1
|
Zhao W, Lu J, Wei Q, Cao J, Cui J, Hou Y, Zhang K, Chen H, Zhao W. Spatial distribution, source apportionment, and risk assessment of perfluoroalkyl substances in urban soils of a typical densely urbanized and industrialized city, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176166. [PMID: 39270864 DOI: 10.1016/j.scitotenv.2024.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
As an important capital city of intensive urbanization and industrialization in Northeast China, Changchun has experienced extremely rapid development, with diverse sectors such as automobile manufacturing, equipment manufacturing, optoelectronics, and pharmaceutical decoration. However, data on the levels and profiles of perfluoroalkyl substances (PFASs) in urban soils of Changchun is limited. This study investigated 17 PFASs across various functional zones within the main urban area of Changchun. ∑PFAS concentrations in the soils ranged from 0.236 to 6.483 ng/g, averaging 1.820 ng/g. Perfluorocarboxylic acids (PFCAs) were more prevalent than perfluorosulfonic acids (PFSAs), and short-chain PFASs (C ≤ 6) were the predominant residues. PFAS concentrations varied across functional zones, with commercial markets exhibiting the highest levels, followed by industrial areas, residential areas, suburban zones, and transportation areas. Molecular diagnostic ratio and PCA-MLR analysis identified industrial production processes of consumer goods and wastewater treatment plants as the primary sources of soil PFAS contamination. There were no obvious health risks of soil ∑PFASs, while soil PFOS and PFHxS may have an impact on the richness and diversity of soil microbial communities in some certain locations. This study provides new data on PFAS residues in soils influenced by diverse contamination sources within a key industrial city in Northeast China, offering valuable insights for prioritizing remediation and restoration efforts.
Collapse
Affiliation(s)
- Wei Zhao
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jilong Lu
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China.
| | - Qiaoqiao Wei
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Jinxin Cao
- Third Geology and Mineral Resources Exploration Institute, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China
| | - Jiaxuan Cui
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Yaru Hou
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Kaiyu Zhang
- College of GeoExploration Science and Technology, Jilin University, Changchun 130012, China
| | - Hong Chen
- Soil and Environment Analysis Center, Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Zhao
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Xu J, Cui Q, Ren H, Liu S, Liu Z, Sun X, Sun H, Shang J, Tan W. Differential uptake and translocation of perfluoroalkyl substances by vegetable roots and leaves: Insight into critical influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175205. [PMID: 39097023 DOI: 10.1016/j.scitotenv.2024.175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.
Collapse
Affiliation(s)
- Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Hailong Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Heyang Sun
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Shang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Liang Z, Lu Y, Cao Z, Huang X, Lei H, Li J, Wu Z, An X, Wang P. Co-emissions of fluoride ion, fluorinated greenhouse gases, and per- and polyfluoroalkyl substances (PFAS) from different fluorochemical production processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124609. [PMID: 39074690 DOI: 10.1016/j.envpol.2024.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Fluorochemical industry is an emerging industry leading to environmental emissions of fluoride ion, fluorinated greenhouse gases (GHGs) and per- and polyfluoroalkyl substances (PFASs) globally. Chlorofluorocarbon (CFCs) and hydrochlorofluorocarbon (HCFCs) are the primary causes of ozone layer depletion, and together with hydrofluorocarbons (HFCs), they contribute to global climate warming. PFAS are emerging persistent organic pollutants, comprising thousands of materials including perfluoroalkyl acids (PFAAs), perfluoroalkane sulfonamides (FASAs), and fluoropolymers.As the implementation of the Montreal Protocol and the Stockholm Convention makes progress, fluorochemical industry is searching for alternatives like HFCs, perfluoroalkyl ether carboxylic acids (PFECAs) and etc. Even though studies on chemical processes and environmental influences of the fluorochemical industry are plentiful, research on emissions of fluorine chemicals from different fluorochemical industry is still scarce. In this study, we conducted on-site sampling to analyze the distribution of fluorine chemicals in the surrounding environment of the fluorochemical industrial sites. The sampling sites represent different stages of fluorochemical industry production, including fluorite mining, synthesis of fluorochemical raw materials like fluorocarbons, and fine fluorine product processing which is mostly PFAS. Results show that at the fluorite mining stage, concurrent emissions of fluoride ion and CFC-12 contribute to the primary environmental issue. Perfluorooctanoic acid (PFOA) and some short-chain PFASs like perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS) are the main pollutants from fluocarbons production, accompanied by emissions of fluorinated GHGs such as HFC-32, and HCFC-22. At the fine fluorine product synthesis stage where produces fluoropolymers, perfluoropolyethers and fluorinated surfactants, PFAS especially for emerging alternatives PFECAs like hexafluoropropylene oxide dimer acid (HFPODA) and Perfluoro-4-oxapentanoic acid (PF4OPeA), as well as fluorinated GHGs like HFC-23 and HFC-227ea, require increasing attention.
Collapse
Affiliation(s)
- Zian Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhiwei Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xinyi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jialong Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhaoyang Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xupeng An
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
4
|
Yu L, Hua Z, Liu X, Xing X, Zhang C, Hu T, Xue H. Multi-compartment levels and distributions of per- and polyfluoroalkyl substances surrounding fluorochemical manufacturing parks in China: A review of the current literature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136196. [PMID: 39426146 DOI: 10.1016/j.jhazmat.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Fluorochemical manufacturing parks (FMPs) are important point sources of per- and polyfluoroalkyl substances (PFASs) emissions to the surrounding environment. With legacy PFASs being phased-out and restricted in developed countries, China has emerged as one of the world's leading producers of PFASs. However, the occurrence and distribution patterns of PFASs emitted from FMPs in China remain poorly understood. This knowledge gap may lead to an underestimation of the contribution of FMPs as a source of PFASs in the environment. In this study, we collected pertinent data from published studies of PFAS emissions from FMPs and explored the occurrence patterns and distribution characteristics of PFASs across various media, including surface water, groundwater, tap water, sediment, soil, air, dust, plants, and animals. Seventeen classes of PFASs containing 80 compounds were identified in different media around FMPs, with concentrations significantly greater than in other suspected PFAS-contaminated sites. Notably, the levels of ultra-short-chain and emerging PFASs in the areas surrounding some FMPs were comparable to those of legacy PFASs, highlighting an increasing prevalence for the use of PFAS alternatives. In terms of spatial distribution, there was a decline in the PFAS concentration in most environmental media as the distance from FMPs increased. In addition, the distribution patterns of PFASs were associated with PFAS characteristics, the properties of different media, migration pathways, and other relevant aspects. This information will provide valuable insights into the current contamination situation regarding PFASs surrounding FMPs and will have profound implications for the effective implementation of PFAS management at FMPs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chenyang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Tao Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
7
|
Zhang Y, Zhou Y, Dong R, Song N, Hong M, Li J, Yu J, Kong D. Emerging and legacy per- and polyfluoroalkyl substances (PFAS) in fluorochemical wastewater along full-scale treatment processes: Source, fate, and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133270. [PMID: 38113743 DOI: 10.1016/j.jhazmat.2023.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated. Their distribution and ecological risk in neighboring riverine water were also evaluated. In wastewater from fluorochemical manufacturers, PFAS concentrations were in the range of 14,700-5200,000 ng/L and 2 H,2 H-perfluorooctanoic acid (6:2 FTCA), perfluorooctanoic acid (PFOA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), and 1 H,1 H,2 H,2 H-perfluorodecanesulfonate (8:2 FTS) were the major PFAS detected. Several PFAS displayed increased mass flows after wastewater treatment, especially PFOA and 6:2 FTCA. The mass flows of PFAS increased from - 20% to 233% after the activated sludge system but decreased by only 0-13% after the activated carbon filtration. In riverine water, PFAS concentrations were in the range of 5900-39,100 ng/L and 6:2 FTCA, 1 H,1 H,2 H,2 H-perfluorodecyl phosphate monoester (8:2 monoPAP), 1 H,1 H,2 H,2 H-perfluorooctyl phosphate monoester (6:2 monoPAP), PFOA, and perfluorohexanoic acid (PFHxA) were the major PFAS detected. PFOA and 6:2 FTCA exhibited comparable hazard quotients for ecological risk. Current wastewater treatment processes cannot fully remove various PFAS discharged by fluorochemical manufacturers, and further investigations on their risk are needed for better chemical management.
Collapse
Affiliation(s)
- Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruochen Dong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ninghui Song
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Minghui Hong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Juying Li
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jia Yu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
8
|
Xu C, Xu C, Zhou Q, Shen C, Peng L, Liu S, Yin S, Li F. Spatial distribution, isomer signature and air-soil exchange of legacy and emerging poly- and perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123222. [PMID: 38145639 DOI: 10.1016/j.envpol.2023.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Widespread occurrences of various poly- and perfluoroalkyl substances (PFAS) in terrestrial environment calls for the growing interest in their transport behaviors. However, limited studies detected PFAS with structural diversity in tree barks, which reflect the long-term contamination in atmosphere and play a vital role in air-soil exchange behaviors. In this study, 26 PFAS congeners and typical branched isomers were investigated in surface soils and tree barks at 28 sites along the Taihu Lake, Taipu River, and Huangpu River. Concentrations of total PFAS in soils and tree barks were 0.991-29.4 and 7.99-188 ng/g dw, with PFPeA and PFDoA were the largest contributors in the two matrices. The highest PFAS levels were found in the Taihu Lake watershed, where textile manufacturing and metal plating activities highly prosper. With regard to the congener and isomer signatures, short-chain homologs dominated in soils (65.5%), whereas long-chain PFAS showed a major proportion in barks (41.9%). The composition of linear isomers of PFOS, PFOA and PFHxS implied that precursor degradation might be an important source of PFAS in addition to the 3M electrochemical fluorination (ECF). Additionally, the distance from the emission source, total organic carbon (TOC), logKOA and logKOW were considered potential influencing factors in PFAS distributions. Based on the multi-media fugacity model, about 71% of the fugacity fraction (ffs) values of the PFAS were below 0.3, indicating the dominant deposition from the atmosphere to the soil. The average fluxes of air-soil exchange for PFAS were -0.700 ± 11.0 ng/(m2·h). Notably, the estimated daily exposure to PFAS ranged from 9.57 × 10-2 to 8.59 × 10-1 ng/kg·bw/day for children and 3.31 × 10-2 to 3.09 × 10-1 ng/kg·bw/day for adults, suggesting low risks from outdoor inhalation and dermal uptake. Overall, results from distribution with structural diversity, air-soil exchange and preliminary risk assessment. This study provided in-depth insight of PFAS in multi-medium environment and bridged gaps between field data and policy-making for pollution control.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chenman Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Leni Peng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
9
|
Song D, Qiao B, Yao Y, Zhao L, Wang X, Chen H, Zhu L, Sun H. Target and nontarget analysis of per- and polyfluoroalkyl substances in surface water, groundwater and sediments of three typical fluorochemical industrial parks in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132411. [PMID: 37666171 DOI: 10.1016/j.jhazmat.2023.132411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.
