1
|
Bracher KM, Wohlschlaeger A, Koch K, Knolle F. Cognitive subgroups of affective and non-affective psychosis show differences in medication and cortico-subcortical brain networks. Sci Rep 2024; 14:20314. [PMID: 39223185 PMCID: PMC11369100 DOI: 10.1038/s41598-024-71316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cognitive deficits are prevalent in individuals with psychosis and are associated with neurobiological changes, potentially serving as an endophenotype for psychosis. Using the HCP-Early-Psychosis-dataset (n = 226), we aimed to investigate cognitive subtypes (deficit/intermediate/spared) through data-driven clustering in affective (AP) and non-affective psychosis patients (NAP) and controls (HC). We explored differences between three clusters in symptoms, cognition, medication, and grey matter volume. Applying principal component analysis, we selected features for clustering. Features that explained most variance were scores for intelligence, verbal recognition and comprehension, auditory attention, working memory, reasoning and executive functioning. Fuzzy K-Means clustering on those features revealed that the subgroups significantly varied in cognitive impairment, clinical symptoms, and, importantly, also in medication and grey matter volume in fronto-parietal and subcortical networks. The spared cluster (86%HC, 37%AP, 17%NAP) exhibited unimpaired cognition, lowest symptoms/medication, and grey matter comparable to controls. The deficit cluster (4%HC, 10%AP, 47%NAP) had impairments across all domains, highest symptoms scores/medication dosage, and pronounced grey matter alterations. The intermediate deficit cluster (11%HC, 54%AP, 36%NAP) showed fewer deficits than the second cluster, but similar symptoms/medication/grey matter to the spared cluster. Controlling for medication, cognitive scores correlated with grey matter changes and negative symptoms across all patients. Our findings generally emphasize the interplay between cognition, brain structure, symptoms, and medication in AP and NAP, and specifically suggest a possible mediating role of cognition, highlighting the potential of screening cognitive changes to aid tailoring treatments and interventions.
Collapse
Affiliation(s)
- Katharina M Bracher
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Martinsried, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Karcher NR, Merchant J, Pine J, Kilciksiz CM. Cognitive Dysfunction as a Risk Factor for Psychosis. Curr Top Behav Neurosci 2022; 63:173-203. [PMID: 35989398 DOI: 10.1007/7854_2022_387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current chapter summarizes recent evidence for cognition as a risk factor for the development of psychosis, including the range of cognitive impairments that exist across the spectrum of psychosis risk symptoms. The chapter examines several possible theories linking cognitive deficits with the development of psychotic symptoms, including evidence that cognitive deficits may be an intermediate risk factor linking genetic and/or neural metrics to psychosis spectrum symptoms. Although there is not strong evidence for unique cognitive markers associated specifically with psychosis compared to other forms of psychopathology, psychotic disorders are generally associated with the greatest severity of cognitive deficits. Cognitive deficits precede the development of psychotic symptoms and may be detectable as early as childhood. Across the psychosis spectrum, both the presence and severity of psychotic symptoms are associated with mild to moderate impairments across cognitive domains, perhaps most consistently for language, cognitive control, and working memory domains. Research generally indicates the size of these cognitive impairments worsens as psychosis symptom severity increases. The chapter points out areas of unclarity and unanswered questions in each of these areas, including regarding the mechanisms contributing to the association between cognition and psychosis, the timing of deficits, and whether any cognitive systems can be identified that function as specific predictors of psychosis risk symptoms.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jaisal Merchant
- Department of Brain and Psychological Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Pine
- Department of Brain and Psychological Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Can Misel Kilciksiz
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Brunner G, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Fracasso A, Uhlhaas PJ. Hippocampal structural alterations in early-stage psychosis: Specificity and relationship to clinical outcomes. NEUROIMAGE: CLINICAL 2022; 35:103087. [PMID: 35780662 PMCID: PMC9421451 DOI: 10.1016/j.nicl.2022.103087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with early-stage psychosis show reduced hippocampal volumes. FEP show bilateral and widespread changes, while left hemisphere is affected in CHR-P. However, hippocampal changes do not show a relationship with clinical outcomes.
Hippocampal dysfunctions are a core feature of schizophrenia, but conflicting evidence exists whether volumetric and morphological changes are present in early-stage psychosis and to what extent these deficits are related to clinical trajectories. In this study, we recruited individuals at clinical high risk for psychosis (CHR-P) (n = 108), patients with a first episode of psychosis (FEP) (n = 37), healthy controls (HC) (n = 70) as well as a psychiatric control group with substance abuse and affective disorders (CHR-N: n = 38). MRI-data at baseline were obtained and volumetric as well as vertex analyses of the hippocampus were carried out. Moreover, volumetric changes were examined in the amygdala, caudate, nucleus accumbens, pallidum, putamen and thalamus. In addition, we obtained follow-up functional and symptomatic assessments in CHR-P individuals to examine the question whether anatomical deficits at baseline predicted clinical trajectories. Our results show that the hippocampus is the only structure showing significant volumetric decrease in early-stage psychosis, with FEPs showing significantly smaller hippocampal volumes bilaterally alongside widespread shape changes in the vertex analysis. For the CHR-P group, volumetric decreases were confined to the left hippocampus. However, hippocampal alterations in the CHR-P group were not robustly associated with clinical outcomes, including the persistence of attenuated psychotic symptoms and functional trajectories. Accordingly, our findings highlight that dysfunctions in hippocampal anatomy are an important feature of early-stage psychosis which may, however, not be related to clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Gina Brunner
- Institute for Neuroscience and Psychology, Univ. of Glasgow, UK
| | | | - Joachim Gross
- Institute for Neuroscience and Psychology, Univ. of Glasgow, UK; Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | | | | | | | | | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Airlangga, Indonesia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | | | - Peter J Uhlhaas
- Institute for Neuroscience and Psychology, Univ. of Glasgow, UK; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
4
|
Randers L, Jepsen JRM, Fagerlund B, Nordholm D, Krakauer K, Hjorthøj C, Glenthøj B, Nordentoft M. Generalized neurocognitive impairment in individuals at ultra-high risk for psychosis: The possible key role of slowed processing speed. Brain Behav 2021; 11:e01962. [PMID: 33486897 PMCID: PMC7994693 DOI: 10.1002/brb3.1962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Widespread neurocognitive impairment is well-established in individuals at ultra-high risk (UHR) for developing psychoses, but it is unknown whether slowed processing speed may underlie impairment in other neurocognitive domains, as found in schizophrenia. The study delineated domain functioning in a UHR sample and examined if neurocognitive slowing might account for deficits across domains. METHODS The cross-sectional study included 50 UHR individuals with no (n = 38) or minimal antipsychotic exposure (n = 12; mean lifetime dose of haloperidol equivalent = 17.56 mg; SD = 13.04) and 50 matched healthy controls. Primary analyses compared group performance across neurocognitive domains before and after covarying for processing speed. To examine the specificity of processing speed effects, post hoc analyses examined the impact of the other neurocognitive domains and intelligence as covariates. RESULTS UHR individuals exhibited significant impairment across all neurocognitive domains (all ps ≤ .010), with medium to large effect sizes (Cohen's ds = -0.53 to -1.12). Only processing speed used as covariate eliminated significant between-group differences in all other domains, reducing unadjusted Cohen's d values with 68% on average, whereas the other domains used as covariates averagely reduced unadjusted Cohen's d values with 20% to 48%. When covarying each of the other domains after their shared variance with speed of processing was removed, all significant between-group domain differences remained (all ps ≤ .024). CONCLUSION Slowed processing speed may underlie generalized neurocognitive impairment in UHR individuals and represent a potential intervention target.
