1
|
Suhaimi FW, Aznal ANZ, Nor Hazalin NAM, Teh LK, Hassan Z, Salleh MZ. Kratom (M. speciosa) exposure during adolescence caused long-lasting cognitive behavioural deficits associated with perturbated brain metabolism pathways in adult rats. Behav Brain Res 2023; 446:114411. [PMID: 36997094 DOI: 10.1016/j.bbr.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Kratom (M. speciosa Korth) is an herbal plant native to Southeast Asia. The leaves have been widely used to alleviate pain and opioid withdrawal symptoms. However, the increasing trend of recreational use of kratom among youth is concerning because substance abuse may render the adolescent brain more susceptible to neuropathological processes, causing dramatic consequences that persist into adulthood. Therefore, the present study aimed to investigate the long-term effects of mitragynine, the main alkaloid and lyophilized kratom decoction (LKD) exposure during adolescence on cognitive behaviours and brain metabolite profiles in adult rats. Adolescent male Sprague-Dawley rats were given mitragynine (3, 10 or 30mg/kg) or LKD orally for 15 consecutive days during postnatal days 31-45 (PND31-45). Behavioural testing was performed during adulthood (PND70-84) and the brains were subjected to metabolomic analysis. The results show that a high dose of mitragynine impaired long-term object recognition memory. Social behaviour and spatial learning were not affected, but both mitragynine and LKD impaired reference memory. Brain metabolomic study revealed several altered metabolic pathways that may be involved in the cognitive behavioural effects of LKD and mitragynine exposure. These pathways include arachidonic acid, taurine and hypotaurine, pantothenate and CoA biosynthesis, and tryptophan metabolism, while the N-isovalerylglycine was identified as the potential biomarker. In summary, adolescent kratom exposure can cause long-lasting cognitive behavioural deficits and alter brain metabolite profiles that are still evident in adulthood. This finding also indicates that the adolescent brain is vulnerable to the impact of early kratom use.
Collapse
|
2
|
Zul Aznal AN, Mohamad Nor Hazalin NA, Hassan Z, Mat NH, Chear NJY, Teh LK, Salleh MZ, Suhaimi FW. Adolescent kratom exposure affects cognitive behaviours and brain metabolite profiles in Sprague-Dawley rats. Front Pharmacol 2022; 13:1057423. [PMID: 36518677 PMCID: PMC9744228 DOI: 10.3389/fphar.2022.1057423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Adolescence is a critical developmental period during which exposure to psychoactive substances like kratom (Mitragyna speciosa) can cause long-lasting deleterious effects. Here, we evaluated the effects of mitragynine, the main alkaloid of kratom, and lyophilised kratom decoction (LKD) on cognitive behaviours and brain metabolite profiles in adolescent rats. Male Sprague-Dawley rats (Postnatal day, PND31) were given vehicle, morphine (5 mg/kg), mitragynine (3, 10, or 30 mg/kg), or LKD (equivalent dose of 30 mg/kg mitragynine) for 15 consecutive days. Later, a battery of behavioural testing was conducted, brain was extracted and metabolomic analysis was performed using LCMS-QTOF. The results showed that mitragynine did not affect the recognition memory in the novel object recognition task. In the social interaction task, morphine, mitragynine, and LKD caused a marked deficit in social behaviour, while in Morris water maze task, mitragynine and LKD only affected reference memory. Metabolomic analysis revealed distinct metabolite profiles of animals with different treatments. Several pathways that may be involved in the effects of kratom exposure include arachidonic acid, pantothenate and CoA, and tryptophan pathways, with several potential biomarkers identified. These findings suggest that adolescent kratom exposure can cause cognitive behavioural deficits that may be associated with changes in the brain metabolite profiles.
Collapse
Affiliation(s)
| | - Nurul Aqmar Mohamad Nor Hazalin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Noorul Hamizah Mat
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | | |
Collapse
|
3
|
Mostafa M, Elwasify M, Fathy AA, Abdelsalam M. Toll-Like Receptor 4 Gene Polymorphisms and Susceptibility to Schizophrenia: A Case-Control Study. Immunol Invest 2022; 51:2009-2024. [PMID: 35815676 DOI: 10.1080/08820139.2022.2093118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schizophrenia is a common psychiatric disorder that exhibits a variety of symptoms. The exact etiology and pathogenesis are still doubtful. However, genetic and environmental factors seem to have a role. Years ago, the role of the immune system was focused on auto-antibodies, cytokines, different types of immune cells and immune genes. The Toll-like receptors (TLR) are a cornerstone of the innate immune system, particularly TLR4. TLR4 primarily recognises gram-negative lipopolysaccharides bacteria. This case-control study, for the first time to our knowledge, examined the role of TLR4 gene polymorphisms in 142 Egyptian schizophrenic patients and 175 healthy controls. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), four single nucleotide polymorphisms (SNPs) were investigated in the TLR4 gene rs11536889, rs10759931, rs1927911, and rs1927914. The Positive and Negative Syndrome Scale (PANSS) was used in diagnosis and assessment. A statistically significant association was observed between rs11536889, rs1927911 and rs1927914, but no association was found between rs10759931. There was no association between the different SNP genotypes and PANSS, except between rs1927914 and general psychopathologic symptoms. This study shows a strong association between TLR4 rs11356889 and rs1927911 minor alleles and schizophrenia. These findings could be additional evidence for the immune system's role in schizophrenia development. However, more studies with a more significant sample number, TLR4 protein assessment, and a larger number of SNPs are recommended.
Collapse
Affiliation(s)
- Maged Mostafa
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Elwasify
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ahmed Fathy
- Department of Public Health, and Community, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Abdelsalam
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo Egypt
| |
Collapse
|
4
|
Motamed M, Karimi H, Sanjari Moghaddam H, Taherzadeh Boroujeni S, Sanatian Z, Hasanzadeh A, Khodaei Ardakani MR, Akhondzadeh S. Risperidone combination therapy with adalimumab for treatment of chronic schizophrenia: a randomized, double-blind, placebo-controlled clinical trial. Int Clin Psychopharmacol 2022; 37:92-101. [PMID: 35258035 DOI: 10.1097/yic.0000000000000399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate the efficacy and safety of antitumor necrosis factor-alpha (TNF-α) therapy using adalimumab in patients with chronic schizophrenia. This is a randomized, double-blind, placebo-controlled clinical trial carried out at Roozbeh Hospital (Tehran, Iran) from June 2020 to October 2021. The patients were randomly divided into two parallel adalimumab + risperidone and placebo + risperidone groups. Participants in the intervention group received adalimumab subcutaneous injection (40 mg) by pen-injector at weeks 0 and 4. Using the Positive and Negative Symptoms Scale (PANSS), patients' positive and negative symptoms were assessed at weeks 0, 4, and 8. Forty patients (20 in each group) were included. PANSS total (t = 4.43, df = 38, P < 0.001), negative (t = 2.88, df = 38, P = 0.006), and general psychopathology (t = 4.06, df = 38, P < 0.001) scores demonstrated a significantly greater decline in adalimumab compared with the placebo group from baseline study endpoint. However, improvement of PANSS positive subscale scores showed no significant difference from the baseline study endpoint. There was no significant between-group difference regarding levels of C-reactive protein, interleukin (IL)-1β, TNF-α, IL-6, and IL-8 at baseline and also at the week 8 visit (P > 0.05 for all). The current study found adalimumab adjunctive therapy effective in treating schizophrenia, particularly its negative and general psychopathology symptoms, with no side effects.
Collapse
Affiliation(s)
- Mahsa Motamed
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Hanieh Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | | | | | - Zahra Sanatian
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Alireza Hasanzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| |
Collapse
|
5
|
Lin C, Chen K, Yu J, Feng W, Fu W, Yang F, Zhang X, Chen D. Relationship between TNF-α levels and psychiatric symptoms in first-episode drug-naïve patients with schizophrenia before and after risperidone treatment and in chronic patients. BMC Psychiatry 2021; 21:561. [PMID: 34763685 PMCID: PMC8588730 DOI: 10.1186/s12888-021-03569-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of antipsychotic drugs on tumor necrosis factor-α (TNF-α) levels is unclear, and there is no consensus on the association between TNF-α and psychotic symptoms. This study aimed to investigate the differences in TNF-α levels and clinical correlations in first-episode drug-naïve (FEDN) patients with schizophrenia before and after treatment and in chronic patients. METHODS A total of 103 (51 FEDN and 52 chronic) patients and 114 healthy controls were recruited. Demographic and clinical data, including TNF-α levels, were recorded. We used the Positive and Negative Syndrome Scale (PANSS) to measure the psychopathology of all patients. RESULTS TNF-α levels before treatment were significantly higher in FEDN patients than in chronic patients and healthy controls. No significant sex differences were found in the TNF-α levels of patients with schizophrenia. The TNF-α levels before treatment were significantly positively related to changes in PANSS negative symptoms in FEDN patients. The TNF-α levels in chronic patients were significantly negatively correlated with the general psychopathology subscales and PANSS total scores. CONCLUSIONS Increased TNF-α levels in FEDN patients and their correlation with psychopathology indicate that inflammatory cytokines may play a crucial role in the etiopathogenesis of schizophrenia, and inflammation-directed therapy may, therefore, improve negative symptoms.