Collapse
Affiliation(s)
- Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Hua ZL, Gao C, Zhang JY, Li XQ. Perfluoroalkyl acids in the aquatic environment of a fluorine industry-impacted region: Spatiotemporal distribution, partition behavior, source, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159452. [PMID: 36265630 DOI: 10.1016/j.scitotenv.2022.159452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the temporal and spatial distributions, partition behaviors, sources, and risks of 14 perfluoroalkyl acids (PFAAs) in the aquatic environment of a fluorine industry-impacted region. The total concentrations of 14 PFAAs (ΣPFAAs) were 118.10-2235.4 ng/L, 40.00-2316.1 ng/g dw, and 6.90-180.5 ng/g dw in dissolved, suspended particle matter (SPM), and sedimentary phases, respectively. The predominant pollutants in the dissolved and SPM phases were perfluoroalkyl carboxylic acids (PFCAs) with carbon chain lengths <9, whereas C13 and C14 PFCAs accounted for a large proportion in the sedimentary phase. The dry season exhibited the highest concentration of ΣPFAAs in the dissolved phase (500.9 ± 350.2 ng/L), while the wet season showed the highest concentrations of ΣPFAAs in the SPM and sedimentary phases (591.6 ± 469.1 ng/g dw and 59.7 ± 35.5 ng/g dw, respectively). Significantly higher concentrations of PFAAs have been found in sewage plant and industrial areas. The concentration of PFAAs in the Xupu water source area (XPS) was slightly higher than that in other water source areas of the Yangtze River, which were either not affected or were less affected by the fluorine industry. The log KD-SPM (distribution coefficient between SPM and water), log KD-SED (distribution coefficient between sediment and water), and log KOC-SED (the organic carbon normalized distribution coefficient) of PFAAs showed significant differences between the wet season and dry season, which may also be affected by carbon chain length. Source identification results showed that industries, wastewater discharge, and nonpoint sources were the main sources of PFAAs in this region. The ecological risk posed by long-chain PFAAs in aquatic organisms cannot be ignored, especially in areas with intensive industrial and agricultural activities. Health risks may exist for local toddlers with long-term exposure to perfluorooctanoic acid (PFOA) through drinking water intake and dermal contact.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Zhou J, Baumann K, Surratt JD, Turpin BJ. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM 2.5 filters in close proximity to a fluoropolymer manufacturing facility. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2272-2283. [PMID: 36349377 PMCID: PMC11089768 DOI: 10.1039/d2em00358a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large fluoropolymer manufacturing facilities are major known sources of per- and polyfluoroalkyl substances (PFAS), many of which accumulate in groundwater, surface water, crops, wildlife, and people. Prior studies have measured high PFAS concentrations in groundwater, drinking water, soil, as well as dry and wet deposition near fluoropolymer facilities; however, much less is known about near-source PFAS air concentrations. We measured airborne PFAS on PM2.5 filters in close proximity to a major fluoropolymer manufacturing facility (Chemours' Fayetteville Works) located near Fayetteville, North Carolina, USA. Weekly PM2.5 filter samples collected over a six-month field campaign using high-volume air samplers at locations 3.7 km apart, north-northeast and south-southwest of the facility were analyzed for thirty-four targeted ionic PFAS species by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Twelve emerging and ten legacy PFAS compounds were detected. Thirteen PFAS were found at higher concentrations in these nearfield samples than at regional background sites, suggesting a local source for these compounds. Five emerging and five legacy PFAS compounds had maximum concentrations exceeding 1 pg m-3. PFBA, PFHxA, PFHxDA, PFOS, PMPA, NVHOS, PFO5DoA, and Nafion BP1 contributed the most to the total (legacy + emerging) PFAS concentration (86%). Six PFAS, specifically PFBA, PFOS, PFO5DoA, Nafion BP1, Nafion BP2, and Nafion BP4, provide a consistent representative profile of elevated species across the two sites (with detection frequency >50%). To our knowledge, this is the first study to report both legacy and emerging ionic PFAS in air in close proximity to a U.S. fluoropolymer manufacturing facility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Picarro Inc., Santa Clara, CA, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Chakraborty P, Chandra S, Dimmen MV, Hurley R, Mohanty S, Bharat GK, Steindal EH, Olsen M, Nizzetto L. Interlinkage Between Persistent Organic Pollutants and Plastic in the Waste Management System of India: An Overview. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:927-936. [PMID: 35178580 PMCID: PMC8853888 DOI: 10.1007/s00128-022-03466-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Improper handling of plastic waste and related chemical pollution has garnered much attention in recent years owing to the associated detrimental impacts on human health and the environment. This article reports an overview of the main interlinkages between persistent organic pollutants (POPs) and plastic in the waste management system of India. Both plastics and POPs share certain common traits such as persistence, resistance to biological degradation, and the ability to get transported over long distances. Throughout the processes of production, consumption, and disposal, plastics interact with and accumulate POPs through several mechanisms and end up co-existing in the environment. Plastic waste can undergo long-range transport through rivers and the oceans, break down into microplastics and get transported through the air, or remain locked in waste dump yards and landfills. Over time, environmental processes lead to the leaching and release of accumulated POPs from these plastic wastes. Plastic recycling in the Indian informal sector including smelting, scrubbing, and shredding of plastic waste, is also a potential major POPs source that demands further investigation. The presence of POPs in plastic waste and their fate in the plastic recycling process have not yet been elucidated. By enhancing our understanding of these processes, this paper may aid policy decisions to combat the release of POPs from different waste types and processes in India.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Chennai, Tamil Nadu, 603203, India.
| | - Sarath Chandra
- Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Chennai, Tamil Nadu, 603203, India
| | | | - Rachel Hurley
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
| | - Smita Mohanty
- Central Institute of Petrochemicals Engineering Technology, CIPET, Bhubaneswar, Odisha, India
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
- Department of International Environment and Development Studies, Norwegian University of Life Sciences, Ås, Norway
| | - Marianne Olsen
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway
- Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
13
|
Du D, Lu Y, Zhou Y, Zhang M, Wang C, Yu M, Song S, Cui H, Chen C. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons. ENVIRONMENT INTERNATIONAL 2022; 169:107506. [PMID: 36115250 DOI: 10.1016/j.envint.2022.107506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been ubiquitously distributed in water environment worldwide for a long time, especially in the estuaries and coastal areas. In this study, the distribution characteristics of 12 PFAAs in 91 main river estuaries along the entire coast of China were analyzed for the first time, and the riverine PFAAs fluxes into the coastal marine environment were estimated. Based on a mini-review, the PFAAs pollution in the coast of China at a global scale was evaluated, which was intended to reveal the overall level of PFAAs and to provide a science basis for strengthening environmental management along the coast of China. The results showed that perfluorooctanoic acid (PFOA), perfluorobutanoic acid (PFBA), and perfluorobutane sulfonic acid (PFBS) were dominant in the whole coastal region, which indicated the usage of PFAAs was changing from long-chain PFAAs to short-chain substitutes in China. With regard to the spatial distribution, the high PFAAs concentrations were found in the coastal areas of south Bohai Sea, Shandong Province from the north while those in the south were generally lower when taking the Qinling Mountain and Huaihe River as a dividing line. The estimated PFAAs riverine mass loading in the whole coastal region was 131 tons per year, and the discharge flux of the Yangtze River accounted for more than half (73.5 tons). In comparison with global data, PFAAs concentrations in the coast of China was at a moderate level, and the detected hotspots of high levels were strongly influenced by fluorochemical industries. However, the mass loading of PFAAs was diversified due to geographical differences and abundant river discharges.
Collapse
Affiliation(s)
- Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunci Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhu Q, Qian J, Huang S, Li Q, Guo L, Zeng J, Zhang W, Cao X, Yang J. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119620. [PMID: 35709920 DOI: 10.1016/j.envpol.2022.119620] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are complex emerging pollutants that are widely distributed in soils. The compositions of PFAS vary according to the emission sources. However, the soil distributions of PFAS from different sources are still poorly understood. In this study, the concentrations and compositions of 18 PFAS in soils close to potential sources (industrial areas, airports, landfills, fire stations and agricultural areas) were investigated in Shanghai. The total PFAS concentrations varied from 0.64 to 294 μg kg-1d.w.. Among the sites, the highest PFAS concentration was found near the fire station (average = 57.9 μg kg-1d.w.), followed by the industrial area (average = 8.53 μg kg-1d.w.). The detection frequencies of the 18 PFAS ranged from 47.5% to 100%. Perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) were detected in all samples. The detection frequencies of PFAS near the fire station were higher than those near other sources. The PFAS in soils were mainly composed of short-chain perfluoroalkyl carboxylic acids (C ≤ 8). Elevated concentrations of long-chain perfluoroalkyl carboxylic acids (C > 12) were found in industrial area. Principal component analysis revealed that long-chain PFAS had different factor loadings compared to short-chain PFAS. With the exception of agricultural soils, the correlations between individual PFAS were more positive than negative. Strong positive correlations were found within three groups of perfluoroalkyl carboxylic acids (C5-C7, C9-C12, and C14-C18), suggesting their similar inputs and transportation pathways. The PFAS in soils around the fire station were likely directly emitted from a point source. In contrast, the PFAS in soils near the other sites had multiple input pathways, including both direct emission and precursor degradation.
