1
|
Deabji N, Fomba KW, Dos Santos Souza EJ, Mellouki A, Herrmann H. Influence of anthropogenic activities on metals, sugars and PAHs in PM 10 in the city of Fez, Morocco: Implications on air quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25238-25257. [PMID: 38468011 PMCID: PMC11024011 DOI: 10.1007/s11356-024-32740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Particulate matter (PM) is an important component in the atmosphere, affecting air quality, health, radiation balance, and global climate. To assess regional air quality in the city of Fez, an intensive field campaign was carried out in the autumn of 2019 in the Middle Atlas region of Morocco. Aerosol sampling was performed simultaneously at two urban sites in the city of Fez: (1) Fez University (FU), a sub-urban site, and (2) Fez Parc (FP), an urban site located in the city center of Fez, using PM10 collectors. Various laboratory analyses were carried out, including PM mass, trace metals, inorganic ions, OC/EC, sugar compounds, and PAHs. The results indicate that the PM10 mass (61 ng m-3) was comparable at both sites, with a 37-107 ng m-3 range. Most of the 19 investigated PAHs at the FU site (10.2 ± 6.2 ng m-3) were low-molecular-weight PAHs, while the most abundant PAHs at the FP site (6.9 ± 3.8 ng m-3) were mainly higher-molecular-weight PAHs. A diagnostic ratio analysis at both sites indicated that PAHs originated from fossil fuel combustion and traffic emissions from diesel engines, with Ant/(Ant + Phe) and Flu/(Flu + Pyr) ratios averaging 0.22 and 0.84, respectively. PMF analysis identified traffic emissions as a major source (30%), with secondary inorganic aerosols (20%) and biomass burning (14%). Polar plots highlight the dominance of local anthropogenic activities in PM pollution, with vehicular emissions, industrial activities, and biomass burning. This study shows that local sources and combustion processes significantly contribute to PM10 sources in Morocco, providing insights into air pollution mitigation in North Africa.
Collapse
Affiliation(s)
- Nabil Deabji
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Eduardo José Dos Santos Souza
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Abdelwahid Mellouki
- Université Mohammed VI Polytechnique (UM6P), Lot 660 Hay Moulay Rachid, 43150, Ben Guerir, Morocco
- Institut de Combustion Aérothermique Réactivité Et Environnement, OSUC-CNRS, 1C Avenue de La Recherche Scientifique, 45071, CEDEX 2, Orléans, France
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Wang N, Zhou L, Feng M, Song T, Zhao Z, Song D, Tan Q, Yang F. Progressively narrow the gap of PM 2.5 pollution characteristics at urban and suburban sites in a megacity of Sichuan Basin, China. J Environ Sci (China) 2023; 126:708-721. [PMID: 36503796 DOI: 10.1016/j.jes.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.
Collapse
Affiliation(s)
- Ning Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Tianli Song
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoran Zhao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Wei W, Qi J, Yin Y, Gong J, Yao X. Characteristics of inhalable bioaerosols on foggy and hazy days and their deposition in the human respiratory tract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119593. [PMID: 35680068 DOI: 10.1016/j.envpol.2022.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric bioaerosols contain live and dead biological components that can enter the human respiratory tract (HRT) and affect human health. Here, the total microorganisms in a coastal megacity, Qingdao, were characterized on the basis of long-term observations from October 2013 to January 2021. Particular attention was given to the size dependence of inhalable bioaerosols in concentration and respiratory deposition in different populations on foggy and hazy days. Bioaerosol samples stained with 4,6-diamidino-2-phenylindole (DAPI) were selected to measure the total airborne microbe (TAM) concentrations with an epifluorescence microscope, while a multiple-path particle dosimetry model was employed to calculate respiratory deposition. The mean TAM concentrations in the particle size range of 0.65-1.1 μm (TAM0.65-1.1) were 1.23, 2.02, 1.60 and 2.33 times those on sunny reference days relative to the corresponding values on days with slight, mild, moderate and severe levels of haze, respectively. The mean concentration of TAMs in the particle size range of 0.65-2.1 μm (TAM0.65-2.1) on severely hazy days was (2.02 ± 3.28) × 105 cells/m3, with a reduction of 4.16% relative to that on the reference days. The mean TAM0.65-2.1 concentration changed from (1.50 ± 1.37) × 105 cells/m3 to (1.76 ± 1.36) × 105 cells/m3, with TAM0.65-1.1 increasing from (7.91 ± 7.97) × 104 cells/m3 to (1.76 ± 1.33) × 105 cells/m3 on days with light fog days and medium fog, respectively. The modeling results showed that the majority of TAM0.65-2.1 deposition occurred in the extrathoracic (ET) region, followed by the alveolar (AL) region. When different populations were examined separately, the deposition doses (DDs) in adult females and in children ranked at the minimum value (6.19 × 103 cells/h) and maximum value (1.08 × 104 cells/h), respectively. However, the inhalation risks on polluted days, such as hazy, foggy and mixed hazy-foggy (HF) days, were still below the threshold for adverse impacts on human health.
Collapse
Affiliation(s)
- Wenshu Wei
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| | - Yidan Yin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jing Gong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| |
Collapse
|
4
|
Marynowski L, Simoneit BRT. Saccharides in atmospheric particulate and sedimentary organic matter: Status overview and future perspectives. CHEMOSPHERE 2022; 288:132376. [PMID: 34600018 DOI: 10.1016/j.chemosphere.2021.132376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Saccharides are omnipresent compounds in terrestrial and marine ecosystems. Since the 2000s, their role in environmental and geochemical studies has significantly increased, but only anhydrosaccharides (mainly levoglucosan) have been reviewed. Here we present the wider knowledge about saccharides in organic matter of aerosols, bottom sediments, soils, dust, and sedimentary rocks. The main purpose here is to characterize the possible sources of saccharides, as well as sacharol formation, seasonal variability, and the possible applications in environmental and paleoenvironmental interpretations. Different saccharide sources were designated, including biomass burning, and particulate matter such as pollen, spores, lichen, and fungi, as well as polysaccharide decomposition as possible inputs of monosaccharides. The main focus was on the most common saccharides encountered in environmental samples and sedimentary rocks. These are the mono- and disaccharides glucose, fructose, sucrose, and trehalose, and sacharols arabitol and mannitol. The anhydrosaccharides levoglucosan, mannosan, and galactosan were evaluated as ancient wildfire indicators and industrialization tracers found in lacustrine sediments starting from Pleistocene to contemporary deposits. However, other anhydrosaccharides like xylosan and arabinosan were also found as products of fossil wood burning. These anhydrosaccharides have the potential to be further tracers of hemicellulose burning. Additional recommendations are proposed for future research, including environmental and paleoenvironmental topics that need to be addressed.
Collapse
Affiliation(s)
- Leszek Marynowski
- Faculty of Earth Sciences, University of Silesia in Katowice, Ul., Będzińska 60, 41-200, Sosnowiec, Poland.
| | - Bernd R T Simoneit
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
5
|
Kobziar LN, Vuono D, Moore R, Christner BC, Dean T, Betancourt D, Watts AC, Aurell J, Gullett B. Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome. ISME COMMUNICATIONS 2022; 2:8. [PMID: 37938277 PMCID: PMC9723787 DOI: 10.1038/s43705-022-00089-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 04/29/2023]
Abstract
The atmosphere contains a diverse reservoir of microbes but the sources and factors contributing to microbial aerosol variability are not well constrained. To advance understanding of microbial emissions in wildfire smoke, we used unmanned aircraft systems to analyze the aerosols above high-intensity forest fires in the western United States. Our results show that samples of the smoke contained ~four-fold higher concentrations of cells (1.02 ± 0.26 × 105 m-3) compared to background air, with 78% of microbes in smoke inferred to be viable. Fivefold higher taxon richness and ~threefold enrichment of ice nucleating particle concentrations in smoke implies that wildfires are an important source of diverse bacteria and fungi as well as meteorologically relevant aerosols. We estimate that such fires emit 3.71 × 1014 microbial cells ha-1 under typical wildfire conditions in western US forests and demonstrate that wildland biomass combustion has a large-scale influence on the local atmospheric microbial assemblages. Given the long-range transport of wildfire smoke emissions, these results expand the concept of a wildfire's perimeter of biological impact and have implications to biogeography, gene flow, the dispersal of plant, animal, and human pathogens, and meteorology.