Collapse
Affiliation(s)
- Lasse Randers
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Faculty of Health and Medical SciencesDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jens Richardt Møllegaard Jepsen
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Child and Adolescent Mental Health CenterMental Health Services Capital Region of DenmarkCopenhagen University HospitalDenmark
| | - Birgitte Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Faculty of Social SciencesDepartment of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Functional Imaging UnitDepartment of Clinical Physiology, Nuclear Medicine and PETCopenhagen University Hospital RigshospitaletGlostrupDenmark
| | - Kristine Krakauer
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Functional Imaging UnitDepartment of Clinical Physiology, Nuclear Medicine and PETCopenhagen University Hospital RigshospitaletGlostrupDenmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Faculty of Health and Medical SciencesDepartment of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Birte Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Faculty of Health and Medical SciencesDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health ‐ COREMental Health Center CopenhagenCopenhagen University HospitalCopenhagenDenmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS)Mental Health Center GlostrupCopenhagen University HospitalGlostrupDenmark
- Faculty of Health and Medical SciencesDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Grey-matter abnormalities in clinical high-risk participants for psychosis. Schizophr Res 2020; 226:120-128. [PMID: 31740178 PMCID: PMC7774586 DOI: 10.1016/j.schres.2019.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
Abstract
The current study examined the presence of abnormalities in cortical grey-matter (GM) in a sample of clinical high-risk (CHR) participants and examined relationships with psychosocial functioning and neurocognition. CHR-participants (n = 114), participants who did not fulfil CHR-criteria (CHR-negative) (n = 39) as well as a group of healthy controls (HC) (n = 49) were recruited. CHR-status was assessed using the Comprehensive Assessment of At-Risk Mental State (CAARMS) and the Schizophrenia Proneness Interview, Adult Version (SPI-A). The Brief Assessment of Cognition in Schizophrenia Battery (BACS) as well as tests for emotion recognition, working memory and attention were administered. In addition, role and social functioning as well as premorbid adjustment were assessed. No significant differences in GM-thickness and intensity were observed in CHR-participants compared to CHR-negative and HC. Circumscribed abnormalities in GM-intensity were found in the visual and frontal cortex of CHR-participants. Moreover, small-to-moderate correlations were observed between GM-intensity and neuropsychological deficits in the CHR-group. The current data suggest that CHR-participants may not show comprehensive abnormalities in GM. We discuss the implications of these findings for the pathophysiological theories of early stage-psychosis as well as methodological issues and the impact of different recruitment strategies.
Collapse
|
6
|
Avery SN, Armstrong K, McHugo M, Vandekar S, Blackford JU, Woodward ND, Heckers S. Relational Memory in the Early Stage of Psychosis: A 2-Year Follow-up Study. Schizophr Bull 2020; 47:75-86. [PMID: 32657351 PMCID: PMC7825006 DOI: 10.1093/schbul/sbaa081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Relational memory, the ability to bind information into complex memories, is moderately impaired in early psychosis and severely impaired in chronic schizophrenia, suggesting relational memory may worsen throughout the course of illness. METHODS We examined relational memory in 66 early psychosis patients and 64 healthy control subjects, with 59 patients and 52 control subjects assessed longitudinally at baseline and 2-year follow-up. Relational memory was assessed with 2 complementary tasks, to test how individuals learn relationships between items (face-scene binding task) and make inferences about trained relationships (associative inference task). RESULTS The early psychosis group showed impaired relational memory in both tasks relative to the healthy control group. The ability to learn relationships between items remained impaired in early psychosis patients, while the ability to make inferences about trained relationships improved, although never reaching the level of healthy control performance. Early psychosis patients who did not progress to schizophrenia at follow-up had better relational memory than patients who did. CONCLUSIONS Relational memory impairments, some of which improve and are less severe in patients who do not progress to schizophrenia, are a target for intervention in early psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,To whom correspondence should be addressed; Vanderbilt Psychiatric Hospital, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212; tel: (615)-322-2665, fax: (615)-343-8400, e-mail:
| |
Collapse
|
7
|
Bendfeldt K, Taschler B, Gaetano L, Madoerin P, Kuster P, Mueller-Lenke N, Amann M, Vrenken H, Wottschel V, Barkhof F, Borgwardt S, Klöppel S, Wicklein EM, Kappos L, Edan G, Freedman MS, Montalbán X, Hartung HP, Pohl C, Sandbrink R, Sprenger T, Radue EW, Wuerfel J, Nichols TE. MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging Behav 2020; 13:1361-1374. [PMID: 30155789 DOI: 10.1007/s11682-018-9942-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (n = 25) and non-converters (n = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (p = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (p = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.
Collapse
Affiliation(s)
- Kerstin Bendfeldt
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.
| | - Bernd Taschler
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Statistics, University of Warwick, Coventry, UK
| | - Laura Gaetano
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Philip Madoerin
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland
| | - Pascal Kuster
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland
| | - Nicole Mueller-Lenke
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland
| | - Michael Amann
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Hugo Vrenken
- VU University Medical Center, Amsterdam, The Netherlands
| | | | - Frederik Barkhof
- VU University Medical Center, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Stefan Borgwardt
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.,Department of Psychiatry (1), University of Basel, Basel, Switzerland.,King's College London, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Medical Center Freiburg, Freiburg, Germany
| | | | - Ludwig Kappos
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | | - Mark S Freedman
- University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Christoph Pohl
- Bayer Pharma AG, Berlin, Germany.,Charité University Medicine Berlin, Berlin, Germany
| | - Rupert Sandbrink
- Bayer Pharma AG, Berlin, Germany.,Department of Neurology, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Till Sprenger
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ernst-Wilhelm Radue
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Mittlere Str. 83, CH-4031, Basel, Switzerland.,Charité University Medicine Berlin, Berlin, Germany
| | | |
Collapse
|
8
|
Meisenzahl E, Walger P, Schmidt SJ, Koutsouleris N, Schultze-Lutter F. [Early recognition and prevention of schizophrenia and other psychoses]. DER NERVENARZT 2019; 91:10-17. [PMID: 31858162 DOI: 10.1007/s00115-019-00836-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The last two decades of clinical research have clearly demonstrated the comprehensive benefits of the early recognition and treatment of psychotic disorders. The attenuated and transient positive symptoms according to the ultrahigh risk criteria and the basic symptom criterion "Cognitive disturbances" are the main approaches for an indicated prevention. They have recently been recommended as criteria for a clinical high-risk (CHR) state of psychosis by the European Psychiatric Association (EPA) and, following these, in the German S3 guidelines for the treatment of schizophrenia by the German Association for Psychiatry, Psychotherapy and Psychosomatics (DGPPN); however, the efficacy of early treatment of patients with a CHR for psychoses critically depends on the development of prognostic instruments, which enable healthcare professionals to reliably identify these patients based on the individual objective risk profiles. An important goal is the treatment of functional deficits, which can be identified by an individual risk profile. The treatment of existing comorbid mental disorders, psychosocial problems and the prevention of potential future disorders also characterizes the recommendations of the EPA and DGPPN for early treatment, which favor psychotherapeutic, especially cognitive behavioral interventions over pharmacological treatment. The close interdisciplinary cross-sectoral cooperation between the disciplines of child and adolescent psychiatry, and adult psychiatry is of outstanding importance in this context.
Collapse
Affiliation(s)
- E Meisenzahl
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland.
| | - P Walger
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland
| | - S J Schmidt
- Abtlg. für Klinische Psychologie und Psychotherapie, Institut für Psychologie, Universität Bern, Bern, Schweiz
| | - N Koutsouleris
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - F Schultze-Lutter
- Klinik für Psychiatrie und Psychotherapie, medizinische Fakultät, Heinrich-Heine Universität/LVR Düsseldorf, Bergische Landstr. 2, 40629, Düsseldorf, Deutschland
| |
Collapse
|
9
|
Quarmley M, Gur RC, Turetsky BI, Watters AJ, Bilker WB, Elliott MA, Calkins ME, Kohler CG, Ruparel K, Rupert P, Gur RE, Wolf DH. Reduced safety processing during aversive social conditioning in psychosis and clinical risk. Neuropsychopharmacology 2019; 44:2247-2253. [PMID: 31112989 PMCID: PMC6898578 DOI: 10.1038/s41386-019-0421-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Social impairment occurs across the psychosis spectrum, but its pathophysiology remains poorly understood. Here we tested the hypothesis that reduced differential responses (aversive vs. neutral) in neural circuitry underpinning aversive conditioning of social stimuli characterizes the psychosis spectrum. Participants age 10-30 included a healthy control group (HC, analyzed n = 36) and a psychosis spectrum group (PSY, n = 71), including 49 at clinical risk for psychosis and 22 with a frank psychotic disorder. 3T fMRI utilized a passive aversive conditioning paradigm, with neutral faces as conditioned stimuli (CS) and a scream as the unconditioned stimulus. fMRI conditioning was indexed as the activation difference between aversive and neutral trials. Analysis focused on amygdala, ventromedial prefrontal cortex, and anterior insula, regions previously implicated in aversive and social-emotional processing. Ventromedial prefrontal cortex activated more to neutral than aversive CS; this "safety effect" was driven by HC and reduced in PSY, and correlated with subjective emotional ratings following conditioning. Insula showed the expected aversive conditioning effect, and although no group differences were found, its activation in PSY correlated with anxiety severity. Unexpectedly, amygdala did not show aversive conditioning; its activation trended greater for neutral than aversive CS, and did not differ significantly based on group or symptom severity. We conclude that abnormalities in social aversive conditioning are present across the psychosis spectrum including clinical risk, linked to a failure of safety processing. Aversive and safety learning provide translational paradigms yielding insight into pathophysiology of psychosis risk, and providing potential targets for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Megan Quarmley
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ruben C. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruce I. Turetsky
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Anna J. Watters
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Warren B. Bilker
- 0000 0004 1936 8972grid.25879.31Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mark A. Elliott
- 0000 0004 1936 8972grid.25879.31Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Monica E. Calkins
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christian G. Kohler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kosha Ruparel
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Petra Rupert
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Raquel E. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel H. Wolf
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res Neuroimaging 2019; 289:26-36. [PMID: 31132567 DOI: 10.1016/j.pscychresns.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of white matter (WM) and grey matter pathology in subjects at ultra-high risk of psychosis (UHR), although a limited number of diffusion-weighted magnetic resonance imaging (DW-MRI) and surface-based morphometry (SBM) studies have revealed anatomically inconsistent results. The present multimodal study applies tractography and SBM to analyze WM microstructure, whole-brain cortical anatomy, and potential interconnections between WM and grey matter abnormalities in UHR subjects. Thirty young male UHR patients and 30 healthy controls underwent DW-MRI and T1-weighted MRI. Fractional anisotropy; mean, radial, and axial diffusivity in 18 WM tracts; and vertex-based cortical thickness, area, and volume were analyzed. We found increased radial diffusivity in the left anterior thalamic radiation and reduced bilateral thickness across the frontal, temporal, and parietal cortices. No correlations between WM and grey matter abnormalities were identified. These results provide further evidence that WM microstructure abnormalities and cortical anatomical changes occur in the UHR state. Disruption of structural connectivity in the prefrontal-subcortical circuitry, likely caused by myelin pathology, and cortical thickness reduction affecting the networks presumably involved in processing and coordination of external and internal information streams may underlie the widespread deficits in neurocognitive and social functioning that are consistently reported in UHR subjects.