Collapse
Affiliation(s)
- Qinghe Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jiahao Qian
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shenfa Huang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qingqing Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Lin Guo
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
15
|
Zhang Y, Liu X, Yu L, Hua Z, Zhao L, Xue H, Tong X. Perfluoroalkyl acids in representative edible aquatic species from the lower Yangtze River: Occurrence, distribution, sources, and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115390. [PMID: 35661881 DOI: 10.1016/j.jenvman.2022.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.
Collapse
Affiliation(s)
- Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Li Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xuneng Tong
- Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
16
|
Wang N, Zang J, Guo X, Wang H, Huang N, Zhao C, Zhao X, Liu J. Role of rice cultivation on fluorine distribution behavior in soda saline-alkali land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155543. [PMID: 35489511 DOI: 10.1016/j.scitotenv.2022.155543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Fluorine stability in the soil is crucial to protecting the groundwater and the food chain from pollution by fluorine, which was abundantly present (762.78-1330.66 mg/kg) in soda saline-alkali soil areas of western Jilin Province. This study investigated the fluorine distribution and pollution level in soil. Two representative areas in Zhenlai County, namely Chagan and Hatu villages, were selected to gather soda saline-alkali soil profiles (0-20, 20-40, and 40-60 cm) from different cultivation years (i.e. 3, 5, 8, 10, 13, 15, 18, and 20). The results revealed that fluorine content in soil decreased with increasing cultivation years. In the soil profiles, fluorine and water-soluble fluorine concentrations followed the order of 40-60 > 20-40 > 0-20 cm, while the contents of exchangeable and organic matter-bound fluorine decreased with the increasing profile depth. Rice planting increased the content of macroaggregates with diameters >2 and 2-0.25 mm, which significantly improved the aggregate structure of the soil. The fluorine content was the greatest in microaggregate with particle sizes <0.053 mm in the aggregates' sizes. Rice planting in saline-alkali soil reduced the contents of water-soluble and exchangeable fluorine, while enhancing the content of organic matter-bound fluorine, thereby reducing the bioavailability of fluorine in the soil and the risk of fluorine migration through the groundwater. The degree of soil pollution decreased with increasing plantation years, and the soil became slightly polluted after 15 years of rice planting. The rice plants grew normally after years of improving fluorine-containing saline-alkali land, and the fluorine content was within the safe limit.
Collapse
Affiliation(s)
- Nan Wang
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China
| | - Jinyu Zang
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China
| | - Xinxin Guo
- Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Hongbin Wang
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China
| | - Ning Huang
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China
| | - Chenyu Zhao
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China
| | - Xingmin Zhao
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China.
| | - Jinhua Liu
- College of Resources and Environment, Jilin Agricultural University, Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Northeast China, Ministry of Agriculture and Rural Affairs, P. R. China, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
17
|
Lenka SP, Kah M, Padhye LP. Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128257. [PMID: 35063834 DOI: 10.1016/j.jhazmat.2022.128257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Information on the occurrence of PFAS in aquatic matrices of countries with no PFAS manufacturing, e.g., New Zealand, is limited. Also, the fingerprint of PFAS along an urban water cycle, following water path from wastewater treatment plant (WWTP) effluent to treated drinking water has not been widely assessed. Hence, 38 long-, short-, ultrashort-chain PFAS and fluorinated alternatives (including precursors) were monitored in this study by collecting composite samples from two urban WWTPs of New Zealand and grab samples from the water bodies receiving the WWTPs' effluents and a drinking water treatment plant, whose source water received the effluent of one of the studied WWTPs. ∑PFAS at concentrations 0.1 - 13 ng/L were detected in all wastewater samples, including influents and different treatment stages of the two WWTPs (WW1 and WW2). The fate of most PFAS was similar in the two WWTPs, despite large differences in WWTPs' PFAS loads in the influents, serving populations (1.6 vs 0.16 million), total capacities (300 vs 54 million liters per day), and designs (aerobic and anoxic secondary treatment vs aerobic only). The fate of PFAS in WWTPs appeared to be driven by a range of processes. For instance, a simultaneous increase (41.6%) in short-chain perfluorohexanoic acid (PFHxA) concentrations and decrease (49.7%) in precursor 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations after secondary biological treatment suggested possible transformation of 6:2 FTS into PFHxA during the treatment. In contrast, the reason behind an average decrease of 35% in ultrashort-chain perfluoropropionic acid (PFPrA) concentrations after treatment was unclear, and further studies are recommended. The concentrations of a linear isomer of long-chain perfluorosulfonic acid (PFOS-L) decreased (48%) in the effluent, possibly due to its partitioning to sludge. Although the concentrations of PFAS in coastal waters suggested that the WW1 effluent is a potential source of PFAS, earlier dispersion model and no detection of PFAS in the receiving waters of WW2 implied that other sources, such as septic systems, peripheral industries, and the airport, could also be contributing to PFAS in coastal waters. The source of ultrashort-chain PFPrA (5.5 ng/L) detected in the treated drinking water produced from that river was unclear. The monitoring results confirm incomplete removal of PFAS in WWTPs, indicate a possible transformation of unknown precursors present in wastewater into short-chain perfluoroalkylcarboxylic acids (PFCAs) during biological treatment, and reveal a possible accumulation of perfluoroalkylsulfonic acids (PFSAs) in the sludge, overall suggesting the circulation of PFAS in urban water systems.
Collapse
Affiliation(s)
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Zhou J, Zhao G, Li M, Li J, Liang X, Yang X, Guo J, Wang T, Zhu L. Three-dimensional spatial distribution of legacy and novel poly/perfluoroalkyl substances in the Tibetan Plateau soil: Implications for transport and sources. ENVIRONMENT INTERNATIONAL 2022; 158:107007. [PMID: 34991266 DOI: 10.1016/j.envint.2021.107007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Driven by increasingly stringent regulations on the legacy poly/perfluoroalkyl (PFASs), a variety of fluorinated alternatives have emerged on the market. Tibetan Plateau (TP) plays an important role in accumulation of organic pollutants due to its high altitude and wet deposition. In this study, the occurrence, spatial distribution and sources of PFASs in the TP soils were investigated. The total concentrations of PFASs ranged from 0.814-4.51 ng/g in the TP soils, with the identification of a variety of novel PFASs, including fluorotelomer sulfonates (FTSs), chlorinated polyfluorinated ether sulfonic acid (Cl-PFESAs), and hexafluoropropylene oxide (HFPO) homologues. Generally, the PFAS concentrations exhibited an increase trend from the west to east, and gradually increased with the altitude increasing, suggesting the impacts of human activities and mountain cold-trapping. The PFASs decreased with the increase of soil depth, but at different extents, which were related to their occurrence time, interactions with organic matters, and microbial transformation in soil. Most of the PFASs were present as free fractions in soil, particularly for the short-chain perfluoroalkyl acids (PFAAs), implying that they were liable to be accumulated in organisms and transport to groundwater. Multiple source apportionment analyses indicated that PFASs in the soil of TP were not only derived from the local pollution, but also from the atmospheric migration influenced by Indian Monsoon and westerly winds.
Collapse
Affiliation(s)
- Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No.3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Guoqing Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Min Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiaqian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoxue Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xinyi Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No.3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No.3 Taicheng Road, Yangling, Shaanxi 712100, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
19
|
Li J, Sun J, Li P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. ENVIRONMENT INTERNATIONAL 2022; 158:106891. [PMID: 34592655 DOI: 10.1016/j.envint.2021.106891] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are artificial persistent organic pollutants ubiquitous in ecosystem, and their bioaccumulation and adverse outcomes in plants have attracted extensive concerns. Here, we review the toxic effects of PFASs encountered by various plants from physiological, biochemical and molecular perspectives. The exposure routes and bioaccumulation of PFASs in plants from contaminated sites are also summarized. The bioaccumulation of PFASs in plants from contaminated sites varied between ng/g and μg/g levels. The 50% inhibition concentration of PFASs for plant growth is often several orders of magnitude higher than the environmentally relevant concentrations (ERCs). ERCs of PFASs rarely lead to obvious phenotypic/physiological damages in plants, but markedly perturb some biological activities at biochemical and molecular scales. PFAS exposure induces the over-generated reactive oxygen species and further damages plant cell structure and organelle functions. A number of biochemical activities in plant cells are perturbed, such as photosynthesis, gene expression, protein synthesis, carbon and nitrogen metabolisms. To restore the desire states of cells exposed to PFASs, plants initiate several detoxifying mechanisms, including enzymatic antioxidants, non-enzymatic antioxidants, metallothionein genes and metabolic reprogramming. Future challenges and opportunities in PFAS phytotoxicity studies are also proposed in the review.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Sun
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
20
|
Wu JY, Hua ZL, Gu L, Li XQ, Gao C, Liu YY. Perfluorinated compounds (PFCs) in regional industrial rivers: Interactions between pollution flux and eukaryotic community phylosymbiosis. ENVIRONMENTAL RESEARCH 2022; 203:111876. [PMID: 34400162 DOI: 10.1016/j.envres.2021.111876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment. High through-put sequencing revealed that phyla Ascomycota, Basidiomycota, Anthophyta, and Chlorophyta were the predominant in eukaryotic community. The effects of PFCs on spatial community coalescence at taxonomic and phylogenetic levels (p < 0.05) were revealed. Fungal community coalescence triggered the spatial assembly of fungal and viridiplantae communities in riverine environments (p < 0.05). Null modeling indicated that PFBA, PFTrDA and PFOS, etc, mediated phylogenetic assembly (p < 0.05) and stochastic processes (86.67-100%) maintain phylogenetic turnover in the fungal community. Meanwhile, variable selection (27.78-54.44%) explained the viridiplantae community assemblage. Finally, we identified fungal genera Hannaella, Naganishia, Purpureocillium and Stachybotrys as indicators for PFC pollution (p < 0.001). These results help explain the effects of PFCs on riverine ecological remediation.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| | - Xiao-Qing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Chang Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Yuan-Yuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| |
Collapse
|
21
|
Abhijith GR, Ostfeld A. Model-based investigation of the formation, transmission, and health risk of perfluorooctanoic acid, a member of PFASs group, in drinking water distribution systems. WATER RESEARCH 2021; 204:117626. [PMID: 34517266 DOI: 10.1016/j.watres.2021.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Recent studies identified fluoroalkyl amides (FAs) transformation to perfluorooctanoic acid (PFOA) during disinfection as an indirect source of PFASs contamination of drinking water. This paper discerns the position of water disinfection systems (WDSs) as a PFOA exposure pathway. A new mechanistic model incorporating the derived knowledge about the zwitterionic/cationic FAs transformation to PFOA with the unsteady-state hydraulic characteristics of WDSs was developed. The simulation outputs from model application to a WDS from the USA established the significant role of delivery via distribution network in the PFOA formation in drinking water. PFOA exposure risk assessment studies predicted >95% of the system nodes to be at high risk when the existing stringent health-based guideline values are adopted. The 1 to 3 years and 4 to 8 years old age groups were found susceptible to PFOA exposure through drinking water beyond the tolerable limit of 3 ng/kg/day. The model predicted that reducing the chlorine dose from 2±0.2 to 1±0.1 mg/L at the treatment units drops the share of 1 to 3 years old and 4 to 8 years old consumers falling to PFOA exposure from 4.32 to 0.45% and 0.32 to <0.01%, respectively. Besides, 24.9% more, including ∼x223C10% of the consumers of 1 to 3 years old age group, were found exposed to PFOA risks when the organic loading of water was reduced by 60%.
