1
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134651. [PMID: 38843640 DOI: 10.1016/j.jhazmat.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024]
Abstract
As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
da Cunha de Medeiros P, Nunes EA, Barcelos GRM, Perobelli JE. Genotoxicity and cytotoxicity of antineoplastic drugs at environmentally relevant concentrations after long-term exposure. Toxicol Res (Camb) 2024; 13:tfae049. [PMID: 38533178 PMCID: PMC10962016 DOI: 10.1093/toxres/tfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction 5-fluorouracil (5-FU) and methotrexate (MTX) are the antineoplastic drugs most commonly used worldwide. Considered cytotoxic, these pharmaceuticals exhibit low specificity, causing damage not only to cancer cells but also to healthy cells in organisms. After being consumed and metabolized, these drugs are excreted through urine and feces, followed by wastewater treatment. However, conventional treatments do not have the capacity to completely remove these substances, risking their introduction into freshwater systems. This could pose a risk to human health even at low concentrations. Aims Thus, the present study aimed to investigate the genotoxicity, cytotoxicity, and mutagenicity of 5-FU and MTX at environmentally relevant concentrations after a long-term exposure, using adult male rats as an experimental model. Methods Male Wistar rats (70 days old) were distributed into 4 groups (n = 10/group): control, received only vehicle; MTX, received methotrexate at 10ngL-1; 5-FU received 5-fluorouracil at 10ngL-1; and MTX + 5-FU, received a combination of MTX and 5-FU at 10ngL-1 each. The period of exposure was from postnatal day (PND) 70 to PND 160, through drinking water. After that, the animals were euthanized and the samples (liver, testis, femoral bone marrow, and peripheral blood) were obtained. Results Increased DNA fragmentation was observed in the peripheral blood, liver, and testis, altering the parameters of the tail moment and tail intensity in the Comet assay. Besides, the change in the ratio between PCE and NCE indicates bone marrow suppression. Conclusion These findings warn the adverse effects for the general population worldwide chronically exposed to these drugs at trace concentration unintentionally.
Collapse
Affiliation(s)
- P da Cunha de Medeiros
- Laboratory of Experimental Toxicology – LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos 11070-100, SP, Brazil
| | - E A Nunes
- Department of Biosciences, Laboratory of Gene-Environmental Interactions in Toxicology – GENINTOX, Universidade Federal de São Paulo, XV de novembro 195, sala 614, Santos 11.010-151, SP, Brazil
| | - G R M Barcelos
- Department of Biosciences, Laboratory of Gene-Environmental Interactions in Toxicology – GENINTOX, Universidade Federal de São Paulo, XV de novembro 195, sala 614, Santos 11.010-151, SP, Brazil
| | - J E Perobelli
- Laboratory of Experimental Toxicology – LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos 11070-100, SP, Brazil
| |
Collapse
|
3
|
Das R, Ray S. Allium cepa tests: Exploring bleomycin induced cyto-genotoxicity and altered cell cycle kinetics in root tips meristematic cells. Mutat Res 2024; 828:111851. [PMID: 38382175 DOI: 10.1016/j.mrfmmm.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Bleomycin, commonly employed in treating Hodgkin's lymphoma and testicular cancer, is associated with significant pulmonary toxicity. While various studies have assessed the toxic impact of chemotherapeutic agents on aquatic and terrestrial environments, limited data exist on bleomycin's effects, especially concerning higher plants. To address this gap, we utilized the Allium cepa assays, renowned for evaluating chemical and biochemical agents' toxic effects, to investigate bleomycin's impact on the terrestrial ecosystem. Our study aimed to assess bleomycin's cyto-genotoxic effects on A. cepa root tip cells at minimal concentrations (10-40 μg mL-1) and varied exposure durations (2, 4, 6, and 24 h). Analysis of nuclear and mitotic abnormalities in bleomycin-treated A. cepa root tip cells, alongside an acridine orange-ethidium bromide double staining assay, illuminated its influence on cell viability. Additionally, agarose gel electrophoresis determined the drug's potential for DNA degradation, unveiling the underlying mechanisms of cyto-genotoxicity. Results also demonstrated a decline in the mitotic index with increased bleomycin concentrations and exposure time, elevated frequencies of various cyto-genotoxic abnormalities, including sticky chromosomes, chromatid breaks, laggards, bridges, polar deviations, nuclear lesions, and hyperchromasia. The study indicated the potential risks of bleomycin even at low concentrations and brief exposures, highlighting its severe adverse effects on genetic material of plant, potentially contributing to cell death. Consequently, this investigation unveils bleomycin's cyto-genotoxic effects on higher plant system, underscoring its threat to terrestrial ecosystems, particularly upon chronic and unmonitored exposure.
Collapse
Affiliation(s)
- Ria Das
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Golapbag, Purba Bardhaman 713104, West Bengal, India
| | - Sanjib Ray
- Molecular Biology and Genetics Unit, Department of Zoology, The University of Burdwan, Golapbag, Purba Bardhaman 713104, West Bengal, India.
| |
Collapse
|
4
|
Kelbert M, Daronch NA, Pereira CS, Cesca K, Michels C, Soares HM. Inhibitory impact of the anticancer drug doxorubicin on anaerobic microbial community. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106706. [PMID: 37837867 DOI: 10.1016/j.aquatox.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
The inhibitory effect of the anticancer drug doxorubicin (DOX) on biogas production was evaluated in short-term and long-term exposure assays. The short-term assays reached the DOX IC50 value on 648 ± 50 µg·L-1. In addition, it was found that inhibition caused by the exposure of 10×103 µg·L-1 was reversible after removing DOX from the feeding synthetic medium. Furthermore, DOX can be rapidly sorbed by the biomass (despite the low Kow), which might contribute to the inhibitory effect. The results of long-term exposure assays, when the DOX volumetric loading rate was increased from 100 µgDOX·L-1·day-1 to 200 µgDOX·L-1·day-1, showed that biogas production and COD removal decreased rapidly. However, the methanogenic Archaeas could recover from this exposure, corroborating the results on short-term exposure assays. In conclusion, DOX can play a key role in inhibiting biological wastewater treatment processes if its concentration in hospital wastewater treatment plants increases abruptly.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
5
|
Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S. Pharmaceutical residues in the ecosystem: Antibiotic resistance, health impacts, and removal techniques. CHEMOSPHERE 2023; 339:139647. [PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Puganeshwary Palaniandy
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emre Cevik
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, 1982, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| |
Collapse
|
6
|
Alimohammadi M, Tashkhourian J, Mostafapour S, Shamsipur M. A facile and eco-friendly fluorometric method for the determination of methotrexate and folic acid in biological samples based on hollow luminescent carbon dots and chemometrics method. ANAL SCI 2023; 39:1455-1464. [PMID: 37261598 DOI: 10.1007/s44211-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
A rapid, simple, and inexpensive spectrofluorimetric sensor has been developed for the simultaneous determination of methotrexate (MTX) and folic acid (FA) based on their interactions with hollow carbon dots (HCDs). Since the use of folic acid to cope with the toxic side effects of MTX in patients is essential, the simultaneous determination of these two compounds has been interesting. The results showed that MTX could quench the fluorescence of HCDs with a dynamic quenching mechanism. The sensor exhibited a linear concentration range of 1.0 × 10-6-1.9 × 10-4 mol L-1 for MTX and 1.5 × 10-5-9.4 × 10-4 mol L-1 for FA and the obtained detection limits for MTX and FA were 1.6 × 10-7 and 5.0 × 10-7 mol L-1, respectively. The applicability of the method was investigated in the analysis of the urine samples and the partial least squares (PLS) method was used for the simultaneous determination of MTX and FA.