Collapse
Affiliation(s)
- Chen Lin
- grid.11135.370000 0001 2256 9319Department of Psychosomatic Medicine, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Ke Chen
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Jianjin Yu
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Wei Feng
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Weihong Fu
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Fude Yang
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096 People’s Republic of China
| | - Xiangyang Zhang
- grid.267308.80000 0000 9206 2401Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, People's Republic of China.
| |
Collapse
|
6
|
Analysis of the superior temporal gyrus as a possible biomarker in schizophrenia using voxel-based morphometry of the brain magnetic resonance imaging: a comprehensive review. CNS Spectr 2021; 26:319-325. [PMID: 31918770 DOI: 10.1017/s1092852919001810] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The lack of predictive biomarkers for therapeutic responses to schizophrenia leads clinical procedures to be decided without taking into account the subjects' neuroanatomical features, a consideration, which could help in identifying specific pharmacological treatments for the remission of symptoms. Magnetic resonance imaging (MRI) is a technique widely used for radiological diagnosis and produces 3-dimensional images in excellent anatomical detail, and with a great capacity to differentiate soft tissue. Various MRI techniques of the human brain have emerged as a result of research, enabling structural tests that may help to in consolidate previous findings and lead to the discovery of new patterns of abnormality in schizophrenia. A literature review was undertaken to assess the superior temporal gyrus (STG) as a possible biomarker in schizophrenia with the use of voxel-based morphometry of the brain using MRI. Many findings in studies of schizophrenia using MRI have been inconclusive and, in some cases, conflicting, although interesting results have been obtained when attempting to correlate neuroimaging changes with aspects of clinical features and prognosis of the disease. The individuals affected by this mental illness appear to have smaller STG volumes when compared to healthy controls and also to subjects with a diagnosis of first-episode affective psychosis or groups of individuals at high risk of psychosis. However, the wide variety of definitions surrounding the STG found in a number of studies is a contributing factor to the lack of correlation between brain abnormalities and clinical symptoms. For instance, disagreements have arisen due to studies using regions of interest to analyze the STG whereas other studies prioritize the analysis of only STG subregions or specific supratemporal plane regions. It is necessary to standardize the nomenclature of the areas to be studied in the future, as this will enable more consistent results, allowing higher clinical and morphological correlations.
Collapse
|
7
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
8
|
Snijders GJLJ, van Zuiden W, Sneeboer MAM, Berdenis van Berlekom A, van der Geest AT, Schnieder T, MacIntyre DJ, Hol EM, Kahn RS, de Witte LD. A loss of mature microglial markers without immune activation in schizophrenia. Glia 2021; 69:1251-1267. [PMID: 33410555 PMCID: PMC7986895 DOI: 10.1002/glia.23962] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.
Collapse
Affiliation(s)
- Gijsje J. L. J. Snijders
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | | | | | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
| | | | | | - Donald J. MacIntyre
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Elly M. Hol
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and SciencesAmsterdamThe Netherlands
| | - René S. Kahn
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
9
|
Venkatachalam K, Eissa N, Awad MA, Jayaprakash P, Zhong S, Stölting F, Stark H, Sadek B. The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism-like behavioral features in BTBR T+tf/J mice by multiple actions. Biomed Pharmacother 2021; 138:111517. [PMID: 33773463 DOI: 10.1016/j.biopha.2021.111517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Several brain neurotransmitters, including histamine (HA), acetylcholine (ACh), and dopamine (DA) are suggested to be involved in several brain disorders including cognitive deficits, depression, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with Autism spectrum disorder (ASD). Therefore, the ameliorative effects of the novel multiple-active compound ST-713 with high binding affinities at histamine H3 receptor (H3R), dopamine D2sR and D3R on ASD-like behaviors in male BTBR T+tf/J mice model were assessed. ST-713 (3-(2-chloro-10H-phenothiazin-10-yl)-N-methyl-N-(4-(3-(piperidin-1-yl)propoxy)benzyl)propan-1-amine; 2.5, 5, and 10 mg/kg, i.p.) ameliorated dose-dependently social deficits, and significantly alleviated the repetitive/compulsive behaviors of BTBR mice (all P < 0.05). Moreover, ST-713 modulated disturbed anxiety levels, but failed to obliterate increased hyperactivity of tested mice. Furthermore, ST-713 (5 mg/kg) attenuated the increased levels of hippocampal and cerebellar protein expressions of NF-κB p65, COX-2, and iNOS in BTBR mice (all P < 0.05). The ameliorative effects of ST-713 on social parameters were entirely reversed by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. The obtained results demonstrate the potential of multiple-active compounds for the therapeutic management of neuropsychiatric disorders, e.g. ASD.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Department of Applied Sciences, College of Arts and Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Mohamed Al Awad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sicheng Zhong
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Frauke Stölting
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Mohebiany AN, Ramphal NS, Karram K, Di Liberto G, Novkovic T, Klein M, Marini F, Kreutzfeldt M, Härtner F, Lacher SM, Bopp T, Mittmann T, Merkler D, Waisman A. Microglial A20 Protects the Brain from CD8 T-Cell-Mediated Immunopathology. Cell Rep 2021; 30:1585-1597.e6. [PMID: 32023471 DOI: 10.1016/j.celrep.2019.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022] Open
Abstract
Tumor-necrosis-factor-alpha-induced protein 3 (TNFAIP3), or A20, is a ubiquitin-modifying protein and negative regulator of canonical nuclear factor κB (NF-κB) signaling. Several single-nucleotide polymorphisms in TNFAIP3 are associated with autoimmune diseases, suggesting a role in tissue inflammation. While the role of A20 in peripheral immune cells has been well investigated, less is known about its role in the central nervous system (CNS). Here, we show that microglial A20 is crucial for maintaining brain homeostasis. Without microglial A20, CD8+ T cells spontaneously infiltrate the CNS and acquire a viral response signature. The combination of infiltrating CD8+ T cells and activated A20-deficient microglia leads to an increase in VGLUT1+ terminals and frequency of spontaneous excitatory currents. Ultimately, A20-deficient microglia upregulate genes associated with the antiviral response and neurodegenerative diseases. Together, our data suggest that microglial A20 acts as a sensor for viral infection and a master regulator of CNS homeostasis.