Collapse
Affiliation(s)
- Gopinathan R Abhijith
- Post-Doctoral Fellow , Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, ISRAEL.
| | - Avi Ostfeld
- Professor, Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, ISRAEL.
| |
Collapse
|
22
|
Lenka SP, Kah M, Padhye LP. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. WATER RESEARCH 2021; 199:117187. [PMID: 34010737 DOI: 10.1016/j.watres.2021.117187] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/26/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) comprise more than 4,000 anthropogenically manufactured compounds with widescale consumer and industrial applications. This critical review compiles the latest information on the worldwide distribution of PFAS and evaluates their fate in wastewater treatment plants (WWTPs). A large proportion (>30%) of monitoring studies in WWTPs were conducted in China, followed by Europe (30%) and North America (16%), whereas information is generally lacking for other parts of the world, including most of the developing countries. Short and long-chain perfluoroalkyl acids (PFAAs) were widely detected in both the influents (up to 1,000 ng/L) and effluents (15 to >1,500 ng/L) of WWTPs. To date, limited data is available regarding levels of PFAS precursors and ultra-short chain PFAS in WWTPs. Most WWTPs exhibited low removal efficiencies for PFAS, and many studies reported an increase in the levels of PFAAs after wastewater treatment. The analysis of the fate of various classes of PFAS at different wastewater treatment stages (aerobic and/aerobic biodegradation, photodegradation, and chemical degradation) revealed biodegradation as the primary mechanism responsible for the transformation of PFAS precursors to PFAAs in WWTPs. Remediation studies at full scale and laboratory scale suggest advanced processes such as adsorption using ion exchange resins, electrochemical degradation, and nanofiltration are more effective in removing PFAS (~95-100%) than conventional processes. However, the applicability of such treatments for real-world WWTPs faces significant challenges due to the scaling-up requirements, mass-transfer limitations, and management of treatment by-products and wastes. Combining more than one technique for effective removal of PFAS, while addressing limitations of the individual treatments, could be beneficial. Considering environmental concentrations of PFAS, cost-effectiveness, and ease of operation, nanofiltration followed by adsorption using wood-derived biochar and/or activated carbons could be a viable option if introduced to conventional treatment systems. However, the large-scale applicability of the same needs to be further verified.
Collapse
Affiliation(s)
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
23
|
Xu C, Song X, Liu Z, Ding X, Chen H, Ding D. Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145731. [PMID: 33647664 DOI: 10.1016/j.scitotenv.2021.145731] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, 17 legacy and emerging PFASs were investigated in soil and plant leaves near a valley-type landfill, which has been in operation for over 20 years. ΣPFASs concentrations ranged from 5.31 to 108 ng/g dw and 11.9 to 115 ng/g dw in the soil and leaf samples, respectively, and perfluorobutanoic acid (PFBA) was dominant in both soil and leaves. The concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA), 6:2 chlorinated polyfluorinated ether sulfonic acid (F-53B) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) were significantly higher than those of legacy PFOA and PFOS, indicating emerging alternatives were widely applied in the region. The integrated approach of PCA analysis, field investigation of relevant industrial activities in the study area, along with the Unmix model analysis quantitatively revealed that factories producing consumer products and the landfill were the major sources of PFASs in soil, accounting for 57% of total PFASs detected. Bioaccumulation factors (BAFs) of ΣPFASs in leaves varied from 0.37 to 8.59, and higher BAFs were found in camphor leaves. The log10BAFs in all plant leaves showed a linear decrease with increasing carbon chain lengths for individual PFCAs (C4-C8). The BAF values of HFPO-DA, F-53B and 6:2 FTS were 0.01-3.39, 0.04-6.15 and 0.01-6.33, respectively. The human health risk assessment of EDIs showed a decreasing trend with the increasing carbon chain lengths of PFCAs (C4-C9), and the PFASs EDI indicated further study on the human health risk via vegetable consumption be warranted.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhaoyang Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| |
Collapse
|
24
|
Gan CD, Gan ZW, Cui SF, Fan RJ, Fu YZ, Peng MY, Yang JY. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144809. [PMID: 33548703 DOI: 10.1016/j.scitotenv.2020.144809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Perfluorinated compounds (PFCs) are organo-fluorine compounds which have been identified at significant levels in soils due to their widespread usage in industrial and commercial applications. However, few studies are available regarding the occurrence of PFCs in the environment of endemic fluorosis areas. To address the issue, soils collected from an endemic fluorosis area of southwestern China were analyzed for the distribution of fluorine and 21 kinds of PFCs. The average water-soluble fluorine concentration in cultivated soil (4.87 mg kg-1) was significantly higher than that in uncultivated soil (3.15 mg kg-1), which mainly ascribed to the utilization of fluorine-enriched fertilizers during agricultural practices. Concentrations of ΣPFCs in all soils ranged from 0.508 to 6.83 ng g-1, with an average of 2.81 ng g-1, dominated by perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA). Highest ΣPFCs was found in the soil samples collected from cropland with intensive agricultural activities. Long-chain PFCs, including four perfluoroalkylcarboxylic acids (PFCAs, C ≥ 8) and one perfluoroalkylsulfonic acids (PFSAs) (perfluorooctane sulfonate (PFOS), C8), exhibited high levels in soils, probably due to their higher hydrophobicity and lower water-solubility than short-chain PFCs. While in sediments, short-chain PFCAs were the dominant compounds. Based on correlation analysis, the relationship between total fluorine and PFCs was insignificant, and soil organic matter was a relevant factor affecting PFCs distribution in soils. This study is expected to present a more comprehensive information about fluorine contamination under the influence of agricultural activities in an endemic fluorosis area.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Zhi-Wei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Si-Fan Cui
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Rui-Jun Fan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuan-Zhou Fu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mu-Yi Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
25
|
Sonmez Baghirzade B, Zhang Y, Reuther JF, Saleh NB, Venkatesan AK, Apul OG. Thermal Regeneration of Spent Granular Activated Carbon Presents an Opportunity to Break the Forever PFAS Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5608-5619. [PMID: 33881842 DOI: 10.1021/acs.est.0c08224] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e., PFAS-laden GAC. Considering the recalcitrance of PFAS molecules in the environment, inadequate disposal (e.g., landfill or incineration) of PFAS-laden GAC may let PFAS back into the aquatic cycle. Therefore, developing approaches for PFAS-laden GAC management present unique opportunities to break its forever circulation within the aqueous environment. This comprehensive review evaluates the past two decades of research on conventional thermal regeneration of GAC and critically analyzes and summarizes the literature on regeneration of PFAS-laden GACs. Optimized thermal regeneration of PFAS-laden GACs may provide an opportunity to employ existing regeneration infrastructure to mineralize the adsorbed PFAS and recover the spent GAC. The specific objectives of this review are (i) to investigate the role of physicochemical properties of PFAS on thermal regeneration, (ii) to assess the changes in regeneration yield as well as GAC physical and chemical structure upon thermal regeneration, and (iii) to critically discuss regeneration parameters controlling the process. This literature review on the engineered regeneration process illustrates the significant promise of this approach that can break the endless environmental cycle of these forever chemicals, while preserving the desired physicochemical properties of the valuable GAC adsorbent.
Collapse
Affiliation(s)
- Busra Sonmez Baghirzade
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Yi Zhang
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, New York 11794, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arjun K Venkatesan
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
26
|
Zhang Y, Zhou Y, Zhang A, Li J, Yu J, Dou Y, He J, Kong D. Perfluoroalkyl substances in drinking water sources along the Yangtze River in Jiangsu Province, China: Human health and ecological risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112289. [PMID: 33940442 DOI: 10.1016/j.ecoenv.2021.112289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl substances (PFASs) in source water is of growing concern for its adverse effects on human health and wildlife as well. The Yangtze River is the vital drinking water source in Jiangsu Province of China, but little attention has been paid on PFASs. The occurrence, spatial distribution and temporal trend of PFASs in 21 water sources along the Jiangsu section of the Yangtze River was investigated with sampling from 2018 to 2020. Moreover, health risk of PFASs was assessed by estimated intake dose and derived tolerable intake dose, while ecological risk was assessed by selected effect concentration and environmental exposure. PFASs concentrations in source water ranged from 12.0 to 128 ng/L, with perfluorooctanoic acid (PFOA) as the dominated congener. Fluorine chemical industry lead to a great increase of perfluorohexanoic acid (PFHxA) in its nearest water source. The estimated daily intake of PFASs through drinking was 0.54 and 0.82 ng/kg bw/day for adults and children. The major health risk was from perfluorooctane sulfonate (PFOS) and PFOA for their toxicity on liver, reproduction, development and immunity, with the maximum hazard quotient of 0.029 and 0.043 for adults and children in the worst scenario. The ecological risks from PFASs on nine species groups ranged from 2.7 × 10-10 to 5.2. PFOA and Perfluorobutane sulfonate (PFBS) were causing significant risk on wildlife, particularly on worms, mussels, and fish, which may further influence the structure and processes in the foodweb. Overall, PFASs, especially PFOS, PFOA and PFBS, induced considerable risk on human health and aquatic species in some hotspot area. It would be necessary to include them into monitoring in China and develop standards for different protection purposes.
