1
|
Hsu CY, Mohammed MH, Sur D, Ballal S, Singh A, Krithiga T, Ray S, Ridha-Salman H, Almehizia AA. A DFT study of pure and Si-decorated boron nitride allotrope Irida monolayer as an effective sensor for hydroxyurea drug. J Mol Graph Model 2025; 136:108958. [PMID: 39883975 DOI: 10.1016/j.jmgm.2025.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Investigating effective nanomaterials for the detection of hydroxyurea anticancer drugs is essential for promoting human health and safeguarding environmental integrity. This research utilized first-principles estimations for examining the adhesion and electronic characteristics of hydroxyurea (HU) on both pristine and Si-decorated innovative two-dimensional boron nitride allotrope, known as Irida analogous (Ir-BNNS). Analyzing the adsorption energy revealed that the HU molecule has a significant interaction (Ead = -1.27 eV) with the Si@Ir-BNNS, whereas it has weak interaction P-Ir-BN. Moreover, the analysis of the electron density distributions was conducted to investigate the microcosmic interaction mechanism between HU and Ir-BNNS. The Si@Ir-BNNS was highly sensitive to HU due to the observable alterations in the electrical conductance and magnetism. At ambient temperature, the Si@Ir-BNNS had a recovery time of 5.96 ms towards HU molecules. The DFT estimations can be conducive to exploring the applications of Si@Ir-BNNS in effectively sensing HU.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Dharmesh Sur
- Marwadi University Research Center, Department of Chemical Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | | | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Liu F, Ma Y, Li W, Cai J, Zhang H, Chen F, Zhang Y, Rittmann BE. How Rhodococcus ruber accelerated biodegradation of benzophenone-3. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136566. [PMID: 39579698 DOI: 10.1016/j.jhazmat.2024.136566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Benzophenone-3 (2-hydroxy-4-methoxybenzophenone, BP-3) poses risks to human health and natural ecosystems, and means to improve its biodegradation are necessary. When a small mass of Rhodococcus ruber, isolated from BP-3-acclimated biomass, was bioaugmented into the acclimated biomass, BP-3 removal was accelerated by 120 %. The first step of BP-3 biodegradation generates either 2,5-dihydroxy-4-methoxybenzophenone (5-OH-BