1
|
Seery S, Schroeder P, Galloway T, Abernethy D, Hewinson G. Bovine tuberculosis trends in Wales between 2010 and 2021. Vet Rec 2024; 195:e4600. [PMID: 39484938 DOI: 10.1002/vetr.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Bovine tuberculosis (bTB) is the most important animal health concern in Wales. Annual testing across all cattle herds in Wales commenced in 2010. In 2017, a new geographic division of Wales was conceived, with bespoke cattle controls and eradication milestones reflecting the geographical heterogeneity of bTB distribution. METHODS This observational study uses descriptive analysis and Poisson regression modelling to analyse bTB surveillance data from all herds in Wales. RESULTS Since 2010, there has been a significant decrease (p < 0.0001) in bTB incidence (8.6%‒6.3%) and plateauing prevalence across Wales. Conversely, there has been an increase in bTB incidence and prevalence in discrete areas. Recurrence and persistence remain important drivers of bTB infection. One of the sharpest declines in bTB incidence was observed in an intensive action area where enhanced cattle control and wildlife vaccination were implemented in an area of high bTB prevalence. Increased herd size, dairy herd type and herd location are important risk factors affecting the rate of bTB incidents in Wales. LIMITATIONS This study includes data from Wales only. CONCLUSIONS Improvements in trends of bTB occurred from 2010 to 2021, but the spatial variations described in this paper support the continued need for regionally adapted surveillance and control measures.
Collapse
Affiliation(s)
- Sarah Seery
- Wales TB Epi Team, APHA Wales Field Services, Caernarfon, UK
| | - Paul Schroeder
- Wales TB Epi Team, APHA Wales Field Services, Carmarthen, UK
- Red Kite Veterinary Consultants, Thame, UK
| | - Terry Galloway
- Wales TB Epi Team, APHA Wales Field Services, Carmarthen, UK
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Aberystwyth, UK
| | - Glyn Hewinson
- Sêr Cymru Centre of Excellence for Bovine TB, Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
2
|
Islam SS, Pateras K, Kabir SML, Kostoulas P, Ward MP, Rahman AKMA. A systematic review and meta-analysis of bovine tuberculosis occurrence and burden in Bangladesh, 1970-2023. Epidemiol Infect 2024; 152:e126. [PMID: 39417391 PMCID: PMC11502424 DOI: 10.1017/s0950268824001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/19/2024] Open
Abstract
We aimed to estimate the overall apparent prevalence, true prevalence, and the spatial, temporal, and test-specific burden of bovine tuberculosis in Bangladesh. PubMed, Web of Science, Scopus, Google Scholar, and BanglaJOL were searched for bovine tuberculosis publications in Bangladesh from 1 January 1970 to 23 June 2023. Of 142 articles screened, systematic review and meta-analysis were performed on 22 (15.5%) articles. The apparent estimated bovine tuberculosis prevalence was 7%. The apparent Bayesian pooled mean bovine tuberculosis prevalences based on caudal fold test and single intradermal comparative tuberculin test were 7.83% and 9.89%, respectively, and the true pooled mean prevalences were 10.39% and 10.48%, respectively. Targeted interventions are recommended for districts with higher prevalence to effectively reduce the bovine tuberculosis burden in those areas. Current diagnostic practices employed in Bangladesh may not accurately reflect the bovine tuberculosis burden. Our findings highlight the need for better diagnostic tools and supplemental testing methods to ensure accurate diagnosis and surveillance. Efforts should prioritize obtaining 'true' prevalence estimates corrected for misclassification bias, rather than relying solely on apparent prevalence. Underestimating the bovine tuberculosis burden could result in inadequate resource allocation and hinder the implementation of effective control measures.
Collapse
Affiliation(s)
- Sk Shaheenur Islam
- Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | - Konstantinos Pateras
- Laboratory of Epidemiology, Applied Artificial Intelligence & Biostatistics, Faculty of Public and One Health, University of Thessaly, Karditsa, Greece
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Polychronis Kostoulas
- Laboratory of Epidemiology, Applied Artificial Intelligence & Biostatistics, Faculty of Public and One Health, University of Thessaly, Karditsa, Greece
| | - Michael P. Ward
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, Australia
| | | |
Collapse
|
3
|
Mason PS, Risalde MA, Gortázar C, Garrido JM, Thomas DA, Al Dulayymi JR, Baird MS. Early antibody responses to lipid antigens in red deer infected with Mycobacterium bovis. Vet Microbiol 2024; 298:110269. [PMID: 39366318 DOI: 10.1016/j.vetmic.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
THE PROBLEM Early and rapid diagnosis of bovine tuberculosis remains an issue of great interest. AIM The aim of this study was to evaluate the use of synthetic lipid antigens for diagnosis of tuberculosis in red deer (Cervus elaphus). The proposition: Synthetic mycolic acid derivatives, identical to components of mycobacterial cells, bind to antibodies to lipids produced in active human tuberculosis. Experimental infection studies in red deer (Cervus elaphus) allow the evaluation of such antigens for the serodiagnosis of bovine tuberculosis. RESULTS Antibody levels in plasma from deer experimentally infected with Mycobacterium bovis were evaluated in ELISA using synthetic antigens based on several classes of mycolic acid, using protein G as conjugate. All antigens gave significantly increased responses 60 days post-infection, when all animals had active disease. A significantly increased response was also observed with four antigens 15 days after infection. CONCLUSION ELISA using synthetic lipid antigens not only detects antibodies in the plasma of deer experimentally infected with M. bovis, but a strong response occurs early in the infection. With a full analysis of responses with naturally infected animals, this may offer a useful supplement to current diagnostic methods.
Collapse
Affiliation(s)
- Paul S Mason
- Diagnostig Ltd., MSParc, Gaerwen, Anglesey, Wales LL60 6AG, United Kingdom
| | - Maria A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba 14014, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Christian Gortázar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Cuidad Real, Spain
| | - Joseba M Garrido
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department Derio, Bizkaia, Spain
| | - Dafydd A Thomas
- Diagnostig Ltd., MSParc, Gaerwen, Anglesey, Wales LL60 6AG, United Kingdom
| | - Juma'a R Al Dulayymi
- Diagnostig Ltd., MSParc, Gaerwen, Anglesey, Wales LL60 6AG, United Kingdom; School of Natural and Environmental Sciences, Bangor University, LL57 2UW, United Kingdom
| | - Mark S Baird
- Diagnostig Ltd., MSParc, Gaerwen, Anglesey, Wales LL60 6AG, United Kingdom; School of Natural and Environmental Sciences, Bangor University, LL57 2UW, United Kingdom.
| |
Collapse
|
4
|
Wood AJ, Benton CH, Delahay RJ, Marion G, Palkopoulou E, Pooley CM, Smith GC, Kao RR. The utility of whole-genome sequencing to identify likely transmission pairs for pathogens with slow and variable evolution. Epidemics 2024; 48:100787. [PMID: 39197305 DOI: 10.1016/j.epidem.2024.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Pathogen whole-genome sequencing (WGS) has been used to track the transmission of infectious diseases in extraordinary detail, especially for pathogens that undergo fast and steady evolution, as is the case with many RNA viruses. However, for other pathogens evolution is less predictable, making interpretation of these data to inform our understanding of their epidemiology more challenging and the value of densely collected pathogen genome data uncertain. Here, we assess the utility of WGS for one such pathogen, in the "who-infected-whom" identification problem. We study samples from hosts (130 cattle, 111 badgers) with confirmed infection of M. bovis (causing bovine Tuberculosis), which has an estimated clock rate as slow as ∼0.1-1 variations per year. For each potential pathway between hosts, we calculate the relative likelihood that such a transmission event occurred. This is informed by an epidemiological model of transmission, and host life history data. By including WGS data, we shrink the number of plausible pathways significantly, relative to those deemed likely on the basis of life history data alone. Despite our uncertainty relating to the evolution of M. bovis, the WGS data are therefore a valuable adjunct to epidemiological investigations, especially for wildlife species whose life history data are sparse.
Collapse
Affiliation(s)
- A J Wood
- Roslin Institute, University of Edinburgh, United Kingdom
| | - C H Benton
- Animal & Plant Health Agency, United Kingdom
| | - R J Delahay
- Animal & Plant Health Agency, United Kingdom
| | - G Marion
- Biomathematics and Statistics Scotland, United Kingdom
| | | | - C M Pooley
- Biomathematics and Statistics Scotland, United Kingdom
| | - G C Smith
- Animal & Plant Health Agency, United Kingdom
| | - R R Kao
- Roslin Institute, University of Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Bhat SA, Parveen A, Gormley E, Meade KG. Extensive differential DNA methylation between tuberculosis skin test positive and skin test negative cattle. BMC Genomics 2024; 25:762. [PMID: 39107682 PMCID: PMC11301934 DOI: 10.1186/s12864-024-10574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), represents a significant problem for the agriculture industry as well as posing a risk for human health. Current diagnostic tests for bTB target the cell-mediated immune (CMI) response to infection with M. bovis, primarily through screening of animals with the tuberculin skin test. Epigenetic modifications have been shown to alter the course of the immune response and differentially methylated regions (DMRs) might also influence the outcome of the skin test in cattle. Whole Genome Bisulphite Sequencing (WGBS) was used to profile DNA methylation levels from peripheral blood of a group of cattle identified as test positive for M. bovis (positive for the single intradermal comparative tuberculin test (SICTT) and/or the interferon-γ release assay compared to a test negative control group [n = 8/group, total of 16 WGBS libraries]. Although global methylation profiles were similar for both groups across the genome, 223 DMRs and 159 Differentially Promoter Methylated Genes (DPMGs) were identified between groups with an excess of hypermethylated sites in SICTT positive cattle (threshold > 15% differential methylation). Genes located within these DMRs included the Interleukin 1 receptor (IL1R1) and MHC related genes (BOLA and BOLA-DQB). KEGG pathway analysis identified enrichment of genes involved in Calcium and MAPK signalling, as well as metabolism pathways. Analysis of DMRs in a subset of SICTT negative cattle that were IFN-γ positive showed differential methylation of genes including Interleukin 10 Receptor, alpha (IL10RA), Interleukin 17 F (IL17F) and host defence peptides (DEFB and BDEF109). This study has identified a number of immune gene loci at which differential methylation is associated with SICTT test results and the degree of methylation could influence effective host immune responses.
Collapse
Affiliation(s)
- Sajad A Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Alia Parveen
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin, C15 PW93, Ireland.
| |
Collapse
|
6
|
Martucciello A, Ottaiano M, Mazzone P, Vitale N, Donniacuo A, Brunetti R, Di Franco M, Cerrone P, Spoleto C, Galiero G, De Carlo E. A decade of tuberculosis eradication programs in the Mediterranean water buffalo ( Bubalus bubalis) in South Italy: Are we heading toward eradication? Front Vet Sci 2024; 11:1405416. [PMID: 39132442 PMCID: PMC11310139 DOI: 10.3389/fvets.2024.1405416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 08/13/2024] Open
Abstract
The water buffalo (Bubalus bubalis) is susceptible to bovine tuberculosis (TB), which receives increased attention in areas where buffalo breeding is prevalent, such as in Southern Italy, especially in the Campania region, where 70% of the buffalo stock is bred. Since 2012, TB testing in buffalo herds has been conducted using the Single Intradermal Test (SIT), with the Comparative Intradermal test (CIT) used in cases of inconclusive results. From 2012 to 2016, the interferon-gamma (IFN-γ) test was occasionally employed experimentally in herds with TB outbreaks to expedite eradication efforts. A local TB eradication program was implemented in officially TB-free buffalo herds between 2017 and 2019. This program involves initial screening with SIT, followed by confirmatory tests, including CIT and IFN-γ, for positive reactions. Since June 2019, the IFN-γ test has replaced the CIT in officially TB-free herds upon positive SIT reactions. Additionally, in suspected and confirmed TB-outbreak herds, the IFN-γ test was used at the discretion of the competent authority. Between 2017 and 2019, approximately 295,000 buffaloes in Campania were screened annually with in vivo tests provided by TB eradication programs. During this period, 32,040 animals from 855 herds were tested using the IFN-γ test and 4,895 tested positive. Since 2020, the use of IFN-γ testing has increased, and has become a prerequisite for the acquisition of TB-free status and is being systematically applied for TB outbreak-extinction procedures. The test was performed in all breeding buffaloes in cases of doubtful SIT results in TB-free herds and when TB lesions are detected at slaughter in animals from TB-free herds. This combined approach helped detect more TB outbreaks, and thereby led to a reduction in the TB prevalence and incidence rates. By 2022, the prevalence had decreased to 1.56%, and the incidence had decreased to 0.73%, after the increased use of the IFN-γ test. This study highlights the effectiveness of implemented strategies in reducing TB in this region. Overall, the data demonstrate the successful impact of TB eradication measures and surveillance activities in reducing bubaline TB prevalence and incidence in the Campania region.