Collapse
Affiliation(s)
- Leda N Kobziar
- Department of Natural Resources and Society, University of Idaho, Coeur d'Alene, ID, 83814, USA.
| | - David Vuono
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Rachel Moore
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
- Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Brent C Christner
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy Dean
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Doris Betancourt
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| | - Adam C Watts
- Pacific Wildland Fire Sciences Laboratory, USDA Forest Service, Seattle, WA, 98103, USA
| | - Johanna Aurell
- University of Dayton Research Institute, 300 College Park, Dayton, OH, 45469, USA
| | - Brian Gullett
- U. S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
6
|
Haque MM, Verma SK, Deshmukh DK, Kunwar B, Miyazaki Y, Kawamura K. Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. CHEMOSPHERE 2021; 279:130540. [PMID: 33895672 DOI: 10.1016/j.chemosphere.2021.130540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Total suspended particulate (TSP) samples were collected in a deciduous broadleaf forest in Sapporo, Hokkaido, Japan, from January to December 2010 to understand the molecular composition and abundance of sugar compounds (SCs) in atmospheric aerosols. We analyzed the samples for anhydrosugars, primary sugars, and sugar alcohols using a gas chromatograph-mass spectrometer. The annual mean concentrations of total SCs ranged from 16.1 to 1748 ng m-3 (avg. 311 ng m-3) with maxima in spring (avg. 484 ng m-3) and minima in winter (avg. 28.2 ng m-3). Primary sugars and sugar alcohols followed the seasonal pattern of total SCs. High levels of anhydrosugars in winter (avg. 22.9 ng m-3) suggest a contribution of biomass burning from domestic heating due to lower ambient temperature. The high levels of arabitol and mannitol in spring followed by summer and autumn denote the contribution from multiple sources, i.e., growing vegetation and fungal spores in Sapporo forest. We observed an enhanced contribution of bioaerosols emitted from plant blossoms in spring and leaf decomposition in autumn. The identical seasonal trends of glucose and trehalose implied their similar sources in forest aerosols. Conversely, the highest concentration of sucrose in spring was due to the pollen emissions by blooming plants. Positive matrix factorization (PMF) analyses of the SCs suggested that organic aerosols in the deciduous forest are associated with the emissions from multiple sources, including vegetation, microbes, pollens, and wintertime biomass burning. The PMF analysis also suggested that vegetation is the primary carbon source in the forest atmosphere. The diagnostic mass ratios of levoglucosan to mannosan demonstrated the dominance of softwood burning. We noted that the meteorological parameters substantially affect the emission sources and seasonal concentrations of SCs in the deciduous forest.
Collapse
Affiliation(s)
- Md Mozammel Haque
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Santosh Kumar Verma
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; State Forensic Science Laboratory, Home Department, Government of Chhattisgarh, Raipur, 491001, India
| | - Dhananjay K Deshmukh
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Yuzo Miyazaki
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan.
| |
Collapse
|
7
|
Li X, Hussain SA, Sobri S, Md Said MS. Overviewing the air quality models on air pollution in Sichuan Basin, China. CHEMOSPHERE 2021; 271:129502. [PMID: 33465622 DOI: 10.1016/j.chemosphere.2020.129502] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Most developing countries in the world face the common challenges of reducing air pollution and advancing the process of sustainable development, especially in China. Air pollution research is a complex system and one of the main methods is through numerical simulation. The air quality model is an important technical method, it allows researchers to better analyze air pollutants in different regions. In addition, the SCB is a high-humidity and foggy area, and the concentration of atmospheric pollutants is always high. However, research on this region, one of the four most polluted regions in China, is still lacking. Reviewing the application of air quality models in the SCB air pollution has not been reported thoroughly. To fill these gaps, this review provides a comprehensive narration about i) The status of air pollution in SCB; ii) The application of air quality models in SCB; iii) The problems and application prospects of air quality models in the research of air pollution. This paper may provide a theoretical reference for the prevention and control of air pollution in the SCB and other heavily polluted areas in China and give some1inspirations for air pollution forecast in other countries with complex terrain.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Yi Y, Meng J, Hou Z, Wang G, Zhou R, Li Z, Li Y, Chen M, Liu X, Li H, Yan L. Contrasting compositions and sources of organic aerosol markers in summertime PM 2.5 from urban and mountainous regions in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144187. [PMID: 33418249 DOI: 10.1016/j.scitotenv.2020.144187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Although the chemical compositions and sources of organic aerosols (OAs) have been extensively investigated at the summit of Mt. Tai in the North China Plain (NCP), their vertical distributions and characterizations in the Mt. Tai region is not well known. To better understand the vertical variations of OAs in the urban and mountainous atmosphere, PM2.5 samples were collected simultaneously on a daytime/nighttime basis at two sites of different altitudes (Taian urban site: 20 m above ground; the summit of Mt. Tai: 1534 m a.s.l.) during the summer of 2016. The concentrations of all the determined chemical compounds (e.g., OC, EC, inorganic ions, saccharides, n-alkanes, PAHs and hopanes) except for biogenic secondary organic aerosol (BSOA) tracers decreased with the increase in sampling height, indicating the relatively larger contribution of anthropogenic pollutants to OAs at the lower heights. The relatively low concentration levels of biomass burning tracers (e.g., levoglucosan, galactosan and mannosan) and the insignificant correlations of levoglucosan with carbonaceous species demonstrated a negligible effect of biomass burning on the mountaintop atmosphere. The enhanced concentrations of BSOA tracers were observed with the increase of height, largely due to the more intensive secondary oxidation of volatile organic compounds (VOCs) under the stronger radiation conditions at the summit. The daytime concentrations of carbonaceous species, primary sugars, sugar alcohols, PAHs and low molecular weight n-alkanes were significantly higher than those in nighttime at Mt. Tai, suggesting that these chemical compounds at the summit of Mt.Tai aerosols were transported from the ground surface by valley breezes in daytime. There was no correlation between BSOA tracers and relative humidity (RH) or liquid water content (LWC) at both the sites, because both the high RH and LWC can suppress the acid-catalyzed formation of BSOA due to the dilution of the aerosol acidity.
Collapse
Affiliation(s)
- Yanan Yi
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China.