Collapse
Affiliation(s)
- Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia
| | - Tolibdzhon A Akhadov
- Department of Radiology, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Maria A Omelchenko
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Andrey O Rumyantsev
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Vasiliy G Kaleda
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
11
|
Ding Y, Ou Y, Pan P, Shan X, Chen J, Liu F, Zhao J, Guo W. Brain structural abnormalities as potential markers for detecting individuals with ultra-high risk for psychosis: A systematic review and meta-analysis. Schizophr Res 2019; 209:22-31. [PMID: 31104914 DOI: 10.1016/j.schres.2019.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study aims to determine whether structural alterations can be used as neuroimaging markers to detect individuals with ultra-high risk (UHR) for psychosis for the diagnosis of schizophrenia and improvement of treatment outcomes. METHODS Embase and Pubmed databases were searched for related studies in July 2018. The search was performed without restriction on time and regions or languages. A total of 188 articles on voxel-based morphometry (VBM) and 96 articles on cortical thickness were obtained, and another 6 articles were included after the reference lists were checked. Our researchers assessed and extracted the data in accordance with the PRISMA guideline. The data were processed with a seed-based mapping method. RESULTS Fourteen VBM and nine cortical thickness studies were finally included in our study. In individuals with UHR, the gray matter volumes in the bilateral median cingulate (Z = 1.034), the right fusiform gyrus (Z = 1.051), the left superior temporal gyrus (Z = 1.048), and the right thalamus (Z = 1.039) increased relative to those of healthy controls. By contrast, the gray matter volumes in the right gyrus rectus (Z = -2.109), the right superior frontal gyrus (Z = -2.321), and the left superior frontal gyrus (Z = -2.228) decreased. The robustness of these findings was verified through Jackknife sensitivity analysis, and heterogeneity across studies was low. Typically, cortical thickness alterations were not detected in individuals with UHR. CONCLUSIONS Structural abnormalities of the thalamocortical circuit may underpin the neurophysiology of psychosis and mark the vulnerability of transition to psychosis in UHR subjects.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Neurocognitive and neuroanatomical maturation in the clinical high-risk states for psychosis: A pattern recognition study. NEUROIMAGE-CLINICAL 2018; 21:101624. [PMID: 30528960 PMCID: PMC6413470 DOI: 10.1016/j.nicl.2018.101624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 12/01/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Findings from neurodevelopmental studies indicate that adolescents with psychosis spectrum disorders have delayed neurocognitive performance relative to the maturational state of their healthy peers. Using machine learning, we generated a model of neurocognitive age in healthy adults and investigated whether individuals in clinical high risk (CHR) for psychosis showed systematic neurocognitive age deviations that were accompanied by specific structural brain alterations. METHODS First, a Support Vector Regression-based age prediction model was trained and cross-validated on the neurocognitive data of 36 healthy controls (HC). This produced Cognitive Age Gap Estimates (CogAGE) that measured each participant's deviation from the normal cognitive maturation as the difference between estimated neurocognitive and chronological age. Second, we employed voxel-based morphometry to explore the neuroanatomical gray and white matter correlates of CogAGE in HC, in CHR individuals with early (CHR-E) and late (CHR-L) high risk states. RESULTS The age prediction model estimated age in HC subjects with a mean absolute error of ±2.2 years (SD = 3.3; R2 = 0.33, P < .001). Mean (SD) CogAGE measured +4.3 (8.1) years in CHR individuals compared to HC (-0.1 (5.5) years, P = .006). CHR-L individuals differed significantly from HC subjects while this was not the case for the CHR-E group. CogAGE was associated with a distributed bilateral pattern of increased GM volume in the temporal and frontal areas and diffuse pattern of WM reductions. CONCLUSION Although the generalizability of our findings might be limited due to the relatively small number of participants, CHR individuals exhibit a disturbed neurocognitive development as compared to healthy peers, which may be independent of conversion to psychosis and paralleled by an altered structural maturation process.
Collapse
|
13
|
Striatal cerebral blood flow, executive functioning, and fronto-striatal functional connectivity in clinical high risk for psychosis. Schizophr Res 2018; 201:231-236. [PMID: 29983268 DOI: 10.1016/j.schres.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/22/2018] [Accepted: 06/09/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients at clinical high risk (CHR) for psychosis exhibit increased striatal cerebral blood flow (CBF) during the resting state and impaired cognitive function. However, the relation between CBF and cognitive impairment is unknown. We therefore studied the association between striatal CBF and executive functioning and evaluated the functional connectivity (FC) between dorsal striatum and the frontal cortex in CHR. METHODS In total, 47 participants [29 with CHR, 18 matched clinical controls (CC)] were assessed for ultra-high-risk criteria and basic symptoms and were tested for executive functioning using the trail making test-B (TMT-B). Resting state mean CBF and FC were calculated from arterial spin labeling 3T MRI data. RESULTS Striatal CBF was highest in CHR patients with TMT-B deficits and was significantly higher than that in CC with and without TMT-B impairment. Further, a significantly lower CBF FC between the dorsal striatum and the anterior cingulate cortex was revealed in CHR. CONCLUSIONS Our study suggests that higher striatal CBF might represent focal pathology in CHR and is associated with disrupted cingulo-striatal FC and executive dysfunctions.
Collapse
|
14
|
Katagiri N, Pantelis C, Nemoto T, Tsujino N, Saito J, Hori M, Yamaguchi T, Funatogawa T, Mizuno M. Symptom recovery and relationship to structure of corpus callosum in individuals with an 'at risk mental state'. Psychiatry Res Neuroimaging 2018; 272:1-6. [PMID: 29232635 DOI: 10.1016/j.pscychresns.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023]
Abstract
Previous studies have revealed that changes in sub-threshold psychotic symptoms observed in individuals with an 'at risk mental state' (ARMS) are associated with biological changes in the corpus callosum (CC). To elucidate the biological background for resilience against transition to psychosis, we investigated the relationship between CC structural changes and recovery of sub-threshold psychotic symptom in subjects with ARMS who did not develop psychosis (ARMS-N). Sixteen healthy controls and 42 ARMS (37 ARMS-N) subjects participated this study. The volumes of five sub-regions of the CC were analyzed using MRI. The sub-threshold psychotic symptoms of the ARMS were measured using the Scale of Prodromal Symptoms (SOPS). Imaging and symptoms were re-administered in the ARMS group 52 weeks later. Significant baseline volume differences in the mid-posterior CC, central CC and mid-anterior CC were found between the controls and the ARMS-N subjects. These findings suggest that biological abnormalities are present in a so-called "false-positive" group of individuals. For the ARMS-N subjects, improvement in negative symptoms significantly correlated with an increase in the volume of the central CC at follow-up. This finding may suggest that a neurobiological 'resilience' is associated with symptom recovery.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan.
