1
|
Xie J, Zheng S, Wei H, Shi Z, Liu Z, Zhang J. Assessing the interactive effects of microplastics and acid rain on cadmium toxicity in rice seedlings: Insights from physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175533. [PMID: 39155013 DOI: 10.1016/j.scitotenv.2024.175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Collapse
Affiliation(s)
- Jiefen Xie
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Jemec Kokalj A, Dolar A, Nagode A, Drobne D, Kuljanin A, Kalčíková G. Response of terrestrial crustacean Porcellio scaber and mealworm Tenebrio molitor to non-degradable and biodegradable fossil-based mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175379. [PMID: 39137843 DOI: 10.1016/j.scitotenv.2024.175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Agricultural mulching films are potential sources of microplastics (MPs) in soil. As an alternative to conventional non-degradable mulching films, a variety of different biodegradable mulching films are used. However, it is not yet known whether MPs from biodegradable mulching films pose a lower risk to terrestrial invertebrates compared to MPs from conventional mulching films. In this study, the effects of MPs produced from two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-based poly(butylene adipate co-terephthalate); PBAT-BD-1, and PBAT-BD-2) fossil-based mulching films on terrestrial crustacean woodlice Porcellio scaber and mealworm Tenebrio molitor were compared. A key finding was that no clear differences in induced responses between biodegradable and conventional MPs were detected. No adverse effects on P. scaber after two weeks and on T. molitor after four weeks of exposure were observed up to 5 % (w/w dry soil) of either MP type. However, some sublethal physiological changes in metabolic rate and immune parameters were found in P. scaber after two weeks of exposure indicating a response of organisms to the presence of MP exposure in soil. In addition, it was demonstrated that both types of MPs might affect the soil water holding capacity and pH. In conclusion, we confirmed that biodegradable MPs can induce responses in organisms hence further studies testing the environmental hazard of biodegradable MPs are justified.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| |
Collapse
|
3
|
Hoang VH, Nguyen MK, Hoang TD, Ha MC, Huyen NTT, Bui VKH, Pham MT, Nguyen CM, Chang SW, Nguyen DD. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175276. [PMID: 39102948 DOI: 10.1016/j.scitotenv.2024.175276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
Collapse
Affiliation(s)
- Van-Hiep Hoang
- Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Minh Cuong Ha
- School of Aerospace Engineering (SAE), University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi 100000, Viet Nam
| | - Nguyen Thi Thanh Huyen
- Faculty of International Economics, Foreign Trade University, Vietnam, Dong Da District, Hanoi, Viet Nam
| | - Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Minh-Thuan Pham
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Cong-Manh Nguyen
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
4
|
Zhang R, Zhang H, Xing Y, Xue L. Optimizing plastic film mulch to improve the yield and water use efficiency of dryland maize in the Loess Plateau, China. PLoS One 2024; 19:e0308706. [PMID: 39499720 PMCID: PMC11537401 DOI: 10.1371/journal.pone.0308706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 11/07/2024] Open
Abstract
Knowledge on the variation of yield and water use efficiency under different mulching methods is important for guiding rained maize production in the Loess Plateau area. In this study, eight different plastic film mulching methods was established to analyze the maize growth, soil water content and soil temperature changes of dryland maize, and increase yield and water use efficiency (WUE). The field experiment was conducted in 2019, and eight treatments were set up, including a traditional flat planting without mulching (CK), ridge-furrow with ridges mulching black plastic film and furrows mulching straw (HJ), ridge-furrow with ridges mulching black plastic film and furrows bare (HL), ridge-furrow with ridges mulching liquid plastic film and furrows mulching straw (YJ), ridge-furrow with ridges mulching liquid plastic film and furrows bare (YL), ridge-furrow with ridges mulching biodegradable plastic film and furrows mulching straw (SJ), ridge-furrow with ridges mulching biodegradable plastic film and furrows bare (SL) and ridge-furrow with ridges bare and furrows mulching straw (NJ). Furthermore, the AHP-TOPSIS was employed to evaluate the optimal mulching method for maize. The results showed that compared with CK and NJ treatment, the soil water content and soil storage were significantly changes with other treatments in the reproductive period of maize. Among the six mulching methods, maize yield in HJ, HL, YJ, YL, SJ, and SL treatments were 46.28%, 61.95%, 70.30%, 51.02%, 52.02% and 53.53% significantly greater than CK treatment. In addition, dryland maize WUE was 66.53% and 84.01% higher in the YJ and YL treatments with ridges mulching liquid plastic film than in the CK treatment, respectively. The optimal treatments of economic benefits were YL and HJ. Through AHP-TOPSIS comprehensive analysis, the optimal mulching methods were YL and HJ treatment. Current field trials indicate that YL treatment could serve as a promising option to improve dryland maize yield, WUE, and reducing environmental risks in the Loess Plateau of China.
Collapse
Affiliation(s)
- Rui Zhang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongjuan Zhang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yunpeng Xing
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Lian Xue
- Lanzhou Agro-technical Research and Popularization Center, Lanzhou, China
| |
Collapse
|
5
|
Yang YJ, Zhu MJ. Influences of bisphenol A on hydrogen production from food waste by thermophilic dark fermentation. ENVIRONMENTAL RESEARCH 2024; 260:119625. [PMID: 39019138 DOI: 10.1016/j.envres.2024.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The extensive use of plastic products in food packaging and daily life makes them inevitably enter the treatment process of food waste (FW). Plasticizer as a new pollutant is threatening the dark fermentation of FW. Our study showed that bisphenol A (BPA) at > 250 mg/L had a significant inhibition on hydrogen production from FW by thermophilic dark fermentation. The endogenous ATP content and lactate dehydrogenase (LDH) release showed that high level of BPA not only inhibited the growth of hydrogen-producing consortium, but also led to cell death. In addition, BPA mainly affects the hydrogen-producing consortium by reducing cell membrane fluidity, damaging cell membrane integrity and reducing cell membrane potential, resulting in cell death. This study provides some new insights into the mechanism of the effect of BPA on hydrogen production from FW by thermophilic dark fermentation, and lays the foundation on the utilization of FW.
Collapse
Affiliation(s)
- Yong-Jun Yang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, 844006, China.
| |
Collapse
|
6
|
Bian J, Peng N, Zhou Z, Yang J, Wang X. A critical review of co-pollution of microplastics and heavy metals in agricultural soil environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117248. [PMID: 39467422 DOI: 10.1016/j.ecoenv.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The soil environment is a primary destination for contaminants such as microplastics (MPs) and heavy metals (HMs), which are frequently detected simultaneously. The long-term coexistence of MPs and HMs in the soil necessitates unavoidable interactions, affecting their environmental chemical behavior and bioavailability. These co-contaminants pose potential threats to soil organism growth and reproduction, crop productivity, food security, and may jeopardize human health via the food chain. This paper summarizes the sources and trends of MPs in the soil environment, along with the mechanisms and current research status of MP adsorption or desorption of HMs. Additionally, this paper reviews factors affecting HM adsorption on MPs, including MP properties, HM chemical properties, and other environmental factors. Lastly, the effects of MPs and HMs on soil ecology and human health are summarized. The interaction mechanisms and potential biological effects of their co-contamination require further exploration. Future research should delve deeper into the ecotoxic effects of MP-HM co-contamination at cellular and molecular levels, to provide a comprehensive reference for understanding the environmental behavior of their co-contamination in soil.