| | - Zhanfang Hou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China
| | - Ruiwen Zhou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Zheng Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Yuanyuan Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Min Chen
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Xiaodi Liu
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China
| | - Hongji Li
- College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China
| | - Li Yan
- Chinese Academy for Environmental Planning, Beijing 100012, China
| |
Collapse
|
9
|
Samaké A, Martins JMF, Bonin A, Uzu G, Taberlet P, Conil S, Favez O, Thomasson A, Chazeau B, Marchand N, Jaffrezo JL. Variability of the Atmospheric PM 10 Microbiome in Three Climatic Regions of France. Front Microbiol 2021; 11:576750. [PMID: 33519725 PMCID: PMC7838387 DOI: 10.3389/fmicb.2020.576750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023] Open
Abstract
Primary Biogenic Organic Aerosols (PBOA) were recently shown to be produced by only a few types of microorganisms, emitted by the surrounding vegetation in the case of a regionally homogeneous field site. This study presents the first comprehensive description of the structure and main sources of airborne microbial communities associated with temporal trends in Sugar Compounds (SC) concentrations of PM10 in 3 sites under a climatic gradient in France. By combining sugar chemistry and DNA Metabarcoding approaches, we intended to identify PM10-associated microbial communities and their main sources at three sampling-sites in France, under different climates, during the summer of 2018. This study accounted also for the interannual variability in summer airborne microbial community structure (bacteria and fungi only) associated with PM10-SC concentrations during a 2 consecutive years’ survey at one site. Our results showed that temporal changes in PM10-SC in the three sites are associated with the abundance of only a few specific taxa of airborne fungi and bacterial. These taxa differ significantly between the 3 climatic regions studied. The microbial communities structure associated with SC concentrations of PM10 during a consecutive 2-year study remained stable in the rural area. Atmospheric concentration levels of PM10-SC species varied significantly between the 3 study sites, but with no clear difference according to site typology (rural vs. urban), suggesting that SC emissions are related to regional rather than local climatic characteristics. The overall microbial beta diversity in PM10 samples is significantly different from that of the main vegetation around the urban sites studied. This indicates that the airborne microorganisms at these urban sites are not solely from the immediate surrounding vegetation, which contrasts with observations at the scale of a regionally homogeneous rural site in 2017. These results improve our understanding of the spatial behavior of tracers of PBOA emission sources, which need to be better characterized to further implement this important mass fraction of Organic Matter (OM) in Chemical Transport models (CTM).
Collapse
Affiliation(s)
- Abdoulaye Samaké
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean M F Martins
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Aurélie Bonin
- University Grenoble Alpes, CNRS, LECA (UMR 5553), BP 53, Grenoble, France
| | - Gaëlle Uzu
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Pierre Taberlet
- University Grenoble Alpes, CNRS, LECA (UMR 5553), BP 53, Grenoble, France
| | - Sébastien Conil
- ANDRA DRD/OPE Observatoire Pérenne de l'Environnement, Bure, France
| | - Olivier Favez
- INERIS, Parc Technologique Alata, BP 2, Verneuil-en-Halatte, France
| | | | | | | | - Jean-Luc Jaffrezo
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| |
Collapse
|
10
|
Chen J, Shi C, Li Y, Ni H, Zeng J, Lu R, Zhang L. Effects of short-term exposure to ambient airborne pollutants on COPD-related mortality among the elderly residents of Chengdu city in Southwest China. Environ Health Prev Med 2021; 26:7. [PMID: 33435864 PMCID: PMC7805042 DOI: 10.1186/s12199-020-00925-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has become a severe global burden in terms of both health and the economy. Few studies, however, have thoroughly assessed the influence of air pollution on COPD-related mortality among elderly people in developing areas in the hinterland of southwestern China. This study is the first to examine the association between short-term exposure to ambient airborne pollutants and COPD-related mortality among elderly people in the central Sichuan Basin of southwestern China. Methods Data on COPD-related mortality among elderly people aged 60 and older were obtained from the Population Death Information Registration and Management System (PDIRMS). Data on airborne pollutants comprised of particulate matter < 2.5 μm in aerodynamic diameter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were derived from 23 municipal environmental monitoring sites. Data on weather conditions, including daily mean temperature and relative humidity, were obtained from the Chengdu Meteorological Bureau. All data were collected from January 1, 2015, to December 31, 2018. A quasi-Poisson general additive model (GAM) was utilized to assess the effects of short-term exposure to airborne pollutants on COPD-related mortality among elderly people. Results A total of 61,058 COPD-related deaths of people aged 60 and older were obtained. Controlling the influences of daily temperature and relative humidity, interquartile range (IQR) concentration increases of PM2.5 (43 μg/m3), SO2 (8 μg/m3), NO2 (18 μg/m3), CO (0.4 mg/m3), and O3 (78 μg/m3) were associated with 2.7% (95% CI 1.0–4.4%), 4.3% (95% CI 2.1–6.4%), 3.6% (95% CI 1.7–5.6%), 2.7% (95% CI 0.6–4.8%), and 7.4% (95% CI 3.6–11.3%) increases in COPD-related mortality in people aged 60 and older, respectively. The exposure-response curves between each pollutant and the log-relative risk of COPD-related mortality exhibited linear relationships. Statistically significant differences in the associations between pollutants and COPD-related mortality were not observed among sociodemographic factors including age, gender, and marital status. The effects of O3 remained steady after adjusting for PM2.5, SO2, NO2, and CO each time in the two-pollutant models. Conclusions Increased concentrations of ambient airborne pollutants composed of PM2.5, SO2, NO2, O3, and CO were significantly and positively associated with COPD-related mortality in the central Sichuan Basin, which is located in the hinterland of southwestern China. The adverse effects of O3 were stable, a finding that should receive more attention. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00925-x.
Collapse
Affiliation(s)
- Jianyu Chen
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China.
| | - Chunli Shi
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Yang Li
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Hongzhen Ni
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Jie Zeng
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Rong Lu
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Li Zhang
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
11
|
Wang T, Huang RJ, Li Y, Chen Q, Chen Y, Yang L, Guo J, Ni H, Hoffmann T, Wang X, Mai B. One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140689. [PMID: 32663684 DOI: 10.1016/j.scitotenv.2020.140689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Organic aerosol (OA) is a major component of fine particulate matter (PM); however, only 10%-30% of OA have been identified as individual compounds, and some are used as markers to trace the sources and formation mechanisms of OA. The temporal and spatial coverage of these OA markers nonetheless remain inadequately characterized. This study presents a year-long measurement of 92 organic markers in PM2.5 samples collected at an urban site in Beijing from 2014 to 2015. Saccharides were the most abundant (340.1 ng m-3) species detected, followed by phthalic acids (283.4 ng m-3). In summer, high proportions (8%-24%) of phthalic acids, n-alkanes, fatty acids, and n-alcohols indicate dominant contributions of biogenic emission and atmospheric oxidation to OA in Beijing. In winter, when anthropogenic sources prevail, saccharides, polycyclic aromatic hydrocarbons, and hopanes are more prominent (4%-25%). The spatial distributions of these OA markers in China show higher concentrations in northern cities (mainly from coal combustion and biomass burning) than in southern cities (mainly from vehicular emission). The inter-annual variations of OA markers, except for hopanes, from 2001 to 2015 suggest significant alleviation of the primary OA pollution in Beijing, with an average reduction of 35%-89% compared with those before 2008. The diagnostic ratio analyses between OA markers indicate that contributions from coal combustion and biomass burning decreased, whereas those from vehicular emission increased. Increasingly large vehicle fleets have increased hopane concentrations since 2008, but the levels were 35% lower in 2015 than those in 2010-2011 because of the tightening of emission controls for vehicles. This study provides a long-term and geographical comparison (from Beijing to other locations in China and beyond) of OA markers, demonstrating the temporal and spatial variations in primary OA, and calls for more studies on secondary OA.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Organic Geochemistry and Guangdong, Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau 999078, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong, Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong, Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME JOURNAL 2020; 15:461-472. [PMID: 33009511 DOI: 10.1038/s41396-020-00788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022]
Abstract
The environmental sources of microbial aerosols and processes by which they are emitted into the atmosphere are not well characterized. In this study we analyzed microbial cells and biological ice nucleating particles (INPs) in smoke emitted from eight prescribed wildland fires in North Florida. When compared to air sampled prior to ignition, samples of the air-smoke mixtures contained fivefold higher concentrations of microbial cells (6.7 ± 1.3 × 104 cells m-3) and biological INPs (2.4 ± 0.91 × 103 INPs m-3 active at temperatures ≥ -15 °C), and these data significantly positively correlated with PM10. Various bacteria could be cultured from the smoke samples, and the nearest neighbors of many of the isolates are plant epi- and endophytes, suggesting vegetation was a source. Controlled laboratory combustion experiments indicated that smoke emitted from dead vegetation contained significantly higher numbers of cells, INPs, and culturable bacteria relative to the green shrubs tested. Microbial viability of smoke aerosols based on formazan production and epifluorescent microscopy revealed no significant difference in the viable fraction (~80%) when compared to samples of ambient air. From these data, we estimate each fire aerosolized an average of 7 ± 4 × 109 cells and 2 ± 1 × 108 biological INPs per m2 burned and conclude that emissions from wildland fire are sources of viable microbial aerosols to the atmosphere.