Collapse
Affiliation(s)
- Alma Nazlie Mohebiany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Nishada Shakunty Ramphal
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Tanja Novkovic
- Institute for Physiology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Federico Marini
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Franziska Härtner
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Sonja Maria Lacher
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Wang K, Li J, Zhang Y, Huang Y, Chen D, Shi Z, Smith AD, Li W, Gao Y. Central nervous system diseases related to pathological microglial phagocytosis. CNS Neurosci Ther 2021; 27:528-539. [PMID: 33650762 PMCID: PMC8025646 DOI: 10.1111/cns.13619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are important phagocytes of the central nervous system (CNS). They play an important role in protecting the CNS by clearing necrotic tissue and apoptotic cells in many CNS diseases. However, recent studies have found that microglia can phagocytose parts of neurons excessively, such as the neuronal cell body, synapse, or myelin sheaths, before or after the onset of CNS diseases, leading to aggravated injury and impaired tissue repair. Meanwhile, reduced phagocytosis of synapses and myelin results in abnormal circuit connections and inhibition of remyelination, respectively. Previous studies focused primarily on the positive effects of microglia phagocytosis, whereas only a few studies have focused on the negative effects. In this review, we use the term "pathological microglial phagocytosis" to refer to excessive or reduced phagocytosis by microglia that leads to structural or functional abnormalities in target cells and brain tissue. The classification of pathological microglial phagocytosis, the composition, and activation of related signaling pathways, as well as the process of pathological phagocytosis in various kinds of CNS diseases, are described in this review. We hypothesize that pathological microglial phagocytosis leads to aggravation of tissue damage and negative functional outcome. For example, excessive microglial phagocytosis of synapses can be observed in Alzheimer's disease and schizophrenia, leading to significant synapse loss and memory impairment. In Parkinson's disease, ischemic stroke, and traumatic brain injury, excessive microglial phagocytosis of neuronal cell bodies causes impaired gray matter recovery and sensory dysfunction. We therefore believe that more studies should focus on the mechanism of pathological microglial phagocytosis and activation to uncover potential targets of therapeutic intervention.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda D Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
van Mierlo HC, Schot A, Boks MPM, de Witte LD. The association between schizophrenia and the immune system: Review of the evidence from unbiased 'omic-studies'. Schizophr Res 2020; 217:114-123. [PMID: 31130400 DOI: 10.1016/j.schres.2019.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/04/2023]
Abstract
A role for immune processes in the pathogenesis of schizophrenia has been suggested by genetic and epidemiological studies, as well as cross-sectional studies on blood and brain samples. However, results are heterogeneous, which is likely caused by low samples sizes, insufficient control of confounders that influence immune processes, and potentially publication bias. Large hypothesis-free 'omic' studies partially circumvent these problems and could provide further evidence for a role of immune pathways in schizophrenia. In this review we assessed whether the largest genome, transcriptome and methylome studies in schizophrenia to date support a link with the immune system. We constructed an overview of the schizophrenia-associated genes and transcripts that were identified in these large 'omic' studies. We then performed a hypothesis-driven analysis to examine the association and enrichment of immune system-related genes and transcripts in these datasets. Additionally, we reviewed secondary analyses that were previously performed on these 'omic' studies. Except for the link between complement factor 4 (C4), we found limited evidence for a role of microglia and immune processes among genetic risk variants. Transcriptome and methylome studies point towards alterations in immune system related genes, pathways and cells. This includes changes in microglia, as well as complement, nuclear factor-κB, toll-like receptor and interferon signaling pathways. Many of these associated immune-related genes and pathways have been shown to be involved in neurodevelopment and neuronal functioning. Additional replication of these findings is needed, but once further conformation is provided, these findings could be a potentially interesting target for future therapies.
Collapse
Affiliation(s)
- Hans C van Mierlo
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Aron Schot
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, UMC Utrecht Brain Center, 3508GA Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, United States of America; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, United States of America.
| |
Collapse
|
13
|
Yin L, Chau CKL, Sham PC, So HC. Integrating Clinical Data and Imputed Transcriptome from GWAS to Uncover Complex Disease Subtypes: Applications in Psychiatry and Cardiology. Am J Hum Genet 2019; 105:1193-1212. [PMID: 31785786 PMCID: PMC6904812 DOI: 10.1016/j.ajhg.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Classifying subjects into clinically and biologically homogeneous subgroups will facilitate the understanding of disease pathophysiology and development of targeted prevention and intervention strategies. Traditionally, disease subtyping is based on clinical characteristics alone, but subtypes identified by such an approach may not conform exactly to the underlying biological mechanisms. Very few studies have integrated genomic profiles (e.g., those from GWASs) with clinical symptoms for disease subtyping. Here we proposed an analytic framework capable of finding complex diseases subgroups by leveraging both GWAS-predicted gene expression levels and clinical data by a multi-view bicluster analysis. This approach connects SNPs to genes via their effects on expression, so the analysis is more biologically relevant and interpretable than a pure SNP-based analysis. Transcriptome of different tissues can also be readily modeled. We also proposed various evaluation metrics for assessing clustering performance. Our framework was able to subtype schizophrenia subjects into diverse subgroups with different prognosis and treatment response. We also applied the framework to the Northern Finland Birth Cohort (NFBC) 1966 dataset and identified high and low cardiometabolic risk subgroups in a gender-stratified analysis. The prediction strength by cross-validation was generally greater than 80%, suggesting good stability of the clustering model. Our results suggest a more data-driven and biologically informed approach to defining metabolic syndrome and subtyping psychiatric disorders. Moreover, we found that the genes "blindly" selected by the algorithm are significantly enriched for known susceptibility genes discovered in GWASs of schizophrenia or cardiovascular diseases. The proposed framework opens up an approach to subject stratification.
Collapse
Affiliation(s)
- Liangying Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carlos K L Chau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, University of Hong Kong, Hong Kong SAR, China; State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
14
|
Leishman E, Mackie K, Bradshaw HB. Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout ABHD12 Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. Front Mol Neurosci 2019; 12:142. [PMID: 31213981 PMCID: PMC6555221 DOI: 10.3389/fnmol.2019.00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Derived from arachidonic acid (AA), the endogenous cannabinoid (eCB) 2-arachidonoyl glycerol (2-AG) is a substrate for α/β hydrolase domain-12 (ABHD12). Loss-of-function mutations of ABHD12 are associated with the neurodegenerative disorder polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC). ABHD12 knockout (KO) mice show PHARC-like behaviors in older adulthood. Here, we test the hypothesis that ABHD12 deletion age-dependently regulates bioactive lipids in the CNS. Lipidomics analysis of the brainstem, cerebellum, cortex, hippocampus, hypothalamus, midbrain, striatum and thalamus from male young (3–4 months) and older (7 months) adult ABHD12 KO and age-matched wild-type (WT) mice was performed on over 80 lipids via HPLC/MS/MS, including eCBs, lipoamines, 2-acyl glycerols, free fatty acids, and prostaglandins (PGs). Aging and ABHD12 deletion drove widespread changes in the CNS lipidome; however, the effects of ABHD12 deletion were similar between old and young mice, meaning that many alterations in the lipidome precede PHARC-like symptoms. AA-derived lipids were particularly sensitive to ABHD12 deletion. 2-AG increased in the striatum, hippocampus, cerebellum, thalamus, midbrain, and brainstem, whereas the eCB N-arachidonoyl ethanolamine (AEA) increased in all 8 brain regions, along with at least 2-PGs. Aging also had a widespread effect on the lipidome and more age-related changes in bioactive lipids were found in ABHD12 KO mice than WT suggesting that ABHD12 deletion exacerbates the effects of age. The most robust effects of aging (independent of genotype) across the CNS were decreases in N-acyl GABAs and N-acyl glycines. In conclusion, levels of bioactive lipids are dynamic throughout adulthood and deleting ABHD12 disrupts the wider lipidome, modulating multiple AA-derived lipids with potential consequences for neuropathology.
Collapse
Affiliation(s)
- Emma Leishman
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Ken Mackie
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Heather B Bradshaw
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
15
|
Yang F, Wang K, Du X, Deng H, Wu HE, Yin G, Ning Y, Huang X, Teixeira AL, de Quevedo J, Soares JC, Li X, Lang X, Zhang XY. Sex difference in the association of body mass index and BDNF levels in Chinese patients with chronic schizophrenia. Psychopharmacology (Berl) 2019; 236:753-762. [PMID: 30456540 DOI: 10.1007/s00213-018-5107-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVE Schizophrenia displays sex differences in many aspects. Decreased brain-derived neurotrophic factor (BDNF) levels have been reported to be associated with high body weight or obesity as well as other psychopathological aspects in schizophrenia patients. This study aimed to explore sex differences in the relationship between serum BDNF levels and obesity in patients with chronic schizophrenia. METHODS We recruited 132 Chinese patients with chronic schizophrenia (98 males and 34 females) and compared sex differences in the body mass index (BMI), obesity, serum BDNF levels, and their associations. Psychopathology symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). A regression model with various demographic and clinical variables was applied to predict the serum levels of BDNF. RESULTS Female patients had a higher rate of obesity and higher BMI, but lower BDNF levels than male schizophrenia patients. A significantly negative correlation was observed between BMI and BDNF levels only in female patients but not in male patients. The multiple regression model with demographic and clinical variables significantly predicted BDNF levels only in female patients, with a medium size effect. And only in female patients, BMI made a significant contribution to this prediction. CONCLUSION Our results indicate significant sex differences in the obesity, BMI, BDNF levels, and their association in chronic patients with schizophrenia, showing a significant inverse correlation between BMI and BDNF levels only in female patients. Thus, sex needs to be considered when assessing the relationship between BDNF and metabolic syndromes in schizophrenia.