Collapse
Affiliation(s)
- Alessandra Martucciello
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Maria Ottaiano
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Nicoletta Vitale
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle D’Aosta, Turin, Italy
| | - Anna Donniacuo
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Roberta Brunetti
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | | | | | | | - Giorgio Galiero
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
7
|
Pereira AC, Pinto D, Cunha MV. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal-environment interface. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134473. [PMID: 38703681 DOI: 10.1016/j.jhazmat.2024.134473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Lakew M, Tadesse B, Srinivasan S, Aschalew M, Andarge B, Kebede D, Etifu A, Alemu T, Yalew B, Benti T, Olani A, Abera S, Bedada W, Fromsa A, Mekonnen GA, Almaw G, Ameni G, Ashenafi H, Gumi B, Bakker D, Kapur V. Assessing the feasibility of test-and-cull and test-and-segregation approaches for the control of high-prevalence bovine tuberculosis in Ethiopian intensive dairy farms. Sci Rep 2024; 14:14298. [PMID: 38906922 PMCID: PMC11192749 DOI: 10.1038/s41598-024-64884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Bovine tuberculosis (bTB) is endemic and has a substantial impact on the livestock sector in Ethiopia and other low and middle-income countries (LMICs). With a national emphasis on dairy farm intensification to boost milk production and spur economic growth, the incidence of bTB is anticipated to rise. However, Ethiopia, like other LMICs, lacks a comprehensive national bTB control strategy due to the economic and social infeasibility of traditional test-and-cull (TC) approaches. To inform the development of such a strategy, we evaluated the effectiveness and feasibility of TC and test-and-segregation (TSg) strategies for bTB control on Ethiopian dairy farms. A TC approach was used at Farm A [N = 62; comparative cervical test (CCT) > 4 mm, starting prevalence 11.3%] while TSg was implemented at Farm B (N = 45; CCT > 4 mm, prevalence 22.2%), with testing intervals of 2-4 months. Both strategies achieved a reduction in bTB prevalence to 0%, requiring seven rounds of TC over 18 months at Farm A, and five rounds of TSg over 12 months at Farm B's negative herd. The results show that adopting more sensitive thresholds [CCT > 0 mm or single cervical test (SCT) > 2 mm] during later rounds was pivotal in identifying and managing previously undetected infections, emphasizing the critical need for optimized diagnostic thresholds. Cost analysis revealed that TC was approximately twice as expensive as TSg, primarily due to testing, labor, and cow losses in TC, versus construction of new facilities and additional labor for TSg. This underscores the economic and logistical challenges of bTB management in resource-limited settings. Taken together, our study highlights an urgent need for the exploration of alternative approaches including TSg and or vaccination to mitigate within herd transmission and enable implementation of bTB control in regions where TC is not feasible.
Collapse
Affiliation(s)
- Matios Lakew
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia.
| | | | | | | | | | | | | | | | - Bekele Yalew
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Teferi Benti
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Abebe Olani
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Shubisa Abera
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Wegene Bedada
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Abebe Fromsa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | - Gizat Almaw
- Animal Health Institute, P.O. Box 04, Sebeta, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, The Netherlands.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Mabe L, Muthevhuli M, Thekisoe O, Suleman E. Accuracy of molecular diagnostic assays for detection of Mycobacterium bovis: A systematic review and meta-analysis. Prev Vet Med 2024; 226:106190. [PMID: 38574490 DOI: 10.1016/j.prevetmed.2024.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Bovine tuberculosis (bovine TB) is a chronic wasting disease of cattle caused primarily by Mycobacterium bovis. Controlling bovine TB requires highly sensitive, specific, quick, and reliable diagnostic methods. This systematic review and meta-analysis evaluated molecular diagnostic tests for M. bovis detection to inform the selection of the most viable assay. On a per-test basis, loop-mediated isothermal amplification (LAMP) showed the highest overall sensitivity of 99.0% [95% CI: 86.2%-99.9%] and specificity of 99.8% [95% CI: 96.2%-100.00%]. Quantitative real-time polymerase chain reaction (qPCR) outperformed conventional PCR and nested PCR (nPCR) with a diagnostic specificity of 96.6% [95% CI: 88.9%-99.0%], while the diagnostic sensitivity of 70.8% [95% CI: 58.6-80.5%] was comparable to that of nPCR at 71.4% [95% CI: 60.7-80.2%]. Test sensitivity was higher with the input of milk samples (90.9% [95% CI: 56.0%-98.7%]), while specificity improved with tests based on major M. bovis antigens (97.8% [95% CI: 92.3%-99.4%]), the IS6110 insertion sequence (95.4% [95% CI: 87.6%-98.4%]), and the RD4 gene (90.7% [95% CI: 52.2%-98.9%]). The design of the currently available molecular diagnostic assays, while mostly based on nonspecific gene targets, prevents them from being accurate enough to diagnose M. bovis infections in cattle, despite their promise. Future assay development should focus on the RD4 region since it is the only target identified by genome sequence data as being distinctive for detecting M. bovis. The availability of a sufficiently accurate diagnostic test combined with the routine screening of milk samples can decrease the risk of zoonotic transmissions of M. bovis.
Collapse
Affiliation(s)
- Lerato Mabe
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa; Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mpho Muthevhuli
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Essa Suleman
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa.
| |
Collapse
|
10
|
O’Brien A, Hayton A, Cutler K, Adler A, Shaw DJ, Clarke J, Watt N, Harkiss GD. Diagnostic accuracy of the Enferplex Bovine TB antibody test using individual milk samples from cattle. PLoS One 2024; 19:e0301609. [PMID: 38687765 PMCID: PMC11060599 DOI: 10.1371/journal.pone.0301609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine tuberculosis is usually diagnosed using tuberculin skin tests or at post-mortem. Recently, we have developed a serological test for bovine tuberculosis in cattle which shows a high degree of accuracy using serum samples. Here, we have assessed the performance of the test using individual bovine milk samples. The diagnostic specificity estimate using the high sensitivity setting of the test was 99.7% (95% CI: 99.2-99.9). This estimate was not altered significantly by tuberculin boosting. The relative sensitivity estimates of the test using the high sensitivity setting in milk samples from comparative skin test positive animals was 90.8% (95% CI: 87.1-93.6) with boosting. In animals with lesions, the relative sensitivity was 96.0% (95% CI: 89.6-98.7). Analysis of paired serum and milk samples from skin test positive animals showed correlation coefficients ranging from 0.756-0.955 for individual antigens used in the test. Kappa analysis indicated almost perfect agreement between serum and milk results, while McNemar marginal homogeneity analysis showed no statistically significant differences between the two media. The positive and negative likelihood ratio were 347.8 (95% CI: 112.3-1077.5) and 0.092 (95% CI: 0.07-0.13) respectively for boosted samples from skin test positive animals. The results show that the test has high sensitivity and specificity in individual milk samples and thus milk samples could be used for the diagnosis of bovine tuberculosis.
Collapse
Affiliation(s)
| | | | - Keith Cutler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Andy Adler
- Synergy Farm Health, Maiden Newton, Dorset, United Kingdom
| | - Darren J. Shaw
- Royal (Dick) School of Veterinary Studies & The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John Clarke
- Enfer Scientific, Naas, County Kildare, Ireland
| | - Neil Watt
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Gordon D. Harkiss
- MV Diagnostics Ltd, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Juste RA. Bovine TB serological diagnosis: blindness rather than conundrum. Vet Res Commun 2024; 48:1309-1310. [PMID: 38263502 DOI: 10.1007/s11259-023-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Ramon A Juste
- NEIKER-BRTA, Berreaga, 1, Derio (Bizkaia), 48160, Spain.
| |
Collapse
|
12
|
Echeverría G, Zumárraga MJ, Proaño-Pérez F, Blasco FB, de Waard JH. Assessing the impact of various tuberculin PPD brands on bovine tuberculosis diagnosis. Sci Rep 2024; 14:5155. [PMID: 38431678 PMCID: PMC10908831 DOI: 10.1038/s41598-024-52089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/13/2024] [Indexed: 03/05/2024] Open
Abstract
Although several brands of tuberculin purified protein derivatives (PPDs) are available for diagnosing bovine tuberculosis (bTB), comparative studies to determine their diagnostic accuracy are infrequent. In Ecuador we compared two different PPD brands for bTB diagnosis using skin testing and measuring skin thickness increase. Additionally, we evaluated four PPD brands, including those used for skin testing, in the Bovine Tuberculosis Interferon Gamma Test (IFN-γ test) measuring IFN-γ induction in whole blood. The study included 17 naturally tuberculosis-infected PPD and IFN-γ test positive bovines. Both the field and laboratory results showed significant differences in classifying the 17 bovines as bTB positive or negative. We hypothesize that several factors, such as the genetic background of the cows, sensitization to environmental mycobacteria, M. bovis strains involved in the bTB infection, and the manufacturing procedures of the PPDs, could have influenced the immune reaction toward the different tuberculin PPD brands. Our study emphasizes the necessity for comparative studies aimed at determining the diagnostic accuracy of PPD brands for bTB diagnosis as well as the development of standardized methods for PPD production and potency determination.
Collapse
Affiliation(s)
- Gustavo Echeverría
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
- División Investigación y Desarrollo, BioGENA, Quito, Ecuador
| | - Martín J Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular, IABIMO, INTA-CONICET, Buenos Aires, Argentina
| | - Freddy Proaño-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Francisco Barceló Blasco
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Jacobus H de Waard
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador.
| |
Collapse
|
13
|
Vera-Salmoral E, Sánchez-Carvajal JM, Gómez-Gascón L, Larenas-Muñoz F, Tarradas C, Gómez-Laguna J, Huerta B. Assessment of the diagnostic performance of intradermal tuberculin test and post-mortem inspection for the diagnosis of bovine tuberculosis according to WOAH guidelines. Res Vet Sci 2024; 168:105159. [PMID: 38266351 DOI: 10.1016/j.rvsc.2024.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Bovine tuberculosis (bTB) constitutes a global challenge for public and animal health with still some deficiencies regarding its diagnosis. This study aimed to estimate the accuracy of the single intradermal tuberculin test (SIT) and post-mortem inspection for different diagnostic objectives following WOAH guidelines. Tissue samples from 59 microbiological culture/PCR-positive and 58 microbiological culture/PCR-negative cattle were evaluated. The diagnostic sensitivity and specificity, the positive and negative probability indices as well as the positive and negative predictive values (PPV and NPV) of each technique were estimated for different pretest probabilities. The SIT with strict interpretation demonstrated moderate precision in confirming the absence of infection in populations historically free of bTB, with a 12.1% rate of false positives, but also detecting positive animals in the early stage of the eradication programs, with a 13.6% rate of false negatives. The diagnostic performance for ruling out bTB was notably high (NPV > 90%) in animals with a pre-test probability (PTP) below 42%. Post-mortem inspection constituted an interesting alternative tool to confirm suspected and positive cases for SIT, particularly in areas with bTB prevalence exceeding 19%, where implementing SIT and eradication measures may be impractical. In these areas, the likelihood that animals with tuberculosis-like lesions are affected by the disease surpasses 90%. Similarly, in herds with a PTP below 25%, the absence of bTB could be confidently ruled out with over 90% certainty. These findings highlight the effectiveness of SIT and post-mortem inspection as valuable techniques for current eradication programs and controlling bTB in high-prevalence areas where molecular techniques may not be feasible.
