1
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
3
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
4
|
Cerra MC, Filice M, Caferro A, Mazza R, Gattuso A, Imbrogno S. Cardiac Hypoxia Tolerance in Fish: From Functional Responses to Cell Signals. Int J Mol Sci 2023; 24:ijms24021460. [PMID: 36674975 PMCID: PMC9866870 DOI: 10.3390/ijms24021460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Aquatic animals are increasingly challenged by O2 fluctuations as a result of global warming, as well as eutrophication processes. Teleost fish show important species-specific adaptability to O2 deprivation, moving from intolerance to a full tolerance of hypoxia and even anoxia. An example is provided by members of Cyprinidae which includes species that are amongst the most tolerant hypoxia/anoxia teleosts. Living at low water O2 requires the mandatory preservation of the cardiac function to support the metabolic and hemodynamic requirements of organ and tissues which sustain whole organism performance. A number of orchestrated events, from metabolism to behavior, converge to shape the heart response to the restricted availability of the gas, also limiting the potential damages for cells and tissues. In cyprinids, the heart is extraordinarily able to activate peculiar strategies of functional preservation. Accordingly, by using these teleosts as models of tolerance to low O2, we will synthesize and discuss literature data to describe the functional changes, and the major molecular events that allow the heart of these fish to sustain adaptability to O2 deprivation. By crossing the boundaries of basic research and environmental physiology, this information may be of interest also in a translational perspective, and in the context of conservative physiology, in which the output of the research is applicable to environmental management and decision making.
Collapse
|
5
|
Guo J, Yu X, Liu Y, Lu L, Zhu D, Zhang Y, Li L, Zhang P, Gao Q, Lu X, Sun M. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reprod Toxicol 2022; 113:52-61. [PMID: 35970333 DOI: 10.1016/j.reprotox.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Maternal hypothyroidism is an important problem of modern healthcare and is reported to increase the risk of cardiovascular diseases in the offspring later in life. However, it is unclear whether hypothyroidism during pregnancy causes vascular damage in the fetal period. We established the prenatal hypothyroidism rat model and collected the fetuses at the 21th day of gestation (GD21). Thyroid hormone concentrations in maternal and offspring blood serum were assessed by enzyme-linked immunosorbent assay (ELISA). The thoracic aortas of the fetuses were isolated for microvessel functional testing and histochemical stainings. qPCR and Western blot were performed to access mRNA and protein expression. We found that the concentrations of thyroid hormones in the serum of pregnant rats and fetuses were significantly suppressed at GD21. The responses of the fetal thoracic aortas to SNP were significantly attenuated in the PTU group. However, no statistical difference was found between the two groups when treated with either inhibitor (ODQ) or activator (BAY58-2667) of sGC. The production of O2-• in the arterial wall was significantly increased in hypothyroid fetuses. Moreover, the level of NADPH oxidase (NOX) was increased, while superoxide dismutase 2 (SOD2) was down-regulated in the PTU group, ultimately contributing to the increased production of superoxide. Additionally, decreased SNP-mediated vasodilation found in fetal vessels was improved by either NOX inhibitor (Apocynin) or SOD mimic (Tempol). These results indicate that increased oxidative stress is probably the cause of the diminished diastolic effect of exogenous NO in the thoracic artery of prenatal hypothyroidism exposed fetuses.
Collapse
Affiliation(s)
- Jun Guo
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yanping Liu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Likui Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Dan Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Pengjie Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China
| | - Xiyuan Lu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu 215006, China.
| |
Collapse
|
6
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
8
|
Giordano D, Verde C, Corti P. Nitric Oxide Production and Regulation in the Teleost Cardiovascular System. Antioxidants (Basel) 2022; 11:957. [PMID: 35624821 PMCID: PMC9137985 DOI: 10.3390/antiox11050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Nitric Oxide (NO) is a free radical with numerous critical signaling roles in vertebrate physiology. Similar to mammals, in the teleost system the generation of sufficient amounts of NO is critical for the physiological function of the cardiovascular system. At the same time, NO amounts are strictly controlled and kept within basal levels to protect cells from NO toxicity. Changes in oxygen tension highly influence NO bioavailability and can modulate the mechanisms involved in maintaining the NO balance. While NO production and signaling appears to have general similarities with mammalian systems, the wide range of environmental adaptations made by fish, particularly with regards to differing oxygen availabilities in aquatic habitats, creates a foundation for a variety of in vivo models characterized by different implications of NO production and signaling. In this review, we present the biology of NO in the teleost cardiovascular system and summarize the mechanisms of NO production and signaling with a special emphasis on the role of globin proteins in NO metabolism.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Chen X, Zou Z, Wang Q, Gao W, Zeng S, Ye S, Xu P, Huang M, Li K, Chen J, Zhong Z, Zhang Q, Hao B, Liu Q. Inhibition of NOS1 promotes the interferon response of melanoma cells. J Transl Med 2022; 20:205. [PMID: 35538490 PMCID: PMC9092760 DOI: 10.1186/s12967-022-03403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Background NOS1 expression predicts poor prognosis in patients with melanoma. However, the molecular function of NOS1 in the type I IFN response and immune escape of melanoma is still unknown. Methods The CRISPR/Cas9 system was used to generate NOS1-knockout melanoma cells and the biological characteristics of NOS1-knockout cells were evaluated by MTT assay, clonogenic assay, EdU assay, and flow cytometric assay. The effect on tumor growth was tested in BALB/c-nu and C57BL/6 mouse models. The gene expression profiles were detected with Affymetrix microarray and RNA-seq and KEGG (Kyoto Encyclopedia of Genes and Genomes) and CLUE GO analysis was done. The clinical data and transcriptional profiles of melanoma patients from the public database TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus, GSE32611) were analyzed by Qlucore Omics Explorer. Results NOS1 deletion suppressed the proliferation of melanoma A375 cells in culture, blocked cell cycling at the G0/G1 phase, and decreased the tumor growth in lung metastasis nodes in a B16 melanoma xenograft mouse model. Moreover, NOS1 knockout increased the infiltration of CD3+ immune cells in tumors. The transcriptomics analysis identified 2203 differential expression genes (DEGs) after NOS1 deletion. These DEGs indicated that NOS1 deletion downregulated mostly metabolic functions but upregulated immune response pathways. After inhibiting with NOS1 inhibitor N-PLA, melanoma cells significantly increased the response to IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α by upregulation expression of IFN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha $$\end{document}α simulation genes (ISGs), especially the components in innate immune signaling, JAK-STAT, and TOLL-LIKE pathway. Furthermore, these NOS1-regulating immune genes (NOS1-ISGs) worked as a signature to predict poor overall survival and lower response to chemotherapy in melanoma patients. Conclusion These findings provided a transcriptional evidence of NOS1 promotion on tumor growth, which is correlated with metabolic regulation and immune escape in melanoma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03403-w.
