also associated with higher birth length among boys. Concentrations of 3-PBA was positively associated with head circumference among boys.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sharon Daniel
- Department of Public Health, Israel; Department of Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center, Beer-Sheva, Israel; Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Andersen HR, Dalsager L, Jensen IK, Timmermann CAG, Olesen TS, Trecca F, Nielsen F, Schoeters G, Kyhl HB, Grandjean P, Bilenberg N, Bleses D, Jensen TK. Prenatal exposure to pyrethroid and organophosphate insecticides and language development at age 20-36 months among children in the Odense Child Cohort. Int J Hyg Environ Health 2021; 235:113755. [PMID: 33962121 DOI: 10.1016/j.ijheh.2021.113755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Prenatal exposure to organophosphate and pyrethroid insecticides has been associated with impaired neurodevelopment. Few longitudinal studies have investigated associations with early language development in populations with mainly low dietary exposure. OBJECTIVE To investigate associations between biomarkers of maternal gestational exposure to organophosphate and pyrethroid insecticides and the child's language development at age 20-36 months in the prospective Odense Child Cohort. METHODS Metabolites of organophosphate and pyrethroid insecticides were measured in maternal urine samples collected at gestational week 28. Language development was assessed among 755 singletons at age 20-36 months using the Vocabulary and Complexity scores of the MacArthur-Bates Communicative Development Inventories, standardized into age and sex specific percentile scores according to a Danish reference study. Multiple logistic regression models were used to estimate the odds of scoring below the 15th percentile scores in relation to maternal urinary insecticide metabolite concentrations after adjustment for confounders. RESULTS The generic pyrethroid metabolite 3-phenoxybenzoic acid (3-PBA) and the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCPY) were detectable in more than 90% of the urine samples analyzed. Likewise, 82.2% had detectable concentrations of diethyl phosphates (DE) and 58.4% of dimethyl phosphates (DM), both of which are common metabolites of organophosphate insecticides. None of the metabolites was associated with higher odds of delayed results below the 15th percentile language scores. In contrast, reduced probability for scoring below the 15th percentile Vocabulary score was seen for the highest tertile of 3-PBA in boys and for the upper tertile of TCPY and DE in girls. CONCLUSION In this prospective cohort, with predominantly dietary insecticide exposure, we found no evidence that gestational exposure to organophosphate or pyrethroid insecticides adversely affected early language development in the children. The observed indication of a positive effect of insecticides on language development may be explained by residual and unmeasured confounding from socioeconomic factors and dietary habits. Follow-up of these children should include assessment of more complex cognitive functions in later childhood, as well as associations with their own postnatal insecticide exposure.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark.
| | - Louise Dalsager
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Inge Kjær Jensen
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Trine Staak Olesen
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Fabio Trecca
- School of Communication and Culture - Trygfondens Centre for Child Research, Aarhus University, Denmark
| | - Flemming Nielsen
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Greet Schoeters
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark; Environmental Risk and Health, Flemish Institute for Technological Research (VITO), University of Antwerp, Belgium
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark; Odense Patient Data Explorative Network (OPEN), Odense, Denmark
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Niels Bilenberg
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Dorthe Bleses
- School of Communication and Culture - Trygfondens Centre for Child Research, Aarhus University, Denmark
| | - Tina Kold Jensen
- Department of Public Health, University of Southern Denmark, Odense, J.B. Winsløws Vej 17A, 5000, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| |
Collapse
|
28
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
29
|
Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine 2021; 72:358-374. [PMID: 32757113 PMCID: PMC8128728 DOI: 10.1007/s12020-020-02436-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Endocrine disruptors (EDs) are exogenous substances able to impair endocrine system; consequently, they may cause numerous adverse effects. Over the last years, particular focus has been given to their harmful effects on reproductive system, but very little is known, especially in males. The aim of this review is to discuss the detrimental effects of EDs exposure on fetal testis development, male puberty, and transition age. METHODS A search for the existing literature focusing on the impact of EDs on fetal testis development, male puberty, andrological parameters (anogenital distance, penile length, and testicular volume), and testicular cancer with particular regard to pubertal age provided the most current information available for this review. Human evidence-based reports were given priority over animal and in vitro experimental results. Given the paucity of available articles on this subject, all resources were given careful consideration. RESULTS Information about the consequences associated with EDs exposure in the current literature is limited and often conflicting, due to the scarcity of human studies and their heterogeneity. CONCLUSIONS We conclude that current evidence does not clarify the impact of EDs on human male reproductive health, although severe harmful effects had been reported in animals. Despite controversial results, overall conclusion points toward a positive association between exposure to EDs and reproductive system damage. Further long-term studies performed on wide number of subjects are necessary in order to identify damaging compounds and remove them from the environment.