Collapse
Affiliation(s)
- Yueqing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunqiao Zhou
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Aiguo Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Juying Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jia Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yezhi Dou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jian He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
27
|
Lesmeister L, Lange FT, Breuer J, Biegel-Engler A, Giese E, Scheurer M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142640. [PMID: 33077210 DOI: 10.1016/j.scitotenv.2020.142640] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 05/27/2023]
Abstract
A main source of perfluoroalkyl and polyfluoroalkyl substances (PFASs) residues in agricultural plants is their uptake from contaminated soil. Bioaccumulation factors (BAFs) can be an important tool to derive recommendations for cultivation or handling of crops prior consumption. This review compiles >4500 soil-to-plant BAFs for 45 PFASs from 24 studies involving 27 genera of agricultural crops. Grasses (Poaceae) provided most BAFs with the highest number of values for perfluorooctanoic acid and perfluorooctane sulfonic acid. Influencing factors on PFAS transfer like compound-specific properties (hydrophobicity, chain length, functional group, etc.), plant species, compartments, and other boundary conditions are critically discussed. Throughout the literature, BAFs were higher for vegetative plant compartments than for reproductive and storage organs. Decreasing BAFs per additional perfluorinated carbon were clearly apparent for aboveground parts (up to 1.16 in grains) but not always for roots (partly down to zero). Combining all BAFs per single perfluoroalkyl carboxylic acid (C4-C14) and sulfonic acid (C4-C10), median log BAFs decreased by -0.25(±0.029) and -0.24(±0.013) per fluorinated carbon, respectively. For the first time, the plant uptake of ultra-short-chain (≤ C3) perfluoroalkyl acids (PFAAs) was reviewed and showed a ubiquitous occurrence of trifluoroacetic acid in plants independent from the presence of other PFAAs. Based on identified knowledge gaps, it is suggested to focus on the uptake of precursors to PFAAs, PFAAs ≤C3, and additional emerging PFASs such as GenX or fluorinated ethers in future research. Studies regarding the uptake of PFASs by sugar cane, which accounts for about one fifth of the global crop production, are completely lacking and are also recommended. Furthermore, aqueous soil leachates should be tested as an alternative to the solvent extraction of soils as a base for BAF calculations.
Collapse
Affiliation(s)
- Lukas Lesmeister
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Frank Thomas Lange
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jörn Breuer
- Landwirtschaftliches Technologiezentrum Augustenberg (LTZ), Neßlerstr. 25, 76227 Karlsruhe, Germany
| | | | - Evelyn Giese
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
28
|
Shende T, Andaluri G, Suri R. Frequency-dependent sonochemical degradation of perfluoroalkyl substances and numerical analysis of cavity dynamics. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Li D, Yao Y, Sun H. Emission and Mass Load of Artificial Sweeteners from a Pig Farm to Its Surrounding Environment: Contribution of Airborne Pathway and Biomonitoring Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2307-2315. [PMID: 33539083 DOI: 10.1021/acs.est.0c05326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation was conducted by determining artificial sweeteners (ASs) in 80 samples from various environmental matrices, including dry deposition, rainfall, soil, leaf, and bark samples around a pig farm in Tianjin, China. Saccharin, cyclamate, and acesulfame were predominant in dry deposition and rainfall samples. Spatially, the distribution of ASs showed a consistent trend of farm center > downwind sites > upwind sites > reference site. The annual total mass loads of saccharin (70%), cyclamate (25%), and acesulfame (5%) via dry deposition and precipitation within a 5 km radius of the pig farm were estimated at 3.9 and 6.2 kg in the average-case and worst-case scenarios, respectively, accounting for 12-18% of the overall emission, indicating that pig farms are a significant source of ASs to the atmosphere and to the vicinal environment via dry and wet deposition. The distribution trends of ASs in tree bark and leaves were similar and tree bark performed better in passively biomonitoring the AS contamination. Overall, pig farms were predicted to release 65-114, 22-38, 2.0-3.5, and 0.6-1.1 tons by feed application in China, Europe, Latin America, and North America, respectively, to the vicinal environment via dry deposition and precipitation.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
30
|
Xu C, Liu Z, Song X, Ding X, Ding D. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: Implications for the usage of PFASs alternatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141767. [PMID: 32889473 DOI: 10.1016/j.scitotenv.2020.141767] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
To date, per- and polyfluoroalkyl substances (PFASs) in environmental media surrounding landfills have not attracted much attention. In this study, six legacy PFASs, six short-chain analogues and five emerging alternatives were investigated in groundwater, surface water and sediment samples taken in the vicinity of a valley-type landfill, which had been in operation for over 20 years. Total PFAS concentrations of 110-236 ng/L, 17.3-163 ng/L and 7.91-164 ng/g dw were detected in the surface water, groundwater and sediment samples, respectively. Overall, perfluorooctanoic acid (PFOA) was the dominant PFAS in surface water, but elevated concentrations of perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA) were detected in the surface water samples taken adjacent to the landfill, suggesting that the landfill contributed to these compounds. PFBA was the dominant PFAS in the groundwater and sediments. The concentrations of long-chain perfluoroalkyl carboxylic acids (PFCAs) (C8-C12) in the sediment samples correlated significantly with the TOC, Al2O3 and Fe2O3 contents. The partitioning behaviors of PFCAs in the water-sediment system varied depending on the CF2 moiety units. For the long-chain PFCAs, positive correlations between the average LogKd and the number of CF2 moieties were found to be statistically significant, whereas negative correlations were observed for the short-chain PFCAs (C4-C7). The ratios of short-chain analogues and emerging alternatives versus their respective legacy PFOA and perfluorooctane sulfonate (PFOS) in surface water suggested an increasing trend of short-chain analogues, such as PFBA. The potential health risks of PFOS and PFOA, determined by calculating the estimated daily intake (EDI), were found to be negligible via the drinking groundwater exposure pathway, but more comprehensive studies on the human health risks of PFASs from landfills are essential.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Zhao N, Zhao M, Liu W, Jin H. Atmospheric particulate represents a source of C 8-C 12 perfluoroalkyl carboxylates and 10:2 fluorotelomer alcohol in tree bark. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116475. [PMID: 33465649 DOI: 10.1016/j.envpol.2021.116475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
In this study, we analyzed 30 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in paired atmospheric particulate and bark samples collected around a Chinese fluorochemical manufacturing park (FMP), with the aim to explore the sources of PFASs in tree bark. The results showed that PFASs in atmospheric particulate and tree bark samples were consistently dominated by perfluorooctanoate (mean 73 ng/g; 44 pg/m3), perfluorohexanoate (47 ng/g; 36 pg/m3), perfluorononanoate (9.1 ng/g; 8.8 pg/m3), and 10:2 fluorotelomer alcohol (10:2 FTOH; 5.6 ng/g; 12 pg/m3). Spatially, concentrations of C8-C12 perfluoroalkyl carboxylates (PFCAs) and 10:2 FTOH all showed a similar and exponentially decreased trend in both bark and atmospheric particulate samples with the increasing distance from the FMP. For the first time, we observed strongly significant (Spearman's correlation coefficient = 0.53-0.79, p < 0.01) correlations between bark and atmospheric particulate concentrations for C8-C12 PFCAs and 10:2 FTOH over 1-2 orders of magnitude, suggesting that the continues trapping of atmospheric particulates resulted in the accumulation of these compounds in bark. Overall, this study provides the first evidence that atmospheric particulate is an obvious source of C8-C12 PFCAs and 10:2 FTOH in tree bark. This result may further contribute to the application of tree bark as an indicator of certain PFASs in atmospheric particulate.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weiping Liu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
32
|
Li XQ, Hua ZL. Multiphase distribution and spatial patterns of perfluoroalkyl acids (PFAAs) associated with catchment characteristics in a plain river network. CHEMOSPHERE 2021; 263:128284. [PMID: 33297228 DOI: 10.1016/j.chemosphere.2020.128284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as global concerning contaminants because of their persistence, bioaccumulation, and toxicological effects. The transport and fate of PFAAs on dimension of plain river networks (PRNs) are difficult to model due to the unique regional characteristics (i.e., undirectional flows, low slope, complicated structure and connectivity) and the lack of data on PFAAs concentrations and compositions. A typical PRN (Taihu Basin, China) was selected to elucidate the spatial patterns of PFAAs in multi-matrices, including colloidal phase, soluble phase, suspended particles, and sediment. PFAAs were ubiquitously detected in plain rivers with total concentrations of 18.48-1220 ng/L in colloids, 139.07-721.37 ng/L in soluble phase, 97.69-2247 ng/g dw in suspended particles, and <72.04-178.12 ng/g dw in sediment. PFAAs were more likely to transport via dissolved phase and accumulate into sediment. Colloids carried 45.46-62.59% of ∑PFAAs in overlying water, while suspended particles contained <36.63% of ∑PFAAs, suggesting the important role of colloids in preloading PFAAs. Moreover, PFAAs variability was correlated with indicators of the structure and connectivity of river network by gray relational analysis. The mean gray relational degrees can be sorted as edge-node ratio (0.7609) > network connectivity (0.7191) > river density (0.7012) > water surface ratio (0.6887) > river development coefficient (0.6504) > functional connectivity (0.4780). These results suggested that the effects of catchment characteristics should be taken into account in understanding PFAAs fate in the PRNs.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
33
|
Wang W, Rhodes G, Ge J, Yu X, Li H. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. CHEMOSPHERE 2020; 261:127584. [PMID: 32717507 DOI: 10.1016/j.chemosphere.2020.127584] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic contaminants that are ubiquitous in the environment and have been found to be accumulated in agricultural products. Consumption of PFAS-contaminated agricultural products represents a feasible pathway for the trophic transfer of these toxic chemicals along food chains/webs, leading to risks associated with human and animal health. Recently, studies on plant uptake and accumulation of PFASs have rapidly increased; consequently, a review to summarize the current knowledge and highlight future research is needed. Analysis of the publications indicates that a large variety of plant species can take up PFASs from the environment. Vegetables and grains are the most commonly investigated crops, with perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) as the most studied PFASs. The potential sources of PFASs for plant uptake include industrial emissions, irrigation with contaminated water, land application of biosolids, leachates from landfill sites, and pesticide application. Root uptake is the predominant pathway for the accumulation of PFASs in agricultural crops, and uptake by plant aboveground portions from the ambient atmosphere could play a minor role in the overall PFAS accumulation. PFAS uptake by plants is influenced by physicochemical properties of compounds (e.g., perfluorocarbon chain length, head group functionality, water solubility, and volatility), plant physiology (e.g., transpiration rate, lipid and protein content), and abiotic factors (e.g., soil organic matters, pH, salinity, and temperature). Based on literature analysis, the current knowledge gaps are identified, and future research prospects are suggested.