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, South Carlton, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
15
|
Prefrontal lobe structural integrity and trail making test, part B: converging findings from surface-based cortical thickness and voxel-based lesion symptom analyses. Brain Imaging Behav 2017; 10:675-85. [PMID: 26399235 DOI: 10.1007/s11682-015-9455-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Surface-based cortical thickness (CT) analyses are increasingly being used to investigate variations in brain morphology across the spectrum of brain health, from neurotypical to neuropathological. An outstanding question is whether individual differences in cortical morphology, such as regionally increased or decreased CT, are associated with domain-specific performance deficits in healthy adults. Since CT studies are correlational, they cannot establish causality between brain morphology and cognitive performance. A direct comparison with classic lesion methods is needed to determine whether the regional specificity of CT-cognition correlations is similar to that observed in patients with brain lesions. We address this question by comparing the neuroanatomical overlap of effects when 1) whole brain vertex-wise CT is tested as a correlate of performance variability on a commonly used neuropsychological test of executive function, Trailmaking Test Part B (TMT-B), in healthy adults and 2) voxel-based lesion-symptom mapping (VBLSM) is used to map lesion location to performance decrements on the same task in patients with frontal lobe lesions. We found that reduced performance on the TMT-B was associated with increased CT in bilateral prefrontal regions in healthy adults and that results spatially overlapped in the left dorsomedial prefrontal cortex with findings from the VBLSM analysis in patients with frontal brain lesions. Findings indicate that variations in the structural integrity of the left dorsomedial prefrontal lobe, ranging from individual CT differences in healthy adults to structural lesions in patients with neurological disorders, are associated with poor performance on the TMT-B. These converging results suggest that the left dorsomedial prefrontal region houses a critical region for the complex processing demands of TMT-B, which include visuomotor tracking, sequencing, and cognitive flexibility.
Collapse
|
16
|
Dukart J, Smieskova R, Harrisberger F, Lenz C, Schmidt A, Walter A, Huber C, Riecher-Rössler A, Simon A, Lang UE, Fusar-Poli P, Borgwardt S. Age-related brain structural alterations as an intermediate phenotype of psychosis. J Psychiatry Neurosci 2017; 42:307-319. [PMID: 28459416 PMCID: PMC5573573 DOI: 10.1503/jpn.160179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is only limited agreement with respect to location, directionality and functional implications of brain structural alterations observed in patients with schizophrenia. Additionally, their link to occurrence of psychotic symptoms remains unclear. A viable way of addressing these questions is to examine populations in an at-risk mental state (ARMS) before the transition to psychosis. METHODS We tested for structural brain alterations in individuals in an ARMS compared with healthy controls and patients with first-episode psychosis (FEP) using voxel-based morphometry and measures of cortical thickness. Furthermore, we evaluated if these alterations were modified by age and whether they were linked to the observed clinical symptoms. RESULTS Our sample included 59 individuals with ARMS, 26 healthy controls and 59 patients with FEP. We found increased grey matter volume and cortical thickness in individuals with ARMS and a similar pattern of structural alterations in patients with FEP. We further found stronger age-related reductions in grey matter volume and cortical thickness in both patients with FEP and individuals with ARMS, linking these alterations to observed clinical symptoms. LIMITATIONS The ARMS group comprised subgroups with heterogeneous levels of psychosis risk and medication status. Furthermore, the cross-sectional nature of our study and the reduced number of older patients limit conclusions with respect to observed interactions with age. CONCLUSION Our findings on consistent structural alterations in individuals with ARMS and patients with FEP and their link to clinical symptoms have major implications for understanding their time of occurrence and relevance to psychotic symptoms. Interactions with age found for these alterations may explain the heterogeneity of findings reported in the literature.
Collapse
Affiliation(s)
- Juergen Dukart
- Correspondence to: J. Dukart, Biomarkers & Clinical Imaging, NORD DTA, F. Hoffmann-La Roche, Grenzacherstrasse 170, 4070 Basel, Switzerland;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res Neuroimaging 2017; 264:46-51. [PMID: 28458083 DOI: 10.1016/j.pscychresns.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Progressive loss of gray matter has been demonstrated over the early course of schizophrenia. Identification of an association between cognition and gray matter may lead to development of early interventions directed at preserving gray matter volume and cognitive ability. The present study evaluated the association between gray matter using voxel-based morphometry (VBM) and cognitive testing in a sample of 16 patients with first-episode psychosis. A simple regression was applied to investigate the association between gray matter at baseline and 80 months and cognitive tests at baseline. Performance on the Wisconsin Card Sorting Task (WCST) at baseline was positively associated with gray matter volume in several brain regions. There was an association between decreased gray matter at baseline in the nucleus accumbens and Trails B errors. Performing worse on Trails B and making more WCST perseverative errors at baseline was associated with gray matter decline over 80 months in the right globus pallidus, left inferior parietal lobe, Brodmann's area (BA) 40, and left superior parietal lobule and BA 7 respectively. All significant findings were cluster corrected. The results support a relationship between aspects of cognitive impairment and gray matter abnormalities in first-episode psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Matsubara T, Matsuo K, Harada K, Nakano M, Nakashima M, Watanuki T, Egashira K, Furukawa M, Matsunaga N, Watanabe Y. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders. PLoS One 2016; 11:e0168493. [PMID: 28030612 PMCID: PMC5193412 DOI: 10.1371/journal.pone.0168493] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
Little is known about disorder-specific biomarkers of bipolar disorder (BD) and major depressive disorder (MDD). Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs) of individuals with BD), MDD group (17 patients with MDD, 17 FDRs of individuals with MDD), and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT), respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM) volume of the anterior cingulate cortex (ACC; p = 0.01) and left insula (p < 0.01). FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01), and patients with BD showed significantly smaller ACC (p < 0.01) and left insular GM volume (p < 0.01) than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05). Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.
Collapse
Affiliation(s)
- Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Service Center, Yamaguchi University Organization for University Education, Yamaguchi, Yamaguchi, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail:
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Katakura Hospital, Ube, Yamaguchi, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Nagato-ichinomiya Hospital, Shimonoseki, Yamaguchi, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kazuteru Egashira
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Egashira Clinic, Kitakyusyu, Fukuoka, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Naofumi Matsunaga
- Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
19
|
Kambeitz-Ilankovic L, Meisenzahl EM, Cabral C, von Saldern S, Kambeitz J, Falkai P, Möller HJ, Reiser M, Koutsouleris N. Prediction of outcome in the psychosis prodrome using neuroanatomical pattern classification. Schizophr Res 2016; 173:159-165. [PMID: 25819936 DOI: 10.1016/j.schres.2015.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/05/2015] [Accepted: 03/08/2015] [Indexed: 01/11/2023]
Abstract
To date, research into the biomarker-aided early recognition of psychosis has focused on predicting the transition likelihood of clinically defined individuals with different at-risk mental states (ARMS) based on structural (and functional) brain changes. However, it is currently unknown whether neuroimaging patterns could be identified to facilitate the individualized prediction of symptomatic and functional recovery. Therefore, we investigated whether cortical surface alterations analyzed by means of multivariate pattern recognition methods could enable the single-subject identification of functional outcomes in twenty-seven ARMS individuals. Subjects were dichotomized into 'good' vs. 'poor' outcome groups on average 4years after the baseline MRI scan using a Global Assessment of Functioning (GAF) threshold of 70. Cortical surface-based pattern classification predicted good (N=14) vs. poor outcome status (N=13) at follow-up with an accuracy of 82% as determined by nested leave-one-cross-validation. Neuroanatomical prediction involved cortical area reductions in superior temporal, inferior frontal and inferior parietal areas and was not confounded by functional impairment at baseline, or antipsychotic medication and transition status over the follow-up period. The prediction model's decision scores were correlated with positive and general symptom scores in the ARMS group at follow-up, whereas negative symptoms were not linked to predicted poorer functional outcome. These findings suggest that poorer functional outcomes are associated with non-resolving attenuated psychosis and could be predicted at the single-subject level using multivariate neuroanatomical risk stratification methods. However, the generalizability and specificity of the suggested prediction model should be thoroughly investigated in future large-scale and cross-diagnostic MRI studies.
Collapse
Affiliation(s)
| | - Eva M Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Carlos Cabral
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Sebastian von Saldern
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilian-University, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
20
|
Bendfeldt K, Smieskova R, Koutsouleris N, Klöppel S, Schmidt A, Walter A, Harrisberger F, Wrege J, Simon A, Taschler B, Nichols T, Riecher-Rössler A, Lang UE, Radue EW, Borgwardt S. Classifying individuals at high-risk for psychosis based on functional brain activity during working memory processing. NEUROIMAGE-CLINICAL 2015; 9:555-63. [PMID: 26640767 PMCID: PMC4625212 DOI: 10.1016/j.nicl.2015.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/04/2022]
Abstract
The psychosis high-risk state is accompanied by alterations in functional brain activity during working memory processing. We used binary automatic pattern-classification to discriminate between the at-risk mental state (ARMS), first episode psychosis (FEP) and healthy controls (HCs) based on n-back WM-induced brain activity. Linear support vector machines and leave-one-out-cross-validation were applied to fMRI data of matched ARMS, FEP and HC (19 subjects/group). The HC and ARMS were correctly classified, with an accuracy of 76.2% (sensitivity 89.5%, specificity 63.2%, p = 0.01) using a verbal working memory network mask. Only 50% and 47.4% of individuals were classified correctly for HC vs. FEP (p = 0.46) or ARMS vs. FEP (p = 0.62), respectively. Without mask, accuracy was 65.8% for HC vs. ARMS (p = 0.03) and 65.8% for HC vs. FEP (p = 0.0047), and 57.9% for ARMS vs. FEP (p = 0.18). Regions in the medial frontal, paracingulate, cingulate, inferior frontal and superior frontal gyri, inferior and superior parietal lobules, and precuneus were particularly important for group separation. These results suggest that FEP and HC or FEP and ARMS cannot be accurately separated in small samples under these conditions. However, ARMS can be identified with very high sensitivity in comparison to HC. This might aid classification and help to predict transition in the ARMS. The ARMS was accurately identified based on an individual patient's response within a WM network. Regional cortical activations were particularly important for group separation. Based on WM alterations, FEP and HC or FEP and ARMS could not be accurately separated in small samples.