Collapse
Affiliation(s)
| | - Javad Tashkhourian
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71456, Iran.
| | - Sara Mostafapour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71456, Iran
| | | |
Collapse
|
7
|
Rathore V, Patel S, Pandey A, Savjani J, Butani S, Dave H, Nema SK. Methotrexate degradation in artificial wastewater using non-thermal pencil plasma jet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28502-z. [PMID: 37395874 DOI: 10.1007/s11356-023-28502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
The rising global cancer rate is driving up the consumption of anticancer drugs. This causing a noticeable increase in the levels of these drugs in wastewater. The drugs are not metabolized effectively by the human body, leading to their presence in human waste, as well as in the effluent from hospitals and drug manufacturing industries. Methotrexate is a commonly used drug for treating various types of cancer. Its complex organic structure makes it difficult to degrade using conventional methods. The present work proposed a non-thermal pencil plasma jet treatment for methotrexate degradation. The air plasma produced in this jet setup is electrical characterized and plasma species/radicals are identified using emission spectroscopy. The degradation of drug is monitored by studying the change in solution physiochemical properties, HPLC-UV analysis, and removal of total organic carbon, etc.Results show that a 9-min plasma treatment completely degraded the drug solution that followed first-order degradation kinetics with rate constant 0.38 min-1 and 84.54% mineralization was observed. Additionally, an increase in electrical conductivity and dissolved solids compared to virgin water-plasma interaction indicated the formation of new, smaller compounds (2,4-Diaminopteridine-6-carboxylic acid, N-(4-Aminobenzoyl)-L-glutamic acid, etc.) after drug degradation. The plasma-treated methotrexate solution also showed lower toxicity toward freshwater chlorella algae compared to the untreated solution. Finally, it can be said that non-thermal plasma jets are economically and environmentally friendly devices that have the potential to be used for the treatment of complex and resistive anticancer drug-polluted wastewaters.
Collapse
Affiliation(s)
- Vikas Rathore
- Atmospheric Plasma Division, Institute for Plasma Research (IPR), Gandhinagar, Gujarat, 382428, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| | - Shruti Patel
- National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Akanksha Pandey
- National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Jignasa Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Shital Butani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Heman Dave
- National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Sudhir Kumar Nema
- Atmospheric Plasma Division, Institute for Plasma Research (IPR), Gandhinagar, Gujarat, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
8
|
Guan Z, Liang Y, Zhu Z, Yang A, Li S, Guo J, Wang F, Yang H, Zhang N, Wang X, Wang J. Cytosine arabinoside exposure induced cytotoxic effects and neural tube defects in mice and embryo stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115141. [PMID: 37320917 DOI: 10.1016/j.ecoenv.2023.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Cytosine arabinoside (Ara-C) is one of the most widely used chemotherapeutic agents for hematological malignancies. The residues of Ara-C have been detected in wastewater and river water with increased usage and discharge. As the ability to cross the placenta and the teratogenicity at low ng/L levels, the toxic effects on pregnant women and infants have been concerned. The toxicity of Ara-C exposure on early embryonic neurodevelopment has not been fully elucidated. In this study, pregnant C57BL/6 mice were injected with different doses of Ara-C on Gestation day (GD) 7.5 and assessed on GD11.5 and GD13.5 to explore the neural developmental effects of Ara-C. HE staining, immunofluorescence, western blot, EdU assay, and flow cytometry were utilized to determine the toxic effects of Ara-C in vivo and in vitro. Our results showed that Ara-C (15-22.5 mg/kg body weight) induced the occurrence of neural tube defects (NTDs). The expression of PH3 was markedly reduced in embryos with Ara-C-induced NTDs, compared to the control group (P < 0.05). In contrast, cell apoptosis was markedly increased. Increased expression levels of GFAP and decreased Nestin were observed in the embryonic brain tissues in Ara-C induced NTDs. The level of β-catenin was also decreased on both GD11.5 and GD13.5. These results were confirmed in vitro using mouse Sv129 embryonic stem cells (mESC). Ara-C at a dose comparable to the environment level (0.05 nM) had cytotoxicity. Impaired Wnt/β-catenin signaling pathway is involved in Ara-C exposure induced imbalance between cell proliferation, apoptosis, and differentiation, which might contribute to Ara-C-induced occurrence of NTDs. Our data indicated the environmental concentration of Ara-C had cytotoxicity and that maternal exposure to Ara-C induced NTDs. These results might provide more information to understand the environmental toxic impact of Ara-C on neurodevelopment.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huimin Yang
- Growth and Development Department, Capital Institute of Pediatrics, Beijing 100020, China
| | - Na Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
9
|
da Cunha de Medeiros P, Nascimento CC, Perobelli JE. Antineoplastic drugs in environmentally relevant concentrations cause endocrine disruption and testicular dysfunction in experimental conditions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104122. [PMID: 37031830 DOI: 10.1016/j.etap.2023.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/15/2023]
Abstract
5-fluorouracil (5-FU) and methotrexate (MTX) are among the most widely consumed antineoplastic drugs worldwide. These drugs are known as emerging pollutants, once after consumption are excreted by feces and/or urine in a mixture of compounds and metabolites, entering the aquatic environment due to low efficiency in drug removal by effluent treatment plants. Considering that these substances may interact with the DNA, causing metabolic and morphological changes, leading to cell death, the present study aimed to investigate the potential impact of a long-term exposure to these antineoplastic drugs in environmentally relevant concentrations, on testicular morphophysiology of rats. Male Wistar rats (70 days old) were distributed into 4 groups (n = 10 / group): control, received only vehicle; MTX, received methotrexate at 10ngL-1 in drinking water; 5-FU received 5-fluorouracil at 10ngL-1 in drinking water; and MTX+ 5FU, received the combination of MTX and 5-FU at 10ngL-1 each. The treatment period was from postnatal day (PND)70 to PND160, when the animals were euthanized for evaluation of testicular toxicity and changes in endocrine signaling. In these experimental conditions, both drugs acted as endocrine disruptors causing cytotoxic effects in the testes of exposed rats, altering the structural pattern of seminiferous tubules and leading to oxidative stress even at environmental concentrations.
Collapse
Affiliation(s)
- Paloma da Cunha de Medeiros
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Cinthia C Nascimento
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil.
| |
Collapse
|
10
|
Ben Amor A, Arenas M, Martín J, Ouakouak A, Santos JL, Aparicio I, Alonso E, Hamdi N. Alginate/geopolymer hybrid beads as an innovative adsorbent applied to the removal of 5-fluorouracil from contaminated environmental water. CHEMOSPHERE 2023; 335:139092. [PMID: 37268230 DOI: 10.1016/j.chemosphere.2023.139092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Water contaminated by cytostatic drugs has many negative impacts on the ecosystems. In this work, cross-linked adsorbent beads based on alginate and a geopolymer (prepared from an illito-kaolinitic clay) were developed for a promising decontamination of the 5-fluorouracil (5-FU) cytostatic drug from water samples. The characterization of the prepared geopolymer and its hybrid derivative was performed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared and termogravimetric analysis. Batch adsorption experiments indicated that alginate/geopolymer hybrid beads (AGHB) allow an excellent 5-FU removal efficiency of up to 80% for a dosage adsorbent/water of 0.002 g/mL and a concentration of 5-FU of 2.5 mg/L. The adsorption isotherms data follow well the Langmuir model. The kinetics data favor the pseudo-second-order model. The maximum adsorption capacity (qmax) was 6.2 mg/g. The optimal adsorption pH was 4. Besides pore filling sorption process, the carboxyl and hydroxyl groups from alginate immobilized onto the geopolymer matrix favored the retention of 5-FU ions by hydrogen bonds. Common competitors, such as dissolved organic matter, do not significantly affected the adsorption. In addition, this material has not only eco-friendly and cost-effective advantages but also excellent efficiency when applied to real environmental samples such as wastewater and surface water. This fact suggests that it could have a great application in the purification of contaminated water.