Collapse
Affiliation(s)
- Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Nian Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China.
| | - Ziyi Zhou
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| |
Collapse
|
7
|
Li L, Zhang Y, Kang S, Wang S, Gao T, Wang Z, Luo X, Kang Q, Sajjad W. Characteristics of microplastics and their abundance impacts on microbial structure and function in agricultural soils of remote areas in west China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124630. [PMID: 39079655 DOI: 10.1016/j.envpol.2024.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
As an emergent pollutant, microplastics (MPs) are becoming prevalent in the soil environment. However, the characteristics of MPs and the response of microbial communities to the abundance of MPs in agricultural soils in West China still need to be elucidated in detail. This study utilized the Agilent 8700 Laser Direct Infrared (LDIR) to analyze the characteristics of small-sized MPs (20-1000 μm) in soils from un-mulched and mulched agricultural fields in West China, and illustrated their correlation with microbial diversity. The results revealed a higher abundance of MPs in mulched soil ((4.12 ± 2.13) × 105 items kg-1) than that in un-mulched soil ((1.04 ± 0.26) × 105 items kg-1). The detected MPs were dominated by fragments, 20-50 μm and Polyamide (PA). High-throughput sequencing analysis indicated that alpha diversity (Chao1 and Shannon indices) in the plastisphere was lower compared to that in soil, and varied significantly with MPs abundance in soil. As the abundance of MPs increased, the proportion of soil about the degradation of organic matte and photoautotrophic taxa increased, which showed enrichment in the plastisphere. Functional predictions further indicated that MPs abundance affected potential soil functions, such as metabolic pathways associated with the C and N cycling. The plastisphere showed higher functional abundance associated with organic matter degradation, indicating higher potential health risks compared to soil environments. Based on the RDA analyses, it was determined that environmental physicochemical properties and MPs abundance had a greater impact on fungal communities than on bacterial communities. In general, the abundance of MPs affected the microbial diversity composition and potentially influenced the overall performance of soil ecosystems. This study offers empirical data on the abundance of MPs in long-term mulched agricultural fields and new insights for exploring the ecological risk issues associated with MPs.
Collapse
Affiliation(s)
- Longrui Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Qiangqiang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wasim Sajjad
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Donggang West Rd. 318, Lanzhou 730000, China
| |
Collapse
|
8
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
9
|
Forsell V, Saartama V, Turja R, Haimi J, Selonen S. Reproduction, growth and oxidative stress in earthworm Eisenia andrei exposed to conventional and biodegradable mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174667. [PMID: 38992384 DOI: 10.1016/j.scitotenv.2024.174667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Plastic contamination in agricultural soils has become increasingly evident. Plastic mulching films are widely used in agricultural practices. However, the increased use of biodegradable plastics has, to some extent, replaced their non-degradable counterparts. The fragmentation of plastics generates microplastics (MPs), posing risk to soil functions and organisms. In this study the effects of low-density polyethylene microplastics (PE-MP) and polybutylene adipate terephthalate biodegradable microplastics (PBAT-BD-MP) originating from mulching films on the earthworm Eisenia andrei were studied. The earthworms were exposed to seven concentrations (0, 0.005, 0.05, 0.1, 0.5, 1, and 5 % w/w) based on environmentally relevant levels and worst-case scenarios on soil contamination. Survival, growth, reproduction, and biomarkers for oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), and lipid peroxidation (LPO)] were analysed. Additionally, the Integrated Biomarker Response Index (IBR) was calculated to assess the overall oxidative stress status of the earthworms. Results showed that PE-MP exposure slightly decreased the biomass of the earthworms towards higher concentrations, whereas PBAT-BD-MPs induced growth at lower concentrations. MPs did not have a significant effect on Eisenia andrei reproduction; however, a slight negative trend was observed in juvenile production with increasing PE-MP concentrations. Both PE-MP and PBAT-BD-MP affected antioxidant system, PE-MPs with changes in CAT and GR levels and PBAT-BD-MPs inducing effects on SOD and LPO levels. Additionally, both MPs exhibited effects on soil parameters, resulting in increased soil pH and water-holding capacity at 5 % concentration. Changes in soil parameters can further affect soil organisms such as earthworms. This study provides understanding of the ecotoxicological effects of conventional and biodegradable microplastics on the earthworm Eisenia andrei. It also shows that MP particles of both conventional and biodegradable mulching films induce oxidative stress, considered as an early-warning indicator for adverse ecological effects, in environmentally relevant concentrations.
Collapse
Affiliation(s)
- Venla Forsell
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 4, 00014 University of Helsinki, Helsinki, Finland
| | - Vili Saartama
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland; University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Raisa Turja
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jari Haimi
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Salla Selonen
- Finnish Environmental Institute Syke, Latokartanonkaari 11, 00790 Helsinki, Finland.
| |
Collapse
|
10
|
Han Z, Zhao X, Tong B, Mu Y, Yang X, Hou Y, Zhu Z. Preparation of agriculture film from cow manure for silage maize planting: Experimental study and life cycle assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:465-476. [PMID: 39423712 DOI: 10.1016/j.wasman.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
With the development of modern breeding technology, the scale of dairy farming is becoming increasingly large, which leading to decoupling of planting and breeding. Hence, massive amounts of manure could not handled by traditional method in time, which caused serious environmental problems. Therefor, there is a urgent needs for industrialized treatment methods to treat cow manure for dairy farm industry. In order to expand the types of industrial treatment methods of cow manure, two types of industrialized cow manure based agriculture films were introduced in this research, manure slurry film (MSF) and manure paper film (MPF). Taking silage corn cultivation as an example, their feasibility were testified: the usage performances of the films were expanded by crop yield and soil physicochemical properties, and environmental impacts of the films was conducted by life cycle assessment (LCA). The results showed: (1) both MSF and MPF would decomposed in one growth period of silage maize, with MPF having better performance in temperature retention; (2) both MSF and MPF improved soil nutrients and agglomerate structures; (3) the yield of maize with MSF and MPF was increased from 62.6 t to 88.4 t and 84.6 t per hectare compared to control group; and (4) according to LCA, MPF had 39 % and 50 % lower average environment impact than PE film and MSF. In conclusion, manure based films could effectively promotes crop growth with lower environment impact compared with traditional methods, which thus might provide effective linkage strategies for coupling of planting and breeding.
Collapse
Affiliation(s)
- Zixi Han
- Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, PR China; China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China
| | - Xu Zhao
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China
| | - Bingxin Tong
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China; Hebei Agr Univ, Coll Resources & Environm Sci, Baoding 071000, PR China
| | - Yongsong Mu
- Huarui Agr Co Ltd, Liuba Ecoind Pk, Zhangye City 734500, Gansu, PR China
| | - Xiangjun Yang
- Huarui Agr Co Ltd, Liuba Ecoind Pk, Zhangye City 734500, Gansu, PR China; Chengdu Univ, Fac Mech Engn, Chengdu, PR China
| | - Yong Hou
- China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Key Lab Plant Soil Interact, Minist Educ, Beijing, PR China.
| | - Zhiping Zhu
- Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, PR China
| |
Collapse
|
11
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
12
|
Choudhary K, Singh J, Meena NK, Al-Ansari N, Choudhary S, Tiwari RK, Choudhary M, Vishwakarma DK, El-Hendawy S, Mattar MA. Water volumes and mulches affect plant growth, leaf nutrient status and orchard soil mineral content of sweet orange cv. Mosambi. Sci Rep 2024; 14:23919. [PMID: 39397042 PMCID: PMC11471785 DOI: 10.1038/s41598-024-73262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Day-by-day increasing irrigation water scarcity requires the application of water-saving irrigation techniques to sustain agriculture production. A two-year field investigation was conducted during 2018 to 2020 to determine the effects of various mulches and irrigation volumes on the growth, leaf chemicals and soil properties of one-year-old sweet oranges (Citrus sinensis) cv. Mosambi. The study included three irrigation schedules, viz.100% ETc (I1), 80% ETc (I2), and 60% ETc (I3), and five different mulches were used, viz. without mulch, white polythene, coriander straw, dry grass and black polythene mulches, replicated thrice. Results demonstrated that drip irrigation with 100% ETc and mulching with black polythene mulch significantly increase the plant growth attributes like height of the plant (28.64%) (30.31%), rootstock girth (36.61%) (37.90%), plant canopy spread (E-W and N-S) (EW- 63.82%, NS- 63.87%) (EW- 67.56%, NS- 67.90%) and leaf area (2.4%) (2.34%). Furthermore, plant leaf chlorophyll content (2.41 mg g-1) (2.41 mg g-1) and leaf mineral content such as N (2.39%) (2.40%), P (0.16%) (0.165%), K (1.57%) (1.59%), Ca (47.34 g kg-1) (47.80 g kg-1), Mg (4.54 g kg-1) (4.57 g kg-1), Fe (120.51 g kg-1) (123.15 g kg-1) and Zn (39.00 g kg-1) (37.84 g kg-1) were noted to be significantly (p ≤ 0.05) higher in plants that received 100% (were ETc (I1) and mulching with black polythene mulch (M1) treatment. Taken together, the results suggested that treatments I1 and M1 have the potential to maximize plant growth, leaf chemicals and soil nutrients of sweet orange (Citrus sinensis) cv. Mosambi plants.
