1
|
He F, Jin X, E T, Zhao L, Yang W, Zhao Y, Pan L, Bao N, Sun H. Bacillus subtilis JATP3 improved the immunity of weaned piglets by improving intestinal flora and producing citalopram. Microb Pathog 2024; 195:106852. [PMID: 39147213 DOI: 10.1016/j.micpath.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1β (IL-1β). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Tianjiao E
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
2
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
3
|
Cai Y, Xiao C, Tian B, Dorthe S, Meuter A, Song B, Song Z. Dietary probiotic based on a dual-strain Bacillus subtilis improves immunity, intestinal health, and growth performance of broiler chickens. J Anim Sci 2024; 102:skae183. [PMID: 39022917 PMCID: PMC11416885 DOI: 10.1093/jas/skae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study investigated the effects of dietary probiotic of dual-strain Bacillus subtilis on production performance, intestinal barrier parameters, and microbiota in broiler chickens. In a randomized trial, male broiler chickens were allocated into 3 groups, a control group (basal diet), BS300 group (basal diet with 300 mg/kg of B. subtilis), and BS500 group (basal diet with 500 mg/kg of B. subtilis). The inclusion of 500 mg/kg of B. subtilis significantly reduced the feed conversion ratio by 4.55% during the starting phase. Both 300 and 500 mg/kg of B. subtilis supplementation increased jejunal villus height (by 17.89% and 24.8%, respectively) significantly and decreased jejunal crypt depth (by 27.2% and 31.9%, respectively) on day 21. The addition of 500 mg/kg of B. subtilis significantly elevated the gene expression of occludin on day 35. Moreover, of B. subtilis supplementation enhanced cytokine levels and immunoglobulins in both serum and jejunal mucosa. Microbial analysis indicated that B. subtilis increased the abundance of potential probiotics (Sutterella) and butyrate-producing bacteria (Lachnoclostridium, Tyzzerella, Anaerostipes, Clostridium_sensu_stricto_13, Prevotellaceae_NK3B31_group, and Lachnospiraceae_UCG-010). The abundances of Anaerostipes and Sutterella, are significantly correlated with growth performance and immune function. In conclusion, dietary supplementation with B. subtilis improved the growth performance, potentially through the regulation of immunity, intestinal barrier function, and microbiota in broilers. Notably, 500 mg/kg of B. subtilis exhibited more benefits for broilers compared to the 300 mg/kg.
Collapse
Affiliation(s)
- Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong 250200, China
| | - Chuanpi Xiao
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bo Tian
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Sandvang Dorthe
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Antoine Meuter
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Bochen Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
4
|
Liu W, Liu J, Li D, Han H, Yan H, Sun Y, Lei Q, Wang J, Zhou Y, Cao D, Li H, Li F. Effect of Lactobacillus salivarius SNK-6 on egg quality, intestinal morphology, and cecal microbial community of laying hens. Poult Sci 2024; 103:103224. [PMID: 37980753 PMCID: PMC10658386 DOI: 10.1016/j.psj.2023.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
The objective of this study was to investigate the effect of Lactobacillus salivarius (L. salivarius) SNK-6 supple-mentation on the laying performance, egg quality, blood parameters, intestinal morphology, and cecal microbial community of laying hens. A total of 432 healthy 30-wk-age laying hens were randomly divided into 3 groups with 6 replicates under the same husbandry and dietary regimes: control (CON); 2.0 × 108 CFU/kg L. salivarius supplementation (T1); 2.0 × 109 CFU/kg L. salivarius supplementation (T2). The experiment lasted for 10 wk. The results indicated that the supplementation resulted in a significant reduction in the broken egg and unqualified egg ratios, and a significant increase in the eggshell strength, eggshell relative weight, albumen height, and Haugh units (P < 0.05). The L. salivarius-treated hens exhibited significantly reduced serum malondialdehyde levels (P < 0.05); significantly increased total protein, phosphorus, calcitonin, and immunoglobulin M (P < 0.05); significantly increased cecal secretory immunoglobulin A concentration (P < 0.05); significantly improved villus height (VH) in the duodenum and VH to crypt depth ratio in the jejunum (P < 0.05). The serum globulin and interleukin-1β, immunoglobulin G concentrations, and catalase activity significantly increased in T2 (P < 0.05). Furthermore, the serum interferon-α level in T1 was significantly higher than that of the CON (P < 0.05). The intestinal barrier-related mRNA gene ZO-1, CLDN1, and MUC2 expression in the jejunum was significantly upregulated in the T1 and T2 groups (P < 0.05). The Firmicutes/Bacteroidetes ratio was higher and the relative abundances of Flavonifractor and Clostridiales_noname were significantly higher in the T1 group (P < 0.05). In conclusion, dietary supplementation with L. salivarius SNK-6 may improve hen egg quality, serum antioxidant capacity, immune function, and intestinal health.
Collapse
Affiliation(s)
- Wei Liu
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Jie Liu
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Dapeng Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Haixia Han
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Huaxiang Yan
- Shanghai Academy of Agricultural Sciences, Animal Husbandry and Veterinary Research Institute, 201106, Shanghai, China
| | - Yan Sun
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Qiuxia Lei
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Jie Wang
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Yan Zhou
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Dingguo Cao
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Huimin Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China
| | - Fuwei Li
- Shandong Academy of Agricultural Sciences, Poultry Institute, 250100, Jinan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Jinan, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, 250100, Jinan, China.
| |
Collapse
|
5
|
Garvey SM, Emami NK, Guice JL, Sriranganathan N, Penet C, Rhoads RP, Spears JL, Dalloul RA, El-Kadi SW. The Probiotic Bacillus subtilis MB40 Improves Immunity in a Porcine Model of Listeriosis. Microorganisms 2023; 11:2110. [PMID: 37630670 PMCID: PMC10458092 DOI: 10.3390/microorganisms11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.