Collapse
Affiliation(s)
- Eduardo Vera-Salmoral
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', University of Córdoba, 14014 Córdoba, Spain; Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014 Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014 Córdoba, Spain.
| | - Lidia Gómez-Gascón
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', University of Córdoba, 14014 Córdoba, Spain
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014 Córdoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', University of Córdoba, 14014 Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', 14014 Córdoba, Spain
| | - Belén Huerta
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', University of Córdoba, 14014 Córdoba, Spain
| |
Collapse
|
14
|
Madden JM, O'Donovan J, Casey-Bryars M, Sweeney J, Messam LL, McAloon CG, More SJ, Kenny K, Ryan E, Gormley E. The impact of changing the cut-off threshold of the interferon-gamma (IFN-γ) assay for diagnosing bovine tuberculosis in Ireland. Prev Vet Med 2024; 224:106129. [PMID: 38325115 DOI: 10.1016/j.prevetmed.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
In Ireland, the interferon-gamma (IFN-γ) assay is routinely used as an ancillary test interpreted in parallel with the single intradermal comparative tuberculin test (SICTT) to maximize the detection of bovine tuberculosis (bTB) infected animals. Up until 2018, a positive test result was recorded in the IFN-γ ELISA assay following whole blood stimulation with purified protein derivative (PPD)-bovine (B), PPD-avian (A) and nil sample (N), using the interpretation criteria, B-N > 50 optical density units (OD), B > 100 and B-A > 0. Following a review of available data, the threshold of the B-A component changed to B-A > 80. As predicting the impact of changing the cut-off thresholds for the IFN-γ test de novo is challenging, the aims of this study were to follow animals that initially tested negative using the new IFN-γ assay interpretation criteria and investigate their future risk of disclosure with bTB, with a focus on animals that otherwise would have been removed when using the older interpretation criteria (0 < B-A ≤ 80). Enrolled animals (n = 28,669 cattle from 527 herds) were followed up for two years (2019-2021), or to point of bTB detection or death. At the end of follow-up, 1151 (4.0%) of enrolled animals were bTB cases. The majority of these cases were diagnosed using SICTT (80.5%). The cumulative number of positive animals that would have been removed if the old cut-off (0 < B-A ≤ 80) was used amounted to 1680 cattle (5.9% of the enrolled cohort). Of these, 127 (7.5%) were diagnosed with bTB during follow-up. In contrast, 1024 of the 1151 cattle which subsequently tested positive during the study period following a negative IFN-γ test would not have been identified with the old or new IFN-γ cut-off criteria. Survival analysis showed that animals that would have been removed under the old interpretation criteria were at increased risk of a positive diagnosis with bTB during follow-up compared to other test negative animals. A newly developed risk prediction model (using a Cox proportional hazard model) showed that age, animal number of SICTT tests, number of inconclusive SICTT tests, B-A (IFN-γ assay), B-N (IFN-γ assay), animals from store herds and the percentage of the rest of the herd that were positive during the breakdown were statistically significantly associated with bTB detection. However, inclusion of the IFN-γ OD variables did not show added value in terms of prediction performance of the model.
Collapse
Affiliation(s)
- Jamie M Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), University College Dublin (UCD), Dublin, Ireland.
| | - Jim O'Donovan
- Department of Agriculture, Food and the Marine, Regional Veterinary Laboratory, Cork, Ireland
| | - Miriam Casey-Bryars
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), University College Dublin (UCD), Dublin, Ireland
| | - James Sweeney
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Locksley L Messam
- Section: Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Conor G McAloon
- Section: Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), University College Dublin (UCD), Dublin, Ireland
| | - Kevin Kenny
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory, Backweston Co., Kildare, Ireland
| | - Eoin Ryan
- Department of Agriculture, Food and the Marine, Ruminant Animal Health Division, Backweston, Co., Kildare, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
15
|
Sánchez-Carvajal JM, Vera-Salmoral E, Huerta B, Galán-Relaño Á, Ruedas-Torres I, Larenas-Muñoz F, Luque I, Carrasco L, Gómez-Laguna J. Droplet digital PCR as alternative to microbiological culture for Mycobacterium tuberculosis complex detection in bovine lymph node tissue samples. Front Cell Infect Microbiol 2024; 14:1349999. [PMID: 38469351 PMCID: PMC10925636 DOI: 10.3389/fcimb.2024.1349999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Bovine tuberculosis (bTB) caused by Mycobacterium tuberculosis complex (MTC) remains a significant concern for public health. Direct real-time PCR and droplet digital PCR (ddPCR) are proposed as alternative tools to enhance diagnostic precision and efficiency. This study aims to assess the diagnostic performance of a ddPCR assay targeting IS6110 for the detection of MTC DNA in both microbiological culture and fresh lymph node (LN) tissue samples obtained from cattle, in comparison with the established reference standard, the microbiological culture followed by real-time PCR. Methods The fresh LNs (N=100) were collected each from a different cattle carcass at the slaughterhouse. The limit of detection of ddPCR-IS6110 was set to 101 copies per 20 μl reaction. Results DdPCR-IS6110 detected 44 out of 49 reference-standard positive samples and yielded negative results in 47 out of 51 reference-standard negative samples, resulting in adjusted sensitivity (Se) and specificity (Sp) of 90.76% [95% confidence interval (CI): 82.58 - 98.96%)], and 100% (95% CI: 100%) respectively. The estimated adjusted false negative rate (FNR) was 9.23% (95% CI: 1.04 - 17.42%) and the false positive rate (FPR) was 0% (95% CI: 0%). When directly applied from fresh bovine LN tissues, ddPCR-IS6110 identified 47 out of 49 reference-standard positive samples as ddPCR-IS6110-positive and 42 out of 51 reference-standard negative samples as ddPCR-IS6110-negative, resulting in adjusted Se and Sp values of 94.80% [95% (CI): 88.52 - 100%] and 100% (95% CI: 100%), respectively. The adjusted FNR was 5.20% (95% CI: 0 - 11.50%) and the FPR was 0% (95% CI: 0%). Noteworthy, ddPCR-IS6110 disclosed as positive 9 samples negative to reference-standard. Discussion DdPCR-IS6110 proved to be a rapid, highly sensitive, and specific diagnostic tool as an alternative to reference-standard method.
Collapse
Affiliation(s)
- José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Vera-Salmoral
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Department of Animal Health, Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes (ENZOEM), University of Córdoba, University of Córdoba, Córdoba, Spain
| | - Belén Huerta
- Department of Animal Health, Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes (ENZOEM), University of Córdoba, University of Córdoba, Córdoba, Spain
| | - Ángela Galán-Relaño
- Department of Animal Health, Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes (ENZOEM), University of Córdoba, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- UK Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inmaculada Luque
- Department of Animal Health, Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes (ENZOEM), University of Córdoba, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
16
|
Kumar M, Kumar T, Jangir BL, Singh M, Arora D, Bangar Y, Conlan A, Vordermeier M, Bakker D, Byregowda SM, Srinivasan S, Kapur V, Jindal N. Comparative analysis of tuberculin and defined antigen skin tests for detection of bovine tuberculosis in buffaloes (Bubalus bubalis) in Haryana state, India. BMC Vet Res 2024; 20:65. [PMID: 38395846 PMCID: PMC11308649 DOI: 10.1186/s12917-024-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Tarun Kumar
- Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Mahavir Singh
- College Central Laboratory, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Devan Arora
- Regional Centre at Karnal, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Yogesh Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| | - Andrew Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Douwe Bakker
- Technical Consultant and Independent Researcher, Lelystad, The Netherlands
| | - S M Byregowda
- Institute of Animal Health and Veterinary Biologicals, Bengaluru, India
| | - Sreenidhi Srinivasan
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India.
| |
Collapse
|
17
|
Amato B, Ippolito D, Vitale M, Alduina R, Galluzzo P, Gerace E, Pruiti Ciarello F, Fiasconaro M, Cannella V, Di Marco Lo Presti V. Comparative Study of Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis In Vitro Infection in Bovine Bone Marrow Derived Macrophages: Preliminary Results. Microorganisms 2024; 12:407. [PMID: 38399810 PMCID: PMC10893549 DOI: 10.3390/microorganisms12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow stem cells were differentiated into macrophages and subsequently infected in vitro with different spoligotypes of M. bovis and MAP field strains (as single infections and coinfections), using different multiplicity of infection. Supernatant and cell pellets were collected 24 h, 48 h, and one week post-infection. Preliminarily, gene expression on cell pellets of IL-1β, IL-2, INFγ, IL-6, IL-10, IL-12, and TNFα was assessed by qRT-PCR one week p.i. Subsequently, IL-1β and IL-6 were measured by ELISA and qRT-PCR to investigated their production retrospectively 24 h and 48 h p.i. A variability in macrophages response related to the concentration of mycobacteria, the coinfection with MAP, and M. bovis spoligotypes was identified. An early and constant IL-6 increase was observed in the M. bovis infection. A lower increase in IL-1β was also detected at the highest concentration of the two M. bovis spoligotypes one week post-infection. IL-6 and IL-1 β production was reduced and differently expressed in the MAP infection. IL-6 appeared to be the earliest cytokines produced by bovine macrophages infected with M. bovis.
Collapse
Affiliation(s)
- Benedetta Amato
- Bristol Veterinary School Langford Campus, University of Bristol, Bristol BS40 5DU, UK;
| | - Dorotea Ippolito
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Elisabetta Gerace
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Flavia Pruiti Ciarello
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Michele Fiasconaro
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenzo Di Marco Lo Presti
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| |
Collapse
|
18
|
Cooke DM, Clarke C, Kerr TJ, Warren RM, Witte C, Miller MA, Goosen WJ. Detection of Mycobacterium bovis in nasal swabs from communal goats ( Capra hircus) in rural KwaZulu-Natal, South Africa. Front Microbiol 2024; 15:1349163. [PMID: 38419629 PMCID: PMC10899470 DOI: 10.3389/fmicb.2024.1349163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Animal tuberculosis, caused by Mycobacterium bovis, presents a significant threat to both livestock industries and public health. Mycobacterium bovis tests rely on detecting antigen specific immune responses, which can be influenced by exposure to non-tuberculous mycobacteria, test technique, and duration and severity of infection. Despite advancements in direct M. bovis detection, mycobacterial culture remains the primary diagnostic standard. Recent efforts have explored culture-independent PCR-based methods for identifying mycobacterial DNA in respiratory samples. This study aimed to detect M. bovis in nasal swabs from goats (Capra hircus) cohabiting with M. bovis-infected cattle in KwaZulu-Natal, South Africa. Nasal swabs were collected from 137 communal goats exposed to M. bovis-positive cattle and 20 goats from a commercial dairy herd without M. bovis history. Swabs were divided into three aliquots for analysis. The first underwent GeneXpert® MTB/RIF Ultra assay (Ultra) screening. DNA from the second underwent mycobacterial genus-specific PCR and Sanger sequencing, while the third underwent mycobacterial culture followed by PCR and sequencing. Deep sequencing identified M. bovis DNA in selected Ultra-positive swabs, confirmed by region-of-difference (RD) PCR. Despite no other evidence of M. bovis infection, viable M. bovis was cultured from three communal goat swabs, confirmed by PCR and sequencing. Deep sequencing of DNA directly from swabs identified M. bovis in the same culture-positive swabs and eight additional communal goats. No M. bovis was found in commercial dairy goats, but various NTM species were detected. This highlights the risk of M. bovis exposure or infection in goats sharing pastures with infected cattle. Rapid Ultra screening shows promise for selecting goats for further M. bovis testing. These techniques may enhance M. bovis detection in paucibacillary samples and serve as valuable research tools.