Collapse
Affiliation(s)
- Kalpana Choudhary
- Department of Fruit Science, College of Horticulture and Forestry, Jhalawar, Agriculture University, Kota, Rajasthan, 324001, India
- Krishi Vigyan Kendera, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - J Singh
- Department of Fruit Science, College of Horticulture and Forestry, Jhalawar, Agriculture University, Kota, Rajasthan, 324001, India
| | - N K Meena
- Department of Fruit Science, College of Horticulture and Forestry, Jhalawar, Agriculture University, Kota, Rajasthan, 324001, India
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea, 97187, Sweden.
| | - Sonali Choudhary
- Department of Horticulture, Sri Karan Narendra Agriculture University, Jobner, Rajasthan, 303329, India
| | - Ravindra Kumar Tiwari
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Mahendra Choudhary
- Department of Agronomy, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Dinesh Kumar Vishwakarma
- Department of Irrigation and Drainage Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
13
|
Jemec Kokalj A, Nagode A, Drobne D, Dolar A. Effects of agricultural microplastics in multigenerational tests with insects; mealworms Tenebrio molitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174490. [PMID: 38969109 DOI: 10.1016/j.scitotenv.2024.174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Mulching films, widely used in agriculture, are a large source of microplastics (MPs) to soil. However, there is little knowledge on the long-term effects of agricultural MPs on soil invertebrates. We investigated the effects of MPs from conventional non-biodegradable, fossil-based, low-density polyethylene (PE) and biodegradable fossil-based poly(butylene adipate-coterephthalate) (starch-PBAT blend) mulching films on two generations of the mealworm Tenebrio molitor. No effects of MPs (0.005 %-5 %, w/w dry food) on mealworm development and survival were observed until the end of the experiments (12 weeks for the first generation, nine weeks for the second generation), but effects on their moulting and growth were observed. These were most evident for PE MPs (5 %, w/w), where a decrease in larval growth and moulting was noted in the first generation. On the contrary, PBAT MPs (5 %, w/w) significantly induced the growth of mealworms in the second generation. In addition, there was a non-significant trend towards increased growth at all other PBAT MP exposure concentrations. Increased growth is most likely due to the biodegradation of starch PBAT MPs by mealworms. Overall, these data suggest that PE and PBAT MPs do not induce significant effects on mealworms at environmentally relevant concentrations, but rather only at very high exposure concentrations (5 %).
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| |
Collapse
|
14
|
Hurley R, Binda G, Briassoulis D, Carroccio SC, Cerruti P, Convertino F, Dvořáková D, Kernchen S, Laforsch C, Löder MGL, Pulkrabova J, Schettini E, Spanu D, Tsagkaris AS, Vox G, Nizzetto L. Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174325. [PMID: 38942306 DOI: 10.1016/j.scitotenv.2024.174325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.
Collapse
Affiliation(s)
- Rachel Hurley
- Norwegian Institute for Water Research, Oslo, Norway.
| | - Gilberto Binda
- Norwegian Institute for Water Research, Oslo, Norway; Department of Science and High Technology, University of Insubria, Como, Italy
| | - Demetres Briassoulis
- Natural Resources & Agricultural Engineering Department, Agricultural University of Athens, Athens, Greece
| | | | - Pierfrancesco Cerruti
- National Research Council Institute of Polymers, Composites and Biopolymers, Pozzuoli, Italy
| | - Fabiana Convertino
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Darina Dvořáková
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | | | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Evelia Schettini
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Aristeidis S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Giuliano Vox
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Lai H, Han S, Sun J, Fang Y, Liu P, Zhao H. The comparison effect on earthworms between conventional and biodegradable microplastics. Heliyon 2024; 10:e37308. [PMID: 39309927 PMCID: PMC11415699 DOI: 10.1016/j.heliyon.2024.e37308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Many studies have reported the toxic effects of microplastics (MPs) on organisms, especially on how conventional plastics affect organisms after short-term exposure. The effects of biodegradable plastics on organisms are, however, largely unexplored, especially concerning their impact after long-term exposure. We perform a series of experiments to examine the effects of conventional (polyethylene (PE)) and biodegradable (polylactic acid (PLA)) microplastics on earthworms at three concentrations (0.5 %, 2 %, and 5 % (w/w)) and particle sizes (149, 28, and 13 μm) over short- (14 d) and long-term (28 d) periods of exposure. Negative effects on earthworms are more pronounced following exposure to PE than PLA, particularly over the shorter term. After longer-term exposure, earthworms may adapt to PE and PLA environments. A close relationship exists between the effects of MPs on earthworms and activities of superoxide dismutase, catalase, and malondialdehyde enzymes, which we use to evaluate the degree of antioxidant damage. We report both PE and PLA to negatively affect earthworms, but for the effects of PLA to be less severe after longer-term exposure. Further investigation is required to more fully assess the potential negative effects of PLA use on soil organisms in agriculture.
Collapse
Affiliation(s)
- Hailong Lai
- College of Environmental Science and Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China
| | - Shuwen Han
- College of Environmental Science and Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700AB, Wageningen, the Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands
| | - Jinyu Sun
- College of Environmental Science and Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China
| | - Yujing Fang
- Hongyu Environmental Technology Company, 215000, Suzhou, Jiangsu Province, China
| | - Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
17
|
Zhou Y, Dou M, Zhang Y, Ning K, Li Y. Distribution characteristics of soil microplastics and their impact on soil physicochemical properties in agricultural areas of the North China plain. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1556-1570. [PMID: 39069953 DOI: 10.1039/d4em00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Microplastic (MPs) pollution has become a global issue, with particular concern regarding MPs in soil. To determine the characteristics of MPs in agricultural production areas and their impact on soil physicochemical properties, soil samples were collected from different land use types in the North China Plain. Layered sampling was conducted and the soil physicochemical properties were determined. A novel image recognition method based on fluorescence staining was proposed for the batch analysis of MPs in the study area. Together with the results of the soil physicochemical properties, the impact of MPs on soil physicochemical properties was analyzed and evaluated. The results showed that the soil MPs abundance in this agricultural area was moderate to low compared to other agricultural areas, with a larger proportion of particle-type and fragment-type MPs smaller than 10 μm. The soil MPs were predominantly composed of polyvinyl chloride (PVC) and polypropylene (PP). MPs abundance was higher in farmland and forest land than in vegetable fields. The impact of MPs on soil physicochemical properties was mainly manifested in the changes in soil structure due to the different MPs characteristics. Apart from abundance, the type of MPs was found to be the main factor affecting soil bulk density, with particle size and shape influencing the soil aggregate structure. MPs may effect the pH values of sandy and loamy soils, primarily by altering the soil porosity and water holding capacity, but also by increasing the area and duration of contact between the soil medium and external water sources. This study revealed the MPs characteristics in agricultural areas as well as the pathways by which they can impact soil physicochemical properties.