Collapse
Affiliation(s)
- Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Nima K. Emami
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | | | - Christopher Penet
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Robert P. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jessica L. Spears
- Department of Research and Development, BIO-CAT Microbials, LLC, Shakopee, MN 55379, USA
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. SCIENCE CHINA LIFE SCIENCES 2022; 66:1092-1107. [PMID: 36543996 DOI: 10.1007/s11427-022-2229-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
One factor that shapes the establishment of early neonatal intestinal microbiota is environmental microbial exposure, and probiotic application has been shown to promote health and growth of piglets. Thus, this study hypothesized that environmental probiotic application in early days of life would be beneficial to newborn piglets. This study aimed to investigate the effect of spraying a compound probiotic fermented liquid (CPFL) into the living environment of piglets on their early growth performance and immunity. This work included 68 piglets, which were randomized into probiotic and control groups. Blood and fecal samples were collected at 0, 3, 7, 14, and 21 days of age. Spraying CPFL significantly reshaped the microbiota composition of the delivery room environment, increased piglets' daily weight gain and weaning weight (P<0.001), and modulated piglets' serum cytokine levels (increases in IgA, IgG, and IL-10; decrease in IFN-γ; P<0.05 in each case) in piglets. Additionally, spraying CPFL during early days of life modified piglets' gut microbiota structure and diversity, increased the abundance of some potentially beneficial bacteria (such as Bacteroides uniformis, Butyricimonas virosa, Parabacteroides distasonis, and Phascolarctobacterium succinatutens) and decreased the abundance of Escherichia coli (P<0.05). Interestingly, CPFL application also significantly enhanced the gut microbial bioactive potential and levels of several serum metabolites involved in the metabolism of vitamins (B2, B3, B6, and E), medium/long-chain fatty acids (caproic, tetradecanoic, and peptadecanoic acids), and dicarboxylic acids (azelaic and sebacic acids). Our study demonstrated that spraying CPFL significantly could improve piglets' growth performance and immunity, and the beneficial effects are associated with changes in the gut microbiota and host metabolism. Our study has provided novel data for future development of probiotic-based health-promoting strategies and expanded our knowledge of probiotic application in animal husbandry.
Collapse
|
9
|
Huang Y, Peng Y, Yang Z, Chen S, Liu J, Wang Z, Wang G, Lan S. Effects of Fermented Bamboo Shoot Processing Waste on Growth Performance, Serum Parameters, and Gut Microbiota of Weaned Piglets. Animals (Basel) 2022; 12:ani12202728. [PMID: 36290114 PMCID: PMC9597720 DOI: 10.3390/ani12202728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Gut microbiota (GM) plays a vital role in the nutrition and metabolism of weaned piglets. Some feed additives can be used to adjust the composition of GM to improve the health of weaned piglets. In this study, we investigated the effects of adding fermented bamboo shoot processing waste (FBSPW) to diet on growth performance, serum parameters, and GM of weaned piglets. Seventy-two piglets were divided into four groups and were fed diets containing 0% (control), 4% (group A), 8% (group B), and 12% (group C) FBSPW for 50 days. We found that the addition of FBSPW significantly decreased the average daily feed intake, serum triglyceride content, and urea nitrogen of weaned piglets compared to the control. The cecum and cecal microbiota of weaned piglets fed the basal diet with 12% FBSPW were significantly different compared to the control. A basal diet with 12% FBSPW significantly reduced the taxon feature number, and the relative abundance of Tenericutes in the cecum and cecal microbiota of weaned piglets compared with the control. The addition of 12% FBSPW to weaned piglet feed could improve their nitrogen and lipid metabolisms and have beneficial effects on GM.
Collapse
Affiliation(s)
- Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yingjie Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Siyu Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Wang
- Hunan Huajun Agricultural Technology Co., Ltd., Taojiang 413000, China
- Correspondence: (G.W.); (S.L.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (G.W.); (S.L.)
| |
Collapse
|
10
|
Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:116-127. [PMID: 36632621 PMCID: PMC9826887 DOI: 10.1016/j.aninu.2022.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Probiotics can improve animal growth performance and intestinal health. Bacillus species, Lactobacillus species, Bifidobacterium species, yeast etc. are the common types of probiotics. However, understanding the effects of probiotics on the immune status and gut microbiota of weaning piglets and how the probiotics exert their impact are still limited. This study aimed to investigate the effects of Bacillus amyloliquefaciens 40 (BA40) on the performance, immune status and gut microbiota of piglets. A total of 12 litters of newborn piglets were randomly divided into 3 groups. Piglets in control group were orally dosed with phosphate buffered saline; BA40 group and probiotics group were orally gavaged with resuspension BA40 and a probiotics product, respectively. The results showed that BA40 treatment significantly decreased (P < 0.05) the diarrhea incidence (from d 5 to 40), diamine oxidase, D-lactate, interleukin (IL)-1β and interferon-γ concentrations compared with control group and probiotics group. Meanwhile BA40 dramatically increased the total antioxidant capacity, IL-10 and secretory immunoglobulin-A concentrations in contrast to control group. For the microbial composition, BA40 modulated the microbiota by improving the abundance of Bacteroides, Phascolarctobacterium (producing short-chain fatty acids) and Desulfovibrio and reducing the proliferation of pathogens (Streptococcus, Tyzzerella, Vellionella and paraeggerthella). Meanwhile, a metabolic function prediction explained that carbohydrate metabolism and amino acid metabolism enriched in BA40 group in contrast to control group and probiotics group. For correlation analysis, the results demonstrated that BA40-enriched Phascolarctobacterium and Desulfovibrio provide insights into strategies for elevating the health status and performance of weaned piglets. Altogether, BA40 exerted stronger ability in decreasing diarrhea incidence and improved antioxidant activity, gut barrier function and immune status of piglets than the other treatments. Our study provided the experimental and theoretical basis for the application of BA40 in pig production.