Collapse
Affiliation(s)
- Deborah M. Cooke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Charlene Clarke
- Faculty of Natural and Agricultural Sciences, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- The Center for Wildlife Studies, South Freeport, ME, United States
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Allen A, Magee R, Devaney R, Ardis T, McNally C, McCormick C, Presho E, Doyle M, Ranasinghe P, Johnston P, Kirke R, Harwood R, Farrell D, Kenny K, Smith J, Gordon S, Ford T, Thompson S, Wright L, Jones K, Prodohl P, Skuce R. Whole-Genome sequencing in routine Mycobacterium bovis epidemiology - scoping the potential. Microb Genom 2024; 10:001185. [PMID: 38354031 PMCID: PMC10926703 DOI: 10.1099/mgen.0.001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium bovis the main agent of bovine tuberculosis (bTB), presents as a series of spatially-localised micro-epidemics across landscapes. Classical molecular typing methods applied to these micro-epidemics, based on genotyping a few variable loci, have significantly improved our understanding of potential epidemiological links between outbreaks. However, they have limited utility owing to low resolution. Conversely, whole-genome sequencing (WGS) provides the highest resolution data available for molecular epidemiology, producing richer outbreak tracing, insights into phylogeography and epidemic evolutionary history. We illustrate these advantages by focusing on a common single lineage of M. bovis (1.140) from Northern Ireland. Specifically, we investigate the spatial sub-structure of 20 years of herd-level multi locus VNTR analysis (MLVA) surveillance data and WGS data from a down sampled subset of isolates of this MLVA type over the same time frame. We mapped 2108 isolate locations of MLVA type 1.140 over the years 2000-2022. We also mapped the locations of 148 contemporary WGS isolates from this lineage, over a similar geographic range, stratifying by single nucleotide polymorphism (SNP) relatedness cut-offs of 15 SNPs. We determined a putative core range for the 1.140 MLVA type and SNP-defined sequence clusters using a 50 % kernel density estimate, using cattle movement data to inform on likely sources of WGS isolates found outside of core ranges. Finally, we applied Bayesian phylogenetic methods to investigate past population history and reproductive number of the 1.140 M. bovis lineage. We demonstrate that WGS SNP-defined clusters exhibit smaller core ranges than the established MLVA type - facilitating superior disease tracing. We also demonstrate the superior functionality of WGS data in determining how this lineage was disseminated across the landscape, likely via cattle movement and to infer how its effective population size and reproductive number has been in flux since its emergence. These initial findings highlight the potential of WGS data for routine monitoring of bTB outbreaks.
Collapse
Affiliation(s)
- Adrian Allen
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Ryan Magee
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Ryan Devaney
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Tara Ardis
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Caitlín McNally
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Carl McCormick
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Eleanor Presho
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Michael Doyle
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Purnika Ranasinghe
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Philip Johnston
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Raymond Kirke
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Roland Harwood
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Damien Farrell
- Central Veterinary Research Laboratory, Kildare, Ireland
- University College Dublin, Dublin, Ireland
| | - Kevin Kenny
- Central Veterinary Research Laboratory, Kildare, Ireland
| | | | | | - Tom Ford
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Suzan Thompson
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Lorraine Wright
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Kerri Jones
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Paulo Prodohl
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Robin Skuce
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| |
Collapse
|
20
|
Holder T, Srinivasan S, McGoldrick A, Williams GA, Palmer S, Clarke J, O'Brien A, Conlan AJK, Juleff N, Vordermeier HM, Jones GJ, Kapur V. Temporal dynamics of the early immune response following Mycobacterium bovis infection of cattle. Sci Rep 2024; 14:2600. [PMID: 38297023 PMCID: PMC10831113 DOI: 10.1038/s41598-024-52314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Bovine tuberculosis is an infectious disease of global significance that remains endemic in many countries. Mycobacterium bovis infection in cattle is characterized by a cell-mediated immune response (CMI) that precedes humoral responses, however the timing and trajectories of CMI and antibody responses determined by newer generation assays remain undefined. Here we used defined-antigen interferon-gamma release assays (IGRA) and an eleven-antigen multiplex ELISA (Enferplex TB test) alongside traditional tuberculin-based IGRA and IDEXX M. bovis antibody tests to assess immune trajectories following experimental M. bovis infection of cattle. The results show CMI responses developed as early as two-weeks post-infection, with all infected cattle testing positive three weeks post-infection. Interestingly, 6 of 8 infected animals were serologically positive with the Enferplex TB assay as early as 4 weeks post-infection. As expected, application of the tuberculin skin test enhanced subsequent serological reactivity. Infrequent M. bovis faecal shedding was observed but was uncorrelated with observed immune trajectories. Together, the results show that early antibody responses to M. bovis infection are detectable in some individuals and highlight an urgent need to identify biomarkers that better predict infection outcomes, particularly for application in low-and-middle income countries where test-and-slaughter based control methods are largely unfeasible.
Collapse
Affiliation(s)
- Thomas Holder
- Animal and Plant Health Agency, Bacteriology, Addlestone, UK
| | - Sreenidhi Srinivasan
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | - John Clarke
- Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, County Kildare, Ireland
| | - Amanda O'Brien
- Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, County Kildare, Ireland
| | - Andrew J K Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nick Juleff
- The Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Gareth J Jones
- Animal and Plant Health Agency, Bacteriology, Addlestone, UK.
| | - Vivek Kapur
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
21
|
Dwyer R, Witte C, Buss P, Warren R, Miller M, Goosen W. Antemortem detection of Mycobacterium bovis in nasal swabs from African rhinoceros. Sci Rep 2024; 14:357. [PMID: 38172248 PMCID: PMC10764836 DOI: 10.1038/s41598-023-50236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Mycobacterium bovis (M. bovis) infection has been identified in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations in Kruger National Park, South Africa. However, it is unknown whether M. bovis infected rhinoceros, like humans and cattle, can shed mycobacteria in respiratory secretions. Limited studies have suggested that rhinoceros with subclinical M. bovis infection may present minimal risk for transmission. However, recent advances that have improved detection of Mycobacterium tuberculosis complex (MTBC) members in paucibacillary samples warranted further investigation of rhinoceros secretions. In this pilot study, nasal swab samples from 75 rhinoceros with defined infection status based on M. bovis antigen-specific interferon gamma release assay (IGRA) results were analysed by GeneXpert MTB/RIF Ultra, BACTEC MGIT and TiKa-MGIT culture. Following culture, speciation was done using targeted PCRs followed by Sanger sequencing for mycobacterial species identification, and a region of difference (RD) 4 PCR. Using these techniques, MTBC was detected in secretions from 14/64 IGRA positive rhinoceros, with viable M. bovis having been isolated in 11 cases, but not in any IGRA negative rhinoceros (n = 11). This finding suggests the possibility that MTBC/M. bovis-infected rhinoceros may be a source of infection for other susceptible animals sharing the environment.
Collapse
Affiliation(s)
- Rebecca Dwyer
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
- The Center for Wildlife Studies, P.O. Box 56, South Freeport, ME, 04078, USA
| | - Peter Buss
- Veterinary Wildlife Services, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Robin Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Wynand Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
22
|
Vicenzi JM, Cerva C, Rodrigues RO, Bertagnolli AC, Mayer FQ. Condemnation of bovine carcasses due to tuberculosis-gross lesions in Rio Grande do Sul, Brazil: Associated risk factors. Comp Immunol Microbiol Infect Dis 2023; 102:102063. [PMID: 37757627 DOI: 10.1016/j.cimid.2023.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Surveillance of bovine tuberculosis (bTB) lesions in animals at slaughterhouses is useful for controlling and eradicating the disease, besides providing epidemiological information. This study aimed to identify risk factors for bovine tuberculosis (bTB) condemnation in cattle at slaughterhouses in Rio Grande do Sul, Brazil. A logistic regression analysis was conducted using data on bTB-related condemnations. Variables examined included animal origin, number of slaughtered animals, season, inspection level (state or municipality), animal sex, and slaughterhouse location. A total of 297,817 Animal Transport Guides were evaluated, representing the transportation of 3497,521 animals. Among these, 6097 (2.05%) had at least one animal condemned due to bTB lesions. Risk factors for condemnation included larger batch sizes, female animals, slaughterhouses, and animal origin. The higher condemnation frequency in females and regions with dairy farms suggests links to milk production. Variation in condemnation rates by inspection level and slaughterhouse highlights the need for standardized procedures in identifying bTB lesions. Identifying these risk factors enables targeted interventions to enhance disease control and eradication efforts.
Collapse
Affiliation(s)
- Jerônimo Miguel Vicenzi
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Rogério Oliveira Rodrigues
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Angélica Cavalheiro Bertagnolli
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Postal code: 92990-000, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
23
|
Hamed MG, Gómez-Laguna J, Larenas-Muñoz F, Mahmoud AZ, Ali FAZ, Abd-Elghaffar SK. Monitoring the immune response of macrophages in tuberculous granuloma through the expression of CD68, iNOS and HLA-DR in naturally infected beef cattle. BMC Vet Res 2023; 19:220. [PMID: 37865747 PMCID: PMC10589937 DOI: 10.1186/s12917-023-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023] Open
Abstract
Bovine tuberculosis still represents a universal threat that creates a wider range of public and animal health impacts. One of the most important steps in the pathogenesis of this disease and granuloma formation is the phagocytosis of tuberculous bacilli by macrophages. Mycobacteria replicate in macrophages, which are crucial to the pathophysiology of mycobacterial infections; however, scarce information is available about the dynamics of the granuloma-stage immunological response. Therefore, immunohistochemistry was used in this work to evaluate the expression of CD68, iNOS, and HLA-DR in different stages of TB granulomas from naturally infected cattle with tuberculosis. Two thousand, one hundred and fifty slaughtered beef cattle were examined during the period from September 2020 to March 2022. Sixty of them showed gross tuberculous pulmonary lesions and samples were collected from all of them for histopathological examination, Ziehl-Neelsen (ZN) staining, and bacteriological culturing. Selected samples that yielded a positive result for ZN and mycobacterial culturing were subjected to an immunohistochemical study of CD68, iNOS, and HLA-DR expression by macrophages according to granuloma stages. Immunohistochemical analysis revealed that the immunolabeling of CD68+, iNOS+, and HLA-DR+ macrophages significantly reduced as the stage of granuloma increased from stage I to stage IV (P < 0.003, P < 0.002, and P < 0.002, respectively). The distribution of immunolabeled macrophages was similar for the three markers, with immunolabeled macrophages distributed throughout early-stage granulomas (I, II), and surrounding the necrotic core in late-stage granulomas (III, IV). Our results suggest a polarization to the pro-inflammatory environment and increased expression of CD68+, iNOS+, and HLA-DR+ macrophages in the early stages of granulomas (I, II), which may play a protective role in the immune response of naturally infected beef cattle with tuberculosis.
Collapse
Affiliation(s)
- Mohamed G Hamed
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, 14014, Spain
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Córdoba, 14014, Spain
| | - Abdelzaher Z Mahmoud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Pathology and Clinical Pathology, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| |
Collapse
|
24
|
Islam R, Islam SS, Rumi TB, Mia Z, Rahim Z. Enhancing bovine tuberculosis screening at Dhaka city in Bangladesh: Integrating gamma interferon blood test as ancillary testing with tuberculin skin test. Vet Immunol Immunopathol 2023; 264:110659. [PMID: 37801841 DOI: 10.1016/j.vetimm.2023.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Tuberculin skin test (TST) is the standard method for screening of bovine tuberculosis (bTB). However, gamma interferon blood test has been introduced in the bTB control program as an ancillary testing with TST in many countries of the world. The objective of this study was to recommend this screening test as an ancillary testing with TST for field application in Bangladesh. In this study 577 cattle of different age, sex and breeds from twenty nine (29) cattle herds were examined to determine skin response against bTB through single intradermal comparative tuberculin test (SICTT) that comprised of positive (n = 81), inconclusive (n = 44) and negative (n = 452) animals. Of which 74 animals that included positive (n = 63), inconclusive (n = 8) and negative (n = 3) animals were taken under this study. Blood samples were collected in heparinized tube and stimulated overnight with bovine and avian purified protein derivatives (PPDs) for the secretion of gamma interferon, and measured via sandwich ELISA. Cohen's kappa statistics was performed for the evaluation of agreement between the two tests. The agreement obtained between two tests was fair (Kappa agreement, K = 24.0%, 95% CI = 16.9-30.5%, P = 0.037). Of positive (n = 63), inconclusive (n = 8) and negative (n = 3) status of animals at SICTT, 82.54% (n = 52), 62.50% (n = 5), and 33.33% (n = 1) were found to be bTB positive respectively through this ancillary test. This test notably corroborates to TST result. A considerable number of inconclusive TB status animals were found to be positive through this gamma interferon assay. Therefore, this test could be used as an ancillary test with TST to maximize the proportion of bTB estimation in the infected cattle herd for early detection of zoonotic tuberculosis in Bangladesh before transmission at the animal-human interface.