Collapse
Affiliation(s)
- Francesco Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Iva Sabovic
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
30
|
Wren M, Liu M, Vetrano A, Richardson JR, Shalat SL, Buckley B. Analysis of six pyrethroid insecticide metabolites in cord serum using a novel gas chromatography-ion trap mass spectrometry method. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122656. [PMID: 33819796 DOI: 10.1016/j.jchromb.2021.122656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
Pyrethroid insecticides are commonly used for residential and commercial pest control in the US. Pregnant women and their fetuses are vulnerable to pesticide exposures during critical windows of neurodevelopment. Biomonitoring for exposure requires accurate and sensitive methods to assess exposures during pregnancy. The objective of this study was to develop a sensitive analytical method to measure pyrethroid metabolite concentrations in cord serum. Six pyrethroid metabolites, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (c/t-DCCA), trans-chrysanthemum dicarboxylic acid (t-CDCA), cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (c-DBCA), 4-fluoro-3-phenoxybenzoic acid (FPBA), and 3-phenoxybenzoic acid (3PBA) were extracted from cord serum by a dichloromethane liquid-liquid extraction, derivatized by 1,1,1,3,3,3-hexafluoro-2-propanol carboxylic acid esterification, and then measured by gas chromatography/ion trap mass spectrometry. Limits of detection ranged from 0.02 to 0.6 ng/mL. Sixty-three cord serum samples were collected from maternal-fetal dyads in central New Jersey to test for pyrethroid metabolites. Non-specific metabolites, 3PBA, t-DCCA, and t-CDCA, were detected most frequently, present in 29%, 6.3% and 6.3% of samples, respectively. Sensitivities were comparable or greater than other published studies assessing pyrethroid metabolites in cord blood. Comparisons with other literature-reported studies emphasize the importance of method sensitivity when assessing exposures at biologically relevant concentrations.
Collapse
Affiliation(s)
- Melody Wren
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Min Liu
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Anna Vetrano
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Stuart L Shalat
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
31
|
Song W, Wan Y, Jiang Y, Liu Z, Wang Q. Urinary concentrations of 2,4-D in repeated samples from 0-7 year old healthy children in central and south China. CHEMOSPHERE 2021; 267:129225. [PMID: 33341734 DOI: 10.1016/j.chemosphere.2020.129225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) and its analogues are widely used in agriculture. Although the occurrence of 2,4-D in urine has been widely reported in North America, it has scarcely been investigated in China, especially in young children. In addition, both invivo and in vitro studies have shown that high-level 2,4-D exposure is associated with oxidative stress, but their association in a general sensitive population has rarely been evaluated. In this study, 2,4-D and its analogues were measured in 417 urine samples collected from 139 children aged 0-7 during the non-peak season of pesticide application in Wuhan, central China, and Shenzhen, south China. Each of them provided three samples in three consecutive days. An oxidative stress biomarker, 8-hydroxy-2-deoxyguanosine (8-OHdG), was also measured. The geometric mean (GM) of unconjugated urinary 2,4-D concentration was 0.10 μg/L (corrected by urinary specific gravity, SG-corrected). After β-glucuronidase hydrolysis, the GM of SG-corrected urinary 2,4-D was 0.15 μg/L, and the detection frequency was 100%. Moderate inter-day reproducibility was found within individuals, with an intraclass correlation coefficient of 0.68 for SG-corrected urinary deconjugated 2,4-D. The GM of estimated daily intake of 2,4-D was 6.05 ng/kg-bw/day. A significant positive correlation was found between urinary 2,4-D and 8-OHdG, whereas no association was found after SG-correction. This is the first study to characterize the occurrence of urinary 2,4-D, its inter-day reliability, and its association with urinary 8-OHdG in young children from China.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Zhengdan Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
32
|
Nuseir KQ, Tahaineh L, Al-Mehaisen LM, Al-Kuran O, Ayoub NM, Mukattash TL, Al-Rawi N. Organophosphate pesticide exposure prenatally influence on pregnancy outcomes. J Matern Fetal Neonatal Med 2021; 35:4841-4846. [PMID: 33522334 DOI: 10.1080/14767058.2020.1869719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Organophosphorus (OP) pesticides are widely used worldwide. The effect of OP exposure during pregnancy on the offspring is inconsistent in the current literature. Moreover, similar studies in the Middle East are lacking. PURPOSE To examine the effects of OP exposure in utero on the outcome of pregnancies in an agricultural region in Jordan. METHOD A prospective study, employing a questionnaire to collect women demographic data. Hospital records were collected for newborns' birth data. In addition, urine samples during the third trimester were collected from pregnant women and then analyzed for six OP metabolites to measure exposure. RESULTS One of the metabolites, DEDTP, was negatively correlated with gestational age and Apgar scores 1 and 5. There were no other significant associations. CONCLUSIONS Exposure to OP during pregnancy is not highly associated with any negative anthropometric characteristics of the newborns; it is probably offset by other factors.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Linda Tahaineh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | | | - Oqba Al-Kuran