Collapse
Affiliation(s)
- Yuze Zhou
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, China
| | - Ming Dou
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Yan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Kaizi Ning
- Faculty of Science, Monash University, Melbourne, Australia
| | - Yuxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Chen W, Wang D, Guo C, Yang J, Shi L, Li FM. Appropriate flame-spraying treatment exacerbates thermal oxidative degradation of residual polyethylene films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176377. [PMID: 39299320 DOI: 10.1016/j.scitotenv.2024.176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In dryland farming, plastic film mulching can significantly increase crop yields, but the resulting residues impair soil health. Heretofore, only few studies had examined how heat treatment facilitates the rapid degradation of polyethylene (PE) residual films. Herein, we characterized the variations in micro-morphology, functional groups, and crystallinity of PE residual films after moderate heat exposure using a self-made flame-spraying equipment. The results revealed that solid residues (SR) obtained from flame-spraying showed a gravimetric weight loss of 9.39 %-15.35 % compared with untreated PE residual films (UPF). Scanning electron microscope equipped with energy dispersive X-ray spectroscopy revealed considerable pits, cracks, and visible roughness in appearance and an increase in the oxygen-to-carbon (O/C) atomic ratio. Fourier-transform infrared spectroscopy identified characteristic oxygen-containing functional groups and double bonds. X-ray diffraction showed that flame-spraying treatments did not alter the crystal form of polymer, but increased the crystallinity. Higher flame-spraying temperatures resulted in larger oxygen-containing bond indices and lower crystallinity, suggesting a more severe decomposition of PE residual film. The possible volatile gaseous products at different reaction temperatures were predicted using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR). Degradation of the PE residual film started at 220 °C, and concentrated release of major products such as long-chain aliphatic hydrocarbons, ketones, and CO2, occurred in the temperature range of 340 °C-440 °C. These results highlighted the effectiveness of the moderate flame-spraying method in accelerating rapid decomposition of residual films, and a flame-spraying temperature range of 220 °C-340 °C should be recommended to avoid potential environmental risks induced by the release of large quantities of degradation products. This study will contribute to enhance our understanding of the thermal oxidative degradation behavior of PE waste and provide a scientific basis for the rapid and clean establishment of PE residual films mitigation in agricultural fields.
Collapse
Affiliation(s)
- Weiqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu Province, China; Gansu Institute of Metrology, Lanzhou 730000, Gansu Province, China
| | - Dong Wang
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Chaoli Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Juntao Yang
- Gansu Institute of Metrology, Lanzhou 730000, Gansu Province, China
| | - Liyu Shi
- Gansu Institute of Metrology, Lanzhou 730000, Gansu Province, China
| | - Feng-Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu Province, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
19
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
20
|
Merino D. Embracing Nature's Clockwork: Crafting Plastics for Degradation in Plant Agricultural Systems. ACS MATERIALS AU 2024; 4:450-458. [PMID: 39280809 PMCID: PMC11393932 DOI: 10.1021/acsmaterialsau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024]
Abstract
In the 21st century, global agriculture confronts the urgent challenge of increasing food production by 70% by 2050 while simultaneously addressing environmental and health concerns. Plastics, integral to agricultural innovation, present sustainability challenges due to their non-biodegradable nature and contribution to pollution. This perspective examines the transition to bioplastics, emphasizing their bio-based origin and their crucial characteristic of being readily biodegradable in the soil. Key bioplastics such as poly(lactic acid) (PLA), polyhydroxyalkanoates (PHAs), and biomass-derived polymers are discussed, particularly regarding the microplastic generation in soil resulting from their use in specific applications like mulch films, delivery systems, and soil conditioners. Embracing bioplastics signifies a significant step forward in achieving sustainable agriculture and addressing plastic waste. However, it is highlighted that while some bioplastics can be recovered and recycled, special applications where the plastic is in intimate contact with soil pose challenges for recovery. In these cases, that represent more than the 50% of plastics used in agriculture, meticulous design for biodegradation in soil synchronized with agricultural cycles is necessary. This approach ensures minimal environmental impact and promotes a circular approach to plastic use in agriculture.
Collapse
Affiliation(s)
- Danila Merino
- Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
21
|
Chang H, Wu T, Lin W, Gu X, Zhou R, Li Y, Li B. Adsorption-desorption and leaching behavior of benzovindiflupyr in different soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116724. [PMID: 39003870 DOI: 10.1016/j.ecoenv.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Benzovindiflupyr is a succinate dehydrogenase inhibitor fungicide that targets mitochondrial function for disease control. In this study, we investigated the adsorption-desorption and leaching behavior of benzovindiflupyr in eight soil types using the batch equilibrium method and the soil column leaching method. A Freundlich model (r2 > 0.9959) was used to better characterize the adsorption-desorption process in eight soil types, with adsorption coefficients (KF-ads) ranging from 2.303 to 17.886. KF-ads was significantly and positively correlated (p < 0.05) with the organic carbon content. High temperatures and increased initial pH of aqueous solutions led to a decrease in benzovindiflupyr adsorption in the soil. The adsorption was also influenced by factors such as ionic strength, humic acid, surfactant type, microplastic type, and particle size and concentration. Moreover, benzovindiflupyr exhibited low leachability in all four soils selected, but different leaching solutions affected the risk of benzovindiflupyr migration to groundwater. Overall, this study provides insights into the adsorption characteristics of benzovindiflupyr in different soils and provides key information for environmental risk assessment.
Collapse
Affiliation(s)
- Hailong Chang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lin
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoxue Gu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuqi Li
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
22
|
Ciaramitaro V, Piacenza E, Paliaga S, Cavallaro G, Badalucco L, Laudicina VA, Chillura Martino DF. Exploring the Feasibility of Polysaccharide-Based Mulch Films with Controlled Ammonium and Phosphate Ions Release for Sustainable Agriculture. Polymers (Basel) 2024; 16:2298. [PMID: 39204519 PMCID: PMC11359579 DOI: 10.3390/polym16162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bio-based polymers are a promising material with which to tackle the use of disposable and non-degradable plastics in agriculture, such as mulching films. However, their poor mechanical properties and the high cost of biomaterials have hindered their widespread application. Hence, in this study, we improved polysaccharide-based films and enriched them with plant nutrients to make them suitable for mulching and fertilizing. Films were produced combining sodium carboxymethyl cellulose (CMC), chitosan (CS), and sodium alginate (SA) at different weight ratios with glycerol and CaCl2 as a plasticizer and crosslinker, respectively, and enriched with ammonium phosphate monobasic (NH4H2PO4). A polysaccharide weight ratio of 1:1 generated a film with a more crosslinked structure and a lower expanded network than that featuring the 17:3 ratio, whereas CaCl2 increased the films' water resistance, thermal stability, and strength characteristics, slowing the release rates of NH4+ and PO43-. Thus, composition and crosslinking proved crucial to obtaining promising films for soil mulching.
Collapse
Affiliation(s)
- Veronica Ciaramitaro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| | - Sara Paliaga
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Giuseppe Cavallaro
- Department of Physics and Chemistry-Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy;
| | - Luigi Badalucco
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze Building 4, 90128 Palermo, Italy; (S.P.); (L.B.)
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Building 17, 90128 Palermo, Italy; (V.C.); (D.F.C.M.)
| |
Collapse
|
23
|
Zhang C, Liu X, Zhang L, Chen Q, Xu Q. Assessing the aging and environmental implications of polyethylene mulch films in agricultural land. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1310-1321. [PMID: 38818727 DOI: 10.1039/d4em00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Polyethylene mulch films (MFs) are widely employed in agricultural land to enhance crop yield and quality, but the MF residue causes significant environmental concerns. To promote the sustainable application of MFs, it is essential to assess their fate throughout their service life and understand the underlying degradation mechanisms. In this study, surface-exposed and soil-buried MFs were separately collected from agricultural land in Inner Mongolia, China. The variations in aging performance and corresponding property alterations of MF were thoroughly examined. The results indicated that sunlight exposure considerably hastens MF degradation, whereas buried MFs experience a more moderate aging process due to the inhibitory effects of the dark and anaerobic environment on oxidation. Surface cracking was observed in MF-Light samples as a result of photodegradation, while chemical and moisture interactions with soil caused partial perforation in MF-Soil samples. Relative to the pristine MF, the oxidation, unsaturation, and hydroxylation levels of MF-Light increased to 0.88, 0.35, and 0.73, respectively, with corresponding values for MF-Soil at 0.44, 0.13, and 0.24. The generated oxygen-containing functional groups lead to a decrease in contact angles of MF-Light and MF-Soil, enhancing their hydrophilicity. The aging process of MFs led to a decline in mechanical properties, posing challenges for recycling. Moreover, nearly all phthalate esters (PAEs) were released from MFs, regardless of sunlight exposure or soil burial. The use of MFs also impacted the abundance of soil microbial communities. Specifically, the selected polyethylene MF enriched Actinobacteriota by 75%, while reducing Chloroflexi and Firmicutes by 27% and 45%, respectively.