Collapse
|
11
|
Lactobacillus salivarius SNK-6 Activates Intestinal Mucosal Immune System by Regulating Cecal Microbial Community Structure in Laying Hens. Microorganisms 2022; 10:microorganisms10071469. [PMID: 35889188 PMCID: PMC9323127 DOI: 10.3390/microorganisms10071469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
The production performance and disease resistance of laying hens decrease obviously with age. This study aimed to investigate the effects of supplementary Lactobacillus salivarius (L. salivarius) SNK-6 on laying performance, the immune-related gene expression in cecal tonsil, and the cecal microbial composition of laying hens. Here, 384 Xinyang black commercial hens (55 weeks old) were randomly allocated to three groups under the same husbandry and dietary regimes: basal diet (Con), the low L. salivarius SNK-6 group (T1: 1.0 × 106 CFU/g), and the high L. salivarius SNK-6 group (T2: 1.0 × 107 CFU/g). The results showed that the feed intake and broken-egg rate in the T1 group were significantly higher than the Con group (p < 0.05). Meanwhile, expressions of intestinal mucosal immune-related genes were significantly upregulated. The 16S rRNA gene sequencing indicated that supplementary L. salivarius SNK-6 had no significant difference in α -diversity and only displayed a trend difference in the β-diversity of cecal microbiota (p = 0.07). LEfSe and random forest were further used to identify bacteria family Enterobacteriaceae, order RF39, genera Ochrobactrum, and Eubacterium as biomarkers between the Con and T1 groups. Genera Ochrobactrum, which had high relative abundance and nodal degree in the T1 and T2 groups, showed a significant positive correlation with the expression of TLR-6, IL-10, MHC-II, and CD40 in cecal tonsils and might play a critical role in activating the host intestinal mucosal immune responses. Overall, dietary supplementary L. salivarius SNK-6 can display an immunomodulatory function, possibly by regulating cecal microbial composition. However, the changes in immune responses may be at the expenditure of corresponding production performance, which needs to be weighed up in practical application.
Collapse
|
12
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
13
|
Gaio D, DeMaere MZ, Anantanawat K, Eamens GJ, Falconer L, Chapman TA, Djordjevic S, Darling AE. Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLoS One 2022; 17:e0270372. [PMID: 35749534 PMCID: PMC9232140 DOI: 10.1371/journal.pone.0270372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Intensive farming practices can increase exposure of animals to infectious agents against which antibiotics are used. Orally administered antibiotics are well known to cause dysbiosis. To counteract dysbiotic effects, numerous studies in the past two decades sought to understand whether probiotics are a valid tool to help re-establish a healthy gut microbial community after antibiotic treatment. Although dysbiotic effects of antibiotics are well investigated, little is known about the effects of intramuscular antibiotic treatment on the gut microbiome and a few studies attempted to study treatment effects using phylogenetic diversity analysis techniques. In this study we sought to determine the effects of two probiotic- and one intramuscularly administered antibiotic treatment on the developing gut microbiome of post-weaning piglets between their 3rd and 9th week of life. Shotgun metagenomic sequences from over 800 faecal time-series samples derived from 126 post-weaning piglets and 42 sows were analysed in a phylogenetic framework. Differences between individual hosts such as breed, litter, and age, were found to be important contributors to variation in the community composition. Host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The post-weaning pig gut microbiome appeared to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life. Treatment effects of the antibiotic and probiotic treatments were found but were subtle and included a higher representation of Mollicutes associated with intramuscular antibiotic treatment, and an increase of Lactobacillus associated with probiotic treatment. The discovery of correlations between experimental factors and microbial community composition is more commonly addressed with OTU-based methods and rarely analysed via phylogenetic diversity measures. The latter method, although less intuitive than the former, suffers less from library size normalization biases, and it proved to be instrumental in this study for the discovery of correlations between microbiome composition and host-, and treatment factors.
Collapse
Affiliation(s)
- Daniela Gaio
- iThree Institute, University of Technology Sydney, Ultimo, Australia
- * E-mail:
| | | | - Kay Anantanawat
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Graeme J. Eamens
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Linda Falconer
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Steven Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Aaron E. Darling
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
14
|
Wang Q, Wang J, Qi R, Qiu X, Sun Q, Huang J, Wang R. Effect of oral administration of Limosilactobacillus reuteri on intestinal barrier function and mucosal immunity of suckling piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2048977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
15
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Urumbil SK, Anilkumar MN. Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114517. [PMID: 34389445 DOI: 10.1016/j.jep.2021.114517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.
Collapse
Affiliation(s)
| | - Madhavan Nair Anilkumar
- Cell Culture Lab, Department of Botany, Union Christian College, Aluva, Ernakulam, Pin-683 102, Kerala, India.
| |
Collapse
|
17
|
He Q, Huang J, Zheng T, Lin D, Zhang H, Li J, Sun Z. Treatment with mixed probiotics induced, enhanced and diversified modulation of the gut microbiome of healthy rats. FEMS Microbiol Ecol 2021; 97:6430860. [PMID: 34792102 DOI: 10.1093/femsec/fiab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies demonstrated that multi-strain probitics could more strongly regulate intestinal cytokines and the mucosal barrier than the individual ingredient strains. Nevertheless, the potentially different gut microbiome modulation effects between multi-strain and single-strain probiotics treatments remain unexplored. Here, we administered three different Lactiplantibacillus plantarum strains or their mixture to healthy Wistar rats and compared the shift of gut microbiome among the treatment groups. A 4-week intervention with mixed probiotics induced more drastic and diversified gut microbiome modulation than single-strain probiotics administration (alpha diversity increased 8% and beta diversity increased 18.7%). The three single-strain probiotics treatments all converged the gut microbiota, decreasing between-individual beta diversity by 12.7% on average after the treatment, while multi-strain probiotics treatment diversified the gut microbiome and increased between-individual beta diversity by 37.2% on average. Covariation analysis of the gut microbes suggests that multi-strain probiotics could exert synergistic, modified and enhanced modulation effects on the gut microbiome based on strain-specific modulation effects of probiotics. The more heterogeneous responses to the multi-strain probiotics treatment suggest that future precision microbiome modulation should consider the potential interactions of the probiotic strains, and personalized response to probiotic formulas due to heterogenous gut microbial compositions.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiating Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Lin
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
18
|
Effect of Dietary Supplementation of Immunobiotic Lactiplantibacillusplantarum N14 Fermented Rakkyo ( Allium chinense) Pickled Juice on the Immunocompetence and Production Performance of Pigs. Animals (Basel) 2021; 11:ani11030752. [PMID: 33803393 PMCID: PMC7999255 DOI: 10.3390/ani11030752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Rakkyo (Allium chinense), is a Japanese leek that is primarily used to make a popular sweet or sour pickled dish. Lactic acid bacteria are often involved in the preparation steps of fermented pickles, which helps in the effective preservation of the natural bioactive compounds of fruits and vegetable, and thereby exert several health benefits including immunomodulation and growth performance. This work aimed to evaluate the in vivo effects of adding Lactiplantibacillus plantarum N14 fermented rakkyo pickled juice as feed supplement on the immunocompetence and production performance of pigs. We first analyzed the nutritional composition, which revealed that the proportion of protein, lipid, and water-soluble fiber content were estimated as of 4%, 5%, and 5% in rakkyo residual liquid or juice, while 22%, 15% and 14%, respectively, were estimated in rakkyo residual powder. For the in vivo feeding trials, three groups of pigs were treated either with 5%, 20%, or 40% mixture (v/v) of fermented rakkyo pickled juice and the grinded residual liquid supplemented in the drinking water in addition to standard feed. The results of the feeding trials showed that the administration of a juice mixture of 5% or 20% (fermented pickled juice and residual liquid) had a similar trend of effects in improving the complement activity, phagocytic activity and leucocytes counts in the peripheral blood when compared to pigs fed with 40% mixture or untreated controls. Those changes were related to an improved resistance to enteric infections. Moreover, animals receiving a mixture of fermented pickled juice and fermented rakkyo residues had a higher growth rate and carcass quality than controls. The results suggested that the use of 5% mixture of fermented rakkyo pickled juice and the residual liquid through drinking water could be a cost-effective approach to promote the immune-health and production performance of pigs. This approach would contribute not only to the sustainable management of food wastes but also to the application of a value-added feed supplement for the promotion of animal health and production.