Collapse
Affiliation(s)
- Wenfeng Wang
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Steenland K, Fletcher T, Stein CR, Bartell SM, Darrow L, Lopez-Espinosa MJ, Barry Ryan P, Savitz DA. Review: Evolution of evidence on PFOA and health following the assessments of the C8 Science Panel. ENVIRONMENT INTERNATIONAL 2020; 145:106125. [PMID: 32950793 DOI: 10.1016/j.envint.2020.106125] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The C8 Science Panel was composed of three epidemiologists charged with studying the possible health effects of PFOA in a highly exposed population in the mid-Ohio Valley. The Panel determined in 2012 there was a 'probable link' (i.e., more probable than not based on the weight of the available scientific evidence) between PFOA and high cholesterol, thyroid disease, kidney and testicular cancer, pregnancy-induced hypertension, and ulcerative colitis. OBJECTIVE Here, former C8 Science Panel members and collaborators comment on the PFOA literature regarding thyroid disorders, cancer, immune and auto-immune disorders, liver disease, hypercholesterolemia, reproductive outcomes, neurotoxicity, and kidney disease. We also discuss developments regarding fate and transport, and pharmacokinetic models, and discuss causality assessment in cross-sectional associations among low-exposed populations. DISCUSSION For cancer, the epidemiologic evidence remains supportive but not definitive for kidney and testicular cancers. There is consistent evidence of a positive association between PFOA and cholesterol, but no evidence of an association with heart disease. There is evidence for an association with ulcerative colitis, but not for other auto-immune diseases. There is good evidence that PFOA is associated with immune response, but uneven evidence for an association with infectious disease. The evidence for an association between PFOA and thyroid and kidney disease is suggestive but uneven. There is evidence of an association with liver enzymes, but not with liver disease. There is little evidence of an association with neurotoxicity. Suggested reductions in birthweight may be due to reverse causality and/or confounding. Fate and transport models and pharmacokinetic models remain central to estimating past exposure for new cohorts, but are difficult to develop without good historical data on emissions of PFOA into the environment. CONCLUSION Overall, the epidemiologic evidence remains limited. For a few outcomes there has been some replication of our earlier findings. More longitudinal research is needed in large populations with large exposure contrasts. Additional cross-sectional studies of low exposed populations may be less informative.
Collapse
Affiliation(s)
- Kyle Steenland
- 1518 Clifton Rd, Rollins School of Public Health, Emory U., Atlanta, GA 30324, United States.
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cheryl R Stein
- Hassenfeld Children's Hospital at NYU Langone, NY, NY, United States
| | - Scott M Bartell
- Program in Public Health, University of California Irvine, Irvine, Cal, United States
| | | | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO, Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - P Barry Ryan
- 1518 Clifton Rd, Rollins School of Public Health, Emory U., Atlanta, GA 30324, United States
| | - David A Savitz
- Brown University School of Public Health, Providence, Rhode Island, United States
| |
Collapse
|
35
|
Brusseau ML, Anderson RH, Guo B. PFAS concentrations in soils: Background levels versus contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140017. [PMID: 32927568 PMCID: PMC7654437 DOI: 10.1016/j.scitotenv.2020.140017] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 04/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are contaminants of critical concern due to their persistence, widespread distribution in the environment, and potential human-health impacts. In this work, published studies of PFAS concentrations in soils were compiled from the literature. These data were combined with results obtained from a large curated database of PFAS soil concentrations for contaminated sites. In aggregate, the compiled data set comprises >30,000 samples collected from >2500 sites distributed throughout the world. Data were collected for three types of sites- background sites, primary-source sites (fire-training areas, manufacturing plants), and secondary-source sites (biosolids application, irrigation water use). The aggregated soil-survey reports comprise samples collected from all continents, and from a large variety of locations in both urban and rural regions. PFAS were present in soil at almost every site tested. Low but measurable concentrations were observed even in remote regions far from potential PFOS sources. Concentrations reported for PFAS-contaminated sites were generally orders-of-magnitude greater than background levels, particularly for PFOS. Maximum reported PFOS concentrations ranged upwards of several hundred mg/kg. Analysis of depth profiles indicates significant retention of PFAS in the vadose zone over decadal timeframes and the occurrence of leaching to groundwater. It is noteworthy that soil concentrations reported for PFAS at contaminated sites are often orders-of-magnitude higher than typical groundwater concentrations. The results of this study demonstrate that PFAS are present in soils across the globe, and indicate that soil is a significant reservoir for PFAS. A critical question of concern is the long-term migration potential to surface water, groundwater, and the atmosphere. This warrants increased focus on the transport and fate behavior of PFAS in soil and the vadose zone, in regards to both research and site investigations.
Collapse
Affiliation(s)
- Mark L Brusseau
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA.
| | | | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
36
|
Wang Q, Ruan Y, Lin H, Lam PKS. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139804. [PMID: 32526580 DOI: 10.1016/j.scitotenv.2020.139804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been manufactured and used for over 50 years, and now are worldwide distributed in the environment. The atmospheric environment is the main compartment for PFASs to be transported and transformed, and relevant research has highlighted the global occurrence and impacts of atmospheric PFASs in ecosystems and human health. With the phasing-out and restriction of eight‑carbon chain-length (C8) PFASs in developed countries, China has become the largest producer of C8 PFASs since 2004. Subsequently, a number of studies on PFASs in the Chinese atmospheric environment have been conducted in the recent decade. This review documented twenty-eight studies on PFASs in Chinese outdoor air published to date. Methods of sampling, extraction, cleanup, and instrumental analysis were summarized for both ionic and neutral PFASs. Levels, compositions, and spatial distribution of PFASs from different areas in China (i.e. source, urban, and remote regions, and north versus south China) were compared and discussed. Leaves and tree barks were proposed as effective bioindicators to reflect the contamination status of atmospheric PFASs. Special attention can be given to non-target screening for future research directions.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong, China
| |
Collapse
|
37
|
Gao L, Liu J, Bao K, Chen N, Meng B. Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138753. [PMID: 32375068 DOI: 10.1016/j.scitotenv.2020.138753] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging global environmental contaminants. Exploring the occurrence and environmental behavior of PFASs in the aquatic environment is a key step in solving global fluorine chemical pollution problems. In this study, surface water, pore water, and sediment were collected from the main tributary and the middle and lower reaches of the Daling River, adjacent to the Fuxin fluorochemical manufacturing facilities in Liaoning Province in China, to elucidate the occurrence and partition behavior of PFASs. The total concentrations of PFASs ranged from 48.4 to 4578 ng/L in the overlying water, from 173 to 9952 ng/L in the pore water, and from 2.16 to 40.3 ng/g dw in the sediment fraction. Generally, perfluorobutanoic acid (PFBA) and perfluorobutane sulfonate (PFBS) were the predominant congeners in the samples, with the mean relative content fractions being almost consistently >40% in the dissolved phase and >25% in the sediment. Hexafluoropropylene oxide dimer acid (HFPO-DA) and chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) were detected, albeit at low levels. In addition, the detection frequency and the contribution of legacy long-chain PFASs in sediment were higher than those in the overlying water and pore water. Except for perfluorohexane sulfonate (PFHxS), the concentrations of the alternative PFASs in the pore water were higher than in the overlying water. The organic carbon fraction was a more important controlling factor for PFAS sediment levels than cations content. As with legacy long-chain PFASs, HFPO-DA and 6:2 Cl-PFESA tended to partition into the solid phase, whereas short-chain PFASs were readily distributed in the aqueous phase. Such research results will be helpful in modeling the transport and fate of PFASs released by point sources into coastal waters through rivers and in developing effective risk assessment and management strategies for the control of PFAS pollution.