Collapse
Affiliation(s)
- Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, P. R. China.
| | - Xingyu Liu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, P. R. China.
| | - Li Zhang
- Bureau of Agriculture and Livestock, Wongniute, Inner Mongolia, 024500, P. R. China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, P. R. China.
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, P. R. China.
| |
Collapse
|
24
|
Kopitar D, Marasovic P. Degradation of Biodegradable Nonwoven Mulches in the Winter Period. Polymers (Basel) 2024; 16:2279. [PMID: 39204499 PMCID: PMC11358960 DOI: 10.3390/polym16162279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
An open field experiment from November 2022 to May 2023 in Croatia, which is characterized by a continental humid climate, evaluated nonwoven mulches made from viscose, jute, and hemp fibres blended with PLA fibres. The blends of viscose and jute fibres (90:10, 80:20, and 70:30 ratios) were produced using mechanical web formation on cards with needle punching for bonding webs. Additionally, hemp fibres were blended with PLA fibres in a ratio of 80:20. Winter conditions caused significant structural changes in the mulches, including shrinkage, increased mass per unit area, thickness, and reduced air permeability. The amount of PLA fibre in the nonwoven mulch blends significantly affected nonwoven fabric structure change during exposure to winter conditions. After 180 days, the breaking force of all mulches increased by 30% to 277%. The soil beneath jute and hemp mulches maintained higher temperatures and moisture levels compared to viscose mulches. Soil organic carbon content varied with fibre type and was higher under jute and hemp mulches. K2O content was significantly higher in soils covered by mulches. All mulches effectively suppressed weeds. The experiment results showed that the newly produced nonwoven mulches could replace the conventional agro foil. Results also suggest that choosing biodegradable nonwoven mulches produced from fibres obtained from natural and renewable sources can influence soil fertility and the availability of nutrients, ultimately affecting plant growth and agricultural productivity.
Collapse
Affiliation(s)
- Dragana Kopitar
- Department of Textile Design and Management, Faculty of Textile Technology, University of Zagreb, Prilaz Baruna Filipovica 28a, 10000 Zagreb, Croatia;
| | | |
Collapse
|
25
|
Tayyab M, Kazmi SSUH, Pastorino P, Saqib HSA, Yaseen ZM, Hanif MS, Islam W. Microplastics in agroecosystems: Soil-plant dynamics and effective remediation approaches. CHEMOSPHERE 2024; 362:142641. [PMID: 38906184 DOI: 10.1016/j.chemosphere.2024.142641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Increasing microplastic (MP) pollution, primarily from anthropogenic sources such as plastic film mulching, waste degradation, and agricultural practices, has emerged as a pressing global environmental concern. This review examines the direct and indirect effects of MPs on crops, both in isolation and in conjunction with other contaminants, to elucidate their combined toxicological impacts. Organic fertilizers predominantly contain 78.6% blue, 9.5% black, and 8.3% red MPs, while irrigation water in agroecosystems contains 66.2% white, 15.4% blue, and 8.1% black MPs, ranging from 0-1 mm to 4-5 mm in size. We elucidate five pivotal insights: Firstly, soil MPs exhibit affinity towards crop roots, seeds, and vascular systems, impeding water and nutrient uptake. Secondly, MPs induce oxidative stress in crops, disrupting vital metabolic processes. Thirdly, leachates from MPs elicit cytotoxic and genotoxic responses in crops. Fourthly, MPs disrupt soil biotic and abiotic dynamics, influencing water and nutrient availability for crops. Lastly, the cumulative effects of MPs and co-existing contaminants in agricultural soils detrimentally affect crop yield. Thus, we advocate agronomic interventions as practical remedies. These include biochar input, application of growth regulators, substitution of plastic mulch with crop residues, promotion of biological degradation, and encouragement of crop diversification. However, the efficacy of these measures varies based on MP type and dosage. As MP volumes increase, exploring alternative mitigation strategies such as bio-based plastics and environmentally friendly biotechnological solutions is imperative. Recognizing the persistence of plastics, policymakers should enact legislation favoring the mitigation and substitution of non-degradable materials with bio-derived or compostable alternatives. This review demonstrates the urgent need for collective efforts to alleviate MP pollution and emphasizes sustainable interventions for agricultural ecosystems.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Syed Shabi Ul Hassan Kazmi
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154, Torino, Italy
| | - Hafiz Sohaib Ahmed Saqib
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Sajid Hanif
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
26
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
27
|
Woodford L, Fellows R, White HL, Ormsby MJ, Pow CJ, Quilliam RS. Survival and transfer potential of Salmonella enterica serovar Typhimurium colonising polyethylene microplastics in contaminated agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51353-51363. [PMID: 39107647 PMCID: PMC11374834 DOI: 10.1007/s11356-024-34491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Agricultural environments are becoming increasingly contaminated with plastic pollution. Plastics in the environment can also provide a unique habitat for microbial biofilm, termed the 'plastisphere', which can also support the persistence of human pathogens such as Salmonella. Human enteric Salmonella enterica serovar Typhimurium can enter agricultural environments via flooding or from irrigation with contaminated water. Using soil mesocosms we quantified the ability of S. Typhimurium to persist on microplastic beads in two agriculturally relevant soils, under ambient and repeat flood scenarios. S. Typhimurium persisted in the plastisphere for 35 days in both podzol and loamy soils; while during multiple flood events was able to survive in the plastisphere for up to 21 days. S. Typhimurium could dissociate from the plastisphere during flooding events and migrate through soil in leachate, and importantly could colonise new plastic particles in the soil, suggesting that plastic pollution in agricultural soils can aid S. Typhimurium persistence and facilitate further dissemination within the environment. The potential for increased survival of enteric human pathogens in agricultural and food production environments due to plastic contamination poses a significant public health risk, particularly in potato or root vegetable systems where there is the potential for direct contact with crops.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chloe J Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
28
|
Bartnick R, Rodionov A, Oster SDJ, Löder MGJ, Lehndorff E. Plastic Quantification and Polyethylene Overestimation in Agricultural Soil Using Large-Volume Pyrolysis and TD-GC-MS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13047-13055. [PMID: 38977269 PMCID: PMC11270980 DOI: 10.1021/acs.est.3c10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 μm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 μm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 μg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.