Collapse
Affiliation(s)
- Xi Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Wenwen Gao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Sisi Zeng
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Zhuo Zhong
- Guangzhou Hospital of integrated Traditional and West Medicine, Guangzhou, 510800, China
| | - Qianbing Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Shatai South Road, Baiyun District, 16, Guangzhou, 510515, China. .,Pingshan District People's Hospital of Shenzhen, Shenzhen, 518118, China.
| |
Collapse
|
10
|
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D. Nitric oxide production and signalling in algae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:781-792. [PMID: 32910824 DOI: 10.1093/jxb/eraa421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO-cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J. The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radic Biol Med 2021; 162:500-513. [PMID: 33186742 DOI: 10.1016/j.freeradbiomed.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
The small and diffusible free radical nitric oxide (•NO) has fascinated biological and medical scientists since it was promoted from atmospheric air pollutant to biological ubiquitous signaling molecule. Its unique physical chemical properties expand beyond its radical nature to include fast diffusion in aqueous and lipid environments and selective reactivity in a biological setting determined by bioavailability and reaction rate constants with biomolecules. In the brain, •NO is recognized as a key player in numerous physiological processes ranging from neurotransmission/neuromodulation to neurovascular coupling and immune response. Furthermore, changes in its bioactivity are central to the molecular pathways associated with brain aging and neurodegeneration. The understanding of •NO bioactivity in the brain, however, requires the knowledge of its concentration dynamics with high spatial and temporal resolution upon stimulation of its synthesis. Here we revise our current understanding of the role of neuronal-derived •NO in brain physiology, aging and degeneration, focused on changes in the extracellular concentration dynamics of this free radical and the regulation of bioenergetic metabolism and neurovascular coupling.
Collapse
Affiliation(s)
- A Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - C F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - E Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - R M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - J Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
12
|
Shamsaldeen YA, Lione LA, Benham CD. Dysregulation of TRPV4, eNOS and caveolin-1 contribute to endothelial dysfunction in the streptozotocin rat model of diabetes. Eur J Pharmacol 2020; 888:173441. [PMID: 32810492 DOI: 10.1016/j.ejphar.2020.173441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a common complication in diabetes in which endothelium-dependent vasorelaxation is impaired. The aim of this study was to examine the involvement of the TRPV4 ion channel in type 1 diabetic endothelial dysfunction and the possible association of endothelial dysfunction with reduced expression of TRPV4, endothelial nitric oxide synthase (eNOS) and caveolin-1. Male Wistar rats (350-450 g) were injected with 65 mg/kg i.p. streptozotocin (STZ) or vehicle. Endothelial function was investigated in aortic rings and mesenteric arteries using organ bath and myograph, respectively. TRPV4 function was studied with fura-2 calcium imaging in endothelial cells cultured from aortas from control and STZ treated rats. TRPV4, caveolin-1 and eNOS expression was investigated in these cells using immunohistochemistry. STZ-treated diabetic rats showed significant endothelial dysfunction characterised by impaired muscarinic-induced vasorelaxation (aortic rings: STZ-diabetics: Emax = 29.6 ± 9.3%; control: Emax = 77.2 ± 2.5% P˂0.001), as well as significant impairment in TRPV4-induced vasorelaxation (aortic rings, 4αPDD STZ-diabetics: Emax = 56.0 ± 5.5%; control: Emax = 81.1 ± 2.1% P˂0.001). Furthermore, STZ-diabetic primary aortic endothelial cells showed a significant reduction in TRPV4-induced intracellular calcium elevation (P˂0.05) compared with the control group. This was associated with significantly lower expression of TRPV4, caveolin-1 and eNOS and this was reversed by insulin treatment of the endothelial cultures from STZ -diabetic rats. Taken together, these data are consistent with the hypothesis that signalling through TRPV4, caveolin-1, and eNOS is downregulated in STZ-diabetic aortic endothelial cells and restored by insulin treatment.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK; Department of Pharmacy, Kuwait Hospital, Sabah Alsalem, 44001, Kuwait.
| | - Lisa A Lione
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher D Benham
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| |
Collapse
|
13
|
Reverte-Salisa L, Sanyal A, Pfeifer A. Role of cAMP and cGMP Signaling in Brown Fat. Handb Exp Pharmacol 2019; 251:161-182. [PMID: 29633180 DOI: 10.1007/164_2018_117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cold-induced activation of brown adipose tissue (BAT) is mediated by norepinephrine and adenosine that are released during sympathetic nerve activation. Both signaling molecules induce an increase in intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) in murine and human BAT. In brown adipocytes, cAMP plays a central role, because it activates lipolysis, glucose uptake, and thermogenesis. Another well-studied intracellular second messenger is 3',5'-cyclic guanosine monophosphate (cGMP), which closely resembles cAMP. Several studies have shown that intact cGMP signaling is essential for normal adipogenic differentiation and BAT-mediated thermogenesis in mice. This chapter highlights recent observations, demonstrating the physiological significance of cyclic nucleotide signaling in BAT as well as their potential to induce browning of white adipose tissue (WAT) in mice and humans.