Collapse
Affiliation(s)
- Assia Ben Amor
- Higher Institute of Water Sciences and Techniques, University of Gabès, Zrig 6072, Tunisia; Laboratoire des Matériaux Composites et Matériaux Argileux, CNRSM, Technopole Borj Cedria B.P. 73, 8027, Soliman, Tunisia
| | - Marina Arenas
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla. E-41011 Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla. E-41011 Seville, Spain.
| | - Abdelkader Ouakouak
- Research Laboratory in Subterranean and Surface Hydraulics, University of Biskra, PO Box 145 RP, Biskra, 07000, Algeria; Hydraulic and Civil Engineering Department, University of El Oued, PO Box 789, El Oued, 39000, Algeria
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla. E-41011 Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla. E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla. E-41011 Seville, Spain
| | - Noureddine Hamdi
- Higher Institute of Water Sciences and Techniques, University of Gabès, Zrig 6072, Tunisia; Laboratoire des Matériaux Composites et Matériaux Argileux, CNRSM, Technopole Borj Cedria B.P. 73, 8027, Soliman, Tunisia
| |
Collapse
|
11
|
Wang X, Mohammadzadehsaliani S, Vafaei S, Ahmadi L, Iqbal A, Alreda BA, Talib Al-Naqeeb BZ, Kheradjoo H. Synthesis and electrochemical study of enzymatic graphene oxide-based nanocomposite as stable biosensor for determination of bevacizumab as a medicine in colorectal cancer in human serum and wastewater fluids. CHEMOSPHERE 2023:139012. [PMID: 37224975 DOI: 10.1016/j.chemosphere.2023.139012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
This work's goal was the fabrication of a graphene oxide-based nanocomposite biosensor for the determination of bevacizumab (BVZ) as a medicine for colorectal cancer in human serum and wastewater fluids. For the fabrication electrode, graphene oxide was electrodeposited on GCE (GO/GCE), and then DNA and monoclonal anti-bevacizumab antibodies were immobilized on the GO/GCE surface, respectively (Ab/DNA/GO/GCE). Structural characterization using XRD, SEM, and Raman spectroscopy confirmed the binding of DNA to GO nanosheets and the interaction of Ab with the DNA/GO array. Electrochemical characterization of Ab/DNA/GO/GCE using CV and DPV indicated immobilization of antibodies on DNA/GO/GCE and sensitive and selective behavior of modified electrodes for determination of BVZ. The linear range was obtained 10-1100 μg/mL, and the sensitivity and detection limit values were determined to be 0.14575 μA/μg.mL-1 and 0.02 μg/mL, respectively. To verify the applicability of the planned sensor for determination of BVZ in human serum and wastewater fluid specimens, the outcomes of DPV measurements using Ab, DNA, GO, and GCE and the results of the Bevacizumab ELISA Kit for determination of BVZ in prepared real specimens showed good conformity between the outcomes of both analyses. Moreover, the proposed sensor showed considerable assay precision with recoveries ranging from 96.00% to 98.90% and acceptable relative standard deviations (RSDs) below 5.11%, illustrating sufficiently good sensor accuracy and validity in the determination of BVZ in prepared real specimens of human serum and wastewater fluids. These outcomes demonstrated the feasibility of the proposed BVZ sensor in clinical and environmental assay applications.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Mechanical Engineering, Xi'an Jiaotong University City College, Xi'an, 710018, China
| | | | - Somayeh Vafaei
- Department of Molecularf Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Ahmadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Baraa Abd Alreda
- Department of Medical Physics, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | | | | |
Collapse
|
12
|
Yoshii T, Nakano K, Okuda T, Citterio D, Hiruta Y. Evaluation of separation performance for eggshell-based reversed-phase HPLC columns by controlling particle size and application in quantitative therapeutic drug monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1790-1796. [PMID: 36938787 DOI: 10.1039/d3ay00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eggshell-based reversed-phase packing materials were applied to an analytical column for high-performance liquid chromatography. Commercially available eggshell powder was classified by a cyclone system to obtain three types of particles with different diameters (arithmetic mean ± standard deviation: 4.3 ± 3.8, 5.6 ± 3.3, and 9.5 ± 5.5 μm). Sedimentation separation removed tiny particles from each sample, resulting in particles with arithmetic means of 6.6 ± 5.5, 7.3 ± 4.5, and 10.2 ± 5.0 μm, respectively. The unclassified particles and three particle types treated with sedimentation separation were subsequently packed into analytical columns (150 mm × 4.6 mm I.D.), and their separation efficiencies were evaluated by comparing their height equivalent to a theoretical plate (HETP). The column without sedimentation separation exhibited the highest HETP, whereas the columns with sedimentation separation showed better separation efficiency and lower back pressure. The column with the best separation efficiency was applied for the separation of 10 alkylbenzenes and 5 steroids, and all peaks were observed with complete separation (peak resolution: RS > 1.5). Finally, the column was used for quantitative analysis of voriconazole, an azole antifungal agent, and imatinib, a first-generation molecularly targeted drug for cancer treatment, in spiked whole blood. Excellent accuracy (99.1-102.8%) and precision (0.6-1.9%) were observed for the spiked drugs and long-term stability (>3000 column volumes of mobile phase flow) indicated good applicability of the developed eggshell-based column as an analytical column for routine analyses of therapeutic drugs in blood.
Collapse
Affiliation(s)
- Tomoka Yoshii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Kohei Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
13
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130818. [PMID: 36680899 DOI: 10.1016/j.jhazmat.2023.130818] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | |
Collapse
|
14
|
Monteiro B, Venâncio C, Francisco R, Sousa ACA, Lopes I. Contributions towards the hazard evaluation of two widely used cytostatic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15641-15654. [PMID: 36169838 DOI: 10.1007/s11356-022-23120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cytostatic drugs are one of the most important therapeutic options for cancer, a disease that is expected to affect 29 million individuals by 2040. After being excreted, cytostatics reach wastewater treatment plants (WWTPs), which are unable to efficiently remove them, and consequently, they will be released into the aquatic environment. Due to the highly toxic properties of cytostatics, it is particularly relevant to evaluate their potential ecological risk. Yet, cytostatics toxicity data is still not available for various species. In this work, the ecotoxicity of two widely consumed cytostatics, cyclophosphamide (CYP-as a model cytostatic) and mycophenolic acid (MPA-as a priority cytostatic), was evaluated on three freshwater species-Raphidocelis subcapitata, Brachionus calyciflorus, and Danio rerio, and the risk quotient (RQ) was assessed. Both drugs significantly affected the yield and growth inhibition of the microalgae, while for rotifers, the least sensitive species, only significant effects were registered for CYP. These drugs also caused significant effects on the mortality and morphological abnormalities on zebrafish. The estimation of the RQ discloses that CYP seems to pose a low risk to aquatic biota while MPA poses a very high risk. Altogether, these results emphasize the need for more complete environmental risk assessments, to properly prioritize and rank cytostatics according to their potentially toxic effects on the environment and aquatic biota.
Collapse
Affiliation(s)
- Bruna Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cátia Venâncio
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Rafael Francisco
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Isabel Lopes
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Optimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15020458. [PMID: 36839779 PMCID: PMC9960602 DOI: 10.3390/pharmaceutics15020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in β-cyclodextrin (βCD), which increased its aqueous solubility and stability. This new βCD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into βCD, with an association constant of 80 M-1 and a degree of solubilization of 0.023, where βCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-βCD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of -29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 μg/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on βCD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB.
Collapse
|
16
|
Fast and Complete Destruction of the Anti-Cancer Drug Cytarabine from Water by Electrocatalytic Oxidation Using Electro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added to the solution as catalyst and it was electrochemically regenerated in the process. Complete degradation of 0.1 mM (24.3 mg L−1) CYT was achieved quickly in 15 min at 300 mA constant current electrolysis by hydroxyl radicals (●OH) electrocatalytically generated in the system. Almost complete mineralization (91.14% TOC removal) of the solution was obtained after 4 h of treatment. The mineralization current efficiency (MCE) and energy consumption (EC) during the mineralization process were evaluated. The absolute (second order) rate constant for the hydroxylation reaction of CYT by hydroxyl radicals was assessed by applying the competition kinetics method and found to be 5.35 × 109 M−1 s−1. The formation and evolution of oxidation reaction intermediates, short-chain carboxylic acids and inorganic ions were identified by gas chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography analyses, respectively. Based on the identified intermediate and end-products, a plausible mineralization pathway for the oxidation of CYT by hydroxyl radicals is proposed.
Collapse
|
17
|
Espinosa A, Rascol E, Abellán Flos M, Skarbek C, Lieben P, Bannerman E, Martinez AD, Pethe S, Benoit P, Nélieu S, Labruère R. Re-designing environmentally persistent pharmaceutical pollutant through programmed inactivation: The case of methotrexate. CHEMOSPHERE 2022; 306:135616. [PMID: 35810859 DOI: 10.1016/j.chemosphere.2022.135616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental emission of pharmaceutical pollutants notably causes the contamination of aquatic ecosystems and drinking water. Typically, reduction of these pollutants in the environment is mostly managed by ameliorated wastewater treatments. Here, we report a method for the eco-design of drugs through the introduction within the molecular structure of a sensitive chemical group responsive to water treatments. The new drugs are thus programmed to fragment more easily and quickly than the original drugs. In this "retro catabolic drug design" strategy, methotrexate was used as drug model and an ether analog displaying a similar pharmacological profile was selected. Using photo-irradiation experiments at 254 nm, a representative drinking water treatment process, the identified transformation products were predominantly obtained from the expected molecular scission. Moreover, a faster kinetics of degradation was measured for the ether analog as compared to methotrexate and its transformation products were far less cytotoxic.