Collapse
|
13
|
Wei M, Li M, Xu C, Xu P, Liu H. Pollution characteristics of bioaerosols in PM 2.5 during the winter heating season in a coastal city of northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27750-27761. [PMID: 32399880 DOI: 10.1007/s11356-020-09070-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Frequent heavy air pollution occurred during the winter heating season of northern China. In this study, PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) was collected from a coastal city of China during the winter heating season from January 1 to March 31, 2018, and the soluble ions, organic carbon (OC), elemental carbon (EC), bacterial, endotoxin, and fungal concentration in PM2.5 were analyzed. During the winter heating season, PM2.5 and bioaerosols increased on polluted days, and the secondary inorganic ions, including NO3-, NH4+, and SO42-, increased significantly. Meteorological factors, such as wind direction and wind speed, had major impacts on the distributions of PM2.5 and bioaerosols. Pollutant concentration was high when there was a westerly wind with the speed of 3-6 m/s from inland area. Using the air mass backward trajectories and principal component analysis, we elucidate the potential origins of bioaerosol in PM2.5. The backward trajectory suggested that air mass for polluted samples (PM2.5 > 75 μg/m3) commonly originated from continent (9.62%), whereas air masses for clean samples (PM2.5 < 35 μg/m3) were mainly from marine (56.73%). The interregional transport of pollutants from continental area contributed most to PM2.5. Principal component analysis of the water-soluble ions and bioaerosol indicated that air pollution of the coastal city was greatly affected by coal combustion, biomass burning, and regional transmission of high-intensity pollutants from continent. Among that, interregional transport, biomass burning, and dust from soil and plants were main sources of bioaerosol. Our findings provide important insights into the origins and characteristics of bioaerosol in PM2.5 during the winter heating season of the coastal city in northern China.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Mingyan Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
14
|
Abstract
Biomass combustion is known to be one of the main contributors to air pollution. However, the influence of biomass burning on the distribution of viable bacterial and fungal aerosols is uncertain. This study aimed to examine survivability of bacteria and fungi in the post-combustion products, and to investigate the aerosolization of viable cells during combustion of different types of organic materials. Laboratory experiments included a small-scale combustion of organic materials contaminated with microorganisms in order to determine the survivability of microbes in the combustion products and the potential aerosolization of viable cells during combustion. Field experiments were completed during intentional and prescribed biomass burning events in order to investigate the aerosolization mechanisms that are not available at the laboratory scale. Laboratory experiments did not demonstrate aerosolization of microorganisms during biomass combustion. However, the relatively high survival rate of bacteria in the combustion products ought to be accounted for, as the surviving microorganisms can potentially be aerosolized by high velocity natural air flows. Field investigations demonstrated significant increase in the bioaerosol concentration above natural background during and after biomass combustion.
Collapse
|
15
|
Zhao Y, Ren H, Deng J, Li L, Hu W, Ren L, Yue S, Fan Y, Wu L, Li J, Sun Y, Wang Z, Akimoto H, Zeng X, Cheng Y, Kong S, Su H, Cheng Y, Kawamura K, Fu P. High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134475. [PMID: 31759721 DOI: 10.1016/j.scitotenv.2019.134475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Organic molecular composition of fine aerosols in the free troposphere is poorly understood. Here, PM2.5 (particles with aerodynamic diameters ≤ 2.5 μm) samples were collected at the summit of Mt. Emei (3080 m a.s.l.) in the Southwestern China on a daytime and nighttime basis during summer 2016 (June-July). The samples were analyzed by solvent-extraction followed by derivatization and gas chromatography/mass spectrometry (GC/MS). Four classes of organic compounds, i.e. n-alkanes, fatty acids, saccharides and lignin/resin acids were measured quantitatively. Fatty acids were found to be the most abundant species with an average concentration of 401 ± 419 ng m-3 (range 25.7-1490 ng m-3) in the daytime, similar to the average concentration at night (399 ± 447 ng m-3, 19.6-1970 ng m-3). However, the concentrations of biomass burning tracers (e.g., levoglucosan), primary biological aerosol tracers (e.g., mannitol and arabitol) and low molecular weight n-alkanes derived from fossil fuel combustion in daytime samples were obviously higher than those in nighttime samples. The results suggest that valley breezes transported a large number of aerosols and their precursors from the ground surface to the summit of Mt. Emei in the daytime. Estimated with tracer-based methods, the contributions of biogenic primary sources (plant debris, fungal spore, and biomass burning) to organic carbon was in the range of 3.28-83.5% (22.0 ± 17.5%) in the daytime and 3.45-37.4% (10.9 ± 8.97%) at night. As the largest contributor, biomass burning was an important anthropogenic/natural source of aerosol particles in the free troposphere over Mt. Emei. CAPSULE: Valley/mountain breeze is an important constraint to the temporal variations in organic aerosols over Mt. Emei.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hong Ren
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Linjie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wei Hu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lujie Ren
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yanbing Fan
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Libin Wu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hajime Akimoto
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Xin Zeng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan 430074, China
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Yafang Cheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Accessing the Life in Smoke: A New Application of Unmanned Aircraft Systems (UAS) to Sample Wildland Fire Bioaerosol Emissions and Their Environment. FIRE-SWITZERLAND 2019. [DOI: 10.3390/fire2040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wildland fire is a major producer of aerosols from combustion of vegetation and soils, but little is known about the abundance and composition of smoke’s biological content. Bioaerosols, or aerosols derived from biological sources, may be a significant component of the aerosol load vectored in wildland fire smoke. If bioaerosols are injected into the upper troposphere via high-intensity wildland fires and transported across continents, there may be consequences for the ecosystems they reach. Such transport would also alter the concept of a wildfire’s perimeter and the disturbance domain of its impact. Recent research has revealed that viable microorganisms are directly aerosolized during biomass combustion, but sampling systems and methodology for quantifying this phenomenon are poorly developed. Using a series of prescribed fires in frequently burned forest ecosystems, we report the results of employing a small rotary-wing unmanned aircraft system (UAS) to concurrently sample aerosolized bacteria and fungi, particulate matter, and micrometeorology in smoke plumes versus background conditions. Airborne impaction-based bioaerosol sampling indicated that microbial composition differed between background air and smoke, with seven unique organisms in smoke vs. three in background air. The air temperature was negatively correlated with the number of fungal colony-forming units detected. Our results demonstrate the utility of a UAS-based sampling platform for active sampling of viable aerosolized microbes in smoke arising from wildland fires. This methodology can be extended to sample viable microbes in a wide variety of emissions sampling pursuits, especially those in hazardous and inaccessible environments.
Collapse
|
17
|
Yang W, Xie S, Zhang Z, Hu J, Zhang L, Lei X, Zhong L, Hao Y, Shi F. Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26646-26663. [PMID: 31292872 DOI: 10.1007/s11356-019-05242-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Organic carbon (OC) and elemental carbon (EC) were measured in 24 h fine particulate matter (PM2.5) samples collected from May 2015 to April 2016 at urban and rural sites in Nanchong, a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. The annual average PM2.5, OC, and EC concentrations at urban sites were 45.6-55.7, 8.5-11.5, and 2.8-3.4 μg m-3, respectively, which were similar to the corresponding values (48.3, 10.6, and 3.3 μg m-3) at the rural site. The PM2.5 concentrations displayed strong monthly variations, with the highest (78.8-105.0 μg m-3) in January or February. Likewise, daily OC and EC concentrations exhibited high values in October (only for OC) and December 2015 to February 2016. Correlation, positive matrix factorization, and concentration weighted trajectory analyses were combined to investigate the sources of carbonaceous aerosol. The results indicated that OC and EC were mainly from biomass burning (60.7% and 45.8%) and coal combustion (30.2% and 25.7%), followed by vehicle emissions and road dust. The enhanced emissions from residential coal and biofuel uses in winter and straw combustion in October contributed to higher concentrations of OC and EC during these months. The contributions of biomass burning to OC and EC were significantly higher at the rural site (69.2% and 51.8%) than urban sites (56.3-58.6% and 37.8-41.5%). In addition to local emissions, the high concentrations of OC and EC at Nanchong were also influenced by regional transport in the basin.