Collapse
Affiliation(s)
- Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Abhishek Sanyal
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Khalid RR, Maryam A, Fadouloglou VE, Siddiqi AR, Zhang Y. Cryo-EM density map fitting driven in-silico structure of human soluble guanylate cyclase (hsGC) reveals functional aspects of inter-domain cross talk upon NO binding. J Mol Graph Model 2019; 90:109-119. [PMID: 31055154 PMCID: PMC7956049 DOI: 10.1016/j.jmgm.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
The human soluble Guanylate Cyclase (hsGC) is a heterodimeric heme-containing enzyme which regulates many important physiological processes. In eukaryotes, hsGC is the only known receptor for nitric oxide (NO) signaling. Improper NO signaling results in various disease conditions such as neurodegeneration, hypertension, stroke and erectile dysfunction. To understand the mechanisms of these diseases, structure determination of the hsGC dimer complex is crucial. However, so far all the attempts for the experimental structure determination of the protein were unsuccessful. The current study explores the possibility to model the quaternary structure of hsGC using a hybrid approach that combines state-of-the-art protein structure prediction tools with cryo-EM experimental data. The resultant 3D model shows close consistency with structural and functional insights extracted from biochemistry experiment data. Overall, the atomic-level complex structure determination of hsGC helps to unveil the inter-domain communication upon NO binding, which should be of important usefulness for elucidating the biological function of this important enzyme and for developing new treatments against the hsGC associated human diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Biostatistics and Medical Informatics, Acibadem Universitesi, Istanbul, 34752, Turkey; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Pharmaceutical Chemistry, Biruni Universitesi, Istanbul, 34010, Turkey.
| | - Vasiliki E Fadouloglou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| |
Collapse
|
15
|
Zhao Y, Ge J, Li X, Guo Q, Zhu Y, Song J, Zhang L, Ding S, Yang X, Li R. Vasodilatory effect of formaldehyde via the NO/cGMP pathway and the regulation of expression of K ATP, BK Ca and L-type Ca 2+ channels. Toxicol Lett 2019; 312:55-64. [PMID: 30974163 DOI: 10.1016/j.toxlet.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Formaldehyde (FA), a well-known toxic gas molecule similar to nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), is widely produced endogenously via numerous biochemical pathways, and has a number of physiological roles in the biosystem. We attempted to investigate the vasorelaxant effects of FA and their underlying mechanisms. We found that FA induced vasorelaxant effects on rat aortic rings in a concentration-dependent manner. The NO/cyclic guanosine 5' monophosphate (cGMP) pathway was up-regulated when the rat aortas were treated with FA. The expression of large-conductance Ca2+-activated K+ (BKCa) channel subunits α and β of the rat aortas was increased by FA. Similarly, the levels of ATP-sensitive K+ (KATP) channel subunits Kir6.1 and Kir6.2 were also up-regulated when the rat aortas were incubated with FA. In contrast, levels of the L-type Ca2+ channel (LTCC) subunits, Cav1.2 and Cav1.3, decreased dramatically with increasing concentrations of FA. We demonstrated that the regulation of FA on vascular contractility may be via the up-regulation of the NO/cGMP pathway and the modulation of ion channels, including the upregulated expression of the KATP and BKCa channels and the inhibited expression of LTCCs. Further study is needed to explore the in-depth mechanisms of FA induced vasorelaxation.
Collapse
Affiliation(s)
- Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Jing Ge
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Qing Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China; School of Public Health, Huazhong University of Science and Technology, Hangkong Road, Wuhan, 430030, PR China
| | - Yuqing Zhu
- Centre of Stem Cell and Regenerative medicine, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| |
Collapse
|
16
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Tong Y, Jiao Q, Liu Y, Lv J, Wang R, Zhu L. Maprotiline Prevents Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats. Front Pharmacol 2018; 9:1032. [PMID: 30298002 PMCID: PMC6160570 DOI: 10.3389/fphar.2018.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease caused by increased pulmonary artery pressure and pulmonary vascular resistance, eventually leading to right heart failure until death. Soluble guanylate cyclase (sGC) has been regarded as an attractive drug target in treating PAH. In this study, we discovered that maprotiline, a tetracyclic antidepressant, bound to the full-length recombinant sGC with a high affinity (KD = 0.307 μM). Further study demonstrated that maprotiline concentration-dependently inhibited the proliferation of hypoxia-induced human pulmonary artery smooth muscle cells. Moreover, in a monocrotaline (MCT) rat model of PAH, maprotiline (ip, 10 mg/kg once daily) reduced pulmonary hypertension, inhibited the development of right ventricular hypertrophy and pathological changes of the pulmonary vascular remodeling. Taken together, our studies showed that maprotiline may contribute to attenuate disease progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Tong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuanru Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiankun Lv
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Hespen CW, Bruegger JJ, Guo Y, Marletta MA. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins. ACS Chem Biol 2018; 13:1631-1639. [PMID: 29757599 DOI: 10.1021/acschembio.8b00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
Collapse
Affiliation(s)
- Charles W. Hespen
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Joel J. Bruegger
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Yirui Guo
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Michael A. Marletta
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
- Department of Chemistry, Department of Molecular and Cell Biology, QB3 Institute, University of California—Berkeley, 374B Stanley Hall, Berkeley, California 94720-3220, United States
| |
Collapse
|
19
|
Modulation of Cellular Respiration by Endogenously Produced Nitric Oxide in Rat Hippocampal Slices. Methods Mol Biol 2018. [PMID: 29850995 DOI: 10.1007/978-1-4939-7831-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitric oxide (•NO) is an ubiquitous signaling molecule that participates in molecular processes associated with several neural phenomena ranging from memory formation to excitotoxicity. In the hippocampus, neuronal •NO production is coupled to the activation of NMDA type glutamate receptors. Cytochrome c oxidase has emerged as a novel target for •NO, which competes with O2 for binding to this mitochondrial complex. This reaction establishes •NO as a regulator of cellular metabolism and, possibly, mitochondrial production of reactive oxygen species which participate in cellular signaling. A major gap in the understanding of •NO bioactivity, namely, in the hippocampus, has been the lack of knowledge of its concentration dynamics. Here, we present a detailed description of the simultaneous recording of •NO and O2 concentration dynamics in rat hippocampal slices. Carbon fiber microelectrodes are fabricated and applied for real-time measurements of both gases in a system close to in vivo models. This approach allows for a better understanding of the current paradigm by which an intricate interplay between •NO and O2 regulates cellular respiration.