- Department of Obstetrics and Gynecology, College of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Naseer Al-Rawi
- Faculty of Pharmacy, Amman Al Ahliyya University, Amman, Jordan
| |
Collapse
|
33
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
34
|
Wan Y, Tran TM, Nguyen VT, Wang A, Wang J, Kannan K. Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141507. [PMID: 32841807 DOI: 10.1016/j.scitotenv.2020.141507] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Studies on the occurrence of emerging pesticides in surface and drinking water in Vietnam are limited. In this study, lake water (n = 7), river water (n = 1), tap water (n = 46), and bottled water (n = 3) collected from Hanoi and other four provinces in northern Vietnam were analyzed for selected pesticides (including insecticides such as neonicotinoids, fipronil, and chlorpyrifos; fungicide carbendazim; herbicides such as atrazine, terbuthylazine, simazine, 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, and bentazon) and some of their degradates by liquid chromatography-tandem mass spectrometry. Carbendazim (median: 86.7 ng/L) and triazines (49.3 ng/L) were the major pesticides found in lake water samples, followed by neonicotinoids and their degradation products (15.1 ng/L), chlorpyrifos and its degradate (13.4 ng/L), fipronil and its degradates (3.76 ng/L), chlorophenoxy acid herbicides (2.10 ng/L), and bentazon (0.62 ng/L). Triazines (164 ng/L) were the major pesticides in river water. Higher concentrations (median: 39.3 ng/L; range: 1.20-127) of selected pesticides were found in tap water from Hanoi than those from four other provinces studied (5.49 ng/L; 4.73-66.8 ng/L). Bottled water samples collected from Hanoi contained lower concentrations of pesticide residues (median: 3.54 ng/L, range: 2.18-8.09) than those of tap water samples. The calculated risks from pesticide exposure through ingestion of tap water by the general populations were low. However, fipronil concentrations in lake water exceeded the benchmark value recommended for freshwater in the United States or the Netherlands. Degradation of acetamiprid into desmethyl-acetamiprid was found in lake water.
Collapse
Affiliation(s)
- Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam.
| | - Vinh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam.
| | - Aizhen Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Jiawei Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
35
|
Muñoz-Quezada MT, Lucero BA, Gutiérrez-Jara JP, Buralli RJ, Zúñiga-Venegas L, Muñoz MP, Ponce KV, Iglesias V. Longitudinal exposure to pyrethroids (3-PBA and trans-DCCA) and 2,4-D herbicide in rural schoolchildren of Maule region, Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141512. [PMID: 32846350 DOI: 10.1016/j.scitotenv.2020.141512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several studies showed that early exposure to pesticides affects the development and health of children. In Maule, there is previous evidence of the high exposure to organophosphate pesticides (OP) of schoolchildren. However, to date, there are no studies assessing exposure to pyrethroids and the herbicide 2,4-D. Objetive. To evaluate children's exposure to pyrethroids insecticides 3-phenoxybenzoic acid (3-PBA), trans 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA) and 2,4 dichlorophenoxyacetic acid (2,4-D) herbicides. METHOD Longitudinal study with 48 schoolchildren from two rural schools in the Maule region, Chile. Urinary metabolites of pyrethroids 3-PBA, Trans-DCCA and 2,4-D herbicides were evaluated in 2016 and 2017. Mann-Whitney U for repeated measurements and Spearman's rho correlation tests were used for data analysis. Also, we used a system of impulsive differential equations for mathematical modeling. RESULTS All the schoolchildren assessed had more than two pesticide urinary metabolites in both years, with the 3-PBA metabolite being the most frequent. There was an increase in concentrations of urinary 3-PBA in November 2017, compared to 2016 (from 0.69 μg/L to 1.90 μg/L). In 2016, the specific metabolites of 3-PBA were correlated with Trans-DCCA, 2,4-D, chlorpyrifos, diazinon, and para-nitrophenol. In 2017, 3-PBA was correlated with 2,4-D, and Trans-DCCA. The concentrations of 3-PBA of Chilean children were higher than studies conducted in the USA that found an association of prenatal exposure to these metabolites with cognitive difficulties. CONCLUSIONS We found high concentrations of pyrethroid metabolites among all the schoolchildren assessed, which may impact on their health and development. These insecticides had received no attention from the scientific community in Chile, and neither from the government agencies, despite the increased use of these chemicals in recent years. This is the first study in South America that confirms the exposure to pyrethroids and herbicides through biomarkers in human population living near farm fields.
Collapse
Affiliation(s)
- María Teresa Muñoz-Quezada
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.
| | - Boris A Lucero
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | | | - Rafael J Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Liliana Zúñiga-Venegas
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile; Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Chile; Faculty of Medicine, Universidad Católica del Maule, Chile
| | - María Pía Muñoz
- School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Verónica Iglesias
- School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
37
|
Xu Q, Zhu B, Dong X, Li S, Song X, Xiao X, Zhang C, Lv Y, Zhang X, Li Y. Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study. J Toxicol Sci 2020; 45:281-291. [PMID: 32404560 DOI: 10.2131/jts.45.281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed.