Collapse
Affiliation(s)
- Lijuan Gao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Jingling Liu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Kun Bao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Nannan Chen
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Bo Meng
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
38
|
Zhao Z, Cheng X, Hua X, Jiang B, Tian C, Tang J, Li Q, Sun H, Lin T, Liao Y, Zhang G. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114391. [PMID: 32213363 DOI: 10.1016/j.envpol.2020.114391] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) contamination in the Bohai Sea and its surrounding rivers has attracted considerable attention in recent years. However, few studies have been conducted regarding the distribution of PFASs in multiple environmental media and their distributions between the suspended particles and dissolved phases. In this study, surface water, surface sediment, and air samples were collected at the Bohai Sea to investigate the concentration and distribution of 39 targeted PFASs. Moreover, river water samples from 35 river estuaries were collected to estimate PFAS discharge fluxes to the Bohai Sea. The results showed that total ionic compound (Σi-PFASs) concentrations ranged from 19.3 to 967 ng/L (mean 125 ± 152 ng/L) in the water and 0.70-4.13 ng/g dw (1.78 ± 0.76 ng/g) in surface sediment of the Bohai Sea, respectively. In the estuaries, Σi-PFAS concentrations were ranged from 10.5 to 13500 ng/L (882 ± 2410 ng/L). In the air, ΣPFAS (Σi-PFASs + Σn-PFASs) concentrations ranged from 199 to 678 pg/m3 (462 ± 166 pg/m3). Perfluorooctanoic acid (PFOA) was the predominant compound in the seawater, sediment, and river water; in the air, 8:2 fluorotelomer alcohol was predominant. Xiaoqing River discharged the largest Σi-PFAS flux to the Bohai Sea, which was estimated as 12,100 kg/y. Some alternatives, i.e., 6:2 fluorotelomer sulfonate acid (6:2 FTSA), hexafluoropropylene oxide dimer acid (HFPO-DA), and chlorinated 6:2 polyfluorinated ether sulfonic acid (Cl-6:2 PFESA), showed higher levels than or comparable concentrations to those of the C8 legacy PFASs in some sampling sites. The particle-derived distribution coefficient in seawater was higher than that in the river water. Using high resolution mass spectrometry, 29 nontarget emerging PFASs were found in 3 river water and 3 seawater samples. Further studies should be conducted to clarify the sources and ecotoxicological effects of these emerging PFASs in the Bohai Sea area.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Cheng
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xia Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
39
|
Ke Y, Chen J, Hu X, Tong T, Huang J, Xie S. Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113615. [PMID: 31759679 DOI: 10.1016/j.envpol.2019.113615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Collapse
Affiliation(s)
- Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Hu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Zhang M, Wang P, Lu Y, Lu X, Zhang A, Liu Z, Zhang Y, Khan K, Sarvajayakesavalu S. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. ENVIRONMENT INTERNATIONAL 2020; 135:105347. [PMID: 31794940 DOI: 10.1016/j.envint.2019.105347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
This study investigated perfluoroalkyl acids (PFAAs) in edible parts of vegetables, soils, and irrigation water in greenhouse and open filed, for the first time, in Shouguang city, the largest vegetable production base in China, which is located nearby a fluorochemical industrial park (FIP). The bioaccumulation factors (BAFs) were calculated, and the human exposures of PFAAs via consumption of the vegetables for different age groups assuming the maximum levels detected in each vegetable and average consumption rates were also estimated. The ΣPFAA levels ranged from 1.67 to 33.5 ng/g dry weight (dw) in the edible parts of all the vegetables, with perfluorobutanoic acid (PFBA) being the dominant compound with an average contribution of 49% to the ΣPFAA level. The leafy vegetables showed higher ΣPFAA levels (average 8.76 ng/g dw) than the fruit and root vegetables. For all the vegetables, the log10 BAF values of perfluorinated carboxylic acids showed a decreasing trend with increasing chain length, with PFBA having the highest log10 BAF values (average 0.98). Cabbage had higher bioaccumulation of PFBA (log10 BAF 1.24) than other vegetables. For the greenhouse soils and vegetables, the average contribution of perfluorooctanoic acid (PFOA) to ΣPFAA was lower than that in the open field samples, while the contributions of PFBA, PFHxA, PFPeA to ΣPFAA were higher. Irrigation water may be an important source of PFAAs in greenhouse, while for open field vegetables and soils, atmospheric deposition may be an additional contamination pathway. The estimated maximum exposure to PFOA through vegetable consumption for urban preschool children (aged 2-5 years) was 63% of the reference dose set by the European Food Safety Authority. Suggestions are also provided for mitigating the health risks of human exposure to PFAAs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| | - Xiaotian Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Anqi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | | |
Collapse
|
41
|
Li J, He J, Niu Z, Zhang Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs. ENVIRONMENT INTERNATIONAL 2020; 135:105419. [PMID: 31874352 DOI: 10.1016/j.envint.2019.105419] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/27/2023]
Abstract
With the worldwide regulation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the alternatives (short chain analogues and emerging per- and polyfluoroalkyl substances, PFASs) have gradually attracted global attention. This study analysed the replacing of legacy PFASs in China using PFASs data from residential soils, which might be good environmental indicators of their present usage. The total concentrations of 21 PFASs ranged from 244 to 13564 pg/g, and PFOA was the dominant compound among the studied PFASs, with a concentration of 354 ± 439 pg/g. Serious PFASs pollution in residential soils mainly occurred in Eastern Coastal China as a result of locally developed industry and economies. Weak but significant correlations were found between PFASs and environmental and socioeconomic factors, suggesting that various factors determine PFASs contamination in residential soils. The concentration and detection frequency (DF) of short-chain analogues (C < 8) (375 ± 509 pg/g and 100%), and F-53B (216 ± 306 pg/g and 98.9%) were higher than those for PFOS (193 ± 502 pg/g and 85.4%), indicating that these compounds have been widely used as PFOS alternatives and their consumption has already exceeded that of PFOS in China. In addition, GenX (the PFOA alternative) had a concentration and DF of 19.1 ± 104 pg/g and 40.5%, respectively. These values were much lower than those for PFOA (354 ± 439 pg/g and 96.6%), indicating GenX consumption is still limited at the national scale of China, despite its use as a PFOA replacement. Moreover, the low concentration and DF of FC-98 (2.31 ± 11.1 pg/g and 27.0%) indicate that its consumption might be negligible. Our study demonstrated that short chain analogues and emerging alternatives have become the dominant PFAS pollutants in Chinese residential soils, and further studies need to be conducted to understand their toxicity and environmental risks.
Collapse
Affiliation(s)
- Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiahui He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Li Y, Feng X, Zhou J, Zhu L. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints. WATER RESEARCH 2020; 168:115145. [PMID: 31614237 DOI: 10.1016/j.watres.2019.115145] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
A variety of fluorinated alternatives are being manufactured and applied as a consequence of stringent regulations on legacy poly/perfluoroalkyl substances (PFASs). In this study, 26 emerging and legacy PFASs were measured in the surface water (including dissolved phase and suspended particulate matter) and sediments taken from Hai River basin, China. The total concentrations of PFASs (∑PFASs) ranged from 1.74 to 172 ng/L, with perfluorooctanonate (PFOA) as the dominant compound (15.2% of the ∑PFASs, median value). Emerging PFASs, such as dimer acid of hexafluoropropylene oxide dimer acid (HFPO-DA) and trimer acid (HFPO-TA), were widely detected in the water samples. Specifically, chlorinated polyfluorinated ether sulfonate (F-53B) was observed to be predominant in some sediment samples. A receptor model, Unmix, was introduced to identify the sources of PFASs in the surface water, and the results indicated that fire-fighting foam/fluoropolymer processing aids (36.6%) were the dominant source. The field-based sediment-water (organic carbon normalized) coefficients, Koc, were correlated to the carbon chain lengths of the PFASs. A technique coupling one-way analysis of variance with chemical mass balance model was developed to trace the manufacturing sources of PFOA. Electrochemical fluorination (ECF) was the major PFOA manufacturing source with considerable contribution by telomerization. For the first time, the isomers of perfluorooctane sulfonamide (PFOSA) were quantified in the environmental samples. The lower proportion of branched (br-) PFOSA isomers and higher percentage of br-perfluorooctane sulfonate (PFOS) isomers in the water samples relative to their corresponding commercial products, provided more direct evidences that br-PFOSA isomers were biotransformed more easily than n-PFOSA, explaining the observed enrichment of br-PFOS in the aquatic environment.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
43
|
Chen R, Li G, Yu Y, Ma X, Zhuang Y, Tao H, Shi B. Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134162. [PMID: 31491637 DOI: 10.1016/j.scitotenv.2019.134162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Although human exposure to perfluoroalkyl acids (PFAAs) through tap water is an ongoing concern, knowledge of the PFAAs occurrence in the tap water and the associated transport behaviors of PFAAs in drinking water distribution systems (DWDSs) are scarce. This investigation profiled the occurrence of 17 kinds of PFAAs in tap water of some Chinese cities, and the transport behaviors of PFAAs in DWDS were observed in eastern China. Tap water samples both along trunk pipelines and at the distal ends were collected to display the PFAAs occurrence scenarios. Loose deposit solids were also obtained to reveal their possible accumulation effect on PFAAs. The results showed that perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) widely existed in tap water samples, and were the predominant PFAAs in eastern China areas. The mean concentration of the 17 PFAAs was 77.49 ng/L (ranging from 9.29 ng/L to 266.68 ng/L). Short-chain PFAAs (mainly PFBA) concentrations were relatively stable from water treatment plant to consumer taps, while long-chain PFAAs (mainly PFOA) exhibited a significant decrease in concentration, which could be attributed to their accumulation by the loose deposits in the DWDSs. It was calculated that PFOA has a higher partition coefficient than PFBA; this means that the former has a stronger potential to be adsorbed by loose deposits. In addition, the accumulation ability of loose deposits might be associated with the composition of Al, Fe and Si in the loose deposits. The positive correlation between the short-chain PFAAs and dissolved organic carbon (DOC) indicated the possible interactions between PFAA and natural organic matter could favor short-chain PFAAs to retain in bulk water. When water quality conditions change or hydraulic disturbance occur, loose deposits may enter tap water bringing accumulated PFAAs with it, which may result in potential health risks.
Collapse
Affiliation(s)
- Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Ma
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
| | - Yuan Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Tao
- College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Liu Y, Hou X, Chen W, Kong W, Wang D, Liu J, Jiang G. Occurrences of perfluoroalkyl and polyfluoroalkyl substances in tree bark: Interspecies variability related to chain length. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1388-1395. [PMID: 31466174 DOI: 10.1016/j.scitotenv.2019.06.454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Occurrences of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in tree bark from four species were investigated. Species-dependent congener distribution patterns were firstly reported for perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). The majority of PFSAs and PFCAs in Chinese red pine bark were C5-C7 PFSAs and perfluorohexanoic acid (PFHxA, containing six carbon atoms, C6), whereas perfluorobutanesulfonic acid (PFBS, C4) and longer chain congeners (PFCAs: C ≥ 7; PFSAs: C ≥ 8) took a larger proportion in the fissured bark from Canadian poplar, Chinese scholartree and weeping willow. The species-dependent congener profiles depended on the structures and chemical compositions of tree bark, as well as the translocation of PFASs within plants. Different tree bark characteristics caused different retention abilities for particle-bound and gaseous PFASs. Particle-bound PFASs retained in the rougher structures of fissured bark led to preferential retention of long chain congeners (the major fraction in the particle phase), while lipid-rich Chinese red pine bark retained more gaseous PFASs (mainly short chain congeners). Besides, the abundance of short chain PFASs in red pine bark was consistent with the chain length-dependent translocation behaviors of PFASs in various plants, suggesting that translocation of PFASs within plants to tree bark may be invovled.