Collapse
Affiliation(s)
- Ryan Bartnick
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | - Andrei Rodionov
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | | | - Martin G. J. Löder
- Animal
Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Eva Lehndorff
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| |
Collapse
|
29
|
Lu S, Wei S, Li M, Chadwick DR, Xie M, Wu D, Jones DL. Earthworms alleviate microplastics stress on soil microbial and protist communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174945. [PMID: 39043297 DOI: 10.1016/j.scitotenv.2024.174945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Microplastic (MP) pollution can exert significant pressure on soil ecosystems, however, the interactive effects of MPs on soil bacterial, fungal and protist communities remains poorly understood. Soil macrofauna, such as earthworms, can be directly affected by MPs, potentially leading to a range of feedbacks on the soil microbial community. To address this, we conducted a microcosm experiment to examine the effects of conventional (i.e., polyethylene, polystyrene) and biodegradable MPs (i.e. PBAT, polylactic acid) on the structure of the soil bacterial, fungal, and protist communities in the presence or absence of earthworms. We found that MP contamination negatively affected the diversity and composition of soil microbial and protist communities, with smaller-sized conventional MPs having the most pronounced effects. For example, compared with the unamended control, small-sized polyethylene MPs both significantly reduced the Shannon diversity of soil bacteria, fungi, and protist by 4.3 %, 37.0 %, and 9.1 %, respectively. Biodegradable MPs increased negative correlations among bacteria, fungi, and protists. However, earthworms mitigated these effects, enhancing the diversity and altering the composition of these communities. They also increased the niche width and stability of the soil microbial food web network. Our study indicated that earthworms help attenuate the response of soil microorganisms to MPs stress by influencing the diversity and composition of soil microorganisms and soil physicochemical properties and underscores the importance of considering macrofauna in MPs research.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shitong Wei
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Meiyan Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - David R Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Mengmeng Xie
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
30
|
Liang R, Zhang C, Zhang R, Li Q, Liu H, Wang XX. Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174899. [PMID: 39043299 DOI: 10.1016/j.scitotenv.2024.174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Biodegradable mulch residues contribute significantly to the presence of microplastics in soil ecosystems. The environmental impact of microplastics, especially biodegradable microplastics (bio-MPs), on soil and plants is of increasing concern. In this study, the responses of five crop species potted in soil treated with different mass concentrations of bio-MPs were assessed for one month. The shoot and root biomasses of cabbages and strawberries were inhibited by bio-MPs treatment. There was little variation in the growth indicators of identical plants with the addition of different mass concentrations of bio-MPs; however, a significant difference was observed among different plants with the addition of the same concentration of bio-MPs. The detrimental effects of bio-MPs were more pronounced in strawberries and cabbages than in the other plant species. Moreover, bio-MPs can affect the availability of soil nutrients and enzyme activities. Structural equation modeling showed that changes in soil properties may indirectly affect plant growth and nutrient uptake when exposed to bio-MPs. This study provides a theoretical basis for understanding the ecological effects of biodegradable mulch films.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China
| | - Hongquan Liu
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071002, People's Republic of China
| | - Xin-Xin Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China; College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
31
|
Li M, Wang Z, Zhu L, Zhu Y, Yi J, Fu X. Research advances on microplastics contamination in terrestrial geoenvironment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173259. [PMID: 38761947 DOI: 10.1016/j.scitotenv.2024.173259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The contamination of microplastics in terrestrial geoenvironment (CMTG) is widespread and severe and has, received considerable attention. However, studies on CMTG are in their initial stages. The literature on CMTG published in the past decade was analyzed through bibliometric analysis, such as the annual publications, countries with the highest contributions, prolific authors, and author keywords. The sources, compositions, migrations and environmental impacts of CMTG are summarized, and possible future directions are proposed. This study analyzed the annual publications, countries with the highest contributions, prolific authors, and author keywords related to microplastics. The results demonstrated that 15,306 articles were published between 2014 and 2023. China is the leading country in terms of the total number of publications. The main sources of CMTG include landfills, agricultural non-point sources, sewage treatment systems and transportation systems. The composition of the CMTG exhibits significantly temporal and spatial variability from different sources. The migration paths of the CMTG were within the soil, groundwater seepage and wind transportation of suspended particles. Microplastics increase soil cohesion, decrease porosity, reduce pore scale, decrease air circulation, and increase water retention capacity, and the exudation of highly water-soluble additives in microplastics can cause secondary contamination of geological entities. Microplastics have an adverse effect on plant growth, animal digestion, microbial activity, energy and lipid metabolism, oxidative stress, and respiratory diseases in humans. It is recommended to develop more efficient and convenient quantitative testing methods for microplastics, formulate globally harmonized testing and evaluation standards, include microplastic testing in testing programs for contaminated soils, and develop efficient methods for the remediation of microplastic contaminated geological bodies.
Collapse
Affiliation(s)
- Mingdong Li
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Zhicheng Wang
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Liping Zhu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Yating Zhu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Jinxiang Yi
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| | - Xiaojie Fu
- School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
32
|
Wang N, Zhang N, Sun ML, Sun Y, Dong QY, Wang Y, Gu ZT, Ding HT, Qin QL, Jiang Y, Chen XL, Zhang YZ, Gao C, Li CY. Molecular insights into the catalytic mechanism of a phthalate ester hydrolase. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135191. [PMID: 39013318 DOI: 10.1016/j.jhazmat.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.
Collapse
Affiliation(s)
- Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mei-Ling Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yan Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Qing-Yu Dong
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yu Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Zeng-Tian Gu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Hai-Tao Ding
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yong Jiang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
33
|
Thomas D, Bloem E. Visible intruders: Tracing (micro-) plastic in organic fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174311. [PMID: 38971256 DOI: 10.1016/j.scitotenv.2024.174311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Agricultural soils have been identified as potential reservoirs for plastic pollution, with adverse effects on soil properties. Primary sources of plastic input in agricultural landscapes are associated with the application of sewage sludge or compost. Understanding the sources and anticipated plastic content is crucial in mitigating plastic pollution in agricultural fields. This study presents one of the first investigations into the plastic content and other impurities, e.g. glass, of seven organic fertilizers (biowaste compost, digested pig slurry, sewage sludge compost, dry chicken manure, green waste compost, sewage sludge, and a mixed digestate comprising pig slurry, chicken manure, and 74 % renewable raw materials). Potentially visible foreign substances were assessed on the surface of each fertilizer pile. No impurities could be detected in digested pig slurry, chicken manure, and mixed digestate. For the remaining fertilizers, visible potential foreign substances were collected, cleaned, visually described, weighed, photographed, size measured, and chemically characterized using ATR-FTIR. The quantification revealed that plastic particles are the most abundant and are contained in all other fertilizers, in contrast to glass and metal. An increasing trend in plastic particle number per m2: green waste < biowaste < sewage sludge compost < sewage sludge, which is about 4 times greater in sewage sludge than in green waste compost, could be observed. However, sewage sludge compost has the largest plastic mass and surface area per square meter. This illustrates that sewage sludge compost application can be a significant entry pathway for visual plastics into agricultural soils.
Collapse
Affiliation(s)
- Daniela Thomas
- Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Agricultural Technology, Bundesallee 47, 38116 Braunschweig, Germany.
| | - Elke Bloem
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 58, 38116 Braunschweig, Germany.
| |
Collapse
|
34
|
Mukhopadhyay P, Valsalan SA. Seasonal variation, spatial distribution and risk assessment of microplastics in surface waters of Periyar River, Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:679. [PMID: 38951273 DOI: 10.1007/s10661-024-12820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
Microplastics, an emerging contaminant, are widespread in oceans around the world, and rivers are the key conveyors of these pollutants into the oceans. There exists a dearth of available data pertaining to seasonal fluctuation, spatial distribution and risk assessment of microplastics in rivers extending from upper reaches to the lower reaches. The collection of such data is of utmost importance for the purpose of formulating beneficial management strategies for riverine microplastics. In order to bridge this research gap, an investigation was made in the Periyar River in Kerala, India, which is exposed to anthropogenic stress and is at risk of microplastic pollution. A total of eighteen sites (six sites each from downstream, midstream and upstream) along the 244 km of the river were investigated across three seasons in a year. The study revealed a discernible pattern in the spatial distribution of microplastic concentrations, wherein there was a rise in abundance from the upstream to midstream and then a sudden increase of abundance along the downstream regions towards the lower reaches. The highest mean microplastic abundance of 124.95 items/L was obtained during the monsoon season followed by post-monsoon season i.e. 123.21 items/L and pre-monsoon i.e. 120.50 items/L. The predominant forms of microplastics were found to be fibres, fragments and filaments. Most prevalent polymer types acquired were polyethylene (PE) and polypropylene (PP). Pollution hazard index (PHI) and pollution load index (PLI) were also evaluated to assess the water quality of this river. The findings of this study conclude that the Periyar River is polluted with microplastics throughout its course and offer significant insights into the detection of microplastic origins in river systems and lend support to the implementation of potential measures aimed at mitigating their impact.