Collapse
Affiliation(s)
- Wenwen Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd, Beijing, 100871, China
| | - Shaodong Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd, Beijing, 100871, China.
| | - Ziquan Zhang
- Nanchong Environmental Monitoring Center, No. 118 Wannian West Rd, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Jian Hu
- Nanchong Environmental Monitoring Center, No. 118 Wannian West Rd, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lingyun Zhang
- Nanchong Environmental Monitoring Center, No. 118 Wannian West Rd, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Xiong Lei
- Nanchong Environmental Monitoring Center, No. 118 Wannian West Rd, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lijian Zhong
- Nanchong Environmental Monitoring Center, No. 118 Wannian West Rd, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yufang Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd, Beijing, 100871, China
| | - Fangtian Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd, Beijing, 100871, China
| |
Collapse
|
18
|
Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM 1.0) and fine (PM 2.5) particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:37-46. [PMID: 30594755 DOI: 10.1016/j.ecoenv.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 05/21/2023]
Abstract
The North China Plain is the agricultural heartland in China. High PM2.5 levels and elevated chemical pollutants have been observed during crop harvest seasons due to open biomass burning. Biomass burning in the wheat-harvest season may significantly deteriorate the regional air quality. The harmful ingredients in smoke particles also have severe implications for toxicity and health effects. Previous studies have illustrated the potential role of bioaerosols as ice-nuclei and cloud condensation nuclei and highlighted their influence on biochemical cycles and human health effects. In a monthly field observation campaign of biomass burning conducted at the summit of Mount Tai in July 2015, we reported the composition, potential role, size distribution of microorganisms in particulate matters PM1.0, PM2.5, and estimated their contribution to particles. The wide-range particle spectrometer suggested that the predominant particles were distributed in submicron particles (PM1.0), which resulted in a similar community structure for bacteria and fungi in PM1.0 and PM2.5. Among bacteria, the predominant Pseudomonas accounted for 18.06% and 21.29% in PM1.0 and PM2.5, respectively. Alternaria covered up to 69.01% and 72.76% of the fungal community in PM1.0 and PM2.5, respectively. A disparity between bacterial communities was identified by the abundance of rare species, such as Bacilli being higher in PM1.0 (2.4%) than in PM2.5 (1.8%), and Defluviicoccus being higher in PM2.5 (2.5%) than in PM1.0 (0.5%), which may be related to cell size and cell growth patterns. Quantitative PCR revealed that microbial cell numbers in PM2.5 were higher than in PM1.0, and that the bacterial cell number was about an order of magnitude greater than the fungal cell number. However, the mass concentration and contribution of fungi to particulate matter was much higher than that of bacteria, suggesting the underestimated role of fungi in atmospheric aerosols. Airborne microorganisms in alpine areas remained less characterized. The findings presented here illustrated the potentially important impacts on air quality and bioaerosol pollution by biomass burning, which provides an essential reference for understanding the transmission and health effects of bioaerosols.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China; Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China.
| | - Caihong Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Xianmang Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Chao Zhu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jiarong Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Ganglin Lv
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
19
|
Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. Characteristics of atmospheric bacterial and fungal communities in PM 2.5 following biomass burning disturbance in a rural area of North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2727-2739. [PMID: 30463127 DOI: 10.1016/j.scitotenv.2018.09.399] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 05/23/2023]
Abstract
Biomass burning (BB) in North China Plain has been urgent issue in recent years due to the severe environmental impaction. Bacteria and fungi are ubiquitous in particulate matter. Their taxonomic composition, concentration, ecophysiological functions have potentially important implications in atmospheric biochemical cycle and human health. However, current knowledge about airborne microbes during biomass burning period is scant. Here we investigated bacterial and fungal community composition, abundance and potential function in Yucheng, the center of the North China Plain during summer harvest season in 2014. Monthly field observation suggested serious pollution with high concentration of PM2.5 and water-soluble ions during biomass burning period. Elevated total bacterial and fungal concentration determined by real-time quantitative PCR was observed for samples during burning events. The predominant bacterial taxa were gram-negative, e.g. Acinetobacter, Cyanobacterium, Janthinobacterium, Massilia, Pseudomonas, accounted for 70.9% of total bacteria. The filamentous fungi Alternaria, Aspergillus, Cladosporium and Penicillium were predominant fungal genera. Metastats analysis showed significant disparity in terms of carbohydrate, amino acids metabolism, human and plant disease predicted by PICRUSt analysis between BB and non-BB events. Microbial community structure were mainly influenced by organic carbon and water-soluble ions (magnesium and potassium) suggested by redundancy analysis (RDA) and co-occurrence analysis. Our data yielded insights into microbial community dynamics following biomass burning disturbance. This study may provide potentially important reference for environmental, agricultural and health management.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China; Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China.
| | - Caihong Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Xianmang Xu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Chao Zhu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jiarong Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Ganglin Lv
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
20
|
Wu P, Huang X, Zhang J, Luo B, Luo J, Song H, Zhang W, Rao Z, Feng Y, Zhang J. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2649-2661. [PMID: 30478772 DOI: 10.1007/s11356-018-3630-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
To investigate the characteristics and formation mechanisms of haze pollution in the autumn season in the Sichuan Basin, hourly concentrations of water-soluble inorganic ions in PM2.5 (Na+, K +, NH4+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) and major gaseous precursors (HCl, NH3, SO2, HONO, and HNO3) were measured by a gas and aerosol collector combined with ion chromatography (GAC-IC) from September to November 2017 at an urban site in Chengdu. The average mass concentration of total water-soluble ions was 36.9 ± 29.4 μg m-3, accounting for 62.8% of PM2.5 mass. Nitrate was the most abundant ion, comprising 41.2% of the total ions, followed by sulfate (27.1%) and ammonium (18.1%), indicating the important contribution of motor vehicle emissions to PM2.5 in Chengdu. Secondary formation of inorganic ions and biomass burning emissions played a vital role in the haze pollution processes. The formation of nitrate aerosol was particularly dominant and exhibited the most substantial increase during haze processes. It was likely to be produced primarily through homogeneous reactions, whereas heterogeneous reactions dominated sulfate formation. Additionally, distinct differences in diurnal patterns of secondary inorganic ions between clean days and polluted days were observed, reflecting different formation characteristics under polluted conditions. Due to a large increase of acidic aerosols, most particles collected on polluted days were acidic, and ammonium in most samples existed mainly as NH4HSO4 and NH4NO3. Furthermore, backward-trajectory cluster analysis revealed that air masses originating from the northeast of Chengdu prevailed in the autumn season, and haze pollution was dominated mainly by short-distance transport within the Sichuan Basin.