Collapse
Affiliation(s)
- Kerstin Bendfeldt
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland
| | - Renata Smieskova
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland ; Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Nussbaumstr. 7, Munich 80336, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Freiburg, Germany
| | - André Schmidt
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland ; Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Anna Walter
- Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Fabienne Harrisberger
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland ; Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Johannes Wrege
- Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Andor Simon
- University Hospital of Psychiatry, University of Bern, Bern 3010, Switzerland
| | - Bernd Taschler
- Dept. of Statistics, University of Warwick, Coventry, UK
| | - Thomas Nichols
- Dept. of Statistics, University of Warwick, Coventry, UK
| | - Anita Riecher-Rössler
- Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Undine E Lang
- Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland
| | - Ernst-Wilhelm Radue
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland
| | - Stefan Borgwardt
- Medical Image Analysis Centre, University Hospital Basel, Mittlere Strasse 83, Basel 4031, Switzerland ; Department of Psychiatry, University of Basel, Wilhelm Klein-Strasse, 27, Basel 4056, Switzerland ; Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park 16, London SE58AF, UK
| |
Collapse
|
21
|
Pawełczyk A, Kotlicka-Antczak M, Rabe-Jabłońska J, Pawełczyk T, Ruszpel A, Łojek E. Figural fluency and immediate visual memory in patients with at-risk mental state for psychosis: empirical study. Early Interv Psychiatry 2015; 9:324-30. [PMID: 24373200 DOI: 10.1111/eip.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022]
Abstract
AIM Although a number of cognitive functions have been assessed in the ultra-high risk (UHR) population, only one study has reported on figural fluency. Visual memory was measured by different tests providing inconsistent results. The aim of the present study was to compare figural fluency and visual immediate memory performance in UHR patients and normal subjects. METHODS The UHR sample consisted of 55 help-seeking individuals meeting CAARMS criteria. The control group consisted of 65 subjects. They were matched as a group by age, gender and education level. Figural fluency (RFFT) and immediate visual memory (BVRT) were assessed within 2 weeks after inclusion in the study in the UHR patient group. RESULTS Significant differences were obtained in RFFT and BVRT results. In BVRT, UHR patients scored lower in number of correct designs (P < 0.001) and higher in number of errors (P < 0.0001), especially omissions (P < 0.001) and distortions (P < 0.0001). UHR subjects accurately recalled fewer designs, omitted and distorted more test figures. In RFFT, they scored lower in production of novel designs (P < 0.0001) and higher in the error ratio index (P < 0.008). They produced fewer novel designs and made more preservative errors. CONCLUSIONS The current study concerns non-verbal cognitive functions in UHR samples. Our results suggest that figural fluency and visual immediate memory are impaired in help-seeking UHR individuals as compared with matched controls.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz
| | | | | | - Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz
| | - Anna Ruszpel
- Department of Cognitive Neuropsychology, University of Warsaw, Warsaw, Poland
| | - Emila Łojek
- Department of Cognitive Neuropsychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Dean DJ, Mittal VA. Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. NPJ SCHIZOPHRENIA 2015; 1. [PMID: 26613098 PMCID: PMC4657751 DOI: 10.1038/npjschz.2014.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Spontaneous movement abnormalities, occurring independent of medication status, are thought to reflect basal ganglia pathology in patients at ultrahigh risk (UHR) for psychosis. To date, the research literature has primarily focused on movements associated with elevated striatal dopamine (i.e., hyperkinesia) while little is known about motor symptoms associated with low levels of subcortical dopamine (i.e., spontaneous parkinsonisms; SPs). As SPs (e.g., bradykinesia) may be governed by distinct neural mechanisms, this line of research can provide a clearer picture of the etiological processes in the prodrome. Aims: To examine SPs and striatal structural correlates in youth at risk for psychosis. Methods: A total of 81 (35 UHR, 46 healthy controls) adolescents were administered a structured clinical interview, structural MRI scan, and handwriting kinematic analysis capable of assessing SPs that are not detectable by traditional observer-based inventories. Results: The UHR group exhibited significant decreased velocity scaling (indicative of SPs), t(79)=−2.65, P⩽0.01, as well as decreased ipsilateral t(68)=−3.16, P⩽0.001 and contralateral t(68)=−3.32, P⩽0.001 putamen volume compared with the healthy control group. Further, decreased velocity scaling was significantly associated with smaller ipsilateral putamen r(68)=0.23, P⩽0.05, 95% confidence interval (CI) (−0.005, 0.44), left r(68)=0.23, P⩽0.05, 95% CI (−0.005, 0.44) and right r(68)=0.21, P⩽0.05, 95% CI (−0.03, 0.42) caudate volume, as well as increased positive r(79)=−0.20, P=0.05, 95% CI (−0.40, −0.02) and negative r(79)=−0.27, P⩽0.05, 95% CI (−0.46, −0.06) symptoms across the sample. Conclusions: These findings represent the first evidence for hypokinetic movement abnormalities in the UHR period, indicating that pathophysiological processes in UHR patients may also involve hypodopaminergia. The results implicate a dopamine-induced imbalance contributing to frontal–subcortical circuit dysfunction in the psychosis prodrome.
Collapse
Affiliation(s)
- Derek J Dean
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO, USA ; University of Colorado Boulder, Center for Neuroscience, Boulder, CO, USA
| | - Vijay A Mittal
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO, USA ; University of Colorado Boulder, Center for Neuroscience, Boulder, CO, USA
| |
Collapse
|
23
|
Koutsouleris N, Riecher-Rössler A, Meisenzahl EM, Smieskova R, Studerus E, Kambeitz-Ilankovic L, von Saldern S, Cabral C, Reiser M, Falkai P, Borgwardt S. Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers. Schizophr Bull 2015; 41:471-82. [PMID: 24914177 PMCID: PMC4332937 DOI: 10.1093/schbul/sbu078] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, the MRI-based individualized prediction of psychosis has only been demonstrated in single-site studies. It remains unclear if MRI biomarkers generalize across different centers and MR scanners and represent accurate surrogates of the risk for developing this devastating illness. Therefore, we assessed whether a MRI-based prediction system identified patients with a later disease transition among 73 clinically defined high-risk persons recruited at two different early recognition centers. Prognostic performance was measured using cross-validation, independent test validation, and Kaplan-Meier survival analysis. Transition outcomes were correctly predicted in 80% of test cases (sensitivity: 76%, specificity: 85%, positive likelihood ratio: 5.1). Thus, given a 54-month transition risk of 45% across both centers, MRI-based predictors provided a 36%-increase of prognostic certainty. After stratifying individuals into low-, intermediate-, and high-risk groups using the predictor's decision score, the high- vs low-risk groups had median psychosis-free survival times of 5 vs 51 months and transition rates of 88% vs 8%. The predictor's decision function involved gray matter volume alterations in prefrontal, perisylvian, and subcortical structures. Our results support the existence of a cross-center neuroanatomical signature of emerging psychosis enabling individualized risk staging across different high-risk populations. Supplementary results revealed that (1) potentially confounding between-site differences were effectively mitigated using statistical correction methods, and (2) the detection of the prodromal signature considerably depended on the available sample sizes. These observations pave the way for future multicenter studies, which may ultimately facilitate the neurobiological refinement of risk criteria and personalized preventive therapies based on individualized risk profiling tools.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany;
| | - Anita Riecher-Rössler
- Department of Psychiatry, University of Basel, Basel, Switzerland;,This author contributed equally to this article
| | - Eva M. Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Renata Smieskova
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Erich Studerus
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | | | - Sebastian von Saldern
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Carlos Cabral
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilian-University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T, Falkai P, Riecher-Rössler A, Möller HJ, Reiser M, Pantelis C, Meisenzahl E. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 2014; 40:1140-53. [PMID: 24126515 PMCID: PMC4133663 DOI: 10.1093/schbul/sbt142] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structural brain abnormalities are central to schizophrenia (SZ), but it remains unknown whether they are linked to dysmaturational processes crossing diagnostic boundaries, aggravating across disease stages, and driving the neurodiagnostic signature of the illness. Therefore, we investigated whether patients with SZ (N = 141), major depression (MD; N = 104), borderline personality disorder (BPD; N = 57), and individuals in at-risk mental states for psychosis (ARMS; N = 89) deviated from the trajectory of normal brain maturation. This deviation was measured as difference between chronological and the neuroanatomical age (brain age gap estimation [BrainAGE]). Neuroanatomical age was determined by a machine learning system trained to individually estimate age from the structural magnetic resonance imagings of 800 healthy controls. Group-level analyses showed that BrainAGE was highest in SZ (+5.5 y) group, followed by MD (+4.0), BPD (+3.1), and the ARMS (+1.7) groups. Earlier disease onset in MD and BPD groups correlated with more pronounced BrainAGE, reaching effect sizes of the SZ group. Second, BrainAGE increased across at-risk, recent onset, and recurrent states of SZ. Finally, BrainAGE predicted both patient status as well as negative and disorganized symptoms. These findings suggest that an individually quantifiable "accelerated aging" effect may particularly impact on the neuroanatomical signature of SZ but may extend also to other mental disorders.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany;