Collapse
|
19
|
Zhang P, Huang L, Zhang E, Yuan C, Yang Q. Oral administration of Bacillus subtilis promotes homing of CD3 + T cells and IgA-secreting cells to the respiratory tract in piglets. Res Vet Sci 2021; 136:310-317. [PMID: 33756379 DOI: 10.1016/j.rvsc.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
Oral probiotics are used to induce immune responses in the intestines to protect against infection. However, oral probiotics may also affect immune responses in other mucosal tissues such as in the respiratory tract. To examine this possibility, we explored the potential of immunocytes to home to the respiratory system after oral administration of Bacillus subtilis. The results showed that B. subtilis could promote intestinal development and not cause pathological changes in the respiratory tract. Following the oral administration with B. subtilis, the number of IgA-secreting cells and CD3+ T cells not only significantly increased in the intestinal tracts but also in respiratory tracts (P < 0.01). Moreover, the levels of secretory IgA were significantly higher in the trachea, lungs, ileum, and jejunum after oral B. subtilis administration than in the control groups (P < 0.05). The mRNA expression of interleukin (IL)-1β, IL-5, IL-6, tumor necrosis factor-α, B cell activating factor, and IgA-inducing protein increased following B. subtilis administration (P < 0.01) in the trachea, lungs, ileum, and jejunum. These data suggest that B. subtilis administration regulates the immune response not only in the intestine but also in the respiratory tract of piglets. Our work highlights a potentially new strategy for promoting respiratory mucosal immunity and may contribute to the design of vaccines with B. subtilis as a mucosal adjuvant.
Collapse
Affiliation(s)
- Penghao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Lulu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
20
|
Li HH, Jiang XR, Qiao JY. Effect of dietary Bacillus subtilis on growth performance and serum biochemical and immune indexes in weaned piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1877717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hai-Hua Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Xian-Ren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jia-Yun Qiao
- College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| |
Collapse
|
21
|
Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br J Nutr 2020; 125:494-507. [PMID: 32693847 PMCID: PMC7885174 DOI: 10.1017/s0007114520002755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.
Collapse
|
22
|
Zhang E, Wang J, Li Y, Huang L, Wang Y, Yang Q. Comparison of oral and nasal immunization with inactivated porcine epidemic diarrhea virus on intestinal immunity in piglets. Exp Ther Med 2020; 20:1596-1606. [PMID: 32742391 PMCID: PMC7388329 DOI: 10.3892/etm.2020.8828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has proven to be a major problem for the porcine industry worldwide. Conventional injectable vaccines induce effective systemic immune responses but are less effective in preventing PEDV at mucosal invasion sites, including the nasal or oral mucosa. Additionally, antigens delivered orally are easily degraded. Nasal immunization induces intestinal mucosal immune responses, which can aid in blocking viral invasion, and requires fewer antigen inoculation doses. Therefore, nasal immunizations are considered to be a potential approach to overcome viral infections. In the present study, nasal immunization of piglets was performed using inactivated PEDV combined with Bacillus subtilis as an immunopotentiator and the efficacy of nasal immunization was assessed. The results demonstrated that compared with oral immunization, piglets from the nasal immunization group exhibited higher levels of neutralizing antibodies (P<0.01) in the intestine, PEDV-specific immunoglobulin (Ig)G (P<0.01) in serum and PEDV-specific secretory IgA (SIgA) in saliva (P<0.01) and nasal secretions (P<0.01). An increased number of intestinal CD3+ T cells, IgA-secreting cells and intraepithelial lymphocytes (P<0.05) were also observed. Furthermore, the protein expression levels of interleukin-6 and interferon-γ, relative to the control PEDV infection, were also significantly elevated (P<0.05). The results of the present study indicate that nasal immunization is more effective at inducing the intestinal mucosal immune response, and provide new insights into a novel vaccination strategy that may be used to decrease the incidence of PEDV infections.
Collapse
Affiliation(s)
- En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lulu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yongheng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
23
|
Dietary Supplementation with Compound Probiotics and Berberine Alters Piglet Production Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10030511. [PMID: 32204369 PMCID: PMC7142521 DOI: 10.3390/ani10030511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In order to find antibiotic substitutes for weaned piglet health and growth, compound probiotics and berberine (CPB) were selected in this study. The results indicated that CPB could replace antibiotics to improve piglet health and decrease mortality, diarrhea and rejection rates. CPB was also able to regulate fecal microbiota as well as improve protein digestibility and serum biochemical parameters. Therefore, CPB might be a good antibiotic alternative in piglet production performance. Abstract This study was conducted to investigate the effects of dietary supplementation with compound probiotics and berberine (CPB) on growth performance, nutrient digestibility and fecal microflora in weaned piglets. A total of 200 piglets 35 days old were randomly allocated to 5 groups, 4 replications in each group, and 10 piglets in each replication. Group A was the basal diet; group B was supplemented with antibiotics and zinc oxide; groups C, D and E were supplemented with 0.06%, 0.12% and 0.18% CPB, respectively. The experimental period was 42 d. The results indicated that there were no significant differences in average daily feed intake (ADFI), average daily gain (ADG) and feed conversion rate (FCR) among five groups (p > 0.05). However, mortality, diarrhea and rejection rates in the control group were higher than that in other groups. CPB could increase protein digestibility and serum IgG content (p < 0.05), while it could decrease serum urea nitrogen content and alkaline phosphatase activity (p < 0.05). Analysis of fecal microbiota showed that the relative abundances of Bacteroides and Firmicutes were increased, while the relative abundances of opportunistic pathogens such as Spirochaetae and Protebactreria were dramatically decreased in piglets fed with CPB or antibiotics, compared with the control group. Furthermore, CPB intervention increased the relative abundances of Prevotella_9, Megasphaera and Prevotella_2, while decreased the relative abundance of Prevotellaceae_NK3B31_group. Correlation analysis revealed that there was good correlation between serum indexes and fecal microbiota. It was suggested that CPB might be a promising antibiotic alternative for improving piglet health and immunity, decreasing mortality by positively altering gut microbiota.