Collapse
|
20
|
Kim-Shapiro DB, Gladwin MT. Nitric oxide pathology and therapeutics in sickle cell disease. Clin Hemorheol Microcirc 2018; 68:223-237. [PMID: 29614634 PMCID: PMC5911689 DOI: 10.3233/ch-189009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sickle cell disease is caused by a mutant form of hemoglobin that polymerizes under hypoxic conditions which leads to red blood cell (RBC) distortion, calcium-influx mediated RBC dehydration, increased RBC adhesivity, reduced RBC deformability, increased RBC fragility, and hemolysis. These impairments in RBC structure and function result in multifaceted downstream pathology including inflammation, endothelial cell activation, platelet and leukocyte activation and adhesion, and thrombosis, all of which contribute vascular occlusion and substantial morbidity and mortality. Hemoglobin released upon RBC hemolysis scavenges nitric oxide (NO) and generates reactive oxygen species (ROS) and thereby decreases bioavailability of this important signaling molecule. As the endothelium-derived relaxing factor, NO acts as a vasodilator and also decreases platelet, leukocyte, and endothelial cell activation. Thus, low NO bioavailability contributes to pathology in sickle cell disease and its restoration could serve as an effective treatment. Despite its promise, clinical trials based on restoring NO bioavailability have so far been mainly disappointing. However, particular "NO donating" agents such as nitrite, which unlike some other NO donors can improve sickle RBC properties, may yet prove effective.
Collapse
Affiliation(s)
- Daniel B. Kim-Shapiro
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem NC 27109
| | - Mark T. Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute and the Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
21
|
Interplay between Obesity-Induced Inflammation and cGMP Signaling in White Adipose Tissue. Cell Rep 2017; 18:225-236. [PMID: 28052251 DOI: 10.1016/j.celrep.2016.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Current worldwide figures suggest that obesity is pandemic. Understanding the underlying molecular mechanisms would help develop viable anti-obesity therapies. Here, we assess the influence of obesity-induced inflammation on white adipocyte cyclic guanosine monophosphate (cGMP) signaling, which is beneficial for adipocyte differentiation and thermogenesis. We find that murine gonadal and not inguinal fat is prone to obesity-induced inflammation. Correspondingly, the cGMP cascade is dysregulated in gonadal but not in inguinal fat of obese mice. Analysis of two independent human cohorts reveals a defective cGMP pathway only in visceral fat of obese subjects. Congruently, cGMP signaling is dysregulated in tumor necrosis factor α (TNF-α)-treated primary white adipocytes. TNF-α-mediated suppression of sGCβ1 is mediated via NF-κB, whereas PKG is repressed by JNK signaling. Additionally, TNF-α-activated JNK signaling suppresses PPARγ and aP2. Taken together, the intensity of obesity-induced inflammation dictates the amplitude of cGMP signaling dysregulation in white adipocytes through distinct pathways.
Collapse
|
22
|
Alexandropoulos II, Argyriou AI, Marousis KD, Topouzis S, Papapetropoulos A, Spyroulias GA. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:395-400. [PMID: 27614467 DOI: 10.1007/s12104-016-9707-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.
Collapse
Affiliation(s)
| | | | | | - Stavros Topouzis
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, 26504, Patras, Greece
| | - Andreas Papapetropoulos
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, 26504, Patras, Greece
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 15 771, Athens, Greece
| | | |
Collapse
|
23
|
Sharma SK, Kim H, Rogler PJ, A Siegler M, Karlin KD. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization. J Biol Inorg Chem 2016; 21:729-43. [PMID: 27350154 PMCID: PMC5003086 DOI: 10.1007/s00775-016-1369-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.
Collapse
Affiliation(s)
- Savita K Sharma
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hyun Kim
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
24
|
Hespen CW, Bruegger JJ, Phillips-Piro CM, Marletta MA. Structural and Functional Evidence Indicates Selective Oxygen Signaling in Caldanaerobacter subterraneus H-NOX. ACS Chem Biol 2016; 11:2337-46. [PMID: 27328180 DOI: 10.1021/acschembio.6b00431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute and specific sensing of diatomic gas molecules is an essential facet of biological signaling. Heme nitric oxide/oxygen binding (H-NOX) proteins are a family of gas sensors found in diverse classes of bacteria and eukaryotes. The most commonly characterized bacterial H-NOX domains are from facultative anaerobes and are activated through a conformational change caused by formation of a 5-coordinate Fe(II)-NO complex. Members of this H-NOX subfamily do not bind O2 and therefore can selectively ligate NO even under aerobic conditions. In contrast, H-NOX domains encoded by obligate anaerobes do form stable 6-coordinate Fe(II)-O2 complexes by utilizing a conserved H-bonding network in the ligand-binding pocket. The biological function of O2-binding H-NOX domains has not been characterized. In this work, the crystal structures of an O2-binding H-NOX domain from the thermophilic obligate anaerobe Caldanaerobacter subterraneus (Cs H-NOX) in the Fe(II)-NO, Fe(II)-CO, and Fe(II)-unliganded states are reported. The Fe(II)-unliganded structure displays a conformational shift distinct from the NO-, CO-, and previously reported O2-coordinated structures. In orthogonal signaling assays using Cs H-NOX and the H-NOX signaling effector histidine kinase from Vibrio cholerae (Vc HnoK), Cs H-NOX regulates Vc HnoK in an O2-dependent manner and requires the H-bonding network to distinguish O2 from other ligands. The crystal structures of Fe(II) unliganded and NO- and CO-bound Cs H-NOX combined with functional assays herein provide the first evidence that H-NOX proteins from obligate anaerobes can serve as O2 sensors.