Collapse
Affiliation(s)
- Pan Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiaojuan Huang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Bin Luo
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Jinqi Luo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongyi Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Wei Zhang
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Zhihan Rao
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Yanpeng Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jianqiang Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
21
|
Kang M, Ren L, Ren H, Zhao Y, Kawamura K, Zhang H, Wei L, Sun Y, Wang Z, Fu P. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1579-1587. [PMID: 30293040 DOI: 10.1016/j.envpol.2018.09.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Sugars and n-alkanes are important organic constituents of atmospheric fine particulate matter (PM2.5). For better understanding their sources and seasonal variations in urban atmosphere, sugar compounds (anhydrosugars, sugars and sugar alcohols) and homologue n-alkanes (C18-C37) were studied in PM2.5 samples collected from September 2013 to July 2014 in Beijing, China. In general, all measured compounds showed the lowest levels in summer. Higher concentrations of sugar compounds and n-alkanes were observed in winter, probably due to elevated combustion emissions (e.g., coal, biofuel and agricultural residue burning) and stable meteorological conditions during heating season. Levoglucosan was the major sugar species in all seasons particularly in autumn and winter, highlighting the significant contribution of biomass burning to fine organic aerosols throughout the whole year especially in cold seasons. Plant waxes contributed to n-alkanes the most in late spring (54.5%) and the least in winter (11.6%); while fossil fuel combustion had the largest contribution in winter (385 ng m-3). The weak odd-carbon predominance of n-alkanes in wintertime aerosols also suggests fossil fuel combustion as the important source of organic aerosols in the heating season. Soil resuspension, fossil fuel combustion and biomass burning, and secondary sources are the main sources of OC in PM2.5 at Beijing. The seasonal variation in source contributions indicates that meteorological condition is a key factor in controlling PM2.5 levels. Furthermore, dust storms in spring can strongly enhance the atmospheric level of fine organic matter in Beijing.
Collapse
Affiliation(s)
- Mingjie Kang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lujie Ren
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong Ren
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Hongliang Zhang
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
22
|
Variations in FINN Emissions of Particulate Matters and Associated Carbonaceous Aerosols from Remote Sensing of Open Biomass Burning over Northeast China during 2002–2016. SUSTAINABILITY 2018. [DOI: 10.3390/su10093353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various particulate matters (PM) and associated carbonaceous aerosols released from open biomass burning (including open straw burning, grass and forest fires) are major sources of atmospheric pollutants. Northeast China is a central region with high forest and grass coverage, as well as an intensive agricultural area. In this study, the FINN (Fire INventory from Ncar) emission data was used to analyze the spatiotemporal variations of PM and associated carbonaceous aerosol component (PM2.5, PM10, OC and BC) emissions from open biomass burning in Northeast China from 2002 to 2016. The results show that the total amount of annual PM2.5, PM10, OC and BC emissions was estimated to be 59.0, 70.6, 31.5, and 4.3 kilotons, respectively, from open biomass burning over Northeast China, averaged from 2002 to 2016, with significant inter-annual variations in amplitudes from 28.0 to 122.3, 33.7 to 144.1, 15.0 to 65.0, and 2.1 to 8.6 kilotons. The regional PM2.5, PM10, OC and BC emissions showed significant seasonal variations with highest emissions in spring (with a seasonal peak in April), followed by autumn (with a seasonal peak in October), summer, and winter in Northeast China; high emissions were concentrated in the forests and grasslands with natural fires, as well as over agricultural areas with crop straw burning from human activities. The PM2.5, PM10, OC and BC emissions over forest areas presented decreasing trends, while the emissions over farmlands showed increasing trends in Northeast China during 2002–2016; this reflects on the dominance of biomass burning that shifted from forestland with natural fires to farmlands with increasing human activities. Three key meteorological drivers—strong near-surface wind speed, high air temperature and low relative humidity—were identified as having significant positive impacts on the inter-annual variations of PM2.5, PM10, OC and BC emissions from open biomass burning in Northeast China.
Collapse
|
23
|
Emygdio APM, Andrade MDF, Gonçalves FLT, Engling G, Zanetti RHDS, Kumar P. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:809-821. [PMID: 28881304 DOI: 10.1016/j.scitotenv.2017.08.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The biogenic aerosol contribution to atmospheric particulate matter (PM) mass concentration is usually neglected due to the difficulty in identifying its components, although it can be significant. In the Metropolitan Area of São Paulo (MASP)-Brazil, several studies have been performed to identify sources for PM, revealing vehicular emissions and soil re-suspension as the main identified sources. The organic fraction has been related primarily to biomass burning (BB) and fuel combustion, although there is significant presence of green areas in the city which render biogenic emissions as an additional source of organic carbon (OC). The objectives of this work are to (i) characterise the composition of the PM10 (ii) estimate the relative mass contribution of fungal spores to PM concentrations with sizes smaller than 10μm (PM10) in MASP and (iii) assess the main sources of PM10. To achieve these objectives, we measured markers of biogenic sources and BB, during the fall-winter transition, which along with other constituents, such as ions, organic/elemental carbon, elemental composition and fungal spore concentrations, help assess the PM10 sources. We used receptor models to identify distinct source-related PM10 fractions and conversion factors to convert biomarker concentrations to fungal mass. Our results show the mean contributions of fungal aerosol to PM10 and OC mass were 2% and 8%, respectively, indicating the importance of fungal spores to the aerosol burden in the urban atmosphere. Using specific rotation factor analysis, we identified the following factors contributing to PM: soil re-suspension, biogenic aerosol, secondary inorganic aerosol, vehicular emissions and BB/isoprene-related secondary organic aerosol (I-SOA). BB/I-SOA was the main source representing 28% of the PM10 mass, while biogenic aerosol explained a significant (11%) fraction of the PM10 mass as well. Our findings suggest that primary biogenic aerosol is an important fraction of PM10 mass, yet not considered in most studies.
Collapse
Affiliation(s)
- Ana Paula Mendes Emygdio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, 03828-000 São Paulo, São Paulo, Brazil; Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo, São Paulo, Brazil.