Collapse
Affiliation(s)
- Anaïs Espinosa
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
| | - Estelle Rascol
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Marta Abellán Flos
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Charles Skarbek
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Pascale Lieben
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850, Thiverval-Grignon, France
| | - Eva Bannerman
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Alba Diez Martinez
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Stéphanie Pethe
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Pierre Benoit
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
| | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France.
| | - Raphaël Labruère
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.
| |
Collapse
|
18
|
Tolić Čop K, Mutavdžić Pavlović D, Gazivoda Kraljević T. Photocatalytic Activity of TiO 2 for the Degradation of Anticancer Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3532. [PMID: 36234661 PMCID: PMC9565840 DOI: 10.3390/nano12193532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
To prevent water pollution, photocatalysis is often used to remove small molecules such as drugs by generating reactive species. This study aimed to determine the photocatalytic activity of two anticancer drugs, imatinib and crizotinib, and to investigate various influences that may alter the kinetic degradation rate and ultimately the efficacy of the process. In order to obtain optimal parameters for the removal of drugs with immobilized TiO2, the mutual influence of the initial concentration of the contaminant at environmentally relevant pH values was investigated using the response surface modeling approach. The faster kinetic rate of photocatalysis was obtained at pH 5 and at the smallest applied concentration of both drugs. The photocatalytic efficiency was mostly decreased by adding various inorganic salts and organic compounds to the drug mixture. Regarding the degradation mechanism of imatinib and crizotinib, hydroxyl radicals and singlet oxygen showed a major role in photochemical reactions. The formation of seven degradation products for imatinib and fifteen for crizotinib during the optimal photocatalytic process was monitored by high-resolution mass spectrometry (HPLC-QqTOF). Since the newly formed products may pose a hazard to the environment, their toxicity was studied using Vibrio fischeri, where the significant luminescence inhibition was assessed for the mixture of crizotinib degradants during the photocatalysis from 90 to 120 min.
Collapse
Affiliation(s)
- Kristina Tolić Čop
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tatjana Gazivoda Kraljević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Poirier Larabie S, Jutras M, Leclair G, St-Jean I, Kleinert C, Gagné F, Gagnon C. Evaluation of uptake of the cytostatic methotrexate in Elliptio complanata mussels by LC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45303-45313. [PMID: 35146607 PMCID: PMC9209350 DOI: 10.1007/s11356-022-19064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 05/04/2023]
Abstract
Aquatic organisms are continuously exposed to emerging contaminants coming from urban effluents of wastewater treatment plants. The contamination of surface water by those effluents poses a number of environmental risks, and pharmaceuticals are part of this class of effluent contaminants. Various classes of pharmaceuticals are not treated by wastewater treatment plants and anticancer drugs are part of them. The chemotherapy drug methotrexate (MTX) is an emerging contaminant and its growing use with the increase in cancer cases worldwide raises potential risk to aquatic organisms exposed to effluent discharges. However, chemical analyses in exposed freshwater aquatic organisms for ecotoxicological studies are rarely available and no studies have been done yet to accompany ecotoxicological data of exposed filter-feeding organisms. The purpose of this study was to develop a specific and sensitive analytical LC-MS/MS method for the quantification of methotrexate uptake in mussels exposed at different concentrations of the drug. A solid/liquid extraction followed by solid phase extraction (SPE) using an MCX phase purification scheme was optimized. The optimal recovery of 65% and matrix effect of 38% allowed to achieve a limit of quantification of 0.25 ng g-1, with an accuracy of 99-106%, a precision of no more than 3% RSD, and linearity ranging from 0.25 to 25 ng g-1. This methodology was tested with mussels exposed for 96 h at different concentrations (4 to 100 µg L-1) of MTX. The data revealed tissue uptake at concentrations ranging from 0 to 2.53 ng g-1. This suggests that this drug has low uptake potential and this methodology could be used to examine tissue levels of this drug in organisms continuously exposed to urban pollution.
Collapse
Affiliation(s)
- Sylvie Poirier Larabie
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Martin Jutras
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Grégoire Leclair
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Isabelle St-Jean
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Christine Kleinert
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - François Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
20
|
Dominguez-García P, Gibert M, Lacorte S, Gómez-Canela C. Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters. Molecules 2022; 27:3203. [PMID: 35630679 PMCID: PMC9147345 DOI: 10.3390/molecules27103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Abstract
This study reports the consumption data for 132 anticancer drugs in Catalonia (NE Spain) during the period of 2013-2017 and calculates the predicted environmental concentrations (PECs) in wastewater effluents and rivers. This long-term analysis can determine the evolution of drugs present in the environment according to prescriptions and serve as an adequate tool to determine their presence and impact. Data showed that out of 132 compounds prescribed, 77 reached wastewater effluents, which accounted for the most consumed, those excreted in the highest doses, and the least biodegradable. Once diluted in receiving river waters, only mycophenolic acid and hydroxycarbamide had PEC values higher than 10 ng L-1, which is the value set by the European Medicines Agency (EMA) to carry out further risk assessment. It was also observed that compounds present in river water are those that can pose a high risk, given their persistence and capability to bioaccumulate. Therefore, this study shows that the estimation of PEC, together with physico-chemical properties of detected compounds, is a useful tool to determine the long-term presence and fate of this new class of emerging contaminants.
Collapse
Affiliation(s)
- Pol Dominguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Agusta 390, 08017 Barcelona, Spain; (P.D.-G.); (M.G.)
| | - Marta Gibert
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Agusta 390, 08017 Barcelona, Spain; (P.D.-G.); (M.G.)
| | - Sílvia Lacorte
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain;
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Agusta 390, 08017 Barcelona, Spain; (P.D.-G.); (M.G.)
| |
Collapse
|
21
|
Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anticancer drugs pose a potential risk to the environment due to their significant consumption and biological effect even at low concentrations. They can leach into soils and sediments, wastewater, and eventually into drinking water supplies. Many conventional technologies with more effective advanced oxidation processes such as photocatalysis are being extensively studied to find an economical and environmentally friendly solution for the removal of impurities from wastewater as the main source of these pharmaceuticals. Since it is impossible to treat water by photocatalysis if there is no sorption of a contaminant on the photocatalyst, this work investigated the amount of imatinib and crizotinib sorbed from an aqueous medium to different forms of photocatalyst. In addition, based on the sorption affinity studied, the applicability of sorption as a simpler and less costly process was tested in general as a potential route to remove imatinib and crizotinib from water. Their sorption possibility was investigated determining the maximum of sorption, influence of pH, ionic strength, temperature, and sorbent dosage in form of the suspension and immobilized on the fiberglass mesh with only TiO2 and in combination with TiO2/carbon nanotubes. The sorption isotherm data fitted well the linear, Freundlich, and Langmuir model for both pharmaceuticals. An increasing trend of sorption coefficients Kd was observed in the pH range of 5–9 with CRZ, showing higher sorption affinity to all TiO2 forms, which was supported by KF values higher than 116 (μg/g)(mL/μg)1/n. The results also show a positive correlation between Kd and temperature as well as sorbent dosage for both pharmaceuticals, while CRZ sorbed less at higher salt concentration. The kinetic data were best described with a pseudo-second-order model (R2 > 0.995).