Collapse
Affiliation(s)
- Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Qi X, Zhou J, Wang M, Yang MR, Tang XY, Mao XF, Wang TT. Perfluorinated compounds in poultry products from the Yangtze River Delta and Pearl River Delta regions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1079-1086. [PMID: 31466148 DOI: 10.1016/j.scitotenv.2019.06.258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Chicken, duck, egg, and duck egg samples from the Yangtze River Delta and Pearl River Delta regions in China were analyzed for 17 perfluorinated compounds (PFCs). The concentrations of PFCs in chicken and duck livers ranged from <LOD to 35.53 μg/kg and 40.41 μg/kg, respectively, which is higher than in other tissues. PFDA was the predominant PFC in live with mean concentrations of 2.09 μg/kg and 1.73 μg/kg in chicken and duck livers, respectively. The mean ∑PFCs concentrations were 1.87 μg/kg and 1.88 μg/kg in chicken and duck eggs, respectively. The mean PFC concentrations were also similar in the subcutaneous fat of both chicken and duck. The total PFC concentrations in chicken and ducks ranged from <LOD to 54.63 μg/kg and 10.21 μg/kg. The current concentration levels of PFCs would not cause health risks to adults even with the frequent consumption of poultry products. However, the higher concentrations of PFCs in chicken and chicken eggs might cause health risks in children.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Zhou
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Meng-Rui Yang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao-Yan Tang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Fei Mao
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tong-Tong Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
46
|
Barroso PJ, Martín J, Santos JL, Aparicio I, Alonso E. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:484-492. [PMID: 31063891 DOI: 10.1016/j.scitotenv.2019.04.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, an analytical method has been applied to biomonitor airborne emerging pollutants in urban areas using bitter orange (Citrus aurantium) tree leaves, which is an evergreen species widely extended in the Mediterranean region, as biosampler. Leaves, from trees located in 20 different locations from Seville City (South of Spain) were sampled during one year period. Sampling sites were located in six highly populated areas, in seven lowly populated areas, in six urban parks and in one industrial area. Fifteen of the target compounds were detected in the analysed samples. The highest concentrations corresponded to plasticizers (up to 852ng/g dry matter (dm)) and surfactants (up to 752ng/gdm), especially di(2-ethylhexyl)phthalate and nonylphenol. Spatial distribution allowed assessing the influence of populated areas in the concentration of some of the studied compounds, such as plasticizers and perfluorinated compounds, and the influence of industrial areas, in the concentration of surfactants. No clear influence of the climatic conditions (temperature, solar radiation and rainfall) on the concentrations of studied compounds was observed. This fact could be due to the presence of diffuse sources of these compounds. In the case of the brominated flame retardant, the measured concentrations could be related with two fire episodes in the vicinity, but until now it has not been possible to rigorously demonstrate a causal relationship. This fact could reveal the suitability and valuable use of Citrus aurantium tree leaves for biomonitoring atmospheric pollutants, especially from unexpected emissions in atmospheric pollution episodes.
Collapse
Affiliation(s)
- Pedro José Barroso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| |
Collapse
|
47
|
Wang P, Zhang M, Lu Y, Meng J, Li Q, Lu X. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland. ENVIRONMENT INTERNATIONAL 2019; 129:76-85. [PMID: 31121518 DOI: 10.1016/j.envint.2019.04.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The fluorochemical industry has shifted to the production of short chain homologues of perfluoalkyl acids (PFAAs) in recent years. Yet the effective removal of short-chain PFAAs from wastewater is still a major challenge. In this study, the removal efficiencies (RM) of short- and long-chain PFAAs emitted from two fluorochemical industrial parks were evaluated in one industrial and two domestic waste water treatment plants (WWTPs), and bioaccumulation factors (BAF) of PFAAs in various emerged and submerged aquatic plants in adjacent river and an artificial wetland were also calculated. Perfluorobutanoic acid (PFBA), perfluorobutane sulfonic acid (PFBS) and perfluorooctanoic acid (PFOA) were dominant in the whole area. The source water of the fluorochemical industrial WWTP (F-WWTP) gathered from the facilities in Park 2 contained total PFAAs (∑PFAAs) of 5,784 ng/L. Among the four main technologies, the biological aerated filter, combined with upflow sludge bed processes presented the greatest RM of ∑PFAAs in the F-WWTP, respectively. The source water of the wetland from the river brought ∑PFAAs to 21,579 ng/L, emerged plants showed higher BAF of PFBA and PFBS, while lower BAF of PFOA and PFOS than submerged plants. J. serotinus showed both the highest ∑PFAAs and the highest BAF for short chain PFAAs. With the increasing production capacity, this study provided valuable information for risk assessment and management of PFAA emission from point sources.
Collapse
Affiliation(s)
- Pei Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Meng Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Meng
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qifeng Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaotian Lu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
48
|
Cui Q, Shi F, Pan Y, Zhang H, Dai J. Per- and polyfluoroalkyl substances (PFASs) in the blood of two colobine monkey species from China: Occurrence and exposure pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:524-531. [PMID: 31022542 DOI: 10.1016/j.scitotenv.2019.04.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs), which are widely used in industrial and commercial products, have been identified as global and ubiquitous pollutants. Despite this, limited data are available regarding the impacts of PFAS exposure and intake in non-human primates. Here, we report for the first time on the occurrence of PFASs in the blood and dietary sources of two rare and endangered primate species, namely, the golden snub-nosed monkey (Rhinopithecus roxellana) and Francois' leaf monkey (Trachypithecus francoisi). Results showed that perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were dominant and found at the highest proportions in the blood of both species at the four study sites. The ∑PFAS levels in blood samples from captive golden snub-nosed monkeys in Tongling Zoo (mean: 2.51 ng/mL) and Shanghai Wild Zoo (3.52 ng/mL) near urbanized areas were one order of magnitude higher than the levels in wild monkeys from Shennongjia Nature Reserve (0.27 ng/mL). Furthermore, significant age positive relationships for perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonates (6:2 Cl-PFESA) were observed in both golden snub-nosed monkeys at Shanghai Wild Zoo and Francois' leaf monkeys at Wuzhou Breeding Center. In addition, PFAS levels in frequently consumed food and drinking water were analyzed for Francois' leaf monkeys. Results showed that tree leaves accounted for the highest percentage of total daily intake of PFASs, especially PFOA, thus highlighting tree leaf consumption as a primary PFAS exposure route for this species. Overall, however, dietary exposure to PFASs was of relatively low risk to Francois' leaf monkey health.
Collapse
Affiliation(s)
- Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fanglei Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Johansson JH, Salter ME, Acosta Navarro JC, Leck C, Nilsson ED, Cousins IT. Global transport of perfluoroalkyl acids via sea spray aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:635-649. [PMID: 30888351 DOI: 10.1039/c8em00525g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent organic pollutants found throughout the world's oceans. Previous research suggests that long-range atmospheric transport of these substances may be substantial. However, it remains unclear what the main sources of PFAAs to the atmosphere are. We have used a laboratory sea spray chamber to study water-to-air transfer of 11 PFAAs via sea spray aerosol (SSA). We observed significant enrichment of all PFAAs relative to sodium in the SSA generated. The highest enrichment was observed in aerosols with aerodynamic diameter < 1.6 μm, which had aerosol PFAA concentrations up to ∼62 000 times higher than the PFAA water concentrations in the chamber. In surface microlayer samples collected from the sea spray chamber, the enrichment of the substances investigated was orders of magnitude smaller than the enrichment observed in the aerosols. In experiments with mixtures of structural isomers, a lower contribution of branched PFAA isomers was observed in the surface microlayer compared to the bulk water. However, no clear trend was observed in the comparison of structural isomers in SSA and bulk water. Using the measured enrichment factors of perfluorooctanoic acid and perfluorooctane sulfonic acid versus sodium we have estimated global annual emissions of these substances to the atmosphere via SSA as well as their global annual deposition to land areas. Our experiments suggest that SSA may currently be an important source of these substances to the atmosphere and, over certain areas, to terrestrial environments.
Collapse
Affiliation(s)
- J H Johansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Brandsma SH, Koekkoek JC, van Velzen MJM, de Boer J. The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. CHEMOSPHERE 2019; 220:493-500. [PMID: 30594801 DOI: 10.1016/j.chemosphere.2018.12.135] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 05/26/2023]
Abstract
The ban on perfluorooctanoic acid (PFOA) has led to the production and use of alternative fluorinated compounds such as GenX. Limited information is available on the occurrence of this PFOA substitute. In this pilot study, we investigated the presence of GenX in/on grass and leaf samples collected near a fluoropolymer manufacturing plant in the Netherlands and in drinking water produced from surface and surface-water influenced groundwater intake points within 25 km from the plant. GenX was detected in/on all grass and leaf samples collected within 3 km north-east from the plant, with levels ranging from 1 to 27 ng/g wet weight (ww) and 4.3-86 ng/g ww, respectively. The PFOA levels in/on grass and leaves were lower, ranging from 0.7 to 11 ng/g ww and 0.9-28 ng/g ww, respectively. A declining concentration gradient of GenX and PFOA with increasing distance from the plant was observed, which suggests that the plant is a point source of GenX and was a point source for PFOA in the past. In all drinking water samples, GenX and PFOA were detected with levels ranging from 1.4 to 8.0 ng/L and 1.9-7.1 ng/L, respectively. The detection of GenX, which is only used since 2012, in/on grass and leaves and in drinking water indicates that GenX is now distributed through the environment. The presence of GenX and PFOA in/on grass and leaves within 3 km north-east of the plant also suggests that these chemicals could also be present on the locally grown food in gardens around the factory.
Collapse
Affiliation(s)
- S H Brandsma
- Vrije Universiteit, Dept. Environment and Health, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - J C Koekkoek
- Vrije Universiteit, Dept. Environment and Health, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - M J M van Velzen
- Vrije Universiteit, Dept. Environment and Health, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - J de Boer
- Vrije Universiteit, Dept. Environment and Health, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|