Collapse
Affiliation(s)
- Qinghua Xu
- School of Public Health, Kunming Medical University, China
| | - Baosheng Zhu
- The First People's Hospital of Yunnan Province, China
| | - Xudong Dong
- The First People's Hospital of Yunnan Province, China
| | - Suyun Li
- The First People's Hospital of Yunnan Province, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, China
| | - Chao Zhang
- School of Public Health, Kunming Medical University, China
| | - Yan Lv
- School of Public Health, Kunming Medical University, China
| | - Xiong Zhang
- School of Public Health, Kunming Medical University, China
| | - Yan Li
- School of Public Health, Kunming Medical University, China
| |
Collapse
|
38
|
Khoshhali M, Davoodi S, Ebrahimpour K, Shoshtari-Yeganeh B, Kelishadi R. The association between maternal exposure to organophosphate pesticides and neonatal anthropometric measures: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:79. [PMID: 33088316 PMCID: PMC7554421 DOI: 10.4103/jrms.jrms_919_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Background: This study aimed to evaluate the epidemiological studies on the relationship between organophosphate (OP) pesticide exposure during pregnancy and neonatal anthropometric measures. Materials and Methods: In this systematic review and meta analyses, a comprehensive search of the literature for the association of maternal exposure to OP pesticides and birth outcome including birth weight, birth length, and head circumference was conducted from scientific databases of MEDLINE, Scopus, Web of Science, and Cochrane library until the end of April 2019. We used the following keyword to identify the relevant studies: “birth weight,” “birth length,” “pregnancy outcome,“”birth outcome,” “organophosphate pesticides,” and “organophosphate metabolites.” Only English language studies investigating the relationship between pregnant mothers' exposure to OP metabolites and birth outcomes were examined. Results: Of the 10 articles reviewed, eight studies used to assess the association with birth weight, as well as five, and six studies were used in meta analysis to determine the association between OP exposure and birth length and head circumference. Pooled estimates were performed using a fixed effects model or random effects model. No significant association was observed between maternal exposure to OPs and birth weight (β = 1.520;95% confidence interval [CI] [−10.781, 13.820]), birth length (β = −0.011; [−0.132, 0.109]), and head circumference (β =0.022; 95%CI [−0.06, 0.103]). Conclusion: Although the effect of maternal exposure to OP on the birth outcome is not completely clear, strategies should be adopted to control the use of these substances.
Collapse
Affiliation(s)
- Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Davoodi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Sun Y, Cao M, Wan Y, Wang H, Liu J, Pan F, He W, Huang H, He Z. Spatial variation of 2,4-D and MCPA in tap water and groundwater from China and their fate in source, treated, and tap water from Wuhan, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138691. [PMID: 32498189 DOI: 10.1016/j.scitotenv.2020.138691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 05/09/2023]
Abstract
Data on chlorophenoxy herbicides (CPHs) in drinking water from China are scarce. This study was designed to describe the occurrence of CPHs in drinking water in China. In June 2019, drinking water samples including 789 tap water and 95 groundwater samples were collected from 31 provinces in mainland China and Hong Kong. Raw source, treated, and tap water samples (n = 20, 20, and 170, respectively) in Wuhan, Central China were also analyzed. 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were found in 71.2% and 74.9% of the samples nationwide, respectively. The cumulative concentration of CPHs (ΣCPHs) in tap water in China was up to 125 ng/L (median: 1.38 ng/L), and regional variations were found for ΣCPHs. The highest median ΣCPHs (3.95 ng/L) was found in Northeast China, followed by Central (3.40), South (2.71), East (2.43), Southwest (1.58), North (0.42), and Northwest China (0.30). The median ΣCPHs in groundwater was approximately five times lower than that in tap water. In addition, ΣCPHs were found in all the raw source water samples collected in Wuhan, Central China (median: 6.69 ng/L, range: 2.66-43.1 ng/L). The removal of 2,4-D and MCPA during conventional drinking water treatment was not efficient, removing approximately 0.91% and 17.4%, respectively. In a water plant with advanced treatment, they were efficiently removed. Seasonal variations were found in ΣCPHs in tap water from Wuhan, with the highest found in July (median: 21.2 ng/L), and the lowest in October (1.96 ng/L). The intake of CPHs via water ingestion was estimated as below 5 ng/kg-bw/day, much lower than the reference doses for 2,4-D (5 μg/kg-bw/day) and MCPA (4 μg/kg-bw/day). This is the first study to demonstrate the fate of CPHs during drinking water treatment and seasonal variations of CPHs in water from Wuhan, China. Moreover, this study provides an overview of ΣCPHs in tap water for many areas in China.