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Christian Gaser
- Structural Brain Imaging Group, Department of Psychiatry and Neurology, FriedrichSchillerUniversity, Jena, Germany
| | - Ronald Bottlender
- Department of Psychiatry and Psychotherapy, Ludwig-MaximilianUniversity, Munich, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Ludwig-MaximilianUniversity, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-MaximilianUniversity, Munich, Germany
| | | | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, Ludwig-MaximilianUniversity, Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-MaximilianUniversity, Munich, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Center, University of Melbourne, Melbourne, Victoria, Australia
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-MaximilianUniversity, Munich, Germany
| |
Collapse
|
25
|
Bora E, Lin A, Wood SJ, Yung AR, McGorry PD, Pantelis C. Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatr Scand 2014; 130:1-15. [PMID: 24611632 DOI: 10.1111/acps.12261] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE It is likely that cognitive deficits are vulnerability markers for developing schizophrenia, as these deficits are already well-established findings in first-episode psychosis. Studies at-risk adolescents and young adults are likely to provide information about cognitive deficits that predate the onset of the illness. METHOD We conducted meta-analyses of studies comparing familial-high risk (FHR) or ultra-high risk (UHR; n = 2113) and healthy controls (n = 1748) in youth studies in which the mean age was between 15 and 29. RESULTS Compared with controls, high risk subjects were impaired in each domain in both UHR (d = 0.34-0.71) and FHR (d = 0.24-0.81). Heterogeneity of effect sizes across studies was modest, increasing confidence to the findings of the current meta-analysis (I(2) = 0-0.18%). In both risk paradigms, co-occurrence of genetic risk with attenuated symptoms was associated with more severe cognitive dysfunction. In UHR, later transition to psychosis was associated with more severe cognitive deficits in all domains (d = 0.31-0.49) except sustained attention. However, cognitive impairment has a limited capacity to predict the outcome of high-risk patients. CONCLUSION Cognitive deficits are already evident in adolescents and young adults who have familial or clinical risk for psychosis. Longitudinal developmental studies are important to reveal timing and trajectory of emergence of such deficits.
Collapse
Affiliation(s)
- E Bora
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
26
|
Nowrangi MA, Lyketsos C, Rao V, Munro CA. Systematic review of neuroimaging correlates of executive functioning: converging evidence from different clinical populations. J Neuropsychiatry Clin Neurosci 2014; 26:114-25. [PMID: 24763759 PMCID: PMC5171230 DOI: 10.1176/appi.neuropsych.12070176] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Executive functioning (EF) is an important cognitive domain that is negatively affected in a number of neuropsychiatric conditions. Neuroimaging methods have led to insights into the anatomical and functional nature of EF. The authors conducted a systematic review of the recent cognitive and neuroimaging literature to investigate how the neuroimaging correlates of EF compare between different diagnostic groups. The authors found that the frontal, parietal, and cerebellar lobes were most frequently associated with EF when comparing results from different clinical populations; the occipital lobe was not correlated with EF in any group. These findings suggest that individual disease processes affect circuits within an identifiable distributed network rather than isolated regions.
Collapse
|
27
|
Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev 2014. [PMID: 24568942 DOI: 10.1016/j.neubiorev.2014.02.005.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lesion studies link the prefrontal cortex (PFC) to executive functions. However, the evidence from in vivo investigations in healthy people is mixed, and there are no quantitative estimates of the association strength. To examine the relationship between PFC volume and cortical thickness with executive cognition in healthy adults, we conducted a meta-analysis of studies that assessed executive functions and PFC volume (31 samples,) and PFC thickness (10 samples) in vivo, N=3272 participants. We found that larger PFC volume and greater PFC thickness were associated with better executive performance. Stronger associations between executive functions and PFC volume were linked to greater variance in the sample age but was unrelated to the mean age of a sample. Strength of association between cognitive and neuroanatomical indices depended on the executive task used in the study. PFC volume correlated stronger with Wisconsin Card Sorting Test than with digit backwards span, Trail Making Test and verbal fluency. Significant effect size was observed in lateral and medial but not orbital PFC. The results support the "bigger is better" hypothesis of brain-behavior relation in healthy adults and suggest different neural correlates across the neuropsychological tests used to assess executive functions.
Collapse
|
28
|
Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev 2014; 42:180-92. [PMID: 24568942 DOI: 10.1016/j.neubiorev.2014.02.005] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 01/03/2023]
Abstract
Lesion studies link the prefrontal cortex (PFC) to executive functions. However, the evidence from in vivo investigations in healthy people is mixed, and there are no quantitative estimates of the association strength. To examine the relationship between PFC volume and cortical thickness with executive cognition in healthy adults, we conducted a meta-analysis of studies that assessed executive functions and PFC volume (31 samples,) and PFC thickness (10 samples) in vivo, N=3272 participants. We found that larger PFC volume and greater PFC thickness were associated with better executive performance. Stronger associations between executive functions and PFC volume were linked to greater variance in the sample age but was unrelated to the mean age of a sample. Strength of association between cognitive and neuroanatomical indices depended on the executive task used in the study. PFC volume correlated stronger with Wisconsin Card Sorting Test than with digit backwards span, Trail Making Test and verbal fluency. Significant effect size was observed in lateral and medial but not orbital PFC. The results support the "bigger is better" hypothesis of brain-behavior relation in healthy adults and suggest different neural correlates across the neuropsychological tests used to assess executive functions.
Collapse
|
29
|
Smolker HR, Depue BE, Reineberg AE, Orr JM, Banich MT. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Struct Funct 2014; 220:1291-306. [PMID: 24562372 DOI: 10.1007/s00429-014-0723-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/29/2014] [Indexed: 12/30/2022]
Abstract
Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.'s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions.
Collapse
Affiliation(s)
- H R Smolker
- The Institute of Cognitive Science, University of Colorado, Boulder, USA
| | | | | | | | | |
Collapse
|
30
|
Pettersson-Yeo W, Benetti S, Marquand AF, Dell‘Acqua F, Williams SCR, Allen P, Prata D, McGuire P, Mechelli A. Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med 2013; 43:2547-62. [PMID: 23507081 PMCID: PMC3821374 DOI: 10.1017/s003329171300024x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Group-level results suggest that relative to healthy controls (HCs), ultra-high-risk (UHR) and first-episode psychosis (FEP) subjects show alterations in neuroanatomy, neurofunction and cognition that may be mediated genetically. It is unclear, however, whether these groups can be differentiated at single-subject level, for instance using the machine learning analysis support vector machine (SVM). Here, we used a multimodal approach to examine the ability of structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor neuroimaging (DTI), genetic and cognitive data to differentiate between UHR, FEP and HC subjects at the single-subject level using SVM. METHOD Three age- and gender-matched SVM paired comparison groups were created comprising 19, 19 and 15 subject pairs for FEP versus HC, UHR versus HC and FEP versus UHR, respectively. Genetic, sMRI, DTI, fMRI and cognitive data were obtained for each participant and the ability of each to discriminate subjects at the individual level in conjunction with SVM was tested. RESULTS Successful classification accuracies (p < 0.05) comprised FEP versus HC (genotype, 67.86%; DTI, 65.79%; fMRI, 65.79% and 68.42%; cognitive data, 73.69%), UHR versus HC (sMRI, 68.42%; DTI, 65.79%), and FEP versus UHR (sMRI, 76.67%; fMRI, 73.33%; cognitive data, 66.67%). CONCLUSIONS The results suggest that FEP subjects are identifiable at the individual level using a range of biological and cognitive measures. Comparatively, only sMRI and DTI allowed discrimination of UHR from HC subjects. For the first time FEP and UHR subjects have been shown to be directly differentiable at the single-subject level using cognitive, sMRI and fMRI data. Preliminarily, the results support clinical development of SVM to help inform identification of FEP and UHR subjects, though future work is needed to provide enhanced levels of accuracy.