Collapse
Affiliation(s)
- Fang Yang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Keming Wang
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Huiqiong Deng
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guangzhong Yin
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xingbing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - João de Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaosi Li
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - XiaoE Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, 85 Jiefang Southern Road, Taiyuan, 030001, Shanxi, China.
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
16
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
17
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
18
|
Kulas JA, Hettwer JV, Sohrabi M, Melvin JE, Manocha GD, Puig KL, Gorr MW, Tanwar V, McDonald MP, Wold LE, Combs CK. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:279-288. [PMID: 29843010 PMCID: PMC6082156 DOI: 10.1016/j.envpol.2018.05.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 05/06/2023]
Abstract
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals.
Collapse
Affiliation(s)
- Joshua A Kulas
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jordan V Hettwer
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mona Sohrabi
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Justine E Melvin
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gunjan D Manocha
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L Puig
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Matthew W Gorr
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 415, Memphis, TN, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Colin K Combs
- Department of Biomedical Sciences, UND School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
19
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. [Ultrastructural pathology of oligodendrocytes in the white matter in continuous paranoid schizophrenia: a role for microglia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:76-81. [PMID: 29053125 DOI: 10.17116/jnevro20171179176-81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Previously the authors have reported the ultrastructural pathology and deficit of oligodendrocytes in gray and white matter of the prefrontal cortex in schizophrenia. The aim of the study was to determine of the effects of microglia on the ultrastructure of oligodendrocytes in the white matter underlying the prefrontal cortex in continuous schizophrenia. MATERIAL AND METHODS Postmortem morphometric electron microscopic study of oligodendrocytes in close apposition to microglia was performed in white matter underlying the prefrontal cortex (BA10). Eleven cases of chronic continuous schizophrenia and 11 normal controls were studied. Areas of oligodendrocytes, of their nuclei and cytoplasm, volume density (Vv) and the number of mitochondria, vacuoles of endoplasmic reticulum and lipofuscin granules were estimated. Group comparison was performed using ANCOVA. RESULTS The schizophrenia group differed from the control group by paucity of ribosomes in the cytoplasm of oligodendrocytes, a significant decrease in Vv and the number of mitochondria and increase in the number of lipofuscin granules. Significant correlations between the parameters of lipofuscin granules, mitochondria and vacuoles were found only in the schizophrenia group. The number of lipofuscin granules were correlated positively with the illness duration. CONCLUSION Dystrophic alterations of oligodendrocytes attached to microglial cells were found in the white matter of the prefrontal cortex in chronic paranoid schizophrenia as compared to controls. The data obtained suggest that microglia might contribute to abnormalities of energy, lipid and protein metabolism of oligodendrocytes in schizophrenia.
Collapse
Affiliation(s)
- N A Uranova
- Mental Health Research Centre, Moscow, Russia
| | | | | | | |
Collapse
|
21
|
Dean B, Gibbons A, Gogos A, Udawela M, Thomas E, Scarr E. Studies on Prostaglandin-Endoperoxide Synthase 1: Lower Levels in Schizophrenia and After Treatment with Antipsychotic Drugs in Conjunction with Aspirin. Int J Neuropsychopharmacol 2018; 21:216-225. [PMID: 30052978 PMCID: PMC5838806 DOI: 10.1093/ijnp/pyx092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background Antipsychotic drugs plus aspirin (acetylsalicylic acid), which targets prostaglandin-endoperoxide synthase 1 (PTGS1: COX1), improved therapeutic outcomes when treating schizophrenia. Our microarray data showed higher levels of PTGS1 mRNA in the dorsolateral prefrontal cortex from subjects with schizophrenia of long duration of illness, suggesting aspirin plus antipsychotic drugs could have therapeutic effects by lowering PTGS1 expression in the cortex of subjects with the disorder. Methods We used Western blotting to measure levels of PTSG1 protein in human postmortem CNS, rat and mouse cortex, and cells in culture. Results Compared with controls, PTGS1 levels were 41% lower in the dorsolateral prefrontal cortex (P<.01), but not the anterior cingulate or frontal pole, from subjects with schizophrenia. Levels of PTGS1 were not changed in the dorsolateral prefrontal cortex in mood disorders or in the cortex of rats treated with antipsychotic drugs. There was a strong trend (P=.05) to lower cortical PTGS1 10 months after mice were treated postnatally with polyinosinic-polycytidylic acid sodium salt (Poly I:C), consistent with cortical PTGS1 being lower in adult mice after exposure to an immune activator postnatally. In CCF-STTG1 cells, a human-derived astrocytic cell line, aspirin caused a dose-dependent decrease in PTGS1 that was decreased further with the addition of risperidone. Conclusions Our data suggest low levels of dorsolateral prefrontal cortex PTGS1 could be associated with the pathophysiology of schizophrenia, and improved therapeutic outcome from treating schizophrenia with antipsychotic drugs augmented with aspirin may be because such treatment lowers cortical PTGS1.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Aspirin/pharmacology
- Aspirin/therapeutic use
- Bipolar Disorder/drug therapy
- Bipolar Disorder/enzymology
- Brain/drug effects
- Brain/enzymology
- Cell Line
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Therapy, Combination
- Female
- Humans
- Male
- Mice, Inbred BALB C
- Middle Aged
- Poly I-C
- Prostaglandin-Endoperoxide Synthases/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Risperidone/pharmacology
- Risperidone/therapeutic use
- Schizophrenia/drug therapy
- Schizophrenia/enzymology
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Australia
| | | | - Andrea Gogos
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Juncal-Ruiz M, Riesco-Dávila L, de la Foz VOG, Ramírez-Bonilla M, Martínez-García O, Irure-Ventura J, Leza JC, López-Hoyos M, Crespo-Facorro B. The effect of excess weight on circulating inflammatory cytokines in drug-naïve first-episode psychosis individuals. J Neuroinflammation 2018; 15:63. [PMID: 29490673 PMCID: PMC6389043 DOI: 10.1186/s12974-018-1096-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-grade inflammation has been repeatedly associated with both excess weight and psychosis. However, no previous studies have addressed the direct effect of body mass index (BMI) on basal serum cytokines in individuals with first-episode psychosis (FEP). OBJECTIVES The aim of this study is to analyze the effect of BMI on basal serum cytokine levels in FEP patients and control subjects, separating the total sample into two groups: normal-weight and overweight individuals. METHODS This is a prospective and open-label study. We selected 75 FEP patients and 75 healthy controls with similar characteristics to patients according to the following variables: sex, age, and cannabis and tobacco consumption. Both controls and patients were separated into two groups according to their BMI: subjects with a BMI under 25 were considered as normal weight and those with a BMI equal to or more than 25 were considered as overweight. Serum levels of 21 cytokines/chemokines were measured at baseline using the Human High Sensitivity T Cell Magnetic Bead Panel protocol from the Milliplex® Map Kit. We compared the basal serum levels of the 21 cytokines between control and patient groups according to their BMI. RESULTS In the normal-weight group, IL-8 was the only cytokine that was higher in patients than in the control group (p = 0.001), whereas in the overweight group, serum levels of two pro-inflammatory cytokines (IL-6, p = 0.000; IL-1β, p = 0.003), two chemokines (IL-8, p = 0.001; MIP-1β, p = 0.001), four Th-1 and Th-2 cytokines (IL-13, p = 0.009; IL-2, p = 0.001; IL-7, p = 0.001; IL-12p70, p = 0.010), and one Type-3 cytokine (IL-23, p = 0.010) were higher in patients than in controls. CONCLUSIONS Most differences in the basal serum cytokine levels between patients and healthy volunteers were found in the overweight group. These findings suggest that excess weight can alter the homeostasis of the immune system and therefore may have an additive pro-inflammatory effect on the one produced by psychosis in the central nervous system.