Collapse
Affiliation(s)
- Yanfeng Sun
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Huaiji Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Junling Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Feng Pan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Wenlei He
- Guizhou Institute of Labor Protection Science and Technology, Guiyang, Guizhou 550081, PR China
| | - He Huang
- Principal's Office, Guizhou Normal University, Guiyang, Guizhou 550025, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| |
Collapse
|
40
|
Sabbioni G, Berset JD, Day BW. Is It Realistic to Propose Determination of a Lifetime Internal Exposome? Chem Res Toxicol 2020; 33:2010-2021. [PMID: 32672951 DOI: 10.1021/acs.chemrestox.0c00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomonitoring of xenobiotics has been performed for many years in occupational and environmental medicine. It has revealed hidden exposures and the exposure of workers could be reduced. Although most of the toxic effects of chemicals on humans were discovered in workers, the scientific community has more recently focused on environmental samples. In several countries, urinary and blood samples have been collected and analyzed for xenobiotics. Health, biochemical, and clinical parameters were measured in the biomonitoring program of the Unites States. The data were collected and evaluated as group values, comparing races, ages, and gender. The term exposome was created in order to relate chemical exposure to health effects together with the terms genome, proteome, and transcriptome. Internal exposures were mostly established with snapshot measurements, which can lead to an obvious misclassification of the individual exposures. Albumin and hemoglobin adducts of xenobiotics reflect the exposure of a larger time frame, up to 120 days. It is likely that only a small fraction of xenobiotics form such adducts. In addition, adduct analyses are more work intensive than the measurement of xenobiotics and metabolites in urine and/or blood. New technology, such as high-resolution mass spectrometry, will enable the discovery of new compounds that have been overlooked in the past, since over 300,000 chemicals are commercially available and most likely also present in the environment. Yet, quantification will be challenging, as it was for the older methods. At this stage, determination of a lifetime internal exposome is very unrealistic. Instead of an experimental approach with a large number of people, which is economically and scientifically not feasible, in silico methods should be developed further to predict exposure, toxicity, and potential health effects of mixtures. The computer models will help to focus internal exposure investigations on smaller groups of people and smaller number of chemicals.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jean-Daniel Berset
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| | - Billy W Day
- Medantox LLC, Pittsburgh, Pennsylvania 15241, United States.,ReNeuroGen LLC, Elm Grove, Wisconsin 53122, United States
| |
Collapse
|
41
|
García-Villarino M, Riaño-Galán I, Rodríguez-Dehli AC, Freire C, Vizcaíno E, Grimalt JO, Tardón A, Fernández-Somoano A. Association between pre/perinatal exposure to POPs and children's anogenital distance at age 4 years: A study from the INMA-Asturias cohort. Int J Hyg Environ Health 2020; 229:113563. [PMID: 32559636 DOI: 10.1016/j.ijheh.2020.113563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prenatal exposure to endocrine-disrupting chemicals may impair genital development and alter reproductive tract anatomy. Anogenital distance (AGD) is a useful biomarker of exposure to chemicals that act as endocrine disruptors. We evaluated associations between prenatal and perinatal exposure to several persistent organic pollutants (POPs) and AGD in 4-year-old children. METHODS Data were drawn from the INMA-Asturias cohort. Pediatricians measured the anofourchetal distance in female children and anoscrotal distance in male children. The anogenital index (AGI) was defined as the AGD divided by the child's weight at age of examination. We measured the levels of two hexachlorocyclohexane isomers, hexachlorobenzene, dichlorodiphenyltrichloroethane (DDT) and its metabolites, six polychlorinated biphenyl (PCB) congeners, and six polybrominated diphenyl ether (PBDE) congeners in maternal serum at 12 gestational weeks (n = 155) and in cord blood serum (n = 229). Anthropometric and parental sociodemographic variables were collected via face-to-face interviews. Linear regression models were used to evaluate the relationship between exposure to POPs and AGI, adjusted for confounders and stratified by sex. RESULTS In male children, we found inverse associations between AGI and maternal concentrations of PCB-138 (ß = -0.041, 95% confidence interval [CI]: -0.074, -0.008, second tertile), PCB-153 (ß = -0.052, 95% CI: -0.085, -0.020, second tertile), PCB-180 ß = -0.065, 95% CI: -0.096, -0.035, second tertile; ß = -0.042, 95% CI: -0.073, -0.011, third tertile), PBDE-209 (ß = -0.031, 95% CI: -0.058, -0.006), cord serum concentrations of PCB-153 (ß = -0.029, 95% CI: -0.059, -0.000, second tertile; ß = -0.047, 95% CI: -0.085, -0.008, third tertile), and PCB-180 (ß = -0.041, 95% CI: -0.078, -0.005, third tertile). In female children, AGI was positively associated with maternal serum concentrations of PCB-101 (ß = 0.039, 95% CI: 0.002, 0.076, second tertile), and higher cord serum levels of 4,4'-DDT (ß = 0.032, 95% CI: 0.003, 0.061, third tertile) and 4,4'-DDE (ß = 0.040, 95% CI: 0.011, 0.069, third tertile). CONCLUSIONS Our findings provide evidence of associations between specific POPs and AGI in boys and girls aged 4 years, and suggest that pre/perinatal exposure to POPs has a feminizing effect in males and a masculinizing effect in females.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julian Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain.