Collapse
Affiliation(s)
- W. Pettersson-Yeo
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| | - S. Benetti
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| | - A. F. Marquand
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
| | - F. Dell‘Acqua
- Department of Forensic and Neurodevelopmental Science, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
- NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, London, UK
| | - S. C. R. Williams
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
| | - P. Allen
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| | - D. Prata
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| | - P. McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| | - A. Mechelli
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, De Crespigny Park, London, UK
| |
Collapse
|
31
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
32
|
De Herdt A, Wampers M, Vancampfort D, De Hert M, Vanhees L, Demunter H, Van Bouwel L, Brunner E, Probst M. Neurocognition in clinical high risk young adults who did or did not convert to a first schizophrenic psychosis: a meta-analysis. Schizophr Res 2013; 149:48-55. [PMID: 23830855 DOI: 10.1016/j.schres.2013.06.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals at clinical high risk (CHR) for psychosis have become a major focus for research designed to explore early predictors of transition to full psychosis. Characterizing differences in neurocognitive (NC) functioning between psychosis converters (CHR-C) and non-converters (CHR-NC) might contribute to the identification of specific NC predictors of psychosis onset. Therefore, the aim of the present meta-analysis was to compare the baseline NC performance between CHR-C and CHR-NC. METHOD PubMed (MEDLINE), Web of Science, Embase and reference lists were searched for studies reporting baseline cognitive data of CHR-C and CHR-NC. Included NC tests were classified within the MATRICS - Measurement and Treatment Research to Improve Cognition in Schizophrenia - cognitive domains. RESULTS Of 95 studies assessed for eligibility, 9 studies comprising 583 CHR subjects (N CHR-C=195, N CHR-NC=388) met all the inclusion criteria. CHR-C performed significantly worse compared to CHR-NC on 2 MATRICS domains namely working memory (ES=-0.29, 95% CI=-0.53 to -0.05) and visual learning (ES=-0.40, 95% CI=-0.68 to -0.13). For the remaining 4 domains (processing speed, attention/vigilance, verbal learning, reasoning/problem solving) no significant differences between CHR-C and CHR-NC were observed. CONCLUSION Based on the current meta-analytic data we might conclude that it is possible to differentiate between CHR-C and CHR-NC with respect to working memory and visual learning. The addition of visual learning and working memory tasks to psychosis regression models might contribute to the predictive power of these models.
Collapse
Affiliation(s)
- Amber De Herdt
- Department of Rehabilitation Science, KU Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Du F, Ongür D. Probing myelin and axon abnormalities separately in psychiatric disorders using MRI techniques. Front Integr Neurosci 2013; 7:24. [PMID: 23596402 PMCID: PMC3622889 DOI: 10.3389/fnint.2013.00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
In this manuscript we present novel MRI approaches to dissecting axon vs. myelin abnormalities in psychiatric disorders. Existing DTI approaches are not able to provide specific information on these subcellular elements but novel approaches are beginning to do so. We review two approaches (magnetization transfer ratio—MTR; and diffusion tensor spectroscopy—DTS) and the theoretical framework for interpreting data derived from these approaches. Work is ongoing to collect data that will answer some relevant questions using these techniques in schizophrenia and related conditions.
Collapse
Affiliation(s)
- Fei Du
- McLean Hospital Belmont, MA, USA ; Department of Psychiatry, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
34
|
Gaudiano BA, Zimmerman M. Prevalence of attenuated psychotic symptoms and their relationship with DSM-IV diagnoses in a general psychiatric outpatient clinic. J Clin Psychiatry 2013; 74:149-55. [PMID: 23146173 PMCID: PMC4036523 DOI: 10.4088/jcp.12m07788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Attenuated psychosis syndrome (APS) is being proposed for inclusion in Section III of DSM-5 for those impaired by subthreshold psychotic symptoms that are not better accounted for by another diagnosis and not meeting criteria for a psychotic disorder. The rationale is to identify patients who are at high risk for transition to a psychotic disorder in the near future. However, the potential impact of using this new diagnosis in routine clinical practice settings has not been carefully examined. METHOD As part of the Rhode Island Methods to Improve Diagnostic Assessment and Services (MIDAS) project, a treatment-seeking psychiatric outpatient sample (n = 1,257) recruited from June 1997 to June 2002 completed a self-report measure of psychiatric symptoms and afterward were administered structured clinical interviews. For the current post hoc study, we investigated the prevalence rate of endorsing attenuated psychotic experiences to identify patients who could potentially meet criteria for APS. RESULTS After the exclusion of those with lifetime DSM-IV psychotic disorders, psychotic experiences remained highly prevalent in the sample (28% reported at least 1 psychotic experience during the past 2 weeks), and rates were similar across all major DSM-IV diagnostic categories. Only 1 patient (0.08%) reported psychotic experiences but did not meet criteria for another current DSM disorder; however, this individual endorsed other nonpsychotic symptoms of greater severity. Psychotic experience endorsement was positively correlated with nearly all other nonpsychotic symptom domains, and multivariate analysis showed that general clinical severity predicted endorsement of psychotic experiences (P values < .001). CONCLUSIONS We could not identify any patients who clearly met criteria for APS alone in our sample. Psychotic experiences appear to be common in outpatients and represent nonspecific indicators of psychopathology. Diagnosing APS in the community could result in high rates of false-positives or high rates of APS "comorbidity" with other nonpsychotic disorders, leading to the increased use of antipsychotic medications without clear need. Therefore, the clinical utility of adding APS to the diagnostic system remains highly questionable.
Collapse
Affiliation(s)
| | - Mark Zimmerman
- Rhode Island Hospital & Alpert Medical School of Brown University
| |
Collapse
|
35
|
Koutsouleris N, Davatzikos C, Bottlender R, Patschurek-Kliche K, Scheuerecker J, Decker P, Gaser C, Möller HJ, Meisenzahl EM. Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. Schizophr Bull 2012; 38:1200-15. [PMID: 21576280 PMCID: PMC3494049 DOI: 10.1093/schbul/sbr037] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Neuropsychological deficits predate overt psychosis and overlap with the impairments in the established disease. However, to date, no single neurocognitive measure has shown sufficient power for a prognostic test. Thus, it remains to be determined whether multivariate neurocognitive pattern classification could facilitate the diagnostic identification of different at-risk mental states (ARMS) for psychosis and the individualized prediction of illness transition. METHODS First, classification of 30 healthy controls (HC) vs 48 ARMS individuals subgrouped into 20 "early," 28 "late" ARMS subjects was performed based on a comprehensive neuropsychological test battery. Second, disease prediction was evaluated by categorizing the neurocognitive baseline data of those ARMS individuals with transition (n = 15) vs non transition (n = 20) vs HC after 4 years of follow-up. Generalizability of classification was estimated by repeated double cross-validation. RESULTS The 3-group cross-validated classification accuracies in the first analysis were 94.2% (HC vs rest), 85.0% (early at-risk subjects vs rest), and, 91.4% (late at-risk subjects vs rest) and 90.8% (HC vs rest), 90.8% (converters vs rest), and 89.0% (nonconverters vs rest) in the second analysis. Patterns distinguishing the early or late ARMS from HC primarily involved the verbal learning/memory domains, while executive functioning and verbal IQ deficits were particularly characteristic of the late ARMS. Disease transition was mainly predicted by executive and verbal learning impairments. CONCLUSIONS Different ARMS and their clinical outcomes may be reliably identified on an individual basis by evaluating neurocognitive test batteries using multivariate pattern recognition. These patterns may have the potential to substantially improve the early recognition of psychosis.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Ronald Bottlender
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Katja Patschurek-Kliche
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Johanna Scheuerecker
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Petra Decker
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Christian Gaser
- Department of Psychiatry, Friedrich-Schiller-University, Jena, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Eva M. Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany
| |
Collapse
|
36
|
Gray-matter volume in methamphetamine dependence: cigarette smoking and changes with abstinence from methamphetamine. Drug Alcohol Depend 2012; 125:230-8. [PMID: 22445480 PMCID: PMC3427723 DOI: 10.1016/j.drugalcdep.2012.02.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Group differences in brain structure between methamphetamine-dependent and healthy research participants have been reported, but findings in the literature present discrepancies. Although most methamphetamine-abusing individuals also smoke cigarettes, the effects of smoking on brain structure have not been distinguished from those of methamphetamine. Changes with abstinence from methamphetamine have also been relatively unexplored. This study, therefore, attempted to account for effects of smoking and brief abstinence from methamphetamine on gray-matter measures in methamphetamine-dependent research participants. METHODS Gray matter was measured using voxel-based morphometry in three groups: 18 control nonsmokers, 25 control smokers, and 39 methamphetamine-dependent smokers (methamphetamine-abstinent 4-7 days). Subgroups of methamphetamine-dependent and control participants (n=12/group) were scanned twice to determine change in gray matter over the first month of methamphetamine abstinence. RESULTS Compared with Control Nonsmokers, Control Smokers and Methamphetamine-dependent Smokers had smaller gray-matter volume in the orbitofrontal cortex and caudate nucleus. Methamphetamine-dependent Smokers also had smaller gray-matter volumes in frontal, parietal and temporal cortices than Control Nonsmokers or Smokers, and smaller gray-matter volume in insula than control nonsmokers. Longitudinal assessment revealed gray matter increases in cortical regions (inferior frontal, angular, and superior temporal gyri, precuneus, insula, occipital pole) in methamphetamine-dependent but not control participants; the cerebellum showed a decrease. CONCLUSIONS Gray-matter volume deficits in the orbitofrontal cortex and caudate of methamphetamine-dependent individuals may be in part attributable to cigarette smoking or pre-morbid conditions. Increase in gray matter with methamphetamine abstinence suggests that some gray-matter deficits are partially attributable to methamphetamine abuse.