Collapse
Affiliation(s)
- Robiul Islam
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh.
| | - Sk Shaheenur Islam
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh; Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanzida Begum Rumi
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1215, Bangladesh
| | - Zakaria Mia
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zeaur Rahim
- International Centre for Diarrhoeal Disease and Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1215, Bangladesh
| |
Collapse
|
25
|
Rumi TB, Islam SS, Islam R, Faisal MMH, Kabir SML, Rahman AKMA, Rahim Z. Gamma-interferon assay for the ancillary diagnosis of bovine tuberculosis in dairy cattle in urban and adjacent areas of Dhaka city, Bangladesh. Vet World 2023; 16:2120-2127. [PMID: 38023284 PMCID: PMC10668560 DOI: 10.14202/vetworld.2023.2120-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Bovine tuberculosis (bTB) is an infectious disease of cattle, mainly caused by Mycobacterium bovis. This study aimed to evaluate the efficacy of the interferon-gamma (IFN-γ) assay and single-intradermal comparative tuberculin test (SICTT) in detecting bTB. Materials and Methods In an earlier study, 150 positive, 83 inconclusive, and 480 negative animals from 24 cattle herds were screened using SICTT. From these groups, 125 positive, 17 inconclusive, and six negative animals were subsequently verified using the IFN-γ assay. Single-intradermal comparative tuberculin test outcomes were interpreted according to standard guidelines, whereas blood samples were collected and stimulated with purified protein derivatives. Sandwich enzyme-linked immunosorbent assay was used to measure secreted IFN-γ. Concordant and Bayesian latent class analyses were performed to evaluate test performance. Results Results from the IFN-γ assay revealed that 83.2%, 64.7%, and 16.67% of the animals were positive in the SICTT-positive, inconclusive, and negative animal categories, respectively. Sensitivity (SE) and specificity (SP) of SICTT were 83.9% (95% confidence interval [CI]: 77.4-90.1) and 95.7% (95% CI: 86.9-99.7), respectively. Sensitivity and SP for the IFN-γ assay were 78.9% (95% CI: 71.9-85.4) and 83.9% (65.9-95.9), respectively. The use of both tests in parallel increases the SE of bTB detection (~94%), compared with SICTT alone. Conclusion Use of the IFN-γ assay with SICTT in parallel, predominantly on cattle demonstrating an inconclusive SICTT outcome, boosts bTB detection rate in low resource settings.
Collapse
Affiliation(s)
| | - Sk. Shaheenur Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
- Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka-1215, Bangladesh
| | - Robiul Islam
- Department of Microbiology, Jagannath University, Dhaka-1100, Bangladesh
| | | | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | | - Zeaur Rahim
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
26
|
Romero MP, Chang YM, Brunton LA, Parry J, Prosser A, Upton P, Drewe JA. Assessing the potential impact of applying a higher sensitivity test to selected cattle populations for the control of bovine tuberculosis in England. Prev Vet Med 2023; 219:106004. [PMID: 37647718 DOI: 10.1016/j.prevetmed.2023.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Bovine tuberculosis (bTB) continues to be the costliest, most complex animal health problem in England. The effectiveness of the test-and-slaughter policy is hampered by the imperfect sensitivity of the surveillance tests. Up to half of recurrent incidents within 24 months of a previous one could have been due to undetected infected cattle not being removed. Improving diagnostic testing with more sensitive tests, like the interferon (IFN)-gamma test, is one of the government's top priorities. However, blanket deployment of such tests could result in more false positive results (due to imperfect specificity), together with logistical and cost-efficiency challenges. A targeted application of such tests in higher prevalence scenarios, such as a subpopulation of high-risk herds, could mitigate against these challenges. We developed classification machine learning algorithms (using 80% of 2012-2019 bTB surveillance data as the training set) to evaluate the deployment of IFN-gamma testing in high-risk herds (i.e. those at risk of an incident in England) in two testing data sets: i) the remaining 20% of 2012-19 data, and ii) 2020 bTB surveillance data. The resulting model, classification tree analysis, with an area under a receiver operating characteristic (ROC) curve (AUC) > 95, showed a 73% sensitivity and a 97% specificity in the 2012-2019 test dataset. Used on 2020 data, it predicted eight percent (3 510 of 41 493) of eligible active herds as at-risk of a bTB incident, the majority of them (66% or 2 328 herds) experiencing at least one. Whilst all predicted at-risk herds could have preventive measures applied, the additional application of IFN-gamma test in parallel interpretation to the statutory skin test, if the risk materialises, would have resulted in 8 585 additional IFN-gamma reactors detected (a 217% increase over the 2 710 IFN-gamma reactors already detected by tests carried out). Only 18% (330 of 1 819) of incidents in predicted high-risk herds had the IFN-gamma test applied in 2020. We therefore conclude that this methodology provides a better way of directing the application of the IFN-gamma test towards the high-risk subgroup of herds. Classification tree analysis ensured the systematic identification of high-risk herds to consistently apply additional measures in a targeted way. This could increase the detection of infected cattle more efficiently, preventing recurrence and accelerating efforts to achieve eradication by 2038. This methodology has wider application, like targeting improved biosecurity measures in avian influenza at-risk farms to limit damage to the industry in future outbreaks.
Collapse
Affiliation(s)
- M Pilar Romero
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom; Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Yu-Mei Chang
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Lucy A Brunton
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Jessica Parry
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Alison Prosser
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Paul Upton
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Julian A Drewe
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
27
|
Lellman S, Reynolds CK, Jones AB, Taylor N, Cramer R. LAP-MALDI MS Profiling and Identification of Potential Biomarkers for the Detection of Bovine Tuberculosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13899-13905. [PMID: 37677086 PMCID: PMC10515614 DOI: 10.1021/acs.jafc.3c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Detecting bovine tuberculosis (bTB) primarily relies on the tuberculin skin test, requiring two separate animal handling events with a period of incubation time (normally 3 days) between them. Here, we present the use of liquid atmospheric pressure (LAP)-MALDI for the identification of bTB infection, employing a three-class prediction model that was obtained by supervised linear discriminant analysis (LDA) and tested with bovine mastitis samples as disease-positive controls. Noninvasive collection of nasal swabs was used to collect samples, which were subsequently subjected to a short (<4 h) sample preparation method. Cross-validation of the three-class LDA model from the processed nasal swabs provided a sensitivity of 75.0% and specificity of 90.1%, with an overall classification accuracy of 85.7%. These values are comparable to those for the skin test, showing that LAP-MALDI MS has the potential to provide an alternative single-visit diagnostic platform that can detect bTB within the same day of sampling.
Collapse
Affiliation(s)
- Sophie
E. Lellman
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom
| | - Christopher K. Reynolds
- School
of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, United Kingdom
| | - A.K. Barney Jones
- School
of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, United Kingdom
| | - Nick Taylor
- Veterinary
Epidemiology and Economics Research Unit (VEERU), PAN Livestock Services
Ltd, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, United Kingdom
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom
| |
Collapse
|
28
|
Moens C, Saegerman C, Fretin D, Marché S. Performance of two commercial serological assays for bovine tuberculosis using plasma samples. Vet Immunol Immunopathol 2023; 263:110644. [PMID: 37603920 DOI: 10.1016/j.vetimm.2023.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
In the bovine tuberculosis diagnosis, the use of plasma samples (already available for IFNɣ assays) in serological tests might facilitate the work in the field. Here, the performance of two commercial serological tests (ELISA IDEXX M. bovis Ab test and Enferplex Bovine TB antibody test) were evaluated using plasma samples from cattle in Belgium. Specificity values estimated from 567 plasma samples collected from bTB-free cattle were 98.4% when using the ELISA IDEXX M. bovis Ab test, and were 96.5% and 93.3% when using the high specificity and high sensitivity settings of the Enferplex Bovine TB antibody test, respectively. Sensitivity values were calculated relative to SICCT-positive (N = 117) and IFNɣ-positive (N = 132) animals originating from M. bovis-infected herds. Overall, the multiplexed Enferplex Bovine TB antibody test had better sensitivity (mean: 32.5% and 43.4% for the high specificity and sensitivity settings, respectively) compared to the ELISA IDEXX M. bovis Ab test (mean: 12%). Data obtained from plasma samples in the current study were compared to a previous study using both serological tests with sera. In conclusion, both serological tests showed comparable performance with both matrix; although overall specificity values with the Enferplex Bovine TB antibody test were lower when using plasma samples than sera.
Collapse
Affiliation(s)
- Charlotte Moens
- Veterinary Bacteriology Service, Sciensano, B-1040 Brussels, Belgium; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, B-1048 Louvain-la-Neuve, Belgium.
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, B-4000 Liège, Belgium
| | - David Fretin
- Veterinary Bacteriology Service, Sciensano, B-1040 Brussels, Belgium
| | - Sylvie Marché
- Veterinary Bacteriology Service, Sciensano, B-1040 Brussels, Belgium
| |
Collapse
|
29
|
Gumbo R, Goosen WJ, Buss PE, de Klerk-Lorist LM, Lyashchenko K, Warren RM, van Helden PD, Miller MA, Kerr TJ. "Spotting" Mycobacterium bovis infection in leopards ( Panthera pardus) - novel application of diagnostic tools. Front Immunol 2023; 14:1216262. [PMID: 37727792 PMCID: PMC10505734 DOI: 10.3389/fimmu.2023.1216262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 09/21/2023] Open
Abstract
Background Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.
Collapse
Affiliation(s)
- Rachiel Gumbo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Lin-Mari de Klerk-Lorist
- Skukuza State Veterinary Office, Department of Agriculture, Land Reform and Rural Development, Skukuza, South Africa
| | | | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
30
|
Khalid H, Pierneef L, van Hooij A, Zhou Z, de Jong D, Tjon Kon Fat E, Connelley TK, Hope JC, Corstjens PLAM, Geluk A. Development of lateral flow assays to detect host proteins in cattle for improved diagnosis of bovine tuberculosis. Front Vet Sci 2023; 10:1193332. [PMID: 37655261 PMCID: PMC10465798 DOI: 10.3389/fvets.2023.1193332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis) infection in cattle, is an economically devastating chronic disease for livestock worldwide. Efficient disease control measures rely on early and accurate diagnosis using the tuberculin skin test (TST) and interferon-gamma release assays (IGRAs), followed by culling of positive animals. Compromised performance of TST and IGRA, due to BCG vaccination or co-infections with non-tuberculous mycobacteria (NTM), urges improved diagnostics. Lateral flow assays (LFAs) utilizing luminescent upconverting reporter particles (UCP) for quantitative measurement of host biomarkers present an accurate but less equipment- and labor-demanding diagnostic test platform. UCP-LFAs have proven applications for human infectious diseases. Here, we report the development of UCP-LFAs for the detection of six bovine proteins (IFN-γ, IL-2, IL-6, CCL4, CXCL9, and CXCL10), which have been described by ELISA as potential biomarkers to discriminate M. bovis infected from naïve and BCG-vaccinated cattle. We show that, in line with the ELISA data, the combined PPDb-induced levels of IFN-γ, IL-2, IL-6, CCL4, and CXCL9 determined by UCP-LFAs can discriminate M. bovis challenged animals from naïve (AUC range: 0.87-1.00) and BCG-vaccinated animals (AUC range: 0.97-1.00) in this cohort. These initial findings can be used to develop a robust and user-friendly multi-biomarker test (MBT) for bTB diagnosis.
Collapse
Affiliation(s)
- Hamza Khalid
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Division of Immunology, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
- Center for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Louise Pierneef
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Zijie Zhou
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Elisa Tjon Kon Fat
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy K. Connelley
- Division of Immunology, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Jayne C. Hope
- Division of Immunology, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Gomez-Buendia A, Romero B, Bezos J, Saez JL, Archetti I, Pacciarini ML, Boschiroli ML, Girard S, Gutu E, Barbuceanu F, Karaoulani O, Stournara A, de Juan L, Alvarez J. Evaluation of the performance of the IFN-γ release assay in bovine tuberculosis free herds from five European countries. Vet Res 2023; 54:55. [PMID: 37403088 DOI: 10.1186/s13567-023-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
The diagnostic methods for granting and maintenance of the official tuberculosis-free (OTF) status and for intra-Community movement of cattle are the tuberculin skin tests (single or comparative) and the interferon-γ (IFN-γ) release assay (IGRA). However, until now, IGRAs have been primarily applied in infected farms in parallel to the skin test to maximize the number of infected animals detected. Therefore, an evaluation of the performance of IGRAs in OTF herds to assess whether if their specificity is equal to or higher than that of the skin tests is needed. For this, a panel of 4365 plasma samples coming from 84 OTF herds in six European regions (five countries) was assembled and analysed using two IGRA kits, the ID Screen® Ruminant IFN-g (IDvet) and the Bovigam™ TB Kit (Bovigam). Results were evaluated using different cut-offs, and the impact of herd and animal-level factors on the probability of positivity was assessed using hierarchical Bayesian multivariable logistic regression models. The percentage of reactors ranged from 1.7 to 21.0% (IDvet: S/P ≥ 35%), and 2.1-26.3% (Bovigam: ODbovis-ODPBS ≥ 0.1 and ODbovis-ODavium ≥ 0.1) depending on the region, with Bovigam disclosing more reactors in all regions. The results suggest that specificity of IGRAs can be influenced by the production type, age and region of origin of the animals. Changes in the cut-offs could lead to specificity values above 98-99% in certain OTF populations, but no single cut-off yielding a sufficiently high specificity (equal or higher than that of skin tests) in all populations was identified. Therefore, an exploratory analysis of the baseline IFN-γ reactivity in OTF populations could help to assess the usefulness of this technique when applied for the purpose of maintaining OTF status.