Collapse
Affiliation(s)
- Charles W. Hespen
- Department
of Molecular and Cell Biology, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Joel J. Bruegger
- QB3
Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California, 94720-3220, United States
| | - Christine M. Phillips-Piro
- Department of Chemistry, HAC 416 Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Michael A. Marletta
- Department
of Molecular and Cell Biology, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
- Department
of Chemistry Department of Molecular and Cell Biology QB3 Institute, University of California—Berkeley, 374B Stanley Hall, Berkeley, California 94720-3220, United States
| |
Collapse
|
25
|
Rahman K, Lowe GM, Smith S. Aged Garlic Extract Inhibits Human Platelet Aggregation by Altering Intracellular Signaling and Platelet Shape Change. J Nutr 2016; 146:410S-415S. [PMID: 26764324 DOI: 10.3945/jn.114.202408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increased platelet aggregation plays a pivotal role in the etiology of cardiovascular disease. Upon platelet aggregation, an increase in free cytoplasmic Ca(2+) results in the inhibition of soluble guanylyl cyclase (sGC) and adenylyl cyclase (AC), leading to a decrease in cyclic guaninosine-5'-monophosphate (cGMP) and cAMP, respectively. This leads to the activation of the glycoprotein IIb/IIIa (GPIIb/IIIa) fibrinogen receptor, resulting in platelet shape change. Aged garlic extract (AGE) decreases platelet aggregation; however, the mechanisms involved are not clearly defined. OBJECTIVE Our objective was to investigate the effects of AGE on intraplatelet cell signaling and platelet shape change. METHODS Platelets from 14 participants were studied. Platelet aggregation was induced by ADP in the presence of AGE up to a concentration of 6.25% (vol:vol) alone or in combination with 3-morpholinosydnonimine (Sin-1), a nitric oxide donor. The experiments with AGE were repeated in the presence of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. In a series of separate experiments, platelet aggregation was induced in the presence of either 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an sGC inhibitor, or 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), an AC inhibitor, or a combination of both in the presence of IBMX and AGE. Intraplatelet cGMP and cAMP were measured. The platelets were also subjected to scanning electron microscopic analysis, and their binding to fibrinogen was determined. RESULTS AGE decreased platelet aggregation at all concentrations tested; this decrease was more marked in the presence of Sin-1 and ranged between 15% and 67%.The presence of IBMX also led to a decrease (17-35%) in platelet aggregation at all AGE concentrations and a significant decrease in the amounts of cGMP (24-41%) and cAMP (19-70%), respectively, in the presence of ODQ and SQ22536. The presence of AGE significantly inhibited the binding of activated platelets to fibrinogen, preventing changes in platelet shape. CONCLUSION These results indicate that AGE inhibits platelet aggregation by increasing cyclic nucleotides and inhibiting fibrinogen binding and platelet shape change.
Collapse
Affiliation(s)
- Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gordon M Lowe
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sarah Smith
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
26
|
Xu H, Zhang Y, Chen L, Li Y, Li C, Liu L, Ogura T, Kitagawa T, Li Z. Entry of water into the distal heme pocket of soluble guanylate cyclase β1 H-NOX domain alters the ligated CO structure: a resonance Raman and in silico simulation study. RSC Adv 2016. [DOI: 10.1039/c6ra06515e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water accessing into the heme pocket and alters the structures of CO–sGC (heme), exhibiting two different vFe–CO stretching modes.
Collapse
Affiliation(s)
- Haoran Xu
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
| | - Yuebin Zhang
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
| | - Lei Chen
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
| | - Yan Li
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Chen Li
- Picobiology Institute
- Graduate School of Life Science
- University of Hyogo
- RSC-UH Leading Program Center
- Hyogo 679-5148
| | - Li Liu
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
| | - Takashi Ogura
- Picobiology Institute
- Graduate School of Life Science
- University of Hyogo
- RSC-UH Leading Program Center
- Hyogo 679-5148
| | - Teizo Kitagawa
- Picobiology Institute
- Graduate School of Life Science
- University of Hyogo
- RSC-UH Leading Program Center
- Hyogo 679-5148
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
| |
Collapse
|
27
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
28
|
Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 2015; 11:457-64. [PMID: 26083070 DOI: 10.1038/nchembio.1834] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity.