| | - Maria de Fátima Andrade
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo, São Paulo, Brazil
| | - Fabio Luiz Teixeira Gonçalves
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo, São Paulo, Brazil
| | - Guenter Engling
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Rafael Henrique de Souza Zanetti
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, 05508-090 São Paulo, São Paulo, Brazil
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Environmental Flow (EnFlo) Research Centre, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
24
|
Xu J, He J, Xu H, Ji D, Snape C, Yu H, Jia C, Wang C, Gao J. Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS. RSC Adv 2018; 8:34136-34150. [PMID: 35548813 PMCID: PMC9086710 DOI: 10.1039/c8ra04991b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Three monosaccharide anhydrides (MAs: levoglucosan, mannosan, and galactosan) and sugar alcohols (arabitol and mannitol) are widely used as organic tracers for source identification of aerosols emitted from biomass burning and fungal spores, respectively. In the past, these two types of organic tracer have been measured separately or conjointly using different analytical techniques, with which a number of disadvantages have been experienced during the application to environmental aerosol samples, including organic solvent involved extraction, time-consuming derivatization, or poor separation efficiency due to overlapping peaks, etc. Hence, in this study a more environment-friendly, effective and integrated extraction and analytical method has been developed for simultaneous determination of the above mentioned organic tracers in the same aerosol sample using ultrasonication and high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The ultrasonication assisted extraction process using ultrapure water can achieve satisfactory recoveries in the range of 100.3 ± 1.3% to 108.4 ± 1.6% for these tracers. All the parameters related to LC and MS/MS have been optimized to ensure good identification and pronounced intensity for each compound. A series of rigorous validation steps have been conducted. This newly developed analytical method using ultrasonication and HPLC-MS/MS has been successfully applied to environmental aerosol samples of different pollution levels for the simultaneous measurement of the above mentioned five organic tracers from biomass burning and fungal spores. Five organic tracers in fine aerosols can be simultaneously analysed by coupling ultrasonication and HPLC-MS/MS without a derivatization process.![]()
Collapse
Affiliation(s)
- Jingsha Xu
- Department of Chemical and Environmental Engineering
- International Doctoral Innovation Centre
- University of Nottingham Ningbo China
- Ningbo
- P. R. China
| | - Jun He
- Department of Chemical and Environmental Engineering
- International Doctoral Innovation Centre
- University of Nottingham Ningbo China
- Ningbo
- P. R. China
| | - Honghui Xu
- Zhejiang Meteorological Science Institute
- Hangzhou
- P. R. China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
- Institute of Atmospheric Physics
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Colin Snape
- Department of Chemical and Environmental Engineering
- Faculty of Engineering
- University of Nottingham
- University Park
- Nottingham NG7 2RD
| | - Huan Yu
- School of Environmental Science and Engineering
- Nanjing University of Information Science and Technology
- Nanjing
- P. R. China
| | - Chunrong Jia
- School of Public Health
- University of Memphis
- Memphis
- USA
| | - Chengjun Wang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
25
|
Li L, Tan Q, Zhang Y, Feng M, Qu Y, An J, Liu X. Characteristics and source apportionment of PM 2.5 during persistent extreme haze events in Chengdu, southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:718-729. [PMID: 28732335 DOI: 10.1016/j.envpol.2017.07.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Based on detailed data from Chengdu Plain (CP) from 6 January to 16 January, two typical haze episodes were analyzed to clarify the haze formation mechanism in winter. Weather conditions, chemical compositions, secondary pollutant transformation, optical properties of aerosols, the potential source contribution function (PSCF) and source apportionment were studied. The planetary boundary layer (PBL) height decreased distinctly during the haze episodes and restrained air pollutant vertical dispersion. As the haze worsened, the value of PBL × PM2.5 increased notably. The [NO3-]/[SO42-] ratio was 0.61, 0.76 and 0.88 during a non-haze period, episode 1 and episode 2, respectively, indicating that the mobile source of the air pollution is increasingly predominant in Chengdu. Water vapor also played a vital role in the formation of haze by accelerating the chemical transformation of secondary pollutants, leading to the hygroscopic growth of aerosols. The PSCF and backward trajectories of the air masses indicated that the pollution mainly came from the south. The secondary inorganic aerosols, vehicle emissions, coal combustion, biomass burning, industry, and dust contributed 34.1%, 24.1%, 12.7%, 12.3%, 7.6%, and 7.2% to PM2.5 masses in episode 1 and 28.9%, 23.1%, 9.4%, 9.5%, 20.3% and 7.5% in episode 2.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
26
|
Rajput P, Anjum MH, Gupta T. One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: Implications of biomass burning emissions to high-level of endotoxin exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:98-106. [PMID: 28285886 DOI: 10.1016/j.envpol.2017.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Previous studies worldwide have suggested the potential role of bioaerosols as ice-nuclei and cloud-condensation nuclei. Furthermore, their participation in regulating the global carbon cycle urges systematic studies from different environmental conditions throughout the globe. Towards this through one-year study, conducted from June 2015-May 2016, we report on atmospheric abundance and variability of viable bioaerosols, organic carbon (OC) and particles number and deduced mass concentrations from Indo-Gangetic Plain (IGP; at Kanpur). Among viable bioaerosols, the highest concentrations of Gram-positive bacteria (GPB), Gram-negative bacteria (GNB) and Fungi were recorded during December-January (Avg.: 189 CFU/m3), November (244 CFU/m3) and September months (188 CFU/m3), respectively. Annual average concentration of GPB, GNB and Fungi were 105 ± 58, 144 ± 82 and 116 ± 51 CFU/m3. Particle number concentration (PNC) associated with fine-fraction aerosols (FFA) predominates throughout the year. However, mineral dust (coarser particle) remains a perennial constituent of atmospheric aerosols over the IGP. Temporal variability records and significant positive linear relationship (p < 0.05) of GPB and GNB with OC and biomass burning derived potassium (K+BB) indicates their association with massive emissions from paddy-residue burning (PRB) and bio-fuel burning. Influence of meteorological parameters on viable bioaerosols abundance has been rigorously investigated herein. Accordingly, ambient temperature seems to be more affecting the bacteria (anti-correlation), whereas wet-precipitation (1-4 mm) relates to higher abundance of Fungi. High abundance of GNB during large-scale biomass burning emissions has implications to endotoxin exposure on human health. Field-based data-set of bioaerosols, OC, PNC and deduced mass concentrations reported herein could serve to better constraint their role in human health and climate relevance.
Collapse
Affiliation(s)
- Prashant Rajput
- Department of Civil Engineering and APTL at Centre for Environmental Science and Engineering (CESE), IIT Kanpur, Kanpur, 208 016, India
| | - Manzar Hussain Anjum
- Department of Civil Engineering and APTL at Centre for Environmental Science and Engineering (CESE), IIT Kanpur, Kanpur, 208 016, India
| | - Tarun Gupta
- Department of Civil Engineering and APTL at Centre for Environmental Science and Engineering (CESE), IIT Kanpur, Kanpur, 208 016, India.
| |
Collapse
|
27
|
Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, Guo H, Fu H, Miljevic B, Morawska L, Thai P, Lam YF, Pereira G, Ding A, Huang X, Dumka UC. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1000-1034. [PMID: 27908624 DOI: 10.1016/j.scitotenv.2016.11.025] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 05/17/2023]
Abstract
Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.
Collapse
Affiliation(s)
- Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
| | - Chunlin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Zoran Ristovski
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Andelija Milic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuantong Gu
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mohammad S Islam
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hefeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Branka Miljevic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yun Fat Lam
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, WA, 6000, Australia
| | - Aijun Ding
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Umesh C Dumka
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263001, India
| |
Collapse
|
28
|
Zangrando R, Barbaro E, Kirchgeorg T, Vecchiato M, Scalabrin E, Radaelli M, Đorđević D, Barbante C, Gambaro A. Five primary sources of organic aerosols in the urban atmosphere of Belgrade (Serbia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1441-1453. [PMID: 27450960 DOI: 10.1016/j.scitotenv.2016.06.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/26/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Biomass burning and primary biological aerosol particles (PBAPs) represent important primary sources of organic compounds in the atmosphere. These particles and compounds are able to affect climate and human health. In the present work, using HPLC-orbitrapMS, we determined the atmospheric concentrations of molecular markers such as anhydrosugars and phenolic compounds that are specific for biomass burning, as well as the concentrations of sugars, alcohol sugars and d- and l-amino acids (D-AAs and L-AAs) for studying PBAPs in Belgrade (Serbia) aerosols collected in September-December 2008. In these samples, high levels of all these biomarkers were observed in October. Relative percentages of vanillic (V), syringic compounds (S) and p-coumaric acid (PA), as well as levoglucosan/mannosan (L/M) ratios, helped us discriminate between open fire events and wood combustion for domestic heating during the winter. L-AAs and D-AAs (1% of the total) were observed in Belgrade aerosols mainly in September-October. During open fire events, mean D-AA/L-AA (D/L) ratio values of aspartic acid, threonine, phenylalanine, alanine were significantly higher than mean D/L values of samples unaffected by open fire. High levels of AAs were observed for open biomass burning events. Thanks to four different statistical approaches, we demonstrated that Belgrade aerosols are affected by five sources: a natural source, a source related to fungi spores and degraded material and three other sources linked to biomass burning: biomass combustion in open fields, the combustion of grass and agricultural waste and the combustion of biomass in stoves and industrial plants. The approach employed in this work, involving the determination of specific organic tracers and statistical analysis, proved useful to discriminate among different types of biomass burning events.
Collapse
Affiliation(s)
- Roberta Zangrando
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy.
| | - Elena Barbaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy
| | - Torben Kirchgeorg
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy; Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Lüneburg 21335, Germany
| | - Marco Vecchiato
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy
| | - Elisa Scalabrin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy
| | - Marta Radaelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy
| | - Dragana Đorđević
- Institute of Chemistry, Technology and Metallurgy - Centre of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Carlo Barbante
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy
| | - Andrea Gambaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Mestre, (VE), Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, (VE), Italy
| |
Collapse
|
29
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
30
|
Rathnayake CM, Metwali N, Baker Z, Jayarathne T, Kostle PA, Thorne PS, O'Shaughnessy PT, Stone EA. Urban Enhancement of PM 10 Bioaerosol Tracers Relative to Background Locations in the Midwestern United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:5071-5089. [PMID: 27672535 PMCID: PMC5034947 DOI: 10.1002/2015jd024538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.