Collapse
|
22
|
A Fully Automated Online SPE-LC-MS/MS Method for the Determination of 10 Pharmaceuticals in Wastewater Samples. TOXICS 2022; 10:toxics10030103. [PMID: 35324728 PMCID: PMC8955396 DOI: 10.3390/toxics10030103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
The increasing use of pharmaceuticals, their presence in the aquatic environment, and the associated toxic effects, have raised concerns in recent years. In this work, a new multi-residue analytical method was developed and validated for the determination of 10 pharmaceuticals in wastewaters using online solid-phase extraction (online SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds included in the method were antineoplastics (cabazitaxel, docetaxel, doxorubicin, etoposide, irinotecan, methotrexate, paclitaxel, and topotecan), renin inhibitors (aliskiren), and antidepressants (maprotiline). The method was developed through several experiments on four online SPE cartridges, three reversed phase chromatography columns, and four combinations of mobile phase components. Under optimal conditions, very low limits of detection (LODs) of 1.30 to 10.6 ng L−1 were obtained. The method was repeatable, with relative standard deviations (RSD, %) for intraday and interday precisions ranged from 1.6 to 7.8 and from 3.3 to 13.2, respectively. Recovery values ranged from 78.4 to 111.4%, indicating the reproducibility of the method. Matrix effects were mainly presented as signal suppression, with topotecan and doxorubicin being the two most affected compounds (31.0% signal suppression). The proposed method was successfully applied to hospital effluents, detecting methotrexate (4.7–9.3 ng L−1) and maprotiline (11.2–23.1 ng L−1). Due to the shorter overall run time of 15 min, including sample preparation, and reduced sample volume (0.9 mL), this on-line SPE-LC-MS/MS method was extremely convenient and efficient in comparison to the classical off-line SPE method. The proposed method was also highly sensitive and can be used for ultratrace quantification of the studied pharmaceuticals in wastewaters, providing useful data for effective environmental monitoring.
Collapse
|
23
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
24
|
Tkalec Ž, Negreira N, López de Alda M, Barceló D, Kosjek T. A novel workflow utilizing open-source software tools in the environmental fate studies: The example of imatinib biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149063. [PMID: 34311367 DOI: 10.1016/j.scitotenv.2021.149063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to utilize novel and powerful workflows with publicly available tools to efficiently process data and facilitate rapid acquisition of knowledge on environmental fate studies. Taking imatinib (IMA) as an example, we developed an efficient workflow to describe IMA biodegradation with activated sludge (AS) from wastewater treatment plants (WWTP). IMA is a cytostatic pharmaceutical; a selective tyrosine kinase inhibitor used to treat chronic myeloid leukemia. Its reported ecotoxic, endocrine and genotoxic effects imply high risk for aquatic wildlife and human health, however its fate in the environment is not yet well known. The study was conducted in a batch biotransformation setup, at two AS concentration levels and in presence and absence of carbon source. Degradation profiles and formation of IMA transformation products (TPs) were investigated using UHPLC-QqOrbitrap-MS/MS which showed that IMA is readily biodegradable. TPs were determined using multivariate statistical analysis. Eight TPs were determined and tentatively identified, six of them for first time. Hydrolysis of amide bond, oxidation, demethylation, deamination, acetylation and succinylation are proposed as major biodegradation pathways. TP235, the product of amide bond hydrolysis, was detected and quantified in actual wastewaters, at levels around 1 ng/L. This calls for more studies on the environmental fate of IMA in order to properly asses the environmental risk and hazard associated to IMA and its TPs.
Collapse
Affiliation(s)
- Žiga Tkalec
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Noelia Negreira
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain.
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Garcia-Costa AL, Gouveia TIA, Pereira MFR, Silva AMT, Alves A, Madeira LM, Santos MSF. Ozonation of cytostatic drugs in aqueous phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148855. [PMID: 34247083 DOI: 10.1016/j.scitotenv.2021.148855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
As the number of cancer patients increases, so does the consumption of cytostatic drugs, which are commonly used in chemotherapy. These compounds are already ubiquitous in wastewater treatment plant (WWTP) effluents and natural water streams, revealing the urgent need for efficient technologies for their removal from the aqueous phase. This work presents the elimination of five cytostatics of concern, found in Portuguese WWTP effluents: bicalutamide (BICA), capecitabine (CAP), cyclophosphamide (CYC), ifosfamide (IFO) and mycophenolic acid (MPA), using non-catalytic ozonation. Experiments were performed starting from trace-level concentrations (1 μM) for all cytostatics at neutral pH (pH: 7.3 ± 0.1) and room temperature (23 ± 1 °C), employing different ozone dosages. Under the studied conditions, CAP and MPA were quickly eliminated by direct ozonation, whereas BICA, CYC and IFO were more slowly degraded, as they undergo a breakdown via hydroxyl radicals generation (HO) exclusively. Increasing the O3 dosage from 1 to 3 mgO3/mgDOC, CAP, MPA and IFO were completely removed, and BICA and CYC were converted more than 90% after 180 min. The presence of both inorganic ions and organic matter in real water matrices (river water, WWTP secondary effluent) did not affect the removal of CAP and MPA. Nonetheless, there was an inefficient and very fast O3 consumption that resulted in only around 30% elimination of BICA, CYC and IFO, even if the reaction time is extended.
Collapse
Affiliation(s)
- Alicia L Garcia-Costa
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Teresa I A Gouveia
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís M Madeira
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
26
|
Toński M, Dołżonek J, Stepnowski P, Białk-Bielińska A. Hydrolytic stability of anticancer drugs and one metabolite in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57939-57951. [PMID: 34105071 PMCID: PMC8536627 DOI: 10.1007/s11356-021-14360-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
Due to the genotoxic, carcinogenic and teratogenic mechanism of action, anticancer drugs are highly hazardous compounds. Their occurrence, fate, and effects in the environment have not been systematically studied as compared to other medicaments. Therefore, reliable data, including their stability and persistency, is required in order to assess it. Taking into account, that hydrolysis is one of the most important factors regarding stability of chemicals in water, the aim of our study was to investigate the hydrolytic stability of five commonly used anticancer drugs (ifosfamide, cyclophosphamide, 5-fluorouracil, imatinib, and methotrexate) and one metabolite (7-hydroxymethotrexate), as the systematized and coherent data available is limited. The hydrolysis studies have been prepared according to the OECD 111 procedure to obtain standardized and comparable results. The preliminary tests at pH 4, 7, and 9 and 50 °C show that only cyclophosphamide and ifosfamide are unstable, whereas the estimated t1/2 at 25 °C is >1 year for other investigated compounds. Moreover, much more detailed experiments were performed and indicate that at environmentally relevant temperatures, cyclophosphamide, and ifosfamide would be quite persistent in the terms of hydrolytic stability. Moreover, the preliminary investigation on the hydrolysis products was performed.
Collapse
Affiliation(s)
- Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
27
|
Queirós V, Azeiteiro UM, Barata C, Santos JL, Alonso E, Soares AMVM, Freitas R. Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117735. [PMID: 34271515 DOI: 10.1016/j.envpol.2021.117735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Motoc Ilies S, Schinteie B, Pop A, Negrea S, Cretu C, Szerb EI, Manea F. Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2788. [PMID: 34835559 PMCID: PMC8625772 DOI: 10.3390/nano11112788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Two paste electrodes based on graphene quantum dots and carbon nanotubes (GRQD/CNT) and one modified with a homoleptic liquid crystalline Cu(I) based coordination complex (Cu/GRQD/CNT) were obtained and morphostructurally and electrochemically characterized in comparison with simple CNT electrode (CNT) for doxorubicine (DOX) detection in aqueous solutions. GRQD/CNT showed the best electroanalytical performance by differential pulse voltammetry technique (DPV). Moreover, applying a preconcentration step prior to detection stage, the lowest limit of detection (1 ng/L) and the highest sensitivity (216,105 µA/mg·L-1) in comparison with reported literature data were obtained. Cu/GRQD/CNT showed good results using multiple pulse amperometry technique (MPA) and a favorable shifting of the potential detection to mitigate potential interferences. Both GRQD-based paste electrodes have a great potential for practical utility in DOX determination in water at trace concentration levels, using GRQD/CNT with DPV and in pharmaceuticals formulations using Cu/GRQD/CNT with MPA.
Collapse
Affiliation(s)
- Sorina Motoc Ilies
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Bianca Schinteie
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Aniela Pop
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| | - Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), Timisoara Branch, 300431 Timisoara, Romania;
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| |
Collapse
|
29
|
Abstract
The uncontrolled release of pharmaceutical drugs into the environment raised serious concerns in the last decades as they can potentially exert adverse effects on living organisms even at the low concentrations at which they are typically found. Among them, platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. In this review, the studies on environmental occurrence, transformation, potential ecotoxicity, and possible treatment for the removal of platinum cytostatic compounds are revised. The analysis of the literature highlighted the generally low total platinum concentration values (from a few tens of ng L−1 to a few hundred μg L−1) found in hospital effluents. Additionally, several studies highlighted how hospitals are sources of a minor fraction of the total Pt CDs found in the environment due to the slow excretion rate which is longer than the usual treatment durations. Only some data about the impact of the exposure to low levels of Pt CDs on the health of flora and fauna are present in literature. In some cases, adverse effects have been shown to occur in living organisms, even at low concentrations. Further ecotoxicity data are needed to support or exclude their chronic effects on the ecosystem. Finally, fundamental understanding is required on the platinum drugs removal by MBR, AOPs, technologies, and adsorption.