Collapse
|
24
|
Effects of Soybean Meal Fermented by Lactobacillus Species and Clostridium butyricum on Growth Performance, Diarrhea Incidence, and Fecal Bacteria in Weaning Piglets. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Fermented soybean meal (FSBM) has been widely investigated as a nutritional strategy for reducing the use of fish meal (FM) and antibiotic growth promoters. Microbial fermentation by using bacteria can increase the bioavailability of nutrients and reduce the levels of antinutritional factors in soybean meal (SBM). In this study, we evaluated whether FSBM produced from Lactobacillus species and Clostridium butyricum improves growth performance, diarrhea incidence, and fecal bacteria in weaning piglets. Eighty-four crossbred male piglets with an average initial body weight of 8.36±0.63 kg were randomly allotted to 3 dietary treatments consisting of 7 replicate stalls with 4 piglets each. The dietary treatments were: (1) 3% FM in the diet; (2) 5% FSBM in the diet; and (3) 3% FM in the diet plus 4 mg/kg antibiotic growth promoters (AGP). We determined that growth performance was unaffected in FSBM-fed weaning piglets compared with a FM group. Similar to the AGP group, FSBM supplementation significantly reduced diarrhea incidence in weaning piglets. The number of fecal Lactobacillus species significantly increased in 28-day-old FSBM-fed weaning piglets compared with the other groups. Compared with AGP, FSBM has the highest inhibitory effect on the number of fecal Enterobacteriaceae at 28 d old. Furthermore, serum immunoglobulin G and immunoglobulin A levels in FSBM-fed weaning piglets significantly increased at the same age. These results together indicate that FSBM can replace FM in the diets of weaning piglets without affecting growth performance. Furthermore, similar to AGP, FSBM could improve diarrhea incidence, fecal bacteria, and immunoglobulin levels in weaning piglets. Therefore, SBM fermented by Lactobacillus species and C. butyricum demonstrated high potential for development as swine feed ingredients.
Collapse
|
25
|
Wang Q, Sun Q, Qi R, Wang J, Qiu X, Liu Z, Huang J. Effects of Lactobacillus plantarum on the intestinal morphology, intestinal barrier function and microbiota composition of suckling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1908-1918. [PMID: 31498508 DOI: 10.1111/jpn.13198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
This study investigated the effect of Lactobacillus plantarum strain 299v on gut health in suckling piglets. Sixty newborn piglets were assigned to control and probiotic treatments, with three litters per treatment (ten piglets/litter). From days 1 to 20 of life, piglets were orally administered a placebo of 0.1% peptone or 1.0 × 1010 CFU L. plantarum 299v daily. Six piglets per treatment were sacrificed on day 20, and intestinal tissues (including duodenum, jejunum, ileum and colon) and the intestinal contents from colon segments were collected. The results demonstrated that piglets treated with L. plantarum 299v had a lower diarrhoea incidence than the controls. L. plantarum 299v administration significantly increased the ratio of the villus height to the crypt depth in the jejunum and ileum, as well as the mRNA expression of jejunal occludin and ileal zonula occludens 1 (ZO-1). The L. plantarum treatment also increased the mRNA abundance of porcine β-defensin 2 (pBD2) and pBD3 in the jejunum and ileum and of toll-like receptors (TLRs), such as TLR2, TLR4, TLR6 and TLR9 in the ileum, and significantly upregulated the mRNA abundances of ileal pBD1 and colonic TLR4. Additionally, the L. plantarum 299v treatment significantly changed the structure of the colonic microbiota, as evidenced by the obvious increases in the relative abundances of the phyla Firmicutes and Actinobacteria and of the genus Lactobacillus. Our findings indicate that L. plantarum 299v facilitates the gut health of suckling piglets, probably by improving the intestinal morphology and intestinal barrier function and by modifying the structure of the gut microbiota.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,College of Animal Science, Southwest University, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
26
|
SU LIWEN, CHENG YEONGHSIANG, HSIAO FELIXSHIHHSIANG, HAN JINCHENG, YU YUHSIANG. Optimization of Mixed Solid-state Fermentation of Soybean Meal by Lactobacillus Species and Clostridium butyricum. Pol J Microbiol 2019; 67:297-305. [PMID: 30451446 PMCID: PMC7255691 DOI: 10.21307/pjm-2018-035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/11/2022] Open
Abstract
Soybean meal is the main vegetable protein source in animal feed. Soybean meal contains several anti-nutritional factors, which directly affect digestion and absorption of soy protein, thereby reducing growth performance and value in animals. Fermented soybean meal is rich in probiotics and functional metabolites, which facilitates soybean protein digestion, absorption and utilization in piglets. However, the mixed solid-state fermentation (SSF) conditions of soybean meal remain to be optimized. In this study, we investigated the optimal parameters for SSF of soybean meal by Lactobacillus species and Clostridium butyricum . The results showed that two days of fermentation was sufficient to increase the viable count of bacteria, lactic acid levels and degradation of soybean protein in fermented soybean meal at the initial moisture content of 50%. The pH value, lowering sugar content and oligosaccharides in fermented soybean meal, was significantly reduced at the initial moisture content of 50% after two days of fermentation. Furthermore, the exogenous proteases used in combination with probiotics supplementation were further able to enhance the viable count of bacteria, degradation of soybean protein and lactic acid level in the fermented soybean meal. In addition, the pH value and sugar content in fermented soybean meal were considerably reduced in the presence of both proteases and probiotics. Furthermore, the fermented soybean meal also showed antibacterial activity against Staphylococcus aureus and Escherichia coli . These results together suggest that supplementation of both proteases and probiotics in SSF improves the nutritional value of fermented soybean meal and this is suitable as a protein source in animal feed.