Collapse
Affiliation(s)
- Alberto Gomez-Buendia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Ivonne Archetti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Maria Laura Boschiroli
- University Paris-Est, Laboratory for Animal Health, Tuberculosis National Reference Laboratory, ANSES, Maisons-Alfort, France
| | - Sébastien Girard
- Regional Directorate for Food, Agriculture and Forest of Bourgogne-Franche-Comte, Dijon, France
| | - Emanuela Gutu
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Ourania Karaoulani
- National Reference Laboratory for Bovine Tuberculosis, Directorate of Veterinary Centre of Athens, Ministry of Rural Development and Food, Athens, Greece
| | - Athanasia Stournara
- Department of Serology, Veterinary Laboratory of Larissa, Ministry of Rural Development and Food, Larissa, Greece
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Sarkar S, Haider N, Islam A, Hossain MB, Hossain K, Mafij Uddin MK, Rahman A, Ahmed SSU, Banu S, Rahim Z, Heffelfinger JD, Zeidner N. Occurrence of tuberculosis among people exposed to cattle in Bangladesh. Vet Med Sci 2023. [PMID: 37327465 DOI: 10.1002/vms3.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) has been an important public health concern in Bangladesh. The most common cause of human TB is Mycobacterium tuberculosis, while bovine TB is caused by Mycobacterium bovis. OBJECTIVE The objective of this study was to determine the frequency of TB in individuals with occupational exposure to cattle and to detect Mycobacterium bovis among cattle in slaughterhouses in Bangladesh. METHODS Between August and September 2015, an observational study was conducted in two government chest disease hospitals, one cattle market, and two slaughterhouses. Sputum samples were collected from individuals who met the criteria for suspected TB and had been exposed to cattle. Tissue samples were collected from cattle that had low body condition score(s). Both humans and cattle samples were screened for acid-fast bacilli (AFB) by Ziehl-Neelsen (Z-N) staining and cultured for Mycobacterium tuberculosis complex (MTC). Region of difference (RD) 9-based polymerase chain reaction (PCR) was also performed to identify Mycobacterium spp. We also conducted Spoligotyping to identify the specific strain of Mycobacterium spp. RESULTS Sputum was collected from a total of 412 humans. The median age of human participants was 35 (IQR: 25-50) years. Twenty-five (6%) human sputum specimens were positive for AFB, and 44 (11%) were positive for MTC by subsequent culture. All (N = 44) culture-positive isolates were confirmed as Mycobacterium tuberculosis by RD9 PCR. Besides, 10% of cattle workers were infected with Mycobacterium tuberculosis in the cattle market. Of all TB (caused by Mycobacterium tuberculosis) infected individuals, 6.8% of individuals were resistant to one or two anti-TB drugs. The majority of the sampled cattle (67%) were indigenous breeds. No Mycobacterium bovis was detected in cattle. CONCLUSIONS We did not detect any TB cases caused by Mycobacterium bovis in humans during the study. However, we detected TB cases caused by Mycobacterium tuberculosis in all humans, including cattle market workers.
Collapse
Affiliation(s)
- Shamim Sarkar
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Najmul Haider
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- School of Life Sciences, Keele University, Keele, Staffordshire, UK
| | - Ariful Islam
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Muhammad Belal Hossain
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kamal Hossain
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Khaja Mafij Uddin
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Arfatur Rahman
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sayera Banu
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zeaur Rahim
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - James D Heffelfinger
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Nord Zeidner
- Programme on Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- School of Life Sciences, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
33
|
Hope JC, Khalid H, Thom ML, Howard CJ, Shaw DJ. Protective Efficacy of BCG Vaccination in Calves Vaccinated at Different Ages. Pathogens 2023; 12:789. [PMID: 37375479 DOI: 10.3390/pathogens12060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), is a globally prevalent pathogen with significant animal welfare, economic and public health impacts. In the UK, the control of bTB relies on detection via tuberculin skin tests with ancillary interferon gamma (IFN-γ) release assays, followed by culling infected animals. Vaccination with Bacille Calmette-Guérin (BCG) could be an important element of bTB control, and a number of studies have demonstrated its protective efficacy, particularly when young calves are vaccinated. Here, we compared immune responses and the protective efficacy of BCG in calves vaccinated within the first day of life and at three weeks of age. Significant protection from M. bovis infection was observed in BCG-vaccinated calves compared to non-vaccinated, age-matched controls. No significant differences were shown between calves vaccinated at one day and at three weeks of age when assessing the protective efficacy of BCG (measured as a reduction in lesions and bacterial burden). Antigen-specific IFN-γ levels were similar between the BCG-vaccinated groups, but significantly different from the non-vaccinated control animals. Antigen-specific IFN-γ expression post-BCG vaccination was correlated significantly with protection from M. bovis infection, whereas IFN-γ levels post-challenge correlated with pathology and bacterial burden. These results indicate that early-life vaccination with BCG could have a significant impact on M. bovis infection and, therefore, bTB incidence, and they demonstrate that age, at least within the first month of life, does not significantly impact the protective effect of vaccination.
Collapse
Affiliation(s)
- Jayne C Hope
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Michelle L Thom
- Institute for Animal Health, Compton RG20 7NN, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | | | - Darren J Shaw
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
34
|
Bisschop PIH, Frankena K, Milne GM, Ford T, McCallan L, Young FJ, Byrne AW. Relationship between ambient temperature at sampling and the interferon gamma test result for bovine tuberculosis in cattle. Vet Microbiol 2023; 283:109778. [PMID: 37216720 DOI: 10.1016/j.vetmic.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Bovine tuberculosis (bTB) is a disease of significant economic and zoonotic importance, therefore, optimising tests for the identification of Mycobacterium bovis infected cattle is essential. The Interferon Gamma (IFN-γ) Release Assay (IGRA) can diagnose M. bovis infected cattle at an early stage, is easy to perform and can be used alongside skin tests for confirmatory purposes or to increase diagnostic sensitivity. It is known that IGRA performance is sensitive to environmental conditions under which samples are taken and transported. In this study, the association between the ambient temperature on the day of bleeding and the subsequent IGRA result for bTB was quantified using field samples from Northern Ireland (NI). Results of 106,434 IGRA results (2013-2018) were associated with temperature data extracted from weather stations near tested cattle herds. Model dependent variables were the levels of IFN-γ triggered by avian purified protein derivative (PPDa), M. bovis PPD (PPDb), their difference (PPD(b-a)) as well as the final binary outcome (positive or negative for M. bovis infection). IFN-γ levels after both PPDa and PPDb stimulation were lowest at the extremes of the temperature distribution for NI. The highest IGRA positive probability (above 6%) was found on days with moderate maximum temperatures (6-16 °C) or moderate minimum temperatures (4-7 °C). Adjustment for covariates did not lead to major changes in the model estimates. These data suggest that IGRA performance can be affected when samples are taken at high or low temperatures. Whilst it is difficult to exclude physiological factors, the data nonetheless supports the temperature control of samples from bleeding through to laboratory to help mitigate post-collection confounders.
Collapse
Affiliation(s)
- P I H Bisschop
- Department of Animal Science, Adaptation Physiology group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - K Frankena
- Department of Animal Science, Adaptation Physiology group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - G M Milne
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - T Ford
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - L McCallan
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - F J Young
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - A W Byrne
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK; School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
35
|
Pozo P, Bezos J, Romero B, Grau A, Nacar J, Saez JL, Minguez O, Alvarez J. Once bitten twice shy: Risk factors associated with bovine tuberculosis recurrence in Castilla y Leon, Spain. Res Vet Sci 2023; 159:72-80. [PMID: 37087923 DOI: 10.1016/j.rvsc.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Persistence of bovine tuberculosis (bTB) in cattle herd remains a major challenge in disease elimination due to the ineffectual removal of all infected animals in a bTB breakdown. Characterization of herds with a higher probability of experiencing further bTB breakdowns can help to implement specific risk-based policies for disease control and eradication. Here, our aim was to identify herd- and breakdown-level risk factors in bTB infected herds in Castilla y Leon, Spain, associated with a decreased time to recurrence and an increased risk of recurrence using a mixed effects Cox proportional hazards model and a multivariable logistic regression model, respectively. Results revealed that location (province), herd size and number of incoming animals/contacts were good predictors of a decreased time to bTB recurrence and an increased risk of becoming a recurrent herd. Additionally, the duration of the previous outbreak and the number of IFN-γ herd-tests applied in it were associated with increased odds of (an early) recurrence. Risk factors identified here can be used for early identification of herds in which bTB eradication may be more challenging and that should thus be subjected to increased control efforts. The characterization of high-risk herds may help to minimize the risk of reinfection and emphasize early detection and removal of bTB positive animals in the herd.
Collapse
Affiliation(s)
- Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid. Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid. Spain
| | - Anna Grau
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Jesus Nacar
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de Sanidad de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Olga Minguez
- Consejería de Sanidad de la Junta de Castilla y León, Valladolid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid. Spain
| |
Collapse
|
36
|
Zhu X, Wang J, Zhao Y, Zhang Z, Yan L, Xue Y, Chen Y, Robertson ID, Guo A, Aleri J. Prevalence, distribution, and risk factors of bovine tuberculosis in dairy cattle in central China. Prev Vet Med 2023; 213:105887. [PMID: 36893605 DOI: 10.1016/j.prevetmed.2023.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Bovine tuberculosis (bTB) is one of the priority epidemic diseases in dairy cattle in China. Continuous surveillance and evaluation of the control programs will help on improving the efficiency of bTB control policy. We designed this study to investigate both animal and herd level prevalence of bTB, as well as to determine the associated factors in dairy farms in Henan and Hubei provinces. A cross-sectional study was conducted from May 2019 to September 2020 in central China (Henan and Hubei provinces). We sampled 40 herds in Henan and six herds in Hubei via stratified systematic sampling and administrated a questionnaire consisting of 35 factors. A total of 4900 whole blood samples were collected from 46 farms, including 545 calves < six months old and 4355 cows ≥ six months old. This study demonstrated a high animal-(18.65%, 95% CI: 17.6-19.8) and herd-level (93.48%, 95%CI: 82.1-98.6) prevalence of bTB in dairy farms in central China. The Least Absolute Shrinkage and Selection Operator (LASSO) and negative binomial regression models showed that herd positivity was associated with the practice of introducing new animals (RR = 1.7, 95%CI: 1.0-3.0, p = 0.042), and changing the disinfectant water in the wheel bath at the farm entrance every three days or less (RR = 0.4, 95%CI: 0.2-0.8, p = 0.005) which reduced the odds of herd positivity. In addition, the result illustrated that testing cows with a higher age group (≥ 60 months old) (OR=1.57, 95%CI: 1.14-2.17, p = 0.006) and within the early stage of lactation (DIM=60-120 days, OR=1.85, 95%CI: 1.19-2.88, p = 0.006) and the later stage of lactation (DIM≥301 days, OR=2.14, 95%CI: 1.30-3.52, p = 0.003) could maximize the odds of detecting seropositive animals. Our results have plenty of benefit to improve bTB surveillance strategies in China and elsewhere in the world. The LASSO and the negative binomial regression models were recommended when dealing with high herd-level prevalence and high dimensional data in questionnaire-based risk studies.