Collapse
Affiliation(s)
- Tatiana V Mishanina
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marouane Libiad
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Glushko AA, Voronkov AV, Chernikov MV. [Molecular targets for searching of endothelial-protective substances]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:515-27. [PMID: 25895347 DOI: 10.1134/s1068162014050069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endothelial dysfunction underlies the development of many cardiovascular diseases. Thus endothelium becomes an independent therapeutic target, and the search of new substances with endothelial-protective action to date is one of the promising tasks for pharmacotherapy and medicinal chemistry. Molecular modeling is an effective tool for solving this problem. Computer chemistry methods use is only possible in combination with detailed information on three dimensional structure and functions of molecular targets: receptors and enzymes, involved in signal transduction inside and outside of endothelial cells. Information on structure and function of various macromolecules involved in vascular tone regulation is collected in the review. The structure of endothelial NO-synthase (EC 1.14.13.39) (eNOS)--enzyme, responsible for the nitric oxide synthesis and involved in vascular tone regulation process is reviewed. The importance of eNOS substrate--L-arginine is underlined in the review in terms of this enzyme activity, regulation, the information on structure and functions of L-arginine transport system is provided. Also different ways of eNOS activity regulation are reviewed, among which are enzyme activation and concurrent inhibition by substances interaction with active center of enzyme, inhibition by caveoline binding with oxigenase domain, and also regulation by phosphorylation of certain amino acids of eNOS by proteinkinase and dephoshphorylation of them by phosphatases. The importance of membrane receptors of endothelial cells as targets for endothelial-protective substances is underlined. Among them are receptors of endothelin, platelet activation factor, prostanoids, bradykinin, histamine, serotonin and protease activated receptors. The important role of potassium and calcium ion channels of vascular cells in endothelial-protective activity is underlined. Macromolecules presented in the review finally are considered as targets for searching for medicinal substances with endothelial-protective activity using proposed ways and methods of molecular modeling.
Collapse
|
30
|
Motion of proximal histidine and structural allosteric transition in soluble guanylate cyclase. Proc Natl Acad Sci U S A 2015; 112:E1697-704. [PMID: 25831539 DOI: 10.1073/pnas.1423098112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 μs with [NO] = 200 μM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 μs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 μs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.
Collapse
|
31
|
Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br J Pharmacol 2015; 172:1638-50. [PMID: 24628281 PMCID: PMC4369270 DOI: 10.1111/bph.12688] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral 'drug sphere' for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO.
Collapse
Affiliation(s)
- U Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität WürzburgWürzburg, Germany
| |
Collapse
|
32
|
Ricca AM, Morshedi RG, Wirostko BM. High Intraocular Pressure Following Anti-Vascular Endothelial Growth Factor Therapy: Proposed Pathophysiology due to Altered Nitric Oxide Metabolism. J Ocul Pharmacol Ther 2015; 31:2-10. [DOI: 10.1089/jop.2014.0062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aaron M. Ricca
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - R. Grant Morshedi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
33
|
Berry RE, Muthu D, Yang F, Walker FA. NMR studies of the dynamics of high-spin nitrophorins: comparative studies of NP4 and NP2 at close to physiological pH. Biochemistry 2015; 54:221-39. [PMID: 25486224 PMCID: PMC4303294 DOI: 10.1021/bi501305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
β-barrel nitrophorin (NP) heme proteins are found in
the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary
glands. NO is bound to iron of the NPs and is released by dilution
and an increase in pH when the insect spits its saliva into the tissues
of a victim, to aid in obtaining a blood meal. In the adult insect,
there are four nitrophorins, NP1–NP4, which have sequence similarities
in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical).
The available crystal structures of NP4 have been used to propose
that pH-dependent changes in the conformation of two loops between
adjacent β-strands at the front opening of the protein, the
A–B and G–H loops, determine the rate of NO release.
At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this
work, the aqua complexes of NP4 and NP2 have been investigated by
nuclear magnetic resonance (NMR) relaxation measurements to probe
the pico- to nanosecond and micro- to millisecond time scale motions
at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics
at pH 6.5; at pH 7.3, much more dynamics of the loops and most of
the β-strands are observed while the α-helices remain
fairly rigid. In comparison, NP2-OH2 shows much less dynamics,
albeit somewhat more than that of the previously reported NP2-NO complex
[Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910–7925]. The reasons for this
major difference between NP4 and NP2 are discussed.
Collapse
Affiliation(s)
- Robert E Berry
- Department of Chemistry and Biochemistry, The University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721-0041, United States
| | | | | | | |
Collapse
|
34
|
Abstract
O₂-generating reactions are exceedingly rare in biology and difficult to mimic synthetically. Perchlorate-respiring bacteria enzymatically detoxify chlorite (ClO₂(-) ), the end product of the perchlorate (ClO(4)(-) ) respiratory pathway, by rapidly converting it to dioxygen (O₂) and chloride (Cl(-)). This reaction is catalyzed by a heme-containing protein, called chlorite dismutase (Cld), which bears no structural or sequence relationships with known peroxidases or other heme proteins and is part of a large family of proteins with more than one biochemical function. The original assumptions from the 1990s that perchlorate is not a natural product and that perchlorate respiration might be confined to a taxonomically narrow group of species have been called into question, as have the roles of perchlorate respiration and Cld-mediated reactions in the global biogeochemical cycle of chlorine. In this chapter, the chemistry and biochemistry of Cld-mediated O₂generation, as well as the biological and geochemical context of this extraordinary reaction, are described.
Collapse
Affiliation(s)
- Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA,
| | | |
Collapse
|
35
|
Recent Progress in Photoinduced NO Delivery With Designed Ruthenium Nitrosyl Complexes. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Herzik MA, Jonnalagadda R, Kuriyan J, Marletta MA. Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins. Proc Natl Acad Sci U S A 2014; 111:E4156-64. [PMID: 25253889 PMCID: PMC4210026 DOI: 10.1073/pnas.1416936111] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme-histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron-histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein.
Collapse
Affiliation(s)
- Mark A Herzik
- Departments of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Rohan Jonnalagadda
- Departments of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720; Chemistry, University of California, Berkeley, CA 94720; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Michael A Marletta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
37
|
Hu J, You F, Wang Q, Weng S, Liu H, Wang L, Zhang PJ, Tan X. Transcriptional responses of olive flounder (Paralichthys olivaceus) to low temperature. PLoS One 2014; 9:e108582. [PMID: 25279944 PMCID: PMC4184807 DOI: 10.1371/journal.pone.0108582] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The olive flounder (Paralichthys olivaceus) is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C) was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT) group, which survived under the cold stress; the cold-sensitive (CS) group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity.