Collapse
Affiliation(s)
- Patralika Mukhopadhyay
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India.
| | - Shibu Arkkakadavil Valsalan
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India
| |
Collapse
|
35
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
36
|
Megha KB, Anvitha D, Parvathi S, Neeraj A, Sonia J, Mohanan PV. Environmental impact of microplastics and potential health hazards. Crit Rev Biotechnol 2024:1-31. [PMID: 38915217 DOI: 10.1080/07388551.2024.2344572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 06/26/2024]
Abstract
Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - D Anvitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - S Parvathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - A Neeraj
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - J Sonia
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| |
Collapse
|
37
|
Wang S, Hadji-Thomas A, Adekunle A, Raghavan V. The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172737. [PMID: 38663611 DOI: 10.1016/j.scitotenv.2024.172737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Microplastic (MP) pollution has caused severe concern due to its harmful effect on human beings and ecosystems. Existing MP removal methods face many obstacles, such as high cost, high energy consumption, low efficiency, release of toxic chemicals, etc. Thus, it is crucial to find appropriate and sustainable methods to replace common MP removal approaches. Bio-electrochemical system (BES) is a sustainable clean energy technology that has been successfully applied to wastewater treatment, seawater desalination, metal removal, energy production, biosensors, etc. However, research reports on BES technology to eliminate MP pollution are limited. This paper reviews the mechanism, hazards, and common treatment methods of MP removal and discusses the application of BES systems to improve MP removal efficiency and sustainability. Firstly, the characteristics and limitations of common MP removal techniques are systematically summarized. Then, the potential application of BES technology in MP removal is explored. Furthermore, the feasibility and stability of the potential BES MP removal application are critically evalauted while recommendations for further research are proposed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Andre Hadji-Thomas
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
38
|
Zhang J, Xie J, Du Y, Li Y, Yue Y, Cao S. Discrete element modeling and experimental study of biomechanical properties of cotton stalks in machine-harvested film-stalk mixtures. Sci Rep 2024; 14:12933. [PMID: 38839762 DOI: 10.1038/s41598-024-62390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
To address the current problems of low accuracy and poor reliability of the discrete element model of cotton stalks, as well as the difficulty of guiding the design and optimization of the equipment through simulations, the discrete element modeling and physical-mechanical tests of cotton stalks in machine harvested film-stalk mixtures are carried out. The peak tensile force F j max , the peak pressure F y max , the peak bending force F w max , the peak shear force F j max , and the force-displacement (F-x) curves of cotton stalks are obtained from the physical tests. The discrete element model of double-layer cotton stalks based on the flat-joint model is established with the PFC3 D software. The F y max is taken as the response value, and the microscopic parameters of the cotton stalk model are used as the test factors, then the Plackett-Burman test, the steepest climb test, and the Box-Behnken test are sequentially designed using Design-Expert software. The second-order regression model describing the relationship between the F y max and the microscopic parameters is established. The optimal parameter combinations of the microscopic parameters are obtained, and then they are utilized to construct the compression, bending, and shear models of cotton stalks and to carry out the validation tests. The results confirm that the established discrete element model could accurately characterize the biomechanical properties of cotton stalks and that the parameter calibration method is reasonable, which could provide a reference for the discrete element modeling of cotton stalks and other stalks, and also offer a theoretical basis for the research of the crushing and separation mechanism of the film-stalk mixtures and the development of the equipment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China.
- College of Mechanical and Electrical Engineering, Xinjiang Institute of Engineering, Urumqi, 830023, China.
| | - Jianhua Xie
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Intelligent Agricultural Equipment, Urumqi, 830052, China.
| | - Yakun Du
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yuanze Li
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yong Yue
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Silin Cao
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
39
|
Renault D, Wiegand C, Balzani P, Richard CMC, Haubrock PJ, Colinet H, Davranche M, Pierson-Wickmann AC, Derocles SAP. The Plasticene era: Current uncertainties in estimates of the hazards posed by tiny plastic particles on soils and terrestrial invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172252. [PMID: 38599414 DOI: 10.1016/j.scitotenv.2024.172252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.
Collapse
Affiliation(s)
- David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France.
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Paride Balzani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chloé M C Richard
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Phillip J Haubrock
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Mélanie Davranche
- UMR CNRS 6118 GEOSCIENCES Rennes, Université Rennes, Avenue Général Leclerc, 35042 Rennes cedex, France
| | | | - Stéphane A P Derocles
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| |
Collapse
|
40
|
Wu Z, Kang S, Liu Y, Wang P, Liu T, Bushra R, Khan MR, Guo J, Zhu W, Xiao H, Song J. Hydrostability, mechanical resilience, and biodegradability of paper straws fabricated through lignin-based polyurethane and chitosan binary emulsion bonding. Int J Biol Macromol 2024; 270:132155. [PMID: 38729462 DOI: 10.1016/j.ijbiomac.2024.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
This study focuses on enhancing the strength and water stability of paper straws through a novel approach involving a binary emulsion of lignin-based polyurethane and chitosan. Kraft lignin serves as the raw material for synthesizing a blocked waterborne polyurethane, subsequently combined with carboxylated chitosan to form a stable binary emulsion. The resulting emulsion, exhibiting remarkable stability over at least 6 months, is applied to the base paper. Following emulsion application, the paper undergoes torrefaction at 155 °C. This process deblocks isocyanate groups, enabling their reaction with hydroxyl groups on chitosan and fibers, ultimately forming ester bonds. This reaction significantly improves the mechanical strength and hydrophobicity of paper straws. The composite paper straws demonstrate exceptional mechanical properties, including a tensile strength of 47.21 MPa, Young's modulus of 4.33 GPa, and flexural strength of 32.38 MPa. Notably, its water stability is greatly enhanced, with a wet tensile strength of 40.66 MPa, surpassing commercial paper straws by 8 folds. Furthermore, the composite straw achieves complete biodegradability within 120 days, outperforming conventional paper straws in terms of environmental impact. This innovative solution presents a promising and sustainable alternative to plastic straws, addressing the urgent need for eco-friendly products.
Collapse
Affiliation(s)
- Zhenghong Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
| | - Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yena Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Rani Bushra
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
41
|
Ventura E, Marín A, Gámez-Pérez J, Cabedo L. Recent advances in the relationships between biofilms and microplastics in natural environments. World J Microbiol Biotechnol 2024; 40:220. [PMID: 38809290 PMCID: PMC11136731 DOI: 10.1007/s11274-024-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Plastic pollution in the form of microplastics (MPs), poses a significant threat to natural ecosystems, with detrimental ecological, social, and economic impacts. This review paper aims to provide an overview of the existing research on the interaction between microbial biofilms and MPs in natural environments. The review begins by outlining the sources and types of MPs, emphasizing their widespread presence in marine, freshwater, and terrestrial ecosystems. It then discusses the formation and characteristics of microbial biofilms on MPs surfaces, highlighting their role in altering the physicochemical properties of MPs and facilitating processes such as vertical transport, biodegradation, dispersion of microorganisms, and gene transfer. Different methods used to assess these interactions are discussed, including microbiological and physicochemical characterization. Current gaps and challenges in understanding the complex relationships between biofilms and MPs are identified, highlighting the need for further research to elucidate the mechanisms underlying these complex interactions and to develop effective mitigation strategies. Innovative solutions, including bioremediation techniques and their combination with other strategies, such as nanotechnology, advanced filtration technologies, and public awareness campaigns, are proposed as promising approaches to address the issue of MPs pollution. Overall, this review underscores the urgent need for a multidisciplinary approach to combating MPs pollution, combining scientific research, technological innovation, and public engagement to safeguard the health and integrity of natural ecosystems.