Collapse
Affiliation(s)
- María Juncal-Ruiz
- Department of Psychiatry, Sierrallana Hospital, IDIVAL, School of Medicine, University of Cantabria, Torrelavega, Spain.
| | - Laura Riesco-Dávila
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Víctor Ortiz-García de la Foz
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Mariluz Ramírez-Bonilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Obdulia Martínez-García
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Juan Irure-Ventura
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain.
| |
Collapse
|
23
|
Characterization of Behavioral, Signaling and Cytokine Alterations in a Rat Neurodevelopmental Model for Schizophrenia, and Their Reversal by the 5-HT 6 Receptor Antagonist SB-399885. Mol Neurobiol 2018; 55:7413-7430. [PMID: 29423817 PMCID: PMC6096968 DOI: 10.1007/s12035-018-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Post-weaning social isolation of rats produces neuroanatomical, neurochemical and behavioral alterations resembling some core features of schizophrenia. This study examined the ability of the 5-HT6 receptor antagonist SB-399885 to reverse isolation-induced cognitive deficits, then investigated alterations in hippocampal cell proliferation and hippocampal and frontal cortical expression of selected intracellular signaling molecules and cytokines. Male Lister hooded rats (weaned on post-natal days 21-24 and housed individually or in groups of 3-4) received six i.p. injections of vehicle (1% Tween 80, 1 mL/kg) or SB-399885 (5 or 10 mg/kg) over a 2-week period starting 40 days post-weaning, on the days that locomotor activity, novel object discrimination (NOD), pre-pulse inhibition of acoustic startle and acquisition, retention and extinction of a conditioned freezing response (CFR) were assessed. Tissue was collected 24 h after the final injection for immunohistochemistry, reverse-phase protein microarray and western blotting. Isolation rearing impaired NOD and cue-mediated CFR, decreased cell proliferation within the dentate gyrus, and elevated hippocampal TNFα levels and Cdc42 expression. SB-399885 reversed the NOD deficit and partially normalized CFR and cell proliferation. These effects were accompanied by altered expression of several members of the c-Jun N-terminal Kinase (JNK) and p38 MAPK signaling pathways (including TAK1, MKK4 and STAT3). Although JNK and p38 themselves were unaltered at this time point hippocampal TAK1 expression and phosphorylation correlated with visual recognition memory in the NOD task. Continued use of this neurodevelopmental model could further elucidate the neurobiology of schizophrenia and aid assessment of novel therapies for drug-resistant cognitive symptoms.
Collapse
|
24
|
Nguyen TT, Eyler LT, Jeste DV. Systemic Biomarkers of Accelerated Aging in Schizophrenia: A Critical Review and Future Directions. Schizophr Bull 2018; 44:398-408. [PMID: 29462455 PMCID: PMC5815075 DOI: 10.1093/schbul/sbx069] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Schizophrenia is associated with increased physical morbidity and early mortality, suggesting that the aging process may be accelerated in schizophrenia. However, the biological underpinnings of these alterations in aging in schizophrenia are unclear. METHOD We conducted a detailed search of peer-reviewed empirical studies to evaluate evidence for accelerated biological aging in schizophrenia based on systemic, age-related biomarkers. We included studies that investigated differences between persons with schizophrenia and healthy comparison subjects in levels of biomarkers known to be associated with aging and examined the relationship of these biomarkers to age in the 2 groups. RESULTS Forty-two articles that met our selection criteria were reviewed. Nearly 75% reported abnormal biomarker levels among individuals with schizophrenia, including indices of inflammation, cytotoxicity, oxidative stress, metabolic health, gene expression, and receptor/synaptic function, with medium to large effect sizes reported in many studies. Twenty-nine percent of the studies observed differential age-related decline in schizophrenia. Markers of receptor/synaptic function and gene expression were most frequently differentially related to age in schizophrenia. Schizophrenia patients with greater disease severity and longer illness duration exhibited higher levels of inflammatory and oxidative stress biomarkers and shorter telomere length. CONCLUSIONS Most studies show biomarker abnormalities in schizophrenia, and there is some suggestion for accelerated aging. Although definitive interpretation is limited by cross-sectional design of the published reports, findings in the area of gene expression and synaptic function are promising and pave the way for future longitudinal studies needed to fully test this hypothesis.
Collapse
Affiliation(s)
- Tanya T Nguyen
- VA San Diego Healthcare System, Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA,Department of Psychiatry, University of California, San Diego, CA
| | - Lisa T Eyler
- VA San Diego Healthcare System, Mental Illness Research, Education, and Clinical Center (MIRECC), San Diego, CA,Department of Psychiatry, University of California, San Diego, CA
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, CA,Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA,To whom correspondence should be addressed; Estelle and Edgar Levi Chair in Aging, Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093, US; tel: 858-534-4020, fax: 858-543-5475, e-mail:
| |
Collapse
|
25
|
Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr Res 2018; 192:16-29. [PMID: 28416092 DOI: 10.1016/j.schres.2017.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this article was to perform a systematic review of studies investigating the association between peripheral levels of cytokines and C-reactive protein (CRP), cytokine gene polymorphisms and cognition in patients with schizophrenia and bipolar disorder (BD). METHODS The following databases: PubMed, CINAHL Complete, Academic Search Complete, ERIC and Health Source: Nursing/Academic Edition databases were searched according to the PRISMA guidelines. We included studies that investigated the association between peripheral levels of CRP and cytokines, cytokine gene polymorphisms and cognitive performance in schizophrenia and/or BD patients. Subsequently, quality assessment of eligible publications was performed. Results were synthesized by discussing main findings around correlations between inflammatory markers and cognition. RESULTS Most consistent results indicate worse cognitive performance in schizophrenia patients with higher CRP levels. Less consistent evidence suggests better cognitive functioning of schizophrenia patients with higher levels of tumour necrosis factor-α (TNF-α). Evidence for the involvement of other cytokines in cognitive impairment in patients with schizophrenia is less convincing due to discordant results or scarcity of studies. Due to low number of studies, it is difficult to draw conclusions on the involvement of CRP and cytokine alterations in the development of cognitive deficits in BD. Single studies suggest the role of CRP, interleukin(IL)-1 receptor antagonist, IL-6 and TNF-α with its receptors in the development of cognitive impairment in BD. CONCLUSIONS Peripheral inflammation might be related to cognitive deficits in schizophrenia and BD. Unequivocal conclusions cannot be made due to methodological heterogeneity and low number of studies investigating particular cytokines.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | | | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznan, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
26
|
Scarr E, Udawela M, Thomas EA, Dean B. Changed gene expression in subjects with schizophrenia and low cortical muscarinic M1 receptors predicts disrupted upstream pathways interacting with that receptor. Mol Psychiatry 2018; 23:295-303. [PMID: 27801890 PMCID: PMC5794886 DOI: 10.1038/mp.2016.195] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
We tested the hypothesis that, compared with subjects with no history of psychiatric illness (controls), changes in gene expression in the dorsolateral prefrontal cortex from two subgroups of subjects with schizophrenia, one with a marked deficit in muscarinic M1 receptors (muscarinic receptor-deficit schizophrenia (MRDS)), would identify different biochemical pathways that would be affected by their aetiologies. Hence, we measured levels of cortical (Brodmann area 9) mRNA in 15 MRDS subjects, 15 subjects with schizophrenia but without a deficit in muscarinic M1 receptors (non-MRDS) and 15 controls using Affymetrix Exon 1.0 ST arrays. Levels of mRNA for 65 genes were significantly different in the cortex of subjects with MRDS and predicted changes in pathways involved in cellular movement and cell-to-cell signalling. Levels of mRNA for 45 genes were significantly different in non-MRDS and predicted changes in pathways involved in cellular growth and proliferation as well as cellular function and maintenance. Changes in gene expression also predicted effects on pathways involved in amino acid metabolism, molecular transport and small-molecule biochemistry in both MRDS and non-MRDS. Overall, our data argue a prominent role for glial function in MRDS and neurodevelopment in non-MRDS. Finally, the interactions of gene with altered levels of mRNA in the cortex of subjects with MRDS suggest many of their affects will be upstream of the muscarinic M1 receptor. Our study gives new insight into the molecular pathways affected in the cortex of subjects with MRDS and supports the notion that studying subgroups within the syndrome of schizophrenia is worthwhile.