Collapse
Affiliation(s)
| | - Nervana Metwali
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Zach Baker
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| | | | - Pamela A Kostle
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Patrick T O'Shaughnessy
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
31
|
Rathnayake CM, Metwali N, Baker Z, Jayarathne T, Kostle PA, Thorne PS, O'Shaughnessy PT, Stone EA. Urban Enhancement of PM 10 Bioaerosol Tracers Relative to Background Locations in the Midwestern United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016. [PMID: 27672535 DOI: 10.1002/2015jd024538.received] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.
Collapse
Affiliation(s)
| | - Nervana Metwali
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Zach Baker
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| | | | - Pamela A Kostle
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Patrick T O'Shaughnessy
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
32
|
Liang L, Engling G, Du Z, Cheng Y, Duan F, Liu X, He K. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. CHEMOSPHERE 2016; 150:365-377. [PMID: 26921589 DOI: 10.1016/j.chemosphere.2016.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen.
Collapse
Affiliation(s)
- Linlin Liang
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Guenter Engling
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - Zhenyu Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; National Research Center for Environmental Analyses and Measurements, Beijing, China
| | - Yuan Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xuyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; National Satellite Meteorological Center, China Meteorological Administration, Beijing, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Yin H, Lu B, Xu Y, Tang D, Mao X, Xiao W, Wang D, Alshawabkeh AN. Harvesting capacitive carbon by carbonization of waste biomass in molten salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8101-8108. [PMID: 24983414 DOI: 10.1021/es501739v] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Conversion of waste biomass to value-added carbon is an environmentally benign utilization of waste biomass to reduce greenhouse gas emissions and air pollution caused by open burning. In this study, various waste biomasses are converted to capacitive carbon by a single-step molten salt carbonization (MSC) process. The as-prepared carbon materials are amorphous with oxygen-containing functional groups on the surface. For the same type of waste biomass, the carbon materials obtained in Na2CO3-K2CO3 melt have the highest Brunauer-Emmett-Teller (BET) surface area and specific capacitance. The carbon yield decreases with increasing reaction temperature, while the surface area increases with increasing carbonization temperature. A working temperature above 700 °C is required for producing capacitive carbon. The good dissolving ability of alkaline carbonate molten decreases the yield of carbon from waste biomasses, but helps to produce high surface area carbon. The specific capacitance data confirm that Na2CO3-K2CO3 melt is the best for producing capacitive carbon. The specific capacitance of carbon derived from peanut shell is as high as 160 F g(-1) and 40 μF cm(-2), and retains 95% after 10,000 cycles at a rate of 1 A g(-1). MSC offers a simple and environmentally sound way for transforming waste biomass to highly capacitive carbon as well as an effective carbon sequestration method.
Collapse
Affiliation(s)
- Huayi Yin
- School of Resource and Environmental Science, Wuhan University , Wuhan 430072, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Xie SD. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:507-17. [PMID: 24394363 DOI: 10.1016/j.scitotenv.2013.12.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 05/17/2023]
Abstract
To track the chemical characteristics and formation mechanism of biomass burning pollution, the hourly variations of meteorological factors and pollutant concentrations during a heavy pollution on 18-21 May, 2012 in Chengdu are presented in this study. The episode was the heaviest and most long-lasting pollution event in the historical record of Chengdu caused by a combination of stagnant dispersion conditions and enhanced PM2.5 emission from intensive biomass burning, with peak values surpassing 500 μg m(-3). The event was characterized by three nighttime peaks, relating to the burning practice and decreased boundary layer height at night. The prevailing northeasterly wind during nighttime preferentially brought more pollutants to the urban regions from northern suburbs of Chengdu, where dense fire spots were observed. Due to the obstruction of hilly topography and weak wind speed, minor regional features were reflected from the PM10 variations in nearby cities, whereas the long-distance transport of the plume impacted extensive regions in northern and eastern China. Carbon monoxide (CO) concentrations increased by more than 200%, while exceptionally high PM2.5 levels of 190.1 and 268.4 μg m(-3) on 17 May and 18 May, were observed and showed high correlation with CO (r=0.75). The relative contribution of biomass burning smoke to organic carbon was estimated from OC/EC ratios (organic carbon/elemental carbon) and elevated to 81.3% during the episode, indicating a significant impact on urban aerosol levels. The occurrence of high PM2.5/PM10 ratios (>0.80) and K(+)/EC ratios (>1.0), along with the increased carbonaceous concentrations and their fraction in PM2.5 (>40%) and high OC/EC ratios (about 8), could be used as immediate indicators for biomass burning pollution in cities. In addition, the heavy pollution involved a mixture of anthropogenic sources, reflected from the high SOR and NOR values and increases in the EFs (enrichment factors) of Mo, Zn, Cd, and Pb.
Collapse
Affiliation(s)
- Yuan Chen
- College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd., Haidian District, Beijing 100871, PR China
| | - Shao-Dong Xie
- College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Rd., Haidian District, Beijing 100871, PR China.
| |
Collapse
|
35
|
Wang Q, Cao J, Tao J, Li N, Su X, Chen LWA, Wang P, Shen Z, Liu S, Dai W. Long-term trends in visibility and at Chengdu, China. PLoS One 2013; 8:e68894. [PMID: 23874802 PMCID: PMC3715545 DOI: 10.1371/journal.pone.0068894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/01/2013] [Indexed: 11/19/2022] Open
Abstract
Long-term (1973 to 2010) trends in visibility at Chengdu, China were investigated using meteorological data from the U.S. National Climatic Data Center. The visual range exhibited a declining trend before 1982, a slight increase between 1983 and 1995, a sharp decrease between 1996 and 2005, and some improvements after 2006. The trends in visibility were generally consistent with the economic development and implementation of pollution controls in China. Intensive PM2.5 measurements were conducted from 2009 to 2010 to determine the causes of visibility degradation. An analysis based on a modification of the IMPROVE approach indicated that PM2.5 ammonium bisulfate contributed 27.7% to the light extinction coefficient (bext ); this was followed by organic mass (21.7%), moisture (20.6%), and ammonium nitrate (16.3%). Contributions from elemental carbon (9.4%) and soil dust (4.3%) were relatively minor. Anthropogenic aerosol components (sulfate, nitrate, and elemental carbon) and moisture at the surface also were important determinants of the aerosol optical depth (AOD) at 550 nm, and the spatial distributions of both bext and AOD were strongly affected by regional topography. A Positive Matrix Factorization receptor model suggested that coal combustion was the largest contributor to PM2.5 mass (42.3%) and the dry-air light-scattering coefficient (47.7%); this was followed by vehicular emissions (23.4% and 20.5%, respectively), industrial emissions (14.9% and 18.8%), biomass burning (12.8% and 11.9%), and fugitive dust (6.6% and 1.1%). Our observations provide a scientific basis for improving visibility in this area.
Collapse
Affiliation(s)
- Qiyuan Wang
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, China
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Junji Cao
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| | - Jun Tao
- South China Institute of Environmental Sciences, SEPA, Guangzhou, China
| | - Nan Li
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Xiaoli Su
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - L. W. Antony Chen
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, United States of America
| | - Ping Wang
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Suixin Liu
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Wenting Dai
- Key Lab of Aerosol Science & Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| |
Collapse
|
36
|
Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC–MS–MS and GC–MS. Talanta 2013; 105:142-51. [DOI: 10.1016/j.talanta.2012.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 11/22/2022]
|