Collapse
|
30
|
Queirós V, Azeiteiro UM, Soares AMVM, Freitas R. The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment - Review. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125028. [PMID: 33951853 DOI: 10.1016/j.jhazmat.2020.125028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (CP) and Cisplatin (CDDP) are antineoplastic drugs widely used in the treatment of neoplastic diseases that have been detected in the aquatic environment. This review summarizes the current knowledge on the presence in the aquatic environment of these two drugs and their effects on freshwater and marine invertebrates, which includes good model species in ecotoxicology and risk assessment programs. The consumption levels, occurrence in freshwater and marine ecosystems, and the impacts exerted on aquatic organisms, even at low concentrations, justifies this review and the selection of these two drugs. Both pharmaceuticals were detected in different aquatic environments, with concentrations ranging from ng L-1 up to 687.0 μg L-1 (CP) and 250 μg L-1 (CDDP). The available studies showed that CP and CDDP induce individual and sub-individual impacts on aquatic invertebrate species. The most common effects reported were changes in the reproductive function, oxidative stress, genotoxicity, cytotoxicity and neurotoxicity. The literature used in this review supports the need to increase monitoring studies concerning the occurrence of antineoplastic drugs in the aquatic environment since negative effects have been reported even at trace concentrations (ng L-1). Furthermore, marine ecosystems should be considered as a priority since less is known on the occurrence and effects of antineoplastic drugs in this environment comparing to freshwater ecosystems.
Collapse
Affiliation(s)
- Vanessa Queirós
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | | | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| |
Collapse
|
31
|
Insight into the Sorption of 5-Fluorouracil and Methotrexate onto Soil-pH, Ionic Strength, and Co-Contaminant Influence. Molecules 2021; 26:molecules26061674. [PMID: 33802784 PMCID: PMC8002423 DOI: 10.3390/molecules26061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays anticancer drugs (ADs), like other pharmaceuticals, are recognized as new emerging pollutants, meaning that they are not commonly monitored in the environment; however, they have great potential to enter the environment and cause adverse effects there. The current scientific literature highlights the problem of their presence in the aquatic environment by publishing more and more results on their analytics and ecotoxicological evaluation. In order to properly assess the risk associated with the presence of ADs in the environment, it is also necessary to investigate the processes that are important in understanding the environmental fate of these compounds. However, the state of knowledge on mobility of ADs in the environment is still very limited. Therefore, the main aim of our study was to investigate the sorption potential of two anticancer drugs, 5-fluorouracil (5-FU) and methotrexate (MTX), onto different soils. Special attention was paid to the determination of the influence of pH and ionic strength as well as presence of co-contaminants (cadmium (Cd2+) and another pharmaceutical-metoprolol (MET)) on the sorption of 5-FU and MTX onto soil. The obtained distribution coefficient values (Kd) ranged from 2.52 to 6.36 L·kg-1 and from 6.79 to 12.94 L·kg-1 for 5-FU and MTX, respectively. Investigated compounds may be classified as slightly or low mobile in the soil matrix (depending on soil). 5-FU may be recognized as more mobile in comparison to MET. It was proved that presence of other soil contaminants may strongly influence their mobility in soil structures. The investigated co-contaminant (MET) caused around 25-fold increased sorption of 5-FU, whereas diminished sorption of MTX. Moreover, the influence of environmental conditions such as pH and ionic strength on their sorption has been clearly demonstrated.
Collapse
|
32
|
Janssens R, Hainaut R, Gillard J, Dailly H, Luis P. Performance of a Slurry Photocatalytic Membrane Reactor for the Treatment of Real Secondary Wastewater Effluent Polluted by Anticancer Drugs. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raphael Janssens
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Robin Hainaut
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Juline Gillard
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| | - Helene Dailly
- Earth and Life Institute (ELI), Universite catholique de Louvain, Place Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium
| | - Patricia Luis
- Materials Process Engineering (iMMC-IMAP), Universite catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Novak M, Baebler Š, Žegura B, Rotter A, Gajski G, Gerić M, Garaj-Vrhovac V, Bakos K, Csenki Z, Kovács R, Horváth Á, Gazsi G, Filipič M. Deregulation of whole-transcriptome gene expression in zebrafish (Danio rerio) after chronic exposure to low doses of imatinib mesylate in a complete life cycle study. CHEMOSPHERE 2021; 263:128097. [PMID: 33297093 DOI: 10.1016/j.chemosphere.2020.128097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Imatinib mesylate (IM) is an anticancer drug that belongs to tyrosine kinase inhibitors. We report the results of the first investigation of the chronic exposure of zebrafish (Danio rerio) to IM. The exposure to IM (0.01, 1 and 100 μg/L) was initiated in adult fish and continued through hatching and the offspring generation for seven months. In addition to standard toxicological endpoints, induction of genotoxic effects and whole-genome transcriptome of liver samples of offspring generation of zebrafish were analysed. Exposure to IM did not affect the survival and growth of zebrafish, did not cause any histopathological changes, but it induced a marginal increase in the chromosomal damage in blood cells. The whole-genome transcriptome analyses demonstrated dose-dependent increase in the number of differentially expressed genes with a significantly higher number of deregulated genes in female fish compared to male. Differentially expressed genes included genes involved in response to DNA damage, cell cycle control and regulation of circadian rhythm. Based on the low genotoxic activity and the pattern of the changes in DNA damage responsive genes we consider that at current environmental exposure levels, IM represents low risk for genotoxic effects in aquatic organisms. Exposure to IM also induced deregulation of the expression of genes associated with steroidogenesis and hormone metabolism and function, which indicates hormone-disrupting activity of IM that has not been studied so far. The study provide new information on the potential consequences of chronic exposure to the residues of tyrosine kinase inhibitors, which remain to be further explored.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Špela Baebler
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Katalin Bakos
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Zsolt Csenki
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Róbert Kovács
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Gyöngyi Gazsi
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Metka Filipič
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
34
|
Wilczewska P, Ona AEN, Bielicka-Giełdoń A, Malankowska A, Tabaka K, Ryl J, Pniewski F, Siedlecka EM. Application of BiOClnBrm photocatalyst to cytostatic drugs removal from water; mechanism and toxicity assessment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
36
|
Vaudreuil MA, Vo Duy S, Munoz G, Furtos A, Sauvé S. A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. Talanta 2020; 220:121407. [DOI: 10.1016/j.talanta.2020.121407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
|
37
|
Environmental Remediation of Antineoplastic Drugs: Present Status, Challenges, and Future Directions. Processes (Basel) 2020. [DOI: 10.3390/pr8070747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The global burden of cancer is on the rise, and as a result, the number of therapeutics administered for chemotherapy is increasing. The occupational exposure, recalcitrant nature and ecotoxicological toxicity of these therapeutics, referred to as antineoplastic (ANP) drugs, have raised concerns about their safe remediation. This review provides an overview of the environmental source of ANPs agents, with emphasis on the currently used remediation approaches. Outpatient excreta, hospital effluents, and waste from pharmaceutical industries are the primary source of ANP waste. The current review describes various biotic and abiotic methods used in the remediation of ANP drugs in the environment. Abiotic methods often generate transformation products (TPs) of unknown toxicity. In this light, obtaining data on the environmental toxicity of ANPs and its TPs is crucial to determine their toxic effect on the ecosystem. We also discuss the biodegradation of ANP drugs using monoculture of fungal and bacterial species, and microbial consortia in sewage treatment plants. The current review effort further explores a safe and sustainable approach for ANP waste treatment to replace existing chemical and oxidation intensive treatment approaches. To conclude, we assess the possibility of integrating biotic and abiotic methods of ANP drug degradation.