Collapse
Affiliation(s)
- E Scarr
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,CRC for Mental Health, Carlton, VIC, Australia,Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - M Udawela
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,CRC for Mental Health, Carlton, VIC, Australia
| | - E A Thomas
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, Australia
| | - B Dean
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,CRC for Mental Health, Carlton, VIC, Australia,Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia. E-mail:
| |
Collapse
|
27
|
Joaquim HPG, Costa AC, Gattaz WF, Talib LL. Kynurenine is correlated with IL-1β in plasma of schizophrenia patients. J Neural Transm (Vienna) 2018; 125:869-873. [DOI: 10.1007/s00702-018-1838-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023]
|
28
|
Abstract
Exploration of neuroimmune mechanisms is vital to the understanding of the pathogenesis and pathophysiology of mental disorders. Inflammatory and immune mechanisms are increasingly understood to underpin a number of neuropsychiatric disorders, with an ever-expanding evidence base drawn from basic science to large-scale epidemiological data. Unravelling of these mechanisms should lead to biomarker discovery and potential new avenues for therapeutics that modulate immunological mechanisms. Identification of neuroimmune biomarkers is vital to improving diagnosis, stratification and treatment of mental disorders. There is an urgent clinical need for new therapeutic approaches with poor treatment response and treatment resistance a major problem for many psychiatric disorders including depression and schizophrenia. Neurodegenerative psychiatric disorders such as Alzheimer's also have clear neuroimmune underpinnings and manifest an urgent clinical need for improvements in diagnosis and research towards transformative disease-modifying treatments. This chapter provides some background on the role of the neuroimmune system in mental illness, exploring the role for biomarkers, in addition to reviewing the current state of knowledge in this exciting field. We also reflect on the inherent challenges and methodological pitfalls faced by research in this field, including the complexity of conceptualising multidimensional mental disorders and the dynamic shifting sands of the immune system.
Collapse
|
29
|
Healy-Stoffel M, Levant B. N-3 (Omega-3) Fatty Acids: Effects on Brain Dopamine Systems and Potential Role in the Etiology and Treatment of Neuropsychiatric Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2018; 17:216-232. [PMID: 29651972 PMCID: PMC6563911 DOI: 10.2174/1871527317666180412153612] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & OBJECTIVE A number of neuropsychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder, and, to some extent, depression, involve dysregulation of the brain dopamine systems. The etiology of these diseases is multifactorial, involving genetic and environmental factors. Evidence suggests that inadequate levels of n-3 (omega- 3) polyunsaturated fatty acids (PUFA) in the brain may represent a risk factor for these disorders. These fatty acids, which are derived from the diet, are a major component of neuronal membranes and are of particular importance in brain development and function. Low levels of n-3 PUFAs in the brain affect the brain dopamine systems and, when combined with appropriate genetic and other factors, increase the risk of developing these disorders and/or the severity of the disease. This article reviews the neurobiology of n-3 PUFAs and their effects on dopaminergic function. CONCLUSION Clinical studies supporting their role in the etiologies of diseases involving the brain dopamine systems and the potential of n-3 PUFAs in the treatment of these disorders are discussed.
Collapse
Affiliation(s)
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics and the Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Pawełczyk T, Trafalska E, Pawełczyk A, Kotlicka-Antczak M. Differences in omega-3 and omega-6 polyunsaturated fatty acid consumption in people at ultra-high risk of psychosis, first-episode schizophrenia, and in healthy controls. Early Interv Psychiatry 2017; 11:498-508. [PMID: 26279283 DOI: 10.1111/eip.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 07/12/2015] [Indexed: 01/18/2023]
Abstract
AIM Supplementation with omega-3 PUFA showed efficacy in reducing the risk of transition into psychosis in UHR individuals. It is uncertain whether dietary patterns can be partly responsible for n-3 deficiencies observed in susceptible participants before the diagnosis of schizophrenia. The study was designed to assess differences in omega-3 and omega-6 PUFA consumption in healthy controls (HC), UHR participants and FES patients as well as to verify the hypothesis that dietary changes in PUFA consumption are present before active psychosis develops, that is, in UHR individuals. METHODS Dietary habits during the previous year were assessed in 34 patients at UHR of psychosis, 33 patients diagnosed with FES and 33 HC participants using a validated Food-Frequency Questionnaire and the Polish Food Composition Tables. RESULTS Significant differences in omega-3 and omega-6 PUFA intake were observed between study groups. UHR and FES groups reported significantly higher consumption of omega-6 PUFA in comparison with HC. FES patients also reported a higher consumption of alpha-linolenic acid (omega-3) in comparison with HC. No significant differences were seen in consumption of long-chain marine PUFA. CONCLUSIONS Differences in omega-6 and omega-3 PUFA consumption exist before development of psychotic symptoms, fulfilling the criteria of schizophrenia.
Collapse
Affiliation(s)
- Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Trafalska
- Nutrition Hygiene and Epidemiology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
31
|
Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. J Neuroinflammation 2017; 14:179. [PMID: 28870209 PMCID: PMC5584030 DOI: 10.1186/s12974-017-0938-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
In recent years, evidence supporting a link between inflammation and neuropsychiatric disorders has been mounting. Autism spectrum disorders (ASD) and schizophrenia share some clinical similarities which we hypothesize might reflect the same biological basis, namely, in terms of inflammation. However, the diagnosis of ASD and schizophrenia relies solely on clinical symptoms, and to date, there is no clinically useful biomarker to diagnose or monitor the course of such illnesses. The focus of this review is the central role that inflammation plays in ASD and schizophrenia. It spans from pre-clinical animal models to clinical research and excludes in vitro studies. Four major areas are covered: (1) microglia, the inflammatory brain resident myeloid cells, (2) biomarkers, including circulating cytokines, oxidative stress markers, and microRNA players, known to influence cellular processes at brain and immune levels, (3) effect of anti-psychotics on biomarkers and other predictors of response, and (4) impact of gender on response to immune activation, biomarkers, and response to anti-psychotic treatments.
Collapse
|
32
|
Di Biase MA, Zalesky A, O'keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD, Amminger GP, Nelson B, Scott AM, Hickie I, Banati R, Turkheimer F, Yaqub M, Everall IP, Pantelis C, Cropley V. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry 2017; 7:e1225. [PMID: 28850113 PMCID: PMC5611755 DOI: 10.1038/tp.2017.193] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023] Open
Abstract
We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.
Collapse
Affiliation(s)
- M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC Australia
| | - G O'keefe
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - L Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - B T Baune
- Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - C S Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - J Olver
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - P D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - G P Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - B Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - A M Scott
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - I Hickie
- Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - R Banati
- Medical Radiation Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - F Turkheimer
- Department of Neuroimaging, King’s College London, London, UK
| | - M Yaqub
- VU University Medical Center, Amsterdam, The Netherlands
| | - I P Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - V Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
33
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
34
|
Farnsworth B, Radomska KJ, Zimmermann B, Kettunen P, Jazin E, Emilsson LS. QKI6B mRNA levels are upregulated in schizophrenia and predict GFAP expression. Brain Res 2017; 1669:63-68. [PMID: 28552414 DOI: 10.1016/j.brainres.2017.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023]
Abstract
Schizophrenia is a highly heritable disorder with a heterogeneous symptomatology. Research increasingly indicates the importance of the crucial and often overlooked glial perturbations within schizophrenia. Within this study, we examined an isoform of quaking (a gene encoding an RNA-binding protein that is exclusively expressed in glial cells), known as QKI6B, and a prototypical astrocyte marker, glial fibrillary acidic protein (GFAP), postulated to be under the regulation of QKI. The expression levels of these genes were quantified across post-mortem brain samples from 55 schizophrenic individuals, and 55 healthy controls, using real-time PCR. We report, through an analysis of covariance (ANCOVA) model, an upregulation of both QKI6B, and GFAP in the prefrontal cortex of brain samples of schizophrenic individuals, as compared to control samples. Previous research has suggested that the QKI protein directly regulates the expression of several genes through interaction with a motif in the target's sequence, termed the Quaking Response Element (QRE). We therefore examined if QKI6B expression can predict the outcome of GFAP, and several oligodendrocyte-related genes, using a multiple linear regression approach. We found that QKI6B significantly predicts the expression of GFAP, but does not predict oligodendrocyte-related gene outcome, as previously seen with other QKI isoforms.
Collapse
Affiliation(s)
- B Farnsworth
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - K J Radomska
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - B Zimmermann
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - P Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - E Jazin
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - L S Emilsson
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
35
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
36
|
Neuroadaptations to antipsychotic drugs: Insights from pre-clinical and human post-mortem studies. Neurosci Biobehav Rev 2017; 76:317-335. [DOI: 10.1016/j.neubiorev.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
|
37
|
Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. The role of drebrin in neurons. J Neurochem 2017; 141:819-834. [PMID: 28199019 DOI: 10.1111/jnc.13988] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuta Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
38
|
Joseph J, Depp C, Shih PAB, Cadenhead KS, Schmid-Schönbein G. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? Front Neurosci 2017; 11:155. [PMID: 28396623 PMCID: PMC5366345 DOI: 10.3389/fnins.2017.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia.