Collapse
Affiliation(s)
- LI-WEN SU
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
- Henan Zheng Ben Qing Yuan Technology Development CO.LED., Shangqiu, Henan Province, China
| | - YEONG-HSIANG CHENG
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | | | - JIN-CHENG HAN
- College of Life Science, Shangqiu Normal University, Shangqiu, China
| | - YU-HSIANG YU
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| |
Collapse
|
27
|
Wang Y, Gong L, Wu YP, Cui ZW, Wang YQ, Huang Y, Zhang XP, Li WF. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J Zhejiang Univ Sci B 2019; 20:180-192. [PMID: 30666850 DOI: 10.1631/jzus.b1800022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To understand the effects of Lactobacillus rhamnosus GG (ATCC 53103) on intestinal barrier function in pre-weaning piglets under normal conditions, twenty-four newborn littermate piglets were randomly divided into two groups. Piglets in the control group were orally administered with 2 mL 0.1 g/mL sterilized skim milk while the treatment group was administered the same volume of sterilized skim milk with the addition of viable L. rhamnosus at the 1st, 3rd, and 5th days after birth. The feeding trial was conducted for 25 d. Results showed that piglets in the L. rhamnosus group exhibited increased weaning weight and average daily weight gain, whereas diarrhea incidence was decreased. The bacterial abundance and composition of cecal contents, especially Firmicutes, Bacteroidetes, and Fusobacteria, were altered by probiotic treatment. In addition, L. rhamnosus increased the jejunal permeability and promoted the immunologic barrier through regulating antimicrobial peptides, cytokines, and chemokines via Toll-like receptors. Our findings indicate that oral administration of L. rhamnosus GG to newborn piglets is beneficial for intestinal health of pre-weaning piglets by improving the biological, physical, and immunologic barriers of intestinal mucosa.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Wen Cui
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Qiang Wang
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China.,College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiao-Ping Zhang
- China National Bamboo Research Center, Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou 310012, China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Science, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Jia Z, Pang X, Lv J. Reduced-Fat Response of Lactobacillus casei subsp. casei SY13 on a Time and Dose-Dependent Model. Front Microbiol 2018; 9:3200. [PMID: 30619236 PMCID: PMC6308124 DOI: 10.3389/fmicb.2018.03200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/10/2018] [Indexed: 01/29/2023] Open
Abstract
A reduced-fat effect of probiotics was primarily derived functionally rather than structurally, and we investigated the ultra-structural aspect of the gut mucosa in Syrian golden hamsters with high-fat diet by feeding with Lactobacillus casei subsp. casei SY13 (Lc SY13). 36 adult-male Syrian golden hamsters were randomly grouped into four; control group (G1), high-fat group (G2), high-dose group (G3), and low-dose group (G4). The G1 hamsters were fed a standard normal chow diet, while those in other groups were fed a high-fat chow diet for duration of 8 weeks. With the use of oral gavage, G1 hamsters were administered 1 mL of skim milk/hamster/day, while G3 and G4 hamsters were administered Lc SY13 at 4.1 × 1010 or 4.1 × 108 cells/hamster/day. At 14, 28, and 56 days consecutively, three golden hamsters from each group were sacrificed by carotid, taking blood from eyeball for quantitative detection of hamsters serum total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). At 56 days, Taqman-MGB fluorescence probe was used for the quantitative detection of Lc SY13 in the intestinal mucosal, and their ileum was viewed using transmission electron microscopy (TEM). Screening of the ileum microvilli of the hamsters showed that at 56 days, G3 was significantly (P < 0.05) bigger than other groups while its serum TC, TG, and TDL decreased. Lc SY13 was detected in the intestines, and was significantly (P < 0.05) higher in the ileum of G3 than those of G4. In conclusion, Lc SY13 may play a remarkable reduced-fat response role by improving high-fat uptake as well as its metabolism and transport; most especially in G3. The reduced-fat response of the Lc SY13 differed in a time and dose-dependent manner. These findings indicated that probiotic strains of Lc SY13 can reduce fat level, thus suggesting its potential in ameliorating obesity-related diseases.
Collapse
Affiliation(s)
- Zhenhu Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Shanxi Normal University, Linfen, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Hu S, Cao X, Wu Y, Mei X, Xu H, Wang Y, Zhang X, Gong L, Li W. Effects of Probiotic Bacillus as an Alternative of Antibiotics on Digestive Enzymes Activity and Intestinal Integrity of Piglets. Front Microbiol 2018; 9:2427. [PMID: 30405544 PMCID: PMC6204369 DOI: 10.3389/fmicb.2018.02427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
The previous study in our team found that supplementation of probiotic Bacillus amyloliquefaciens (Ba) instead of antibiotics promote growth performance of piglets. Hence, the present study was carried out to further demonstrate the effect of Ba replacement of antibiotics on digestive and absorption enzyme activity and intestinal microbiota population of piglets. A total of 90 piglets were selected and divided into three groups: G1 group was fed with basal diet supplemented with 150 mg/Kg aureomycin, G2 group was fed with 1 × 108 cfu/Kg Ba and half dose of aureomycin, G3 group was used the diet with 2 × 108cfu/Kg Ba replaced aureomycin. Each treatment had three replications of 10 pigs per pen. Results indicated that Ba replacement significantly increased the activities of amylase, disaccharides and Na+/K+-ATPase. And chymotrypsin activity in different section of intestine was dramatically enhanced in half replacement of aureomycin with Ba. Moreover, Ba replacement maintained the intestinal integrity with the significantly decreased activity of DAO compared with aureomycin group. Besides, supplementation with Ba increased the β-diversity of intestinal microbiota. Taken together, the current study indicated that diet supplementation with Ba instead of aureomycin increased the growth performance of piglets by improving the digestive and absorb enzyme activities, enhancing the intestinal integrity and regulating the population of intestinal micrbiota.