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain; Servicio de Pediatría, Endocrinología, HUCA, Roma Avenue s/n. 33001, Oviedo, Asturias, Spain
| | - Ana Cristina Rodríguez-Dehli
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain; Servicio de Pediatría. Hospital San Agustín, Heros Street, 4, 33410, Avilés, Asturias, Spain
| | - Carmen Freire
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Avenida de Madrid 15, 18010, Granada, Spain
| | - Esther Vizcaíno
- Department of environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - Joan O Grimalt
- Department of environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julian Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julian Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain
| |
Collapse
|
42
|
Qin K, Zhang Y, Wang Y, Shi R, Pan R, Yao Q, Tian Y, Gao Y. Prenatal organophosphate pesticide exposure and reproductive hormones in cord blood in Shandong, China. Int J Hyg Environ Health 2020; 225:113479. [PMID: 32062593 DOI: 10.1016/j.ijheh.2020.113479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Organophosphate pesticides (OPs) have been found to be associated with endocrine disorders, but limited research has been conducted to evaluate the relationship between maternal OP exposure and fetal reproductive hormone levels. In this study, we investigated the association between prenatal OP exposure and fetal reproductive hormones. METHODS A total of 306 healthy pregnant women were enrolled between September 2010 and February 2012. Pesticide exposure was assessed via the analysis of maternal urinary nonspecific metabolites of OPs (dialkylphosphate, DAP), and four reproductive hormones were measured in cord blood. Linear regression models and generalized linear models were used to estimate the associations between DAP metabolites and reproductive hormones, and further stratified by infant sex. RESULTS We found that concentrations of diethylphosphate (DEP) (β = -0.03; 95% CI: -0.07, -0.00) were inversely associated with estradiol (E2). Dimethylphosphate (DMP) (β = -0.08; 95% CI: -0.13, -0.03), diethylthiophosphate (DETP) (β = -0.08; 95% CI: -0.14, -0.01), and DAPs (β = -0.10; 95% CI: -0.17, -0.03) were inversely associated with testosterone (T) levels. DMP was inversely associated with follicle-stimulating hormone (FSH) levels (β = -0.03; 95% CI: -0.05, -0.01). DMP (β = -0.06; 95% CI: -0.10, -0.01) and DETP (β = -0.07; 95% CI: -0.13, -0.01) showed inverse associations with the testosterone/estradiol (T/E2) ratio. Moreover, the magnitude of associations notably increased in higher quartiles of concentrations in a dose-response manner. After stratification by sex, these effects were mainly observed among female infants. CONCLUSION Our findings suggest the potential impacts of prenatal OP exposure on fetal reproductive hormones, and that sex-related differences may exist.
Collapse
Affiliation(s)
- Kaili Qin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Fernández SF, Pardo O, Adam-Cervera I, Montesinos L, Corpas-Burgos F, Roca M, Pastor A, Vento M, Cernada M, Yusà V. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134385. [PMID: 31678881 DOI: 10.1016/j.scitotenv.2019.134385] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to assess the exposure to pesticides in urine from Spanish lactating mothers (n = 116). Six nonspecific (dialkyl phosphates) and 20 specific metabolites of organophosphate pesticides (OPs), herbicides and pyrethroids were analyzed. The most frequently detected biomarkers were diethyl phosphate, p-nitrophenol, 3,5,6-trichloro-2-pyridinol and 3-phenoxybenzoic acid, whose geometric means were 1.9 ng·mL-1, 0.8 ng·mL-1, 1.5 ng·mL-1 and 1.4 ng·mL-1, respectively. Herbicide metabolites were the least frequently detected biomarkers with detection frequencies between 0% (2,4,5-Trichlorophenoxyacetic acid) and 22% (2,4-Dichlorophenoxyacetic acid). Multiple regression analyses showed that the closeness to a farming activity, the place of residence and the presence of garden/plants at home were some of the most important contributors to urinary levels of pesticide metabolites. Estimated daily intake (EDI), hazard quotient (HQ) and hazard index (HI) were obtained in order to interpret urinary levels of the most frequently detected pesticide metabolites in a risk assessment context. The highest EDIs were obtained for chlorpyrifos (0.40-1.14 μg·kg bw-1·day-1) and deltamethrin (0.34-4.73 μg·kg bw-1·day-1). The calculated HQ for chlorpyrifos, dimethoate, parathion and deltamethrin ranged from 0.01 to 0.47, and HI for OPs ranged from 0.09 to 0.33 showing that apparently there were low health risks due to the exposure to these pesticides in this group of Spanish breastfeeding women.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain.