Collapse
Affiliation(s)
- Xiaojie Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Western Australia 6150, Australia
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Western Australia 6150, Australia
| | - Yuxi Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Zhang
- Henan Dairy Herd Improvement Center, Zhengzhou, Henan 450045, China
| | - Lei Yan
- Henan Dairy Herd Improvement Center, Zhengzhou, Henan 450045, China
| | - Yongkang Xue
- Henan Dairy Herd Improvement Center, Zhengzhou, Henan 450045, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Professional Laboratory For Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ian D Robertson
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Western Australia 6150, Australia; Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Professional Laboratory For Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| | - Joshua Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Western Australia 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, Western Australia 6150, Australia.
| |
Collapse
|
37
|
Cooke DM, Goosen WJ, Burgess T, Witte C, Miller MA. Mycobacterium tuberculosis complex detection in rural goat herds in South Africa using Bayesian latent class analysis. Vet Immunol Immunopathol 2023; 257:110559. [PMID: 36739737 DOI: 10.1016/j.vetimm.2023.110559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Animal tuberculosis affects a wide range of domestic and wild animal species, including goats (Capra hircus). In South Africa, Mycobacterium tuberculosis complex (MTBC) testing and surveillance in domestic goats is not widely applied, potentially leading to under recognition of goats as a potential source of M. bovis spread to cattle as well as humans and wildlife. The aim of this study was to estimate diagnostic test performance for four assays and determine whether M. bovis infection was present in goats sharing communal pastures with M. bovis positive cattle in the Umkhanyakude district of Northern Zululand, KwaZulu Natal. In 2019, 137 M. bovis-exposed goats were screened for MTBC infection with four diagnostic tests: the in vivo single intradermal comparative cervical tuberculin test (SICCT), in vitro QuantiFERON®-TB Gold (QFT) bovine interferon-gamma release assay (IGRA), QFT bovine interferon gamma induced protein 10 (IP-10) release assay (IPRA), and nasal swabs tested with the Cepheid GeneXpert® MTB/RIF Ultra (GXU) assay for detection of MTBC DNA. A Bayesian latent class analysis was used to estimate MTBC prevalence and diagnostic test sensitivity and specificity. Among the 137 M. bovis-exposed goats, positive test results were identified in 15/136 (11.0%) goats by the SICCT; 4/128 (3.1%) goats by the IPRA; 2/128 (1.6%) goats by the IGRA; and 26/134 (19.4%) nasal swabs by the GXU. True prevalence was estimated by our model to be 1.1%, suggesting that goats in these communal herds are infected with MTBC at a low level. Estimated posterior means across the four evaluated assays ranged from 62.7% to 80.9% for diagnostic sensitivity and from 82.9% to 97.9% for diagnostic specificity, albeit estimates of the former (diagnostic sensitivity) were dependent on model assumptions. The application of a Bayesian latent class analysis and multiple ante-mortem test results may improve detection of MTBC, especially when prevalence is low. Our results provide a foundation for further investigation to confirm infection in communal goat herds and identify previously unrecognized sources of intra- and inter-species transmission of MTBC.
Collapse
Affiliation(s)
- Deborah M Cooke
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Tristan Burgess
- Center for Wildlife Studies, P.O. Box 56 South Freeport, ME 04078, USA.
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa; Center for Wildlife Studies, P.O. Box 56 South Freeport, ME 04078, USA.
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research 8000, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
38
|
Kasir D, Osman N, Awik A, El Ratel I, Rafei R, Al Kassaa I, El Safadi D, Salma R, El Omari K, Cummings KJ, Kassem II, Osman M. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases 2023; 11:diseases11010039. [PMID: 36975589 PMCID: PMC10047434 DOI: 10.3390/diseases11010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Mycobacterium bovis is the etiologic agent of bovine tuberculosis (BTB), a serious infectious disease in both humans and animals. BTB is a zoonotic disease primarily affecting cattle and occasionally humans infected through close contact with infected hosts or the consumption of unpasteurized dairy products. Zoonotic tuberculosis is strongly associated with poverty and poor hygiene, and low- and middle-income countries bear the brunt of the disease. BTB has been increasingly recognized as a growing public health threat in developing countries. However, the lack of effective surveillance programs in many of these countries poses a barrier to accurately determining the true burden of this disease. Additionally, the control of BTB is threatened by the emergence of drug-resistant strains that affect the effectiveness of current treatment regimens. Here, we analyzed current trends in the epidemiology of the disease as well as the antimicrobial susceptibility patterns of M. bovis in the Middle East and North Africa (MENA) region, a region that includes several developing countries. Following PRISMA guidelines, a total of 90 studies conducted in the MENA region were selected. Our findings revealed that the prevalence of BTB among humans and cattle varied significantly according to the population size and country in the MENA region. Most of the available studies were based on culture and/or PCR strategies and were published without including data on antimicrobial resistance and molecular typing. Our findings highlighted the paramount need for the use of appropriate diagnostic tools and the implementation of sustainable control measures, especially at the human/animal interface, in the MENA region.
Collapse
Affiliation(s)
- Dalal Kasir
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Nour Osman
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut 1100, Lebanon
| | - Aicha Awik
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imane El Ratel
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imad Al Kassaa
- Fonterra Research and Development Center, Palmerston North 4410, New Zealand
| | - Dima El Safadi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rayane Salma
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Khaled El Omari
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Marwan Osman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Correspondence: or ; Tel.: +1-607-262-4219
| |
Collapse
|
39
|
Accuracy of Tests for Diagnosis of Animal Tuberculosis: Moving Away from the Golden Calf (and towards Bayesian Models). Transbound Emerg Dis 2023. [DOI: 10.1155/2023/7615716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The last decades have seen major efforts to develop new and improved tools to maximize our ability to detect tuberculosis-infected animals and advance towards the objective of disease control and ultimately eradication. Nevertheless, there is still uncertainty regarding test performance due to the wide range of specificity and especially sensitivity estimates published in the scientific literature. Here, we performed a systematic review of the literature on studies that evaluated the performance of tuberculosis diagnostic tests used in animals through Bayesian Latent Class Models (BLCMs), which do not require the application of a (fallible) reference procedure to classify animals as infected with tuberculosis or not. BLCM-based sensitivity and specificity estimates deviated from those obtained using a reference procedure for certain antemortem tests: an overall lower sensitivity of skin tests and serology and a higher sensitivity of interferon-gamma (IFN-γ) assays was reported. In the case of postmortem diagnostic tests, sensitivity estimates from BLCMs were similar to estimates from studies based on other methodologies. For specificity, the range of BLCM-based estimates was narrower than those based on a reference test, reaching values close to 100% (but lower in the case of IFN-γ assays). In conclusion, Bayesian methods have been increasingly applied for the evaluation of tuberculosis diagnostic tests in animals, yielding results that differ (sometimes substantially) from previously reported test performance in the literature, particularly for in vivo tests and sensitivity estimates. Newly developed models that allow adjustment for relevant factors (e.g., age, breed, region, and herd size) can contribute to the generation of more unbiased estimates of test performance. Nevertheless, although BLCMs for tuberculosis do not require the use of an imperfect reference procedure and are therefore not influenced by its limited performance, they require careful implementation, and transparent systematic reporting should be the norm.
Collapse
|
40
|
Fernández-Veiga L, Fuertes M, Geijo MV, Pérez de Val B, Vidal E, Michelet L, Boschiroli ML, Gómez-Buendía A, Bezos J, Jones GJ, Vordermeier M, Juste RA, Garrido JM, Sevilla IA. Differences in skin test reactions to official and defined antigens in guinea pigs exposed to non-tuberculous and tuberculous bacteria. Sci Rep 2023; 13:2936. [PMID: 36806813 PMCID: PMC9941491 DOI: 10.1038/s41598-023-30147-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity.
Collapse
Affiliation(s)
- Leire Fernández-Veiga
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Miguel Fuertes
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - María V. Geijo
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Bernat Pérez de Val
- grid.7080.f0000 0001 2296 0625IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, CReSA, Campus de la UAB, 08193 Bellaterra, Catalonia Spain
| | - Enric Vidal
- grid.7080.f0000 0001 2296 0625IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, CReSA, Campus de la UAB, 08193 Bellaterra, Catalonia Spain
| | - Lorraine Michelet
- grid.410511.00000 0001 2149 7878Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail (ANSES), Université Paris-Est, 94701 Maisons-Alfort, France
| | - María Laura Boschiroli
- grid.410511.00000 0001 2149 7878Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail (ANSES), Université Paris-Est, 94701 Maisons-Alfort, France
| | - Alberto Gómez-Buendía
- grid.4795.f0000 0001 2157 7667Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Bezos
- grid.4795.f0000 0001 2157 7667Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gareth J. Jones
- grid.422685.f0000 0004 1765 422XDepartment of Bacteriology, Animal and Plant Health Agency (APHA), Surrey, KT15 3NB UK
| | - Martin Vordermeier
- grid.422685.f0000 0004 1765 422XDepartment of Bacteriology, Animal and Plant Health Agency (APHA), Surrey, KT15 3NB UK
| | - Ramón A. Juste
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Joseba M. Garrido
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Iker A. Sevilla
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| |
Collapse
|
41
|
Development of in-house ELISA for detection of antibodies against lumpy skin disease virus in cattle and assessment of its performance using a bayesian approach. Heliyon 2023; 9:e13499. [PMID: 36825168 PMCID: PMC9941990 DOI: 10.1016/j.heliyon.2023.e13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Lumpy skin disease (LSD) is a contagious disease among cattle and buffalo worldwide. Currently, an enzyme-linked immunosorbent assay (ELISA) has been recognized as an efficient diagnostic tool that is less time-consuming and easier than the viral neutralization test to measure the antibody levels. In the present study, an in-house method of indirect ELISA was developed to detect the bovine antibodies against Lumpy skin disease virus (LSDV) and its performance was assessed using field samples. This in-house method has been compared with the commercial ELISA test kit for detection of bovine antibodies against LSDV. The sensitivity (Se) and the specificity (Sp) of the test were estimated using a Bayesian latent class model. Checkerboard titration was performed using the naturally LSDV-infected bovine sera and colostrum-deprived calf sera. The LSDV antigen concentrations (1 TCID50/mL), the sample serum (1:500), and goat anti-bovine immunoglobulin G (IgG) labeled with horseradish peroxidase (HRP) (1:10,000) were determined to be optimal for this assay. The calculated cut-off value was 0.067, and there were no differences in the results of tests that utilized positive and negative sera (p < 0.05). The characteristics of two diagnostic tests were evaluated using a conditional dependent and one-population Bayesian model. The Se value of an in-house indirect ELISA were almost similar to ELISA test kit. On the other hand, the Sp value of the in-house ELISA test was lower than that of the commercial ELISA test with the median values of 89% (95% PPI = 75.9-99.3%) and 91.4% (95% PPI = 85.3-95.5%), respectively. A posterior estimate for the prevalence was 66.9% (95% PPI = 60.8-83.3%) and higher than initially expected.
Collapse
|
42
|
Diagnostic accuracy of the Enferplex Bovine Tuberculosis antibody test in cattle sera. Sci Rep 2023; 13:1875. [PMID: 36726018 PMCID: PMC9892036 DOI: 10.1038/s41598-023-28410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Bovine tuberculosis is a contagious bacterial disease of worldwide economic, zoonotic and welfare importance caused mainly by Mycobacterium bovis infection. Current regulatory diagnostic methods lack sensitivity and require improvement. We have developed a multiplex serological test for bovine tuberculosis and here we provide an estimate of the diagnostic accuracy of the test in cattle. Positive and negative reference serum samples were obtained from animals from Europe and the United States of America. The diagnostic specificity estimate was 98.4% and 99.7% using high sensitivity and high specificity settings of the test respectively. Tuberculin boosting did not affect the overall specificity estimate. The diagnostic sensitivity in samples from Mycobacterium bovis culture positive animals following tuberculin boosting was 93.9%.The relative sensitivity following boosting in tuberculin test positive, lesion positive animals and interferon gamma test positive, lesion positive animals was 97.2% and 96.9% respectively. In tuberculin test negative, lesion positive animals and in interferon gamma test negative, lesion positive animals, the relative sensitivity following tuberculin boosting was 88.2% and 83.6% respectively. The results show that the test has high diagnostic sensitivity and specificity and can detect infected animals that are missed by tuberculin and interferon gamma testing.