Collapse
|
37
|
Schultz CC, Koch K, Wagner G, Nenadic I, Schachtzabel C, Güllmar D, Reichenbach JR, Sauer H, Schlösser RGM. Reduced anterior cingulate cognitive activation is associated with prefrontal-temporal cortical thinning in schizophrenia. Biol Psychiatry 2012; 71:146-53. [PMID: 21967959 DOI: 10.1016/j.biopsych.2011.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND The anterior cingulate cortex plays a central role in altered processes of cognitive control in schizophrenia. However, the cortical foundations of disturbed anterior cingulate cognitive activation are poorly understood. Therefore, this study investigated the association of anterior cingulate cognitive activation and cortical thickness in schizophrenia combining functional magnetic resonance imaging (fMRI) and surface-based morphometry. METHODS Fifty-three patients with schizophrenia according to DSM-IV and 53 age- and sex-matched healthy subjects were included and underwent fMRI and high-resolution T1-weighted MRI. fMRI data was analyzed using SPM5. Cortical thickness was calculated using an automated computerized algorithm (Freesurfer Software). Statistical cortical maps were created correlating anterior cingulate activation and cortical thickness on a node-by-node basis covering the entire cortex in schizophrenia and healthy control subjects. RESULTS Patients demonstrated a significantly reduced anterior cingulate cognitive activation. Significantly differing associations of anterior cingulate activation and cortical thickness were found in a pattern of dorsolateral prefrontal, superior frontal-anterior cingulate, and superior temporal cortical regions, where patients but not healthy control subjects demonstrated a significant association of reduced anterior cingulate activation and cortical thinning. A direct comparison of cortical thickness between the diagnostic groups revealed a significantly reduced cortical thickness of these prefrontotemporal regions in schizophrenia. CONCLUSIONS To our best knowledge, this is the first study indicating that prefrontotemporal cortical thinning constitutes a relevant cortical pathomechanism for altered cognitive activation in schizophrenia. Our data additionally reveal a profound disruption of structural and functional integration in the prefrontotemporal system in schizophrenia.
Collapse
Affiliation(s)
- C Christoph Schultz
- Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jung WH, Borgwardt S, Fusar-Poli P, Kwon JS. Gray matter volumetric abnormalities associated with the onset of psychosis. Front Psychiatry 2012; 3:101. [PMID: 23227013 PMCID: PMC3512053 DOI: 10.3389/fpsyt.2012.00101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/06/2012] [Indexed: 01/15/2023] Open
Abstract
Patients with psychosis display structural brain abnormalities in multiple brain regions. The disorder is characterized by a putative prodromal period called ultra-high-risk (UHR) status, which precedes the onset of full-blown psychotic symptoms. Recent studies on psychosis have focused on this period. Neuroimaging studies of UHR individuals for psychosis have revealed that the structural brain changes observed during the established phases of the disorder are already evident prior to the onset of the illness. Moreover, certain brain regions show extremely dynamic changes during the transition to psychosis. These neurobiological features may be used as prognostic and predictive biomarkers for psychosis. With advances in neuroimaging techniques, neuroimaging studies focusing on gray matter abnormalities provide new insights into the pathophysiology of psychosis, as well as new treatment strategies. Some of these novel approaches involve antioxidants administration, because it is suggested that this treatment may delay the progression of UHR to a full-blown psychosis and prevent progressive structural changes. The present review includes an update on the most recent developments in early intervention strategies for psychosis and potential therapeutic treatments for schizophrenia. First, we provide the basic knowledge of the brain regions associated with structural abnormalities in individuals at UHR. Next, we discuss the feasibility on the use of magnetic resonance imaging (MRI)-biomarkers in clinical practice. Then, we describe potential etiopathological mechanisms underlying structural brain abnormalities in prodromal psychosis. Finally, we discuss the potentials and limitations related to neuroimaging studies in individuals at UHR.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Interdisciplinary Program in Neuroscience, Seoul National University Seoul, South Korea ; Institute of Human Behavioral Medicine, Seoul National University-MRC Seoul, South Korea
| | | | | | | |
Collapse
|
39
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
40
|
Koutsouleris N, Gaser C, Patschurek-Kliche K, Scheuerecker J, Bottlender R, Decker P, Schmitt G, Reiser M, Möller HJ, Meisenzahl EM. Multivariate patterns of brain-cognition associations relating to vulnerability and clinical outcome in the at-risk mental states for psychosis. Hum Brain Mapp 2011; 33:2104-24. [PMID: 22887825 DOI: 10.1002/hbm.21342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/20/2011] [Accepted: 04/12/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neuropsychological deficits are a core feature of established psychosis and have been previously linked to fronto-temporo-limbic brain alterations. Both neurocognitive and neuroanatomical abnormalities characterize clinical at-risk mental states (ARMS) for psychosis. However, structure-cognition relationships in the ARMS have not been directly explored using multivariate neuroimaging techniques. METHODS Voxel-based morphometry and partial least squares were employed to study system-level covariance patterns between whole-brain morphological data and processing speed, working memory, verbal learning/IQ, and executive functions in 40 ARMS subjects and 30 healthy controls (HC). The detected structure-cognition covariance patterns were tested for significance and reliability using non-parametric permutation and bootstrap resampling. RESULTS We identified ARMS-specific covariance patterns that described a generalized association of neurocognitive measures with predominantly prefronto-temporo-limbic and subcortical structures as well as the interconnecting white matter. In the conversion group, this generalized profile particularly involved working memory and verbal IQ and was positively correlated with limbic, insular and subcortical volumes as well as negatively related to prefrontal, temporal, parietal, and occipital cortices. Conversely, the neurocognitive profiles in the HC group were confined to working memory, learning and IQ, which were diffusely associated with cortical and subcortical brain regions. CONCLUSIONS These findings suggest that the ARMS and prodromal phase of psychosis are characterized by a convergent mapping from multi-domain neurocognitive measures to a set of prefronto-temporo-limbic and subcortical structures. Furthermore, a neuroanatomical separation between positive and negative brain-cognition correlations may not only point to a biological process determining the clinical risk for disease transition, but also to possible compensatory or dysmaturational neural processes.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, Yücel M, Velakoulis D, Pantelis C. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 2011; 127:46-57. [PMID: 21300524 DOI: 10.1016/j.schres.2010.12.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/20/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
Abstract
Despite an increasing number of published voxel based morphometry studies of schizophrenia, there has been no adequate attempt to examine gray (GM) and white matter (WM) abnormalities and the heterogeneity of published findings. In the current article, we used a coordinate based meta-analysis technique to simultaneously examine GM and WM abnormalities in schizophrenia and to assess the effects of gender, chronicity, negative symptoms and other clinical variables. 79 studies meeting our inclusion criteria were included in the meta-analysis. Schizophrenia was associated with GM reductions in the bilateral insula/inferior frontal cortex, superior temporal gyrus, anterior cingulate gyrus/medial frontal cortex, thalamus and left amygdala. In WM analyses of volumetric and diffusion-weighted images, schizophrenia was associated with decreased FA and/or WM in interhemispheric fibers, anterior thalamic radiation, inferior longitudinal fasciculi, inferior frontal occipital fasciculi, cingulum and fornix. Male gender, chronic illness and negative symptoms were associated with more severe GM abnormalities and illness chronicity was associated with more severe WM deficits. The meta-analyses revealed overlapping GM and WM structural findings in schizophrenia, characterized by bilateral anterior cortical, limbic and subcortical GM abnormalities, and WM changes in regions including tracts that connect these structures within and between hemispheres. However, the available findings are biased towards characteristics of schizophrenia samples with poor prognosis.
Collapse
Affiliation(s)
- Emre Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Level 3, National Neuroscience Facility, Alan Gilbert Building, 161, Barry St, Carlton South, VIC, 3053, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|