Collapse
Affiliation(s)
- Eva Ventura
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
42
|
Jiao Y, Zhang G, Ai X, Wang X. Comparison of the Effects of LDPE and PBAT Film Residues on Soil Microbial Ecology. Curr Microbiol 2024; 81:185. [PMID: 38771339 DOI: 10.1007/s00284-024-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Underground Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Underground Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoyang Ai
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Underground Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojing Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Underground Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
43
|
Khalid SA, Ghanem AF, Abd-El-Malek A, Ammar MA, El-Khateib T, El-Sherbiny IM. Free-standing carboxymethyl cellulose film incorporating nanoformulated pomegranate extract for meat packaging. Carbohydr Polym 2024; 332:121915. [PMID: 38431395 DOI: 10.1016/j.carbpol.2024.121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore an innovative approach to enhancing the shelf-life and quality of meat products through the application of an active packaging system. The study involved the development of new free-standing carboxymethyl cellulose (CMC) nanocomposite films incorporated with nanoencapsulated flavonoids derived from pomegranate extract. The loaded flavonoids, known for their antioxidant and antimicrobial properties, were nanoencapsulated via a self-assembly approach in a mixture of chitosan and sodium alginate to improve their stability, solubility, and controlled release characteristics. Chemical structure, size, and morphology of the obtained nanoparticles (Pg-NPs) were studied with FTIR, zeta-sizer, and TEM. The Pg-NPs showed particle size of 232 nm, and zeta-potential of -20.7 mV. Various free-standing nanocomposite films were then developed via incorporation of Pg-NPs into CMC-casted films. FTIR, SEM, thermal and mechanical properties, and surface wettability were intensively studied for the nanocomposite films. Barrier properties against water vapor were investigated at 2022 g·m-2d-1. The nanocomposite films possessed superior properties for inhibiting bacterial growth and extending the shelf-life of beef and poultry meat for 12 days compared with the Pg-NPs-free CMC films. This study presented a promising approach for development of active packaging systems with improved antimicrobial and antioxidant properties, and economic and environmental impacts.
Collapse
Affiliation(s)
- Shaimaa A Khalid
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt; Food Hygiene Department, Animal Health Research Institute (AHRI), Agricultural Research Center, Giza, Egypt
| | - Ahmed F Ghanem
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (former El Tahrir st.) Dokki, Giza P.O. 12622, Egypt
| | - Ashraf Abd-El-Malek
- Department of Food Hygiene (Meat Hygiene), Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud A Ammar
- Food Hygiene Department, Animal Health Research Institute (AHRI), Agricultural Research Center, Giza, Egypt
| | - Talaat El-Khateib
- Department of Food Hygiene (Meat Hygiene), Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| |
Collapse
|
44
|
Iqbal S, Xu J, Arif MS, Worthy FR, Jones DL, Khan S, Alharbi SA, Filimonenko E, Nadir S, Bu D, Shakoor A, Gui H, Schaefer DA, Kuzyakov Y. Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8464-8479. [PMID: 38701232 DOI: 10.1021/acs.est.3c10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 μm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.
Collapse
Affiliation(s)
- Shahid Iqbal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Jianchu Xu
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan, China
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Fiona R Worthy
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ekaterina Filimonenko
- Center for Isotope Biogeochemistry, University of Tyumen, Volodarskogo Str., 6, Tyumen 625003, Russia
| | - Sadia Nadir
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, Main Campus Bannu-Township, Bannu 28100, Khyber Pakhtunkhwa, Pakistan
| | - Dengpan Bu
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Wexford Y35 Y521, Ireland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Douglas Allen Schaefer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Honghe Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, Yunnan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37077, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Environmental SciencesKazan Federal University, Kazan 420049, Russia
- Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| |
Collapse
|
45
|
Li Y, Wang S, Yang Y, Ren L, Wang Z, Liao Y, Yong T. Global synthesis on the response of soil microbial necromass carbon to climate-smart agriculture. GLOBAL CHANGE BIOLOGY 2024; 30:e17302. [PMID: 38699927 DOI: 10.1111/gcb.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Climate-smart agriculture (CSA) supports the sustainability of crop production and food security, and benefiting soil carbon storage. Despite the critical importance of microorganisms in the carbon cycle, systematic investigations on the influence of CSA on soil microbial necromass carbon and its driving factors are still limited. We evaluated 472 observations from 73 peer-reviewed articles to show that, compared to conventional practice, CSA generally increased soil microbial necromass carbon concentrations by 18.24%. These benefits to soil microbial necromass carbon, as assessed by amino sugar biomarkers, are complex and influenced by a variety of soil, climatic, spatial, and biological factors. Changes in living microbial biomass are the most significant predictor of total, fungal, and bacterial necromass carbon affected by CSA; in 61.9%-67.3% of paired observations, the CSA measures simultaneously increased living microbial biomass and microbial necromass carbon. Land restoration and nutrient management therein largely promoted microbial necromass carbon storage, while cover crop has a minor effect. Additionally, the effects were directly influenced by elevation and mean annual temperature, and indirectly by soil texture and initial organic carbon content. In the optimal scenario, the potential global carbon accrual rate of CSA through microbial necromass is approximately 980 Mt C year-1, assuming organic amendment is included following conservation tillage and appropriate land restoration. In conclusion, our study suggests that increasing soil microbial necromass carbon through CSA provides a vital way of mitigating carbon loss. This emphasizes the invisible yet significant influence of soil microbial anabolic activity on global carbon dynamics.
Collapse
Affiliation(s)
- Yüze Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shengnan Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan, China
| | - Yali Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Liang Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Yuncheng Liao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Men J, Liu H, Jin T, Cai G, Cao H, Cernava T, Jin D. The color of biodegradable mulch films is associated with differences in peanut yield and bacterial communities. ENVIRONMENTAL RESEARCH 2024; 248:118342. [PMID: 38295980 DOI: 10.1016/j.envres.2024.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.
Collapse
Affiliation(s)
- Jianan Men
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongzhe Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
47
|
Xiao N, Wang Y, Guo Z, Shao T, Dong Z, Xing B. Tire plastic and road-wear particles on Yujing Expressway in the restoration area of Mu Us Sandy Land: Occurrence characteristics and ecological risk screening. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133860. [PMID: 38402682 DOI: 10.1016/j.jhazmat.2024.133860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Tire plastic and road-wear particles (TPR-WP) are a current research priority as one of the main environmental sources of microplastics. We selected a unique land use type - desert restoration area, collected soil and dust samples from the Yujing Expressway and its service areas, and analyzed TPR-WP abundance, type, size and morphology by laser direct infrared (LDIR). The abundance of TPR-WP in expressway dust (14,446.87 ± 10,234.24 n/kg) was higher than that in soil (7500 ± 3253.64 n/kg). Random forest model showed that the source of TPR-WP was highly correlated with economic factors and natural climate. Overall, the proportion of small and medium-sized TPR-WP in dust was higher than soil, more than half of the TPR-WP in dust were in 20 - 50 µm range. The proportion of small particle size TPR-WP increased with the rise of elevation. The pollution load index suggested that the survey region was generally at level I risk zone, while the ecological risk index indicated that the pollution level of expressway was III and IV, and the service area was IV. In general, the study was of great significance for clarifying the distribution and risk of TPR-WP in soil and dust of expressways and service areas.
Collapse
Affiliation(s)
- Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhibao Dong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
48
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
49
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
50
|
Tang Y, Zuo F, Li C, Zhang Q, Gao W, Cheng J. Combined effects of biochar and biodegradable mulch film on chromium bioavailability and the agronomic characteristics of tobacco. Sci Rep 2024; 14:6867. [PMID: 38514728 PMCID: PMC10957920 DOI: 10.1038/s41598-024-56973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Biochar (BC) and biodegradable mulch film (BMF) are both commonly used means of production in agriculture. In recent years, most studies have focused on the effects of BC or BMF on soil heavy metal pollution, while they have neglected the combined effects. In this study, a pot experiment was conducted to examine the impacts of BMF, BC, and combined BMF and BC (CMB) on the mobility of chromium (Cr) and the agronomic characteristics of flue-cured tobacco. Compared with the control, BMF, BC, and CMB significantly reduced the concentrations of diethylenetriamine pentaacetic acid (DTPA) extractable Cr in soils by 29.07-29.75%, 45.35-48.54%, and 34.21-37.92%, respectively. In comparison to the application of BMF and BC alone, co-application reduced the availability of Cr in soil via increasing the adsorption of soil Cr and soil enzyme activity, which resulted in the decrease of Cr content and bioconcentration factor and in plants. Moreover, the combined application increased the plant height, stem diameter, leaf area, total root area, root tip number, and root activity of tobacco, which leaded to increase in leaf and root biomass by 11.40-67.01% and 23.91-50.74%, respectively. Therefore, the application of CMB can reduce the heavy metal residues in tobacco leaves and improve tobacco yield and quality.
Collapse
Affiliation(s)
- Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Fumin Zuo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Changhong Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| | - Jianzhong Cheng
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China.
| |
Collapse
|