Collapse
Affiliation(s)
- Jamie Joseph
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Colin Depp
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Psychology, VA San Diego Healthcare SystemSan Diego, CA, USA
| | - Pei-an B. Shih
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
39
|
Spielman LJ, Gibson DL, Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur J Cell Biol 2017; 96:240-253. [PMID: 28336086 DOI: 10.1016/j.ejcb.2017.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/11/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
The incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are primarily known for their metabolic function in the periphery. GLP-1 and GIP are secreted by intestinal endocrine cells in response to ingested nutrients. Both GLP-1 and GIP stimulate the production and release of insulin from pancreatic β cells as well as exhibit several growth-regulating effects on peripheral tissues. GLP-1 and GIP are also present in the brain, where they provide modulatory and anti-apoptotic signals to neurons. However, very limited information is available regarding the effects of these hormones on glia, the immune and supporting cells of the brain. Therefore, we set out to resolve whether primary human microglia and astrocytes, two subtypes of glial cells, express the GLP-1 receptor (GLP-1R) and GIP receptor (GIPR), which are necessary to detect and respond to GLP-1 and GIP, respectively. We further tested whether these hormones, similar to their effects on neuronal cells, have growth-regulating, antioxidant and anti-apoptotic effects on microglia. We show for the first time expression of the GLP-1R and the GIPR by primary human microglia and astrocytes. We demonstrate that GLP-1 and GIP reduce apoptotic death of murine BV-2 microglia through the binding and activation of the GLP-1R and GIPR, respectively, with subsequent activation of the protein kinase A (PKA) pathway. Moreover, we reveal that incretins upregulate BV-2 microglia expression of brain derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in a phosphoinositide 3-kinase (PI3K)- and PKA-dependent manner. We also show that incretins reduce oxidative stress in BV-2 microglia by inhibiting the accumulation of intracellular reactive oxygen species (ROS) and release of nitric oxide (NO), as well as by increasing the expression of the antioxidant glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1). We confirm these results by demonstrating that GLP-1 and GIP also inhibit apoptosis of primary murine microglia, and upregulate expression of BDNF by primary murine microglia. These results indicate that GLP-1 and GIP affect several critical homeostatic functions of microglia, and could therefore be tested as a novel therapeutic treatment option for brain disorders that are characterized by increased oxidative stress and microglial degeneration.
Collapse
Affiliation(s)
- Lindsay Joy Spielman
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Deanna Lynn Gibson
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
40
|
van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, Sommer IEC. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7:e1075. [PMID: 28350400 PMCID: PMC5404615 DOI: 10.1038/tp.2017.4] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- C F M G van Kesteren
- Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, University Medical Centre Utrecht, A01.146, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands. E-mail:
| | - H Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L D de Witte
- Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Neuroscience, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands,Faculty of Science, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - A R Van Gool
- Department of Psychiatry, Yulius Mental Health Organization, Barendrecht, The Netherlands
| | - P G Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - I E C Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci 2017; 84:85-92. [PMID: 28161364 DOI: 10.1016/j.mcn.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
42
|
Scola G, Duong A. Prenatal maternal immune activation and brain development with relevance to psychiatric disorders. Neuroscience 2017; 346:403-408. [PMID: 28153689 DOI: 10.1016/j.neuroscience.2017.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
Growing evidence from epidemiological studies strongly suggests maternal infection as a risk factor for psychiatric disorders including bipolar disorder, schizophrenia, and autism. Animal studies support this association and demonstrate that maternal immune activation (MIA) changes brain morphology and inflammatory cytokines in the adult offspring. Evidence for changes in inflammatory cytokines is also demonstrated in human post-mortem brain and peripheral blood studies from subjects with psychiatric disorders. This perspective briefly highlights convincing evidence from epidemiological, preclinical and human pathological studies to support the role of MIA in major psychiatric disorders. A better understanding of the link between MIA and brain development in psychiatric disorders will lead to the development of novel immunomodulatory interventions for individuals at risk for psychiatric disorders.
Collapse
Affiliation(s)
- Gustavo Scola
- Centre for Addiction and Mental Health and Department of Psychiatry at University of Toronto, Canada.
| | - Angela Duong
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| |
Collapse
|
43
|
The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 2017; 112:297-306. [DOI: 10.1016/j.neuropharm.2016.05.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022]
|
44
|
De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and Brain Plasticity in Acute Psychosis and Schizophrenia Illness Course: A Meta-Review. Front Psychiatry 2017; 8:238. [PMID: 29201010 PMCID: PMC5696326 DOI: 10.3389/fpsyt.2017.00238] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Schizophrenia poses a tremendous health, social, and economic burden upon patients and society, indicating current treatment options remain inadequate. Recent findings from several lines of evidence have pointed to the importance of immune system involvement in not only premorbid neurodevelopmental but also subsequent symptom generation and aging processes of brain change in schizophrenia. In this meta-review, we use the summarized evidence from recent quantitative systematic reviews (SRs) and meta-analyses of several subspecialties to critically evaluate the hypothesis that immune-related processes shape the symptomatic presentation and illness course of schizophrenia, both directly and indirectly through altered neuroplasticity. METHODS We performed a data search in PubMed for English language SRs and meta-analyses from 2010 to 2017. The methodological quality of the SRs was assessed with the AMSTAR instrument. In addition, we review in this paper 11 original publications on translocator protein (TSPO) positron emission tomography (PET) imaging in schizophrenia. RESULTS We reviewed 26 SRs and meta-analyses. Evidence from clinical observational studies of inflammatory or immunological markers and randomized controlled drug trials of immunomodulatory compounds as add-on in the treatment of schizophrenia suggests psychotic exacerbations are accompanied by immunological changes different from those seen in non-acute states, and that the symptoms of schizophrenia can be modified by compounds such as non-steroidal anti-inflammatory drug and minocycline. Information derived from post-mortem brain tissue analysis and PET neuroimaging studies to evaluate microglial activation have added new perspectives to the available evidence, yet these results are very heterogeneous. Each research domain comes with unique opportunities as well as inherent limitations. A better understanding of the (patho-)physiology of microglial cells and their role in neuroplasticity is key to interpreting the immune-related findings in the context of schizophrenia illness exacerbations and progression. CONCLUSION Evidence from clinical studies analyzing patients' blood and cerebrospinal fluid samples, neuroimaging and post-mortem brain tissue suggests that aberrant immune responses may define schizophrenia illness' course through altered neuroplasticity representing abnormal aging processes. Most findings are however prone to bias and confounding, and often non-specific to schizophrenia, and a multidisciplinary translational approach is needed to consolidate these findings and link them to other schizophrenia hypotheses.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center St. Norbertus, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center St. Norbertus, Duffel, Belgium
| | - Steven A Chance
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
45
|
Vikhreva OV, Rakhmanova VI, Orlovskaya DD, Uranova NA. Ultrastructural alterations of oligodendrocytes in prefrontal white matter in schizophrenia: A post-mortem morphometric study. Schizophr Res 2016; 177:28-36. [PMID: 27156647 DOI: 10.1016/j.schres.2016.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neuroimaging studies showed abnormalities in frontal white matter (WM) in schizophrenia that were associated with clinical symptoms. Previously, we reported ultrastructural alterations of myelinated fibers and reduction in the numerical density of oligodendrocytes in BA 10 WM in patients with schizophrenia. We aimed to perform a qualitative and morphometric study of the ultrastructure of oligodendrocytes in BA 10 WM in schizophrenia and in normal controls. METHODS The study was performed using electron microscopy and morphometry. Size, volume density (Vv) and the number (N) of organelles of oligodendrocytes were estimated in 21 patients with schizophrenia and 20 normal controls. The data were examined using the Kolmogorov-Smirnov test for normality. Pearson correlation analysis was performed to assess possible correlations between the parameters measured and age, post-mortem interval, neuroleptic treatment and duration of the disease. Comparisons between the schizophrenia patients and controls were performed using ANCOVA tests. RESULTS We found oligodendrocyte swelling, vacuolation, paucity of ribosomes and mitochondria and accumulation of lipofuscin granules in schizophrenia as compared to controls. Morphometry detected a significant reduction in Vv and N of mitochondria and the increase in Vv and N of lipofuscin granules and vacuoles in oligodendrocytes in the schizophrenic group as compared to controls. CONCLUSION Alterations of oligodendrocytes in schizophrenia provide evidence for the disturbance of their energy, lipid and protein metabolism in prefrontal WM. Oligodendrocyte abnormalities might disturb axonal integrity and circuitry and contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- O V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - V I Rakhmanova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - D D Orlovskaya
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Moscow, Russia.
| |
Collapse
|
46
|
Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, Tooney P, Schall U, Gardiner E, Beveridge NJ, Scott RJ, Yasawardene S, Perera A, Mendis J, Carr V, Kelly B, Cairns M, Tsuang MT, Glatt SJ. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia. Schizophr Res 2016; 176:114-124. [PMID: 27450777 PMCID: PMC5026943 DOI: 10.1016/j.schres.2016.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022]
Abstract
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia.