Collapse
|
38
|
Cristóvão MB, Janssens R, Yadav A, Pandey S, Luis P, Van der Bruggen B, Dubey KK, Mandal MK, Crespo JG, Pereira VJ. Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122330. [PMID: 32172069 DOI: 10.1016/j.jhazmat.2020.122330] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into the environment. Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters. Moreover, one important aspect is to define the major entry route of anticancer drugs in the aquatic environment: is it hospital or household effluents? The results disclosed in this study showed that in Belgium and Lisbon, 94 % of the total amount of anticancer drugs were delivered to outpatients, indicating that household effluents are the primary input source of these drugs and thus, upgrading the treatment in the domestic wastewater facilities should be the focus.
Collapse
Affiliation(s)
- M B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - R Janssens
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - A Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - S Pandey
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - P Luis
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - K K Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - M K Mandal
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - J G Crespo
- LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - V J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
39
|
Huo Z, Wang S, Shao H, Wang H, Xu G. Radiolytic degradation of anticancer drug capecitabine in aqueous solution: kinetics, reaction mechanism, and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20807-20816. [PMID: 32248418 DOI: 10.1007/s11356-020-08500-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of anticancer drugs in the environment has attracted wide attention due to its potential environmental risks. The aim of this study was to investigate degradation characteristics and mechanism of anticancer drug capecitabine (CPC) by electron beam (EB) irradiation. The results showed that EB was an efficient water treatment process for CPC. The degradation followed pseudo-first-order kinetics with dose constants ranged from 1.27 to 3.94 kGy-1. Removal efficiencies in natural water filtered or unfiltered were lower than pure water due to the effect of water matrix components. The degradation was restrained by the presence of NO2-, NO3- and CO32-, and fulvic acid due to competition of reactive radical •OH. It demonstrated that oxidizing radical played important role in irradiation process. The appropriate addition of H2O2 and K2S2O8 providing with oxidizing agents •OH and •SO4- was favorable to improve degradation efficiency of CPC. The possible transformation pathways of CPC including cleavage of the ribofuranose sugar and defluorination were proposed based on intermediate products and were consistent with the theoretical calculation of charge and electron density distribution. Toxicity of CPC and intermediate products were estimated by ECOSAR program. It was found that CPC was transformed to low toxicity products with EB.
Collapse
Affiliation(s)
- Zhuhao Huo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
40
|
Yadav A, Pandey S, Mandal MK, Dubey KK. Development of cost‐effective RP‐HPLC methods for detection of cyclophosphamide, etoposide and paclitaxel. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering LaboratoryDepartment of BiotechnologyCentral University of Haryana Mahendergarh 123031 India
| | - Shailesh Pandey
- Department of Chemical EngineeringNational Institute of Technology Durgapur West‐Bengal 713209 India
| | - Mrinal Kanti Mandal
- Department of Chemical EngineeringNational Institute of Technology Durgapur West‐Bengal 713209 India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering LaboratoryDepartment of BiotechnologyCentral University of Haryana Mahendergarh 123031 India
| |
Collapse
|
41
|
Nassour C, Barton SJ, Nabhani-Gebara S, Saab Y, Barker J. Occurrence of anticancer drugs in the aquatic environment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1339-1347. [PMID: 31832963 PMCID: PMC6994516 DOI: 10.1007/s11356-019-07045-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 06/01/2023]
Abstract
Water contamination with pharmaceutical products is a well-studied problem. Numerous studies have demonstrated the presence of anticancer drugs in different water resources that failed to be eliminated by conventional wastewater treatment plants. The purpose of this report was to conduct a systematic review of anticancer drugs in the aquatic environment. The methodology adopted was carried out in compliance with the PRISMA guidelines. From the 75 studies that met the specific requirements for inclusion, data extracted showed that the most common anticancer drugs studied are cyclophosphamide, tamoxifen, ifosfamide and methotrexate with concentrations measured ranging between 0.01 and 86,200 ng/L. There was significant variation in the methodologies employed due to lack of available guidelines to address sampling techniques, seasonal variability and analytical strategy. The most routinely used technique for quantitative determination was found to be solid-phase extraction followed by LC-MS analysis. The lowest reported recovery percentage was 11%, and the highest limit of detection was 1700 ng/L. This indicated the inadequacy of some methods to analyse anticancer drugs and the failure to obtain reliable results. The significant heterogeneity within methodologies made it difficult to compare results and draw conclusions, nevertheless, this study aids in the extrapolation of proposed recommendations to guide future studies and reviews. Graphical abstract.
Collapse
Affiliation(s)
- Carla Nassour
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK.
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Shereen Nabhani-Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Yolande Saab
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| |
Collapse
|
42
|
Li Y, Zhang L, Ding J, Liu X. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109732. [PMID: 31698331 DOI: 10.1016/j.jenvman.2019.109732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Numerous studies have shown that a wide range of pharmaceuticals are present in the environment and many of their adverse biological effects on the aquatic ecosystem and human health are unknown. Due to the high population density and large number of pharmaceuticals produced and consumed in China, a systematic approach is needed to identify pharmaceuticals that require greater attention. The present study provides a ranking of pharmaceuticals in China in terms of their occurrence (O), persistence, bioaccumulation, and toxicity (PBT) based on the predicted environmental concentration (PEC). The total and partial ranking method implemented in the decision analysis by ranking techniques (DART) tool was used, which is an easy-to-use tool for the analysis of datasets. Using the DART approach, 10 pharmaceuticals were selected as priority compounds. These pharmaceuticals included antibiotics, anti-inflammatory and antilipidemic. In order to identify the characteristics of the priority pharmaceuticals, ecotoxicological endpoints were considered. The results of this study and the priority list facilitate the selection of candidate pollutants in future monitoring studies.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
43
|
Janssens R, Cristóvão BM, Bronze MR, Crespo JG, Pereira VJ, Luis P. Photocatalysis Using UV-A and UV-C Light Sources for Advanced Oxidation of Anti-Cancer Drugs Spiked in Laboratory-Grade Water and Synthetic Urine. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raphael Janssens
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2 Louvain-la-Neuve 1348, Belgium
| | - Beatriz M. Cristóvão
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Maria R. Bronze
- iMED, Faculdade de Farmácia Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Joao G. Crespo
- LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Vanessa J. Pereira
- iBET-Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2775-412, Portugal
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2 Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
44
|
Li Y, Ding J, Zhang L, Liu X, Wang G. Occurrence and ranking of pharmaceuticals in the major rivers of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133991. [PMID: 31465916 DOI: 10.1016/j.scitotenv.2019.133991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Residual pharmaceuticals have received widespread attention worldwide due to their continuous release and potential hazard to the environment. As a result of rapid development and a large population, China has become a country with high production and consumption of pharmaceuticals. This may be the main reason for the high detection frequencies and concentrations of pharmaceuticals in the aquatic environment in China. Rivers represent an important water resource and play an important role in the sustainable development of the Chinese economy and society. This study summarizes the occurrence of frequently detected pharmaceuticals in major rivers. A hazard score based on the occurrence, exposure potential, and environmental effects of pharmaceuticals was calculated and a prioritization approach was used to rank 166 pharmaceuticals that were detected in the aquatic environment of major rivers in China. The priority list provides a basis for selecting candidate pharmaceuticals for future site-specific monitoring in rivers.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
45
|
Gouveia TIA, Alves A, Santos MSF. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters. ENVIRONMENT INTERNATIONAL 2019; 133:105236. [PMID: 31675568 DOI: 10.1016/j.envint.2019.105236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 05/21/2023]
Abstract
Cytostatic drugs are compounds used to treat cancer, one of the deadliest diseases worldwide with a rising yearly incidence. However, the occurrence and concentrations of a large number of cytostatics in waters and wastewaters are unknown. Thus, this study sought to analyze the concentrations of these compounds in different aquatic environments worldwide to assess the risk that these compounds pose to aquatic organisms. The top five most monitored cytostatics in aquatic environments are fluorouracil, methotrexate, tamoxifen, ifosfamide, and cyclophosphamide. Risk quotients (RQs) based on maximum reported measured concentrations revealed that mycophenolic acid and tamoxifen pose a high risk to aquatic organisms (RQmax ≥ 1) at concentrations observed in surface waters. Moreover, methotrexate and tegafur were categorized as moderate risk compounds, and bicalutamide was found to pose a low risk. Importantly, the available analytical methodologies for the quantification of some cytostatics (e.g., cisplatin, fluorouracil, daunorubicin, imatinib, and mycophenolic acid) in water could not rule out potential risk to aquatic biota, since estimated risks for these compounds using the lowest method detection limits reported in the literature (RQ MDL) were all ≥0.01 (i.e., low risk or higher). Moreover, risks based on predicted concentrations (RQ PEC) were consistently lower than those based on measured concentrations, highlighting the importance of risk assessment based on measured values. Thus, accurate and sensitive analytical methods are crucial to identify and quantify cytostatic exposure in aquatic ecosystems in order to preserve biodiversity and ensure a safer environment.