Collapse
Affiliation(s)
- Jinwei Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pei-Jun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
38
|
Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO. Chem Biol Interact 2014; 222:37-43. [DOI: 10.1016/j.cbi.2014.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 01/21/2023]
|
39
|
Kühl T, Imhof D. Regulatory Fe(II/III) heme: the reconstruction of a molecule's biography. Chembiochem 2014; 15:2024-35. [PMID: 25196849 DOI: 10.1002/cbic.201402218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 11/10/2022]
Abstract
More than 20 years of research on heme as a temporary effector molecule of proteins have revealed its widespread impact on virtually all primary functions in the human organism. As our understanding of this influence is still growing, a comprehensive overview of compiled data will give fresh impetus for creativity and developing new strategies in heme-related research. From known data concerning heme-regulated proteins and their involvement in the development of diseases, we provide concise information of Fe(II/III) heme as a regulator and the availability of "regulatory heme". The latter is dependent on the balance between free and bound Fe(II/III) heme, here termed "hemeostasis". Imbalance of this system can lead to the development of diseases that were not always attributed to this small molecule. Diseases such as cancer or Alzheimer's disease highlight the reawakened interest in heme, whose function was previously believed to be completely understood.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn (Germany).
| | | |
Collapse
|
40
|
Li Y, Zhou X, Wei QW, Huang RH, Shi FX. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α and β subunits in postnatal porcine uteri. Acta Histochem 2014; 116:466-73. [PMID: 24238988 DOI: 10.1016/j.acthis.2013.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to investigate the cellular expression and immunolocalization of nitric oxide synthase (NOS) isoforms and soluble guanylyl cyclase (sGC) subunits in postnatal porcine uteri. Immunohistochemical experiments showed that three isoforms of NOS were mainly localized in the uterine luminal and glandular epithelium and myometrium, and the intensity of immunostaining for iNOS and eNOS was increased gradually with temporal development of the postnatal uterus. In addition, sGC subunits, sGCα1 and β, were present in the uterine luminal and glandular epithelium, myometrium and stromal cells. The uterine NOS activity data showed that the total NOS and iNOS activities were significantly increased at postnatal days 21 and 35. Although constitutive NOS activity was increased at postnatal day 21, it decreased subsequently at postnatal day 35. Immunoblot analysis revealed that iNOS protein expression was significantly increased at postnatal days 21 and 35. Furthermore, sGCα1 protein expression was not significantly changed throughout days 7 to 35. Collectively, our findings suggest that NO/cGMP signaling is involved in the process of postnatal porcine uterine development.
Collapse
|
41
|
Su Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr Pharm Des 2014; 20:3514-20. [PMID: 24180383 PMCID: PMC7039309 DOI: 10.2174/13816128113196660752] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is expressed in vascular endothelial cells and plays an important role in the regulation of vascular tone, platelet aggregation and angiogenesis. Protein-protein interactions represent an important posttranslational mechanism for eNOS regulation. eNOS has been shown to interact with a variety of regulatory and structural proteins which provide fine tuneup of eNOS activity and eNOS protein trafficking between plasma membrane and intracellular membranes in a number of physiological and pathophysiological processes. eNOS interacts with calmodulin, heat shock protein 90 (Hsp90), dynamin-2, β-actin, tubulin, porin, high-density lipoprotein (HDL) and apolipoprotein AI (ApoAI), resulting in increases in eNOS activity. The negative eNOS interacting proteins include caveolin, G protein-coupled receptors (GPCR), nitric oxide synthase-interacting protein (NOSIP), and nitric oxide synthase trafficking inducer (NOSTRIN). Dynamin-2, NOSIP, NOSTRIN, and cytoskeleton are also involved in eNOS trafficking in endothelial cells. In addition, eNOS associations with cationic amino acid transporter-1 (CAT-1), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and soluble guanylate cyclase (sGC) facilitate directed delivery of substrate (L-arginine) to eNOS and optimizing NO production and NO action on its target. Regulation of eNOS by protein-protein interactions would provide potential targets for pharmacological interventions in NO-compromised cardiovascular diseases.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912.
| |
Collapse
|
42
|
Hough MA, Silkstone G, Worrall JAR, Wilson MT. NO binding to the proapoptotic cytochrome c-cardiolipin complex. VITAMINS AND HORMONES 2014; 96:193-209. [PMID: 25189388 DOI: 10.1016/b978-0-12-800254-4.00008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome c is a heme protein that is localized in the compartment between the inner and outer mitochondrial membranes where it functions to transfer electrons between complex III and complex IV of the respiratory chain. It can also form an intimate association with the mitochondrion-specific phospholipid cardiolipin that induces a conformational change in the protein enabling it to act as a peroxidase catalyzing the oxidation of cardiolipin and thereby instigating a chain of events that leads to apoptosis. Unlike the native protein, cytochrome c within the complex binds ligands rapidly; in particular, NO can coordinate to either the ferric or ferrous iron of the heme. Remarkably, in the ferrous form, NO binds preferentially to the proximal side of the heme and thus behaves in a way similar to cytochrome c'-type proteins and to guanylate cyclase. The implications of NO binding to the proapoptotic cytochrome c/cardiolipin complex are discussed in terms of modulating the apoptotic response and buffering NO concentrations. Insights into the structure of the complex are provided by comparison with cytochrome c' for which X-ray structures are available.
Collapse
Affiliation(s)
- Michael A Hough
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gary Silkstone
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - J A R Worrall
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom.
| |
Collapse
|
43
|
Muthu D, Berry RE, Zhang H, Walker FA. NMR studies of the dynamics of nitrophorin 2 bound to nitric oxide. Biochemistry 2013; 52:7910-25. [PMID: 24116947 PMCID: PMC3947638 DOI: 10.1021/bi4010396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1-NP4. At pH 7.3, NP4 releases NO 17 times faster than NP2 does, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. To learn how the protein loops contribute to the release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by nuclear magnetic resonance relaxation measurements to probe the picosecond-to-nanosecond and microsecond-to-millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, the NP2-NO complex is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3, somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins.