Collapse
|
43
|
High-Specificity Test Algorithm for Bovine Tuberculosis Diagnosis in African Buffalo ( Syncerus caffer) Herds. Pathogens 2022; 11:pathogens11121393. [PMID: 36558727 PMCID: PMC9784303 DOI: 10.3390/pathogens11121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Ante-mortem bovine tuberculosis (bTB) tests for buffaloes include the single comparative intradermal tuberculin test (SCITT), interferon-gamma (IFN-γ) release assay (IGRA) and IFN-γ-inducible protein 10 release assay (IPRA). Although parallel test interpretation increases the detection of Mycobacterium bovis (M. bovis)-infected buffaloes, these algorithms may not be suitable for screening buffaloes in historically bTB-free herds. In this study, the specificities of three assays were determined using M. bovis-unexposed herds, historically negative, and a high-specificity diagnostic algorithm was developed. Serial test interpretation (positive on both) using the IGRA and IPRA showed significantly greater specificity (98.3%) than individual (90.4% and 80.9%, respectively) tests or parallel testing (73%). When the SCITT was added, the algorithm had 100% specificity. Since the cytokine assays had imperfect specificity, potential cross-reactivity with nontuberculous mycobacteria (NTM) was investigated. No association was found between NTM presence (in oronasal swab cultures) and positive cytokine assay results. As a proof-of-principle, serial testing was applied to buffaloes (n = 153) in a historically bTB-free herd. Buffaloes positive on a single test (n = 28) were regarded as test-negative. Four buffaloes were positive on IGRA and IPRA, and M. bovis infection was confirmed by culture. These results demonstrate the value of using IGRA and IPRA in series to screen buffalo herds with no previous history of M. bovis infection.
Collapse
|
44
|
Kanipe C, Boggiatto PM, Putz EJ, Palmer MV. Histopathologic differences in granulomas of Mycobacterium bovis bacille Calmette Guérin (BCG) vaccinated and non-vaccinated cattle with bovine tuberculosis. Front Microbiol 2022; 13:1048648. [PMID: 36425039 PMCID: PMC9678917 DOI: 10.3389/fmicb.2022.1048648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 10/24/2023] Open
Abstract
Mycobacterium bovis (M. bovis) is the zoonotic bacterium responsible for bovine tuberculosis. An attenuated form of M. bovis, Bacillus Calmette-Guerin (BCG), is a modified live vaccine known to provide variable protection in cattle and other species. Protection for this vaccine is defined as a reduction in disease severity rather than prevention of infection and is determined by evaluation of the characteristic lesion of tuberculosis: the granuloma. Despite its recognized ability to decrease disease severity, the mechanism by which BCG imparts protection remains poorly understood. Understanding the histopathologic differences between granulomas which form in BCG vaccinates compared to non-vaccinates may help identify how BCG imparts protection and lead to an improved vaccine. Utilizing special stains and image analysis software, we examined 88 lymph nodes obtained from BGC-vaccinated and non-vaccinated animals experimentally infected with M. bovis. We evaluated the number of granulomas, their size, severity (grade), density of multinucleated giant cells (MNGC), and the amounts of necrosis, mineralization, and fibrosis. BCG vaccinates had fewer granulomas overall and smaller high-grade granulomas with less necrosis than non-vaccinates. The relative numbers of high- and low- grade lesions were similar as were the amounts of mineralization and the density of MNGC. The amount of fibrosis was higher in low-grade granulomas from vaccinates compared to non-vaccinates. Collectively, these findings suggest that BCG vaccination reduces bacterial establishment, resulting in the formation of fewer granulomas. In granulomas that form, BCG has a protective effect by containing their size, reducing the relative amount of necrosis, and increasing fibrosis in low-grade lesions. Vaccination did not affect the amount of mineralization or density of MNGC.
Collapse
Affiliation(s)
- C. Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
- Immunobiology Graduate Program, Iowa State University, Ames, IA, United States
| | - P. M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
| | - E. J. Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
| | - M. V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States
| |
Collapse
|
45
|
Sridhara AA, Johnathan-Lee A, Elahi R, Lambotte P, Esfandiari J, Boschiroli ML, Kerr TJ, Miller MA, Holder T, Jones G, Vordermeier HM, Marpe BN, Thacker TC, Palmer MV, Waters WR, Lyashchenko KP. Differential detection of IgM and IgG antibodies to chimeric antigens in bovine tuberculosis. Vet Immunol Immunopathol 2022; 253:110499. [DOI: 10.1016/j.vetimm.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
46
|
Can more information be extracted from bovine TB skin test outcomes to inform animal risk management? A retrospective observational animal-level study. Prev Vet Med 2022; 208:105761. [DOI: 10.1016/j.prevetmed.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
|
47
|
Northern Ireland farm-level management factors for recurrent bovine tuberculosis herd breakdowns. Epidemiol Infect 2022; 150:e176. [PMID: 36196874 PMCID: PMC9987019 DOI: 10.1017/s0950268822001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis (bTB) is a chronic, infectious and zoonotic disease of domestic and wild animals caused mainly by Mycobacterium bovis. This study investigated farm management factors associated with recurrent bTB herd breakdowns (n = 2935) disclosed in the period 23 May 2016 to 21 May 2018 and is a follow-up to our 2020 paper which looked at long duration bTB herd breakdowns. A case control study design was used to construct an explanatory set of farm-level management factors associated with recurrent bTB herd breakdowns. In Northern Ireland, a Department of Agriculture Environment and Rural Affairs (DAERA) Veterinarian investigates bTB herd breakdowns using standardised guidelines to allocate a disease source. In this study, source was strongly linked to carryover of infection, suggesting that the diagnostic tests had failed to clear herd infection during the breakdown period. Other results from this study associated with recurrent bTB herd breakdowns were herd size and type (dairy herds 43% of cases), with both these variables intrinsically linked. Other associated risk factors were time of application of slurry, badger access to silage clamps, badger setts in the locality, cattle grazing silage fields immediately post-harvest, number of parcels of land the farmer associated with bTB, number of land parcels used for grazing and region of the country.
Collapse
|
48
|
Cooke DM, Goosen WJ, Witte C, Miller MA. Field evaluation of the tuberculin skin test for the detection of Mycobacterium tuberculosis complex infection in communal goats (Capra hircus) in KwaZulu-Natal, South Africa. Vet Immunol Immunopathol 2022; 252:110486. [PMID: 36116328 DOI: 10.1016/j.vetimm.2022.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
In South Africa, animal tuberculosis (TB) control programs predominantly focus on domestic cattle and African buffaloes (Syncerus caffer) despite increasing global reports of tuberculosis in goats (Capra hircus). Left undetected, Mycobacterium tuberculosis complex (MTBC) infected goats may hinder TB eradication efforts in cattle and increase zoonotic risk to humans. Since the publication of animal TB testing guidelines in 2018, prescribing the use of the tuberculin skin test (TST) for goats in South Africa by the Department of Agriculture, Land Reform, and Rural Development (DALRRD), there have been no published reports of any field application of the prescribed test criteria in goat herds. Therefore, this study aimed to evaluate the performance of these DALRRD guidelines using the single intradermal cervical tuberculin test (SICT) and the single intradermal comparative cervical tuberculin test (SICCT). Between October and December 2020, 495 goats from communal pastures of Kwa-Zulu Natal (KZN), where M. bovis infection has been identified in cattle and where cattle and goats cohabitate, were tested using the SICT and SICCT (M. bovis-exposed group). Additionally, 277 goats from a commercial Saanen dairy herd, with no history of M. bovis, were also tested (M. bovis-unexposed group). Estimated apparent prevalence of TST positive goats was determined based on published test interpretation criteria as described by DALRRD. When proportions of test-positive goats were compared between different DALRRD criteria, the ≥ 4 mm cut-off criterion for the SICCT resulted in the lowest proportion of positive results in the presumably uninfected group (1/277 positive in the unexposed group). The apparent prevalence of TB in the exposed group was estimated at 3.0% (95% CI: 1.7-4.9%), which is similar to previous reports of M. bovis prevalence in cattle from this area (6%). The detection of a significantly greater proportion of SICCT positive goats in the M. bovis-exposed group compared to the unexposed group suggests that MTBC infection is present in this population. Further investigations should be undertaken, in conjunction with confirmatory molecular tests, mycobacterial culture, and advanced pathogen sequencing to establish whether MTBC infection in domestic goats is a true under-recognized threat to the eradication of animal TB in South Africa.
Collapse
Affiliation(s)
- Deborah M Cooke
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa; Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA, United States.
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, South Africa; South African Medical Research Council Centre for Tuberculosis Research, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South Africa.
| |
Collapse
|
49
|
Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, Lesellier S, Gormley E. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci 2022; 9:1000124. [PMID: 36213413 PMCID: PMC9540495 DOI: 10.3389/fvets.2022.1000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a high-priority global pathogen of concern. The role of youngstock animals in the epidemiology of bTB has not been a focus of contemporary research. Here we have aimed to collate and summarize what is known about the susceptibility, diagnosis, transmission (infectiousness), and epidemiology to M. bovis in youngstock (up to 1-year of age). Youngstock are susceptible to M. bovis infection when exposed, with the capacity to develop typical bTB lesions. Calves can be exposed through similar routes as adults, via residual infection, contiguous neighborhood spread, wildlife spillback infection, and the buying-in of infected but undetected cattle. Dairy systems may lead to greater exposure risk to calves relative to other production systems, for example, via pooled milk. Given their young age, calves tend to have shorter bTB at-risk exposure periods than older cohorts. The detection of bTB varies with age when using a wide range of ante-mortem diagnostics, also with post-mortem examination and confirmation (histological and bacteriological) of infection. When recorded as positive by ante-mortem test, youngstock appear to have the highest probabilities of any age cohort for confirmation of infection post-mortem. They also appear to have the lowest false negative bTB detection risk. In some countries, many calves are moved to other herds for rearing, potentially increasing inter-herd transmission risk. Mathematical models suggest that calves may also experience lower force of infection (the rate that susceptible animals become infected). There are few modeling studies investigating the role of calves in the spread and maintenance of infection across herd networks. One study found that calves, without operating testing and control measures, can help to maintain infection and lengthen the time to outbreak eradication. Policies to reduce testing for youngstock could lead to infected calves remaining undetected and increasing onwards transmission. Further studies are required to assess the risk associated with changes to testing policy for youngstock in terms of the impact for within-herd disease control, and how this may affect the transmission and persistence of infection across a network of linked herds.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- *Correspondence: Andrew W. Byrne ;
| | - Damien Barrett
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Philip Breslin
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - June Fanning
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M. Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife (LRFSN), ANSES, Technopole Agricole et Vétérinaire, Malzéville, France
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
50
|
Clarke C, Kerr TJ, Warren RM, Kleynhans L, Miller MA, Goosen WJ. Identification and Characterisation of Nontuberculous Mycobacteria in African Buffaloes ( Syncerus caffer), South Africa. Microorganisms 2022; 10:microorganisms10091861. [PMID: 36144463 PMCID: PMC9503067 DOI: 10.3390/microorganisms10091861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Diagnosis of bovine tuberculosis (bTB) may be confounded by immunological cross-reactivity to Mycobacterium bovis antigens when animals are sensitised by certain nontuberculous mycobacteria (NTMs). Therefore, this study aimed to investigate NTM species diversity in African buffalo (Syncerus caffer) respiratory secretions and tissue samples, using a combination of novel molecular tools. Oronasal swabs were collected opportunistically from 120 immobilised buffaloes in historically bTB-free herds. In addition, bronchoalveolar lavage fluid (BALF; n = 10) and tissue samples (n = 19) were obtained during post-mortem examination. Mycobacterial species were identified directly from oronasal swab samples using the Xpert MTB/RIF Ultra qPCR (14/120 positive) and GenoType CMdirect (104/120 positive). In addition, all samples underwent mycobacterial culture, and PCRs targeting hsp65 and rpoB were performed. Overall, 55 NTM species were identified in 36 mycobacterial culture-positive swab samples with presence of esat-6 or cfp-10 detected in 20 of 36 isolates. The predominant species were M. avium complex and M. komanii. Nontuberculous mycobacteria were also isolated from 6 of 10 culture-positive BALF and 4 of 19 culture-positive tissue samples. Our findings demonstrate that there is a high diversity of NTMs present in buffaloes, and further investigation should determine their role in confounding bTB diagnosis in this species.
Collapse
|