| | - Inés Adam-Cervera
- Institute of Materials Science of the University of Valencia (ICMUV), University of Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Lidia Montesinos
- Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Agustín Pastor
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020 Valencia, Spain; Analytical Unit, Health Research Institute La Fe, Av. Abril Martorell, 106, 46026 Valencia, Spain
| |
Collapse
|
44
|
Saillenfait AM, Malard S. Human Risk Associated with Long-Term Exposure to Pyrethroid Insecticides. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Ferguson KK, van den Dries MA, Gaillard R, Pronk A, Spaan S, Tiemeier H, Jaddoe VWV. Organophosphate Pesticide Exposure in Pregnancy in Association with Ultrasound and Delivery Measures of Fetal Growth. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87005. [PMID: 31419153 PMCID: PMC6792347 DOI: 10.1289/ehp4858] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Perturbations in fetal growth may have adverse consequences for childhood and later life health. Organophosphate pesticide (OP) exposure has been associated with reduced birth weight at delivery but results are not consistent. We investigated this question by utilizing ultrasound measures of size in utero in combination with measures from delivery. METHODS Within Generation R, a population-based prospective cohort conducted between 2002 and 2006 in Rotterdam, Netherlands, we measured dialkyl phosphates (DAPs), OP metabolites, in urine samples from early, middle, and late pregnancy and created a subject-specific average to estimate OP exposure ([Formula: see text]). Ultrasound measures of head circumference, femur length, and estimated fetal weight from middle and late pregnancy and delivery measures were converted to standard deviation scores (SDS). Associations with DAP average were examined in linear mixed effects models that included an interaction term between gestational age at measurement and DAP average to investigate whether the relationship differed over time. Windows of vulnerability to exposure were assessed by modeling urinary DAPs from each visit in relation to growth measurements. RESULTS A 10-fold increase in average DAPs was associated with a [Formula: see text] SDS decrease in fetal length (95% [Formula: see text], [Formula: see text]) and a [Formula: see text] SDS decrease in estimated fetal weight (95% [Formula: see text], [Formula: see text]) at 20 weeks of gestation. These differences corresponded to 5% and 6% decreases relative to the mean. Effect estimates were greatest in magnitude for DAP concentrations measured early in pregnancy. Associations between average DAPs and growth measures at delivery were positive but not significant for head circumference and length and were null for weight. CONCLUSIONS Maternal urinary DAPs were associated with decreased fetal weight and length measured during mid-pregnancy, but not at delivery. https://doi.org/10.1289/EHP4858.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
| | - Michiel A. van den Dries
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Romy Gaillard
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vincent W. V. Jaddoe
- Generation R Study Group, Erasmus University Medical Center MC (Erasmus MC), Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
46
|
Rodprasert W, Main KM, Toppari J, Virtanen HE. Associations between male reproductive health and exposure to endocrine-disrupting chemicals. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
48
|
Lee KS, Lee YA, Lee YJ, Shin CH, Lim YH, Hong YC. The relationship of urinary 3-phenoxybenzoic acid concentrations in utero and during childhood with adiposity in 4-year-old children. ENVIRONMENTAL RESEARCH 2019; 172:446-453. [PMID: 30831434 DOI: 10.1016/j.envres.2019.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/10/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pyrethroid pesticides are reported to be the most commonly used residential insecticides worldwide. We aimed to investigate the relationship between prenatal and postnatal 3-phenoxybenzoic acid (3-PBA) concentrations, and growth and adiposity parameters in 4-year-old children. METHOD We obtained data from 578 children who participated in the prospective Environment and Development of Children (EDC) study at around 4 years of age (45-55 months) between August 2008 and July 2011. Anthropometric measurements were obtained at age 4 years. Prenatal and postnatal urinary 3-PBA concentration was measured in maternal urine samples at around 20 weeks of gestation, and in the 4-year-old children, respectively. RESULT The detection frequency of urinary 3-PBA (geometric mean concentration) was 98-99% (0.98 μg/g Cr) in maternal urine, and almost 99-100% (1.34 μg/g Cr) in 4-year-old children. Prenatal urinary3-PBA concentration was not associated with height, weight, or body mass index (BMI) z-scores at 4 years of age, regardless of sex. Postnatal urinary3-PBA concentration was not related to height z-scores, but was positively associated with weight z-scores with marginal significance among only girls (p = 0.058). Analyzed by sex, there was a significant relationship between postnatal urinary 3-PBA concentration and BMI z-scores (p = 0.015) among girls, after adjusting for covariates. CONCLUSION Childhood urinary 3-PBA concentration measured at 4 years of age was positively associated with BMI z-scores in 4-year-old girls, but prenatal urinary 3-PBA concentration at midterm pregnancy exhibited no association.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul 03080, Republic of Korea.