Collapse
Affiliation(s)
- Dhanasekaran Muthu
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - Robert E. Berry
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - Hongjun Zhang
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| | - F. Ann Walker
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721-0041
| |
Collapse
|
44
|
Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT. Carbon dioxide-sensing in organisms and its implications for human disease. Cell Mol Life Sci 2013; 71:831-45. [PMID: 24045706 DOI: 10.1007/s00018-013-1470-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
45
|
Molitor B, Stassen M, Modi A, El-Mashtoly SF, Laurich C, Lubitz W, Dawson JH, Rother M, Frankenberg-Dinkel N. A heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans. J Biol Chem 2013; 288:18458-72. [PMID: 23661702 PMCID: PMC3689988 DOI: 10.1074/jbc.m113.476267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Indexed: 11/06/2022] Open
Abstract
Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor).
Collapse
Affiliation(s)
| | - Marc Stassen
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | - Anuja Modi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Samir F. El-Mashtoly
- Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | - Christoph Laurich
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Michael Rother
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
- Institute of Microbiology, Technical University Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | | |
Collapse
|
46
|
Zhang Y, Liu L, Wu L, Li S, Li F, Li Z. Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain. Proteins 2013; 81:1363-76. [PMID: 23504767 DOI: 10.1002/prot.24279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/08/2013] [Accepted: 02/23/2013] [Indexed: 01/26/2023]
Abstract
The Nostoc sp (Ns) H-NOX (heme-nitric oxide or OXygen-binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y-shaped tunnel system hosted in the Ns H-NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881-889] recently using x-ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H-NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H-NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H-NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group.
Collapse
Affiliation(s)
- Yuebin Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Chang Chun 130012, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Allerston CK, von Delft F, Gileadi O. Crystal structures of the catalytic domain of human soluble guanylate cyclase. PLoS One 2013; 8:e57644. [PMID: 23505436 PMCID: PMC3591389 DOI: 10.1371/journal.pone.0057644] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
Soluble guanylate cyclase (sGC) catalyses the synthesis of cyclic GMP in response to nitric oxide. The enzyme is a heterodimer of homologous α and β subunits, each of which is composed of multiple domains. We present here crystal structures of a heterodimer of the catalytic domains of the α and β subunits, as well as an inactive homodimer of β subunits. This first structure of a metazoan, heteromeric cyclase provides several observations. First, the structures resemble known structures of adenylate cyclases and other guanylate cyclases in overall fold and in the arrangement of conserved active-site residues, which are contributed by both subunits at the interface. Second, the subunit interaction surface is promiscuous, allowing both homodimeric and heteromeric association; the preference of the full-length enzyme for heterodimer formation must derive from the combined contribution of other interaction interfaces. Third, the heterodimeric structure is in an inactive conformation, but can be superposed onto an active conformation of adenylate cyclase by a structural transition involving a 26° rigid-body rotation of the α subunit. In the modelled active conformation, most active site residues in the subunit interface are precisely aligned with those of adenylate cyclase. Finally, the modelled active conformation also reveals a cavity related to the active site by pseudo-symmetry. The pseudosymmetric site lacks key active site residues, but may bind allosteric regulators in a manner analogous to the binding of forskolin to adenylate cyclase. This indicates the possibility of developing a new class of small-molecule modulators of guanylate cyclase activity targeting the catalytic domain.
Collapse
Affiliation(s)
- Charles K. Allerston
- Structural Genomics Consortium, University of Oxford, Oxford, The United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Oxford, The United Kingdom
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford, The United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Dada J, Pinder AG, Lang D, James PE. Oxygen mediates vascular smooth muscle relaxation in hypoxia. PLoS One 2013; 8:e57162. [PMID: 23451175 PMCID: PMC3579807 DOI: 10.1371/journal.pone.0057162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
The activation of soluble guanylate cyclase (sGC) by nitric oxide (NO) and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2) on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP) production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2) had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.
Collapse
Affiliation(s)
- Jessica Dada
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew G. Pinder
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Derek Lang
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Philip E. James
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Fukuto JM, Cisneros CJ, Kinkade RL. A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO). J Inorg Biochem 2013; 118:201-8. [DOI: 10.1016/j.jinorgbio.2012.08.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
50
|
Yoo BK, Lamarre I, Rappaport F, Nioche P, Raman CS, Martin JL, Negrerie M. Picosecond to second dynamics reveals a structural transition in Clostridium botulinum NO-sensor triggered by the activator BAY-41-2272. ACS Chem Biol 2012; 7:2046-54. [PMID: 23009307 DOI: 10.1021/cb3003539] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor that synthesizes cGMP upon NO activation. In synergy with the artificial allosteric effector BAY 41-2272 (a lead compound for drug design in cardiovascular treatment), sGC can also be activated by carbon monoxide (CO), but the structural basis for this synergistic effect are unknown. We recorded in the unusually broad time range from 1 ps to 1 s the dynamics of the interaction of CO binding to full length sGC, to the isolated sGC heme domain β(1)(200) and to the homologous bacterial NO-sensor from Clostridium botulinum. By identifying all phases of CO binding in this full time range and characterizing how these phases are modified by BAY 41-2272, we show that this activator induces the same structural changes in both proteins. This result demonstrates that the BAY 41-2272 binding site resides in the β(1)(200) sGC heme domain and is the same in sGC and in the NO-sensor from Clostridium botulinum.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Isabelle Lamarre
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimie, UMR
7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Pierre Nioche
- Laboratoire de Toxicologie et
Pharmacologie, UMR S747, Centre Universitaire des Saints-Pères, 75006 Paris, France
| | - C. S. Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201,
United States
| | - Jean-Louis Martin
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Michel Negrerie
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|