Collapse
Affiliation(s)
- Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Syracuse, NY, USA; Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Syracuse, NY, USA; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel S Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Syracuse, NY, USA; Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Syracuse, NY, USA; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Syracuse, NY, USA; Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Syracuse, NY, USA; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Simone de Jong
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA; MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nishantha Kumarasinghe
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia; Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka; Schizophrenia Research Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Paul Tooney
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Ulrich Schall
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Erin Gardiner
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Natalie Jane Beveridge
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Antionette Perera
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Jayan Mendis
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Vaughan Carr
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Murray Cairns
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Centre for Translational Neuroscience & Mental Health, University of Newcastle, Callaghan, Newcastle, Australia
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Syracuse, NY, USA; Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Syracuse, NY, USA; SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
47
|
Tomasik J, Rahmoune H, Guest PC, Bahn S. Neuroimmune biomarkers in schizophrenia. Schizophr Res 2016; 176:3-13. [PMID: 25124519 DOI: 10.1016/j.schres.2014.07.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder with a broad spectrum of clinical and biological manifestations. Due to the lack of objective tests, the accurate diagnosis and selection of effective treatments for schizophrenia remains challenging. Numerous technologies have been employed in search of schizophrenia biomarkers. These studies have suggested that neuroinflammatory processes may play a role in schizophrenia pathogenesis, at least in a subgroup of patients. The evidence indicates alterations in both pro- and anti-inflammatory molecules in the central nervous system, which have also been found in peripheral tissues and may correlate with schizophrenia symptoms. In line with these findings, certain immunomodulatory interventions have shown beneficial effects on psychotic symptoms in schizophrenia patients, in particular those with distinct immune signatures. In this review, we evaluate these findings and their potential for more targeted drug interventions and the development of companion diagnostics. Although currently no validated markers exist for schizophrenia patient stratification or the prediction of treatment efficacy, we propose that utilisation of inflammatory markers for diagnostic and theranostic purposes may lead to novel therapeutic approaches and deliver more effective care for schizophrenia patients.
Collapse
Affiliation(s)
- Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK; Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK; Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Solberg DK, Bentsen H, Refsum H, Andreassen OA. Lipid profiles in schizophrenia associated with clinical traits: a five year follow-up study. BMC Psychiatry 2016; 16:299. [PMID: 27562545 PMCID: PMC5000423 DOI: 10.1186/s12888-016-1006-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alterations in serum and membrane lipids may be involved in schizophrenia pathophysiology. It is not known whether lipid profiles are associated with disease severity or current symptom level. METHODS Clinical and lipid data were gathered from 55 patients with schizophrenia admitted to psychiatric emergency wards in an acute stage of the disease (T1). The patients were re-examined after 5 years at a stable phase (T2). The clinical assessments included Positive and Negative Syndrome Scale (PANSS total, positive, negative) and Global Assessment of Functioning (GAF S, symptom and F, function). Serum lipids (cholesterol and triglyceride) and membrane polyunsaturated fatty acids (PUFA, LCPUFA) were measured. Healthy controls were recruited among hospital workers. RESULTS Serum triglyceride was significantly higher in patients with schizophrenia compared to healthy controls both at T1 and T2 (p < 0.001), while serum cholesterol did not differ significantly. The levels of serum lipids in patients remained stable over time. At T1, serum lipids and symptoms were not significantly correlated. At T2, higher serum lipids were associated with more severe symptoms and poorer functioning. Higher serum lipid levels at T1 were associated with more severe symptoms and poorer functioning at T2; cholesterol with GAF-S (p < 0.05), triglyceride with PANSS total (p < 0.05), GAF-S (p < 0.01) and GAF-F (p < 0.01). Membrane lipids were significantly lower in the patient group compared to healthy controls at T1 (PUFA p < 0.001, LCPUFA p < 0.001), but not at T2. Membrane lipids were not significantly correlated with symptoms at T1, but significantly associated with negative symptoms and functioning at T2 as previously reported. CONCLUSIONS The present findings suggest different roles of membrane and serum lipids in schizophrenia pathophysiology. To further elucidate the relation of lipid biology to disease traits, replication in independent studies of longitudinal samples are warranted.
Collapse
Affiliation(s)
- Dag K. Solberg
- Institute for Military Psychiatry, Norwegian Defense Medical Services, Pb 1550 Sentrum, 0015 Oslo, Norway ,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Håvard Bentsen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Helge Refsum
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS. Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia. Biol Psychiatry 2016; 80:293-301. [PMID: 26632269 DOI: 10.1016/j.biopsych.2015.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Schizophrenia is often described as a disorder of dysconnectivity, with disruptions in neural connectivity reported on the cellular microscale as well as the global macroscale level of brain organization. How these effects on these two scales are related is poorly understood. METHODS First (part I of this study), we collated data on layer 3 pyramidal spine density of the healthy brain from the literature and cross-analyzed these data with new data on macroscale connectivity as derived from diffusion imaging. Second (part II of this study), we examined how alterations in regional spine density in schizophrenia are related to changes in white matter connectivity. Data on group differences in spine density were collated from histology reports in the literature and examined in a meta-regression analysis in context of alterations in macroscale white matter connectivity as derived from diffusion imaging data of a (separately acquired) group of 61 patients and 55 matched control subjects. RESULTS Densely connected areas of the healthy human cortex were shown to overlap with areas that display high pyramidal complexity, with pyramidal neurons that are more spinous (p = .0027) compared with pyramidal neurons in areas of low macroscale connectivity. Cross-scale meta-regression analysis showed a significant association between regional variation in level of disease-related spine density reduction in schizophrenia and regional level of decrease in macroscale connectivity (two data sets examined, p = .0028 and p = .0011). CONCLUSIONS Our study presents evidence that regional disruptions in microscale neuronal connectivity in schizophrenia go hand in hand with changes in macroscale brain connectivity.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lianne H Scholtens
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A de Reus
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
50
|
Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 2016; 21:1009-26. [PMID: 27271499 PMCID: PMC4960446 DOI: 10.1038/mp.2016.90] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a psychiatric disorder which has a lifetime prevalence of ~1%. Multiple candidate mechanisms have been proposed in the pathogenesis of schizophrenia. One such mechanism is the involvement of neuroinflammation. Clinical studies, including neuroimaging, peripheral biomarkers and randomized control trials, have suggested the presence of neuroinflammation in schizophrenia. Many studies have also measured markers of neuroinflammation in postmortem brain samples from schizophrenia patients. The objective of this study was to conduct a systematic search of the literature on neuroinflammation in postmortem brains of schizophrenia patients indexed in MEDLINE, Embase and PsycINFO. Databases were searched up until 20th March 2016 for articles published on postmortem brains in schizophrenia evaluating microglia, astrocytes, glia, cytokines, the arachidonic cascade, substance P and other markers of neuroinflammation. Two independent reviewers extracted the data. Out of 5385 articles yielded by the search, 119 articles were identified that measured neuroinflammatory markers in schizophrenic postmortem brains. Glial fibrillary acidic protein expression was elevated, lower or unchanged in 6, 6 and 21 studies, respectively, and similar results were obtained for glial cell densities. On the other hand, microglial markers were increased, lower or unchanged in schizophrenia in 11, 3 and 8 studies, respectively. Results were variable across all other markers, but SERPINA3 and IFITM were consistently increased in 4 and 5 studies, respectively. Despite the variability, some studies evaluating neuroinflammation in postmortem brains in schizophrenia suggest an increase in microglial activity and other markers such as SERPINA3 and IFITM. Variability across studies is partially explained by multiple factors including brain region evaluated, source of the brain, diagnosis, age at time of death, age of onset and the presence of suicide victims in the cohort.
Collapse
Affiliation(s)
- M O Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - R Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|