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
49
|
Silver MK, Shao J, Li M, Ji C, Chen M, Xia Y, Lozoff B, Meeker JD. Prenatal exposure to the herbicide 2,4-D is associated with deficits in auditory processing during infancy. ENVIRONMENTAL RESEARCH 2019; 172:486-494. [PMID: 30851698 PMCID: PMC6511332 DOI: 10.1016/j.envres.2019.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Despite widespread use, many herbicides and fungicides are not well studied for neurological effects. Fetal and infant brains are rapidly developing, yet the effects of early-life exposure to these classes of pesticides on visual and auditory function are unknown. Here we examined the effects of prenatal herbicide and fungicide exposure on infant grating visual acuity (VA) and auditory brainstem response (ABR). METHODS 9 herbicides and 13 fungicides were measured in umbilical cord blood plasma from a cohort of infants in Fuyang County, China (n = 232). Grating VA and ABR latencies for waves I, III, V were measured at 3 time points: 6 weeks, 9 months, and 18 months. Outcomes included VA score, ABR wave V latency and ABR central conduction time (CCT [wave V- wave I]). Pesticides were analyzed as 3-level ordinal (non-detect [ND]/medium/high), or dichotomous (ND/detect), depending on detection rates. Linear mixed models were used to evaluate relations between pesticides and VA and ABR outcomes. RESULTS 2,4-dichloroacetic acid (2,4-D), prometryn, simazine, and tetrahydrophthalamide (THPI, a metabolite of captan) were detected in 27%, 81%, 17%, and 16% of samples, respectively. Infants prenatally exposed to 2,4-D had slower auditory response times at 6 weeks. Infants with cord levels of 2,4-D > 1.17 ng/mL had wave V latencies that were 0.12 (95% CI: 0.03, 0.22) ms slower (p = 0.01) and overall CCTs that were 0.15 (95% CI:0.05, 0.25) ms slower (p = 0.003) than infants with non-detectable 2,4-D in their cord blood. No other statistically significant findings were observed for the other herbicides and fungicides or for the grating VA outcome. CONCLUSIONS Prenatal exposure to the herbicide 2,4-D was associated with slower auditory signal transmission in early infancy. ABR latencies reflect auditory pathway maturation and longer latencies may indicate delayed auditory development.
Collapse
Affiliation(s)
- Monica K Silver
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jie Shao
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Mingyan Li
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Chai Ji
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Minjian Chen
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.
| | - Yankai Xia
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.
| | - Betsy Lozoff
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
50
|
Manservisi F, Lesseur C, Panzacchi S, Mandrioli D, Falcioni L, Bua L, Manservigi M, Spinaci M, Galeati G, Mantovani A, Lorenzetti S, Miglio R, Andrade AM, Kristensen DM, Perry MJ, Swan SH, Chen J, Belpoggi F. The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system. Environ Health 2019; 18:15. [PMID: 30857531 PMCID: PMC6413565 DOI: 10.1186/s12940-019-0453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/08/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including potential effects on the endocrine system The present pilot study examine whether exposure to GBHs at the dose of glyphosate considered to be "safe" (the US Acceptable Daily Intake - ADI - of 1.75 mg/kg bw/day), starting from in utero life, affect the development and endocrine system across different life stages in Sprague Dawley (SD) rats. METHODS Glyphosate alone and Roundup Bioflow, a commercial brand of GBHs, were administered in drinking water at 1.75 mg/kg bw/day to F0 dams starting from the gestational day (GD) 6 (in utero) up to postnatal day (PND) 120. After weaning, offspring were randomly distributed in two cohorts: 8 M + 8F/group animals belonging to the 6-week cohort were sacrificed after puberty at PND 73 ± 2; 10 M + 10F/group animals belonging to the 13-week cohort were sacrificed at adulthood at PND 125 ± 2. Effects of glyphosate or Roundup exposure were assessed on developmental landmarks and sexual characteristics of pups. RESULTS In pups, anogenital distance (AGD) at PND 4 was statistically significantly increased both in Roundup-treated males and females and in glyphosate-treated males. Age at first estrous (FE) was significantly delayed in the Roundup-exposed group and serum testosterone concentration significantly increased in Roundup-treated female offspring from the 13-week cohort compared to control animals. A statistically significant increase in plasma TSH concentration was observed in glyphosate-treated males compared with control animals as well as a statistically significant decrease in DHT and increase in BDNF in Roundup-treated males. Hormonal status imbalances were more pronounced in Roundup-treated rats after prolonged exposure. CONCLUSIONS The present pilot study demonstrate that GBHs exposure, from prenatal period to adulthood, induced endocrine effects and altered reproductive developmental parameters in male and female SD rats. In particular, it was associated with androgen-like effects, including a statistically significant increase of AGDs in both males and females, delay of FE and increased testosterone in female.
Collapse
Affiliation(s)
- Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Marco Manservigi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Miglio
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Anderson Martino Andrade
- Department of Physiology, Division of Biological Sciences, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - David Møbjerg Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy.
| |
Collapse
|