Collapse
Affiliation(s)
- Teresa I A Gouveia
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
46
|
Mišík M, Filipic M, Nersesyan A, Kundi M, Isidori M, Knasmueller S. Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate). WATER RESEARCH 2019; 164:114953. [PMID: 31404901 DOI: 10.1016/j.watres.2019.114953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 05/21/2023]
Abstract
Anticancer drugs are among the most toxic chemicals, which are commercially produced; therefore, their release in aquatic ecosystems raised concerns in regard to potential adverse effects. This article describes the results of risk assessments concerning their environmental safety, which are based on data generated in the frame of a coordinated EU project ("Cytothreat"). Eight research institutions participated in the project and four widely used anticancer drugs with different mechanisms of therapeutic action (5-fluorouracil 5FU, cisplatin CDDP, imatinib mesylate IM and etoposide ET) were tested in a variety of indicator organisms (cyanobacteria, algae, higher plants, rotifers, crustacea, fish and also in human and fish derived cell lines) in acute/subacute/chronic toxicity assays. Furthermore, genotoxic effects in micronucleus assays, single cell gel electrophoresis experiments and γH2AX tests were studied in plants, crustacea, fish and in various cell lines. We used the results to calculate the predicted no effect concentrations (PNEC) and risk quotients (RQ) by comparing PNEC with predicted environmental concentrations (PEC values) and measured concentrations (MEC) in wastewaters. The most sensitive species in experiments concerning acute toxic and long term effects were in general crustacea (daphnids) after chronic treatment the most pronounced effects were detected with IM followed by CDDP and 5FU. Comparisons between PNEC and PEC values indicate that it is unlikely that the release of these drugs in the aquatic environments leads to adverse effects (RQ values < 1). However, when the assessments were performed with MEC found in highly contaminated municipal wastewaters and hospital effluents, RQ values were obtained which are indicative for moderate adverse effects of IM. Calculations with data from genotoxicity experiments and PEC values are indicative for increased RQ values for all compounds except ET. The most sensitive species were fish (Danio rerio) which were highly responsive towards 5FU and daphnids which were sensitive towards CDDP and IM. When environmental data (from waste waters) were used for the calculations, high RQ values (>100) were obtained for CDDP and IM. These overall conclusions were not substantially altered when the effects of other frequently used cytostatic drugs and combined effects of mixtures of anticancer drugs were taken into consideration. The results of these assessments underline the importance of efficient removal of these chemicals by improved sewage treatment strategies and the need for further investigations of adverse the long term effects of cytostatics in aquatic biota as a consequence of damage of the genetic material in highly sensitive species.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Metka Filipic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria.
| |
Collapse
|
47
|
Djediai H, Benrabaa R, Gombert B, N'Guettia RK. Photocatalytic Degradation of 5‐Fluorouracil by Diatomite‐Supported Titanium Dioxide under UV‐A Irradiation. ChemistrySelect 2019. [DOI: 10.1002/slct.201901789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Houria Djediai
- Laboratoire des SciencesTechnologie et Génie des procédés LSTGPFaculté de ChimieUniversité des Sciences et de la Technologie M−B d'Oran B.P.1505 – EL M'naouer Oran Algérie
| | - Rafik Benrabaa
- Université 20 Août-SkikdaFaculté de TechnologieDépartement de Pétrochimie & Génie des Procédés, BP 26, route Al-Hadaiek 21000 Skikda, Alger Algérie
- Laboratoire de Matériaux Catalytiques et Catalyse en Chimie OrganiqueFaculté de Chimie, USTHB, BP32, El-Alia 16111 Bab Ezzouar, Alger Algérie
| | - Bertrand Gombert
- Université de PoitiersCNRS, UMR 7285 IC2MPInstitut de Chimie des Milieux et Matériaux de Poitiers), TSA 41105, 1 rue Marcel Doré 86073 Poitiers Cedex 9 France
| | - Roland Kossonou N'Guettia
- Université de PoitiersCNRS, UMR 7285 IC2MPInstitut de Chimie des Milieux et Matériaux de Poitiers), TSA 41105, 1 rue Marcel Doré 86073 Poitiers Cedex 9 France
- Laboratoire des Sciences de l'EnvironnementUniversité Nangui Abrogoua 02 BP 801 Abidjan Côte d'Ivoire
| |
Collapse
|
48
|
Wielińska J, Nowacki A, Liberek B. 5-Fluorouracil-Complete Insight into Its Neutral and Ionised Forms. Molecules 2019; 24:molecules24203683. [PMID: 31614932 PMCID: PMC6832121 DOI: 10.3390/molecules24203683] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
5-Fluorouracil (5FU), a common anti-cancer drug, occurs in four tautomeric forms and possesses two potential sites of both protonation and deprotonation. Tautomeric and resonance structures of the ionized forms of 5FU create the systems of connected equilibriums. Since there are contradictory reports on the ionized forms of 5FU in the literature, complex theoretical studies on neutral, protonated and deprotonated forms of 5FU, based on the broad spectrum of DFT methods, are presented. These indicate that the O4 oxygen is more willingly protonated than the O2 oxygen and the N1 nitrogen is more willingly deprotonated than the N3 nitrogen in a gas phase. Such preferences are due to advantageous charge delocalization of the respective ions, which is demonstrated by the NBO and ESP analyses. In an aqueous phase, stability differences between respective protonated and deprotonated forms of 5FU are significantly diminished due to the competition between the mesomeric effect and solvation. The calculated pKa values of the protonated, neutral and singly deprotonated 5FU indicate that 5FU does not exist in the protonated and double-deprotonated forms in the pH range of 0–14. The neutral form dominates below pH 8 and the N1 deprotonated form dominates above pH 8.
Collapse
Affiliation(s)
- Justyna Wielińska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
49
|
Fonseca TG, Carriço T, Fernandes E, Abessa DMS, Tavares A, Bebianno MJ. Impacts of in vivo and in vitro exposures to tamoxifen: Comparative effects on human cells and marine organisms. ENVIRONMENT INTERNATIONAL 2019; 129:256-272. [PMID: 31146160 DOI: 10.1016/j.envint.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - T Carriço
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - E Fernandes
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - A Tavares
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
50
|
Mazierski P, Borzyszkowska AF, Wilczewska P, Białk-Bielińska A, Zaleska-Medynska A, Siedlecka EM, Pieczyńska A. Removal of 5-fluorouracil by solar-driven photoelectrocatalytic oxidation using Ti/TiO 2(NT) photoelectrodes. WATER RESEARCH 2019; 157:610-620. [PMID: 31003076 DOI: 10.1016/j.watres.2019.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
The efficient and safe degradation of drugs present in wastewater requires the design of a new material possessing high activity for that process. In addition to other methods, photoelectrocatalysis (PEC) merges the strengths of both photocatalytic and electrochemical methods, and the efficiency could be enhanced by the type of photoelectrode material. To address this challenge, three Ti/TiO2 nanotube-based photoelectrodes, differing in their tube morphology, were prepared by anodic oxidation and employed for the degradation of the 5-fluorouracil (5-FU) drug by the PEC process. The highest efficiency for 5-fluorouracil (5-FU) degradation by PEC was observed for the photoelectrode with a 1.7 μm length, 65 nm diameter and 8 nm wall thickness of TiO2 nanotubes, which were prepared by Ti foil anodization at 30 V. The effects of applied potential, irradiation intensity, initial pH and 5-FU concentration on PEC were investigated. Furthermore, our findings showed that the mechanism of photoelectrocatalysis in the presence of TiO2 nanotubes is based on ∙OH and h+ activity. To determine the 5-FU degradation pathway, the organic byproducts were identified by LC-MS analysis. Furthermore, the ecotoxicity evaluated during PEC dropped with decreasing 5-FU concentration.
Collapse
Affiliation(s)
- Paweł Mazierski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland
| | | | - Patrycja Wilczewska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland
| | - Ewa M Siedlecka
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland
| | - Aleksandra Pieczyńska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308, Gdansk, Poland.
| |
Collapse
|