Collapse
Affiliation(s)
- Shenglan Hu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefang Cao
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhang
- Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, China National Bamboo Research Center, Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wang J, Zeng Y, Wang S, Liu H, Zhang D, Zhang W, Wang Y, Ji H. Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense. Front Microbiol 2018; 9:1364. [PMID: 29997590 PMCID: PMC6028558 DOI: 10.3389/fmicb.2018.01364] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023] Open
Abstract
Weaning stress renders piglets susceptible to pathogen infection, which leads to post-weaning diarrhea, a severe condition characterized by heavy diarrhea and mortality in piglets. Enterotoxigenic Escherichia coli (ETEC) is one of typical strains associated with post-weaning diarrhea. Thus, prevention and inhibition of ETEC infection are of great concern. Probiotics possess anti-pathogenic activity and can counteract ETEC infection; however, their underlying mechanisms and modes of action have not yet been clarified. In the present study, the direct and indirect protective effects of Lactobacillus plantarum ZLP001 against ETEC infection were investigated by different methods. We found that bacterial culture and culture supernatant of L. plantarum ZLP001 prevented ETEC growth by the Oxford cup method, and ETEC growth inhibition was observed in a co-culture assay as well. This effect was suggested to be caused mainly by antimicrobial metabolites produced by L. plantarum ZLP001. In addition, adhesion capacity of L. plantarum ZLP001 to IPEC-J2 cells were observed using microscopy and counting. L. plantarum ZLP001 also exhibited a concentration-dependent ability to inhibit ETEC adhesion to IPEC-J2 cells, which mainly occurred via exclusion and competition mode. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis showed that L. plantarum ZLP001 upregulated the expression of host defense peptides (HDPs) but did not trigger an inflammatory response. In addition, L. plantarum ZLP001 induced HDP secretion, which enhanced the potential antimicrobial activity of IPEC-J2 cell-culture supernatant after incubation with L. plantarum ZLP001. Our findings demonstrate that L. plantarum ZLP001, an intestinal Lactobacillus species associated with piglet health, possesses anti-ETEC activity. L. plantarum ZLP001 might prevent ETEC growth, inhibit ETEC adhesion to the intestinal mucosa, and activate the innate immune response to secret antimicrobial peptides. L. plantarum ZLP001 is worth investigation as a potential probiotics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxia Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
31
|
Yang Y, Jing Y, Yang J, Yang Q. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets. Exp Ther Med 2018; 15:5189-5198. [PMID: 29805543 PMCID: PMC5958783 DOI: 10.3892/etm.2018.6093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The nasal mucosa is the body's first barrier against pathogens entering through the respiratory tract. The respiratory immune system of pigs has more similarities with humans than the mouse respiratory system does, and so was selected as the animal model in the present study. To evaluate the effects of Bacillus subtilis as a potential probiotic to stimulate local immune responses, piglets were intranasally administered with Dylight 488-labeled B. subtilis (WB800-green fluorescent protein). The results revealed that B. subtilis was able to reach the lamina propria of the nasal mucosa, nasopharyngeal tonsils and soft palate tonsils. Piglets were subsequently administered intranasally with B. subtilis (WB800) at 3, 12 and 28 days. The results revealed that, following administration with B. subtilis, the number of dendritic cells, immunoglobulin A+ B cells and T cells in the nasal mucosa and tonsils significantly increased (P<0.05). No obvious differences were observed in the morphological structure following B. subtilis administration. There were no statistical differences were observed in the expression of interleukin (IL)-1β, tumor necrosis factor-α and IL-8 mRNA between the B. subtilis treated group and the control group in the nasal mucosa, nasopharyngeal tonsil or soft palate tonsil. Toll-like receptor (TLR)-2 and TLR-9 mRNA expression in the tonsils was significantly increased following B. subtilis administration compared with the control group (P<0.05). The results demonstrate that B. subtilis administration increases the number of immune cells in the nasal mucosa and tonsils of piglets and stimulates nasal mucosal and tonsillar immunity. The present study lays the foundation for further study into the intranasal administration of B. subtilis in humans to enhance the immunity of human nasal mucosa to respiratory diseases.
Collapse
Affiliation(s)
- Yunhan Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yuchao Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jingjing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
32
|
Wang Y, Wu Y, Wang B, Cao X, Fu A, Li Y, Li W. Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets. AMB Express 2017; 7:52. [PMID: 28244029 PMCID: PMC5328899 DOI: 10.1186/s13568-017-0353-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to evaluate effects of probiotic Bacillus amyloliquefaciens (Ba) as a substitute for antibiotics on growth performance, antioxidant ability and intestinal autophagy of piglets. Ninety piglets were divided into three groups: G1 (containing 150 mg/Kg aureomycin in the diet); G2 (containing 75 mg/Kg aureomycin and 1 × 108 cfu/Kg Ba in the diet); G3 (containing 2 × 108 cfu/Kg Ba in the diet without any antibiotics). Each treatment had three replications of ten pigs per pen. Results showed that Ba replacement significantly increased the daily weight gain of piglets. Moreover, improved antioxidant status in serum and jejunum was noted in Ba-fed groups as compared with aureomycin group. Increased gene expression of antioxidant enzymes and elevated nuclear factor erythroid 2 related factor 2 (Nrf2) in jejunum was also observed in Ba-fed groups. Besides, Ba replacement significantly decreased jejunal c-Jun N-terminal kinase (JNK) phosphorylation compared with antibiotic group. Western blotting results also revealed that replacing all antibiotics with Ba initiated autophagy in the jejunum as evidenced by increased microtubule-associated protein 1 light chain 3 II (LC3-II) abundance. Taken together, these results indicate that replacing aureomycin with Ba can improve growth performance and antioxidant status of piglets via increasing antioxidant capacity and intestinal autophagy, suggesting a good potential for Ba as an alternative to antibiotics in feed.
Collapse
|
33
|
Chaves BD, Brashears MM, Nightingale KK. Applications and safety considerations of Lactobacillus salivarius as a probiotic in animal and human health. J Appl Microbiol 2017; 123:18-28. [PMID: 28256040 DOI: 10.1111/jam.13438] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
The goals of this review are to summarize the current knowledge on the application of Lactobacillus salivarius as a probiotic in animals and humans, and to address safety concerns with its use on live hosts. Overall, several strains of L. salivarius are well established probiotics with multiple applications in animal health, particularly to reduce colonization by gastrointestinal pathogens, and to a lesser extent, as a production and quality aid. In humans, L. salivarius has been used to prevent and treat a variety of chronic diseases, including asthma, cancer, atopic dermatitis and halitosis, and to a much limited extent, to prevent or treat infections. Based on the results from primary research evidence, it seems that L. salivarius does not pose a health risk to animals or humans in the doses currently used for a variety of applications; however, there is a systematic lack of studies assuring the safety of many of the strains intended for clinical use. This review provides researchers in the field with up-to-date information regarding applications and safety of L. salivarius. Furthermore, it helps researchers identify knowledge gaps and potential opportunities for microbiological and clinical research.
Collapse
Affiliation(s)
- B D Chaves
- Department of Animal and Food Sciences, International Center for Food Industry Excellence, Texas Tech University, Lubbock, TX, USA
| | - M M Brashears
- Department of Animal and Food Sciences, International Center for Food Industry Excellence, Texas Tech University, Lubbock, TX, USA
| | - K K Nightingale
- Department of Animal and Food Sciences, International Center for Food Industry Excellence, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
34
|
Zimmermann J, Fusari M, Rossler E, Blajman J, Romero-Scharpen A, Astesana D, Olivero C, Berisvil A, Signorini M, Zbrun M, Frizzo L, Soto L. Effects of probiotics in swines growth performance: A meta-analysis of randomised controlled trials. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Lähteinen T, Rinttilä T, Koort JM, Kant R, Levonen K, Jakava-Viljanen M, Björkroth J, Palva A. Effect of a multispecies lactobacillus formulation as a feeding supplement on the performance and immune function of piglets. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Dhama K, Saminathan M, Jacob SS, Singh M, Karthik K, . A, Tiwari R, Sunkara LT, Malik YS, Singh RK. Effect of Immunomodulation and Immunomodulatory Agents on Health with some Bioactive Principles, Modes of Action and Potent Biomedical Applications. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.253.290] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20:15632-15649. [PMID: 25400447 PMCID: PMC4229528 DOI: 10.3748/wjg.v20.i42.15632] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Collapse
|
38
|
Suda Y, Villena J, Takahashi Y, Hosoya S, Tomosada Y, Tsukida K, Shimazu T, Aso H, Tohno M, Ishida M, Makino S, Ikegami S, Kitazawa H. Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs. BMC Immunol 2014; 15:24. [PMID: 24943108 PMCID: PMC4068960 DOI: 10.1186/1471-2172-15-24] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets’ immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer’s patches (PP). Objective In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. Results Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages’ activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. Conclusions We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science Tohoku University, 981-8555 Sendai, Japan.
| |
Collapse
|
39
|
Villena J, Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol 2014; 4:512. [PMID: 24459463 PMCID: PMC3890654 DOI: 10.3389/fimmu.2013.00512] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022] Open
Abstract
The intestinal mucosa plays a critical role in the host’s interactions with innocuous commensal microbiota and invading pathogenic microorganisms. Intestinal epithelial cells (IECs) and gut associated immune cells recognize the bacterial components via pattern-recognition receptors (PRRs) and are responsible for maintaining tolerance to the large communities of resident luminal bacteria while being also able to mount inflammatory responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs that are present on IECs and immune cells which are involved in the induction of both tolerance and inflammation. A growing body of experimental and clinical evidence supports the therapeutic and preventive application of probiotics for several gastrointestinal inflammatory disorders in which TLRs exert a significant role. This review aims to summarize the current knowledge of the beneficial effects of probiotic microorganisms with the capacity to modulate the immune system (immunobiotics) in the regulation of intestinal inflammation in pigs, which are very important as both livestock and human model. Especially we discuss the role of TLRs, their signaling pathways, and their negative regulators in both the inflammatory intestinal injury and the beneficial effects of immunobiotics in general, and Lactobacillus jensenii TL2937 in particular. This review article emphasizes the cellular and molecular interactions of immunobiotics with IECs and immune cells through TLRs and their application for improving animal and human health.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group , Tucuman , Argentina ; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) , Tucuman , Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| |
Collapse
|
40
|
Kumagae N, Villena J, Tomosada Y, Kobayashi H, Kanmani P, Aso H, Sasaki T, Yoshida M, Tanabe H, Shibata I, Saito T, Kitazawa H. Evaluation of the Immunoregulatory Capacities of Feed Microbial Materials in Porcine Intestinal Immune and Epithelial Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojvm.2014.43003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Ingle AM, Verma AK, Tiwari R, Karthik K, Chakraborty S, Deb R, Rajagunalan S, Rathore R, Dhama K. Immunomodulators in day to day life: a review. Pak J Biol Sci 2013; 16:826-843. [PMID: 24498836 DOI: 10.3923/pjbs.2013.826.843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are ongoing trends of immunomodulation to combat a vast range of human and animal diseases including the incurable diseases like viral diseases, cancers, autoimmune diseases and inflammatory conditions. Animate as well as non-animate factors, surrounding us are interacting with our immune system. A balanced diet should contain all essential components from energy to vitamin and trace minerals. Each of these constituent has a very special effect on the immune system starting from their development to active role in immunity therefore, the outcome of their deficiency often ends in disease. Edible items which we consume like various vegetables, spices, herbs, fruits etc., are also equally responsible in manipulation of our system either in positive or negative way. Water has biggest share in our body and acts as the main medium to support the activities of the different system of body without exception of immune system. Proper environmental temperature is essential to maintain body's functions and experiments carried out regarding the effect of temperature suggest that extremes of the temperature are often cause immunosuppression directly by acting on the cells of immunity or indirectly through inducing stress and thereby increasing production of catecholamine which are potent anti-immune molecules. Various pathogenic as well as non-pathogenic bacteria cause immune suppression and immune potentiation, respectively. Proper exercise hold a prime position in the healthy life as it supports immunity and keeps disease away. The present review deals with all these immunomodulators having both positive and negative impact on the health status of an individual.
Collapse
Affiliation(s)
- Abhijeet M Ingle
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Amit Kumar Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Viswavidyalaya Evum Go-Anusandhan Sansthan, Mathura-281001, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Viswavidyalaya Evum Go-Anusandhan Sansthan, Mathura-281001, India
| | - K Karthik
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Sandip Chakraborty
- Deaprtment of Animal Resource Development, Pt. Nehru Complex, Agartala, Tripura-799001, India
| | - Rajib Deb
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass Farm Road, Meerut, (UP)-250001, India
| | - S Rajagunalan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Rajesh Rathore
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243122, India
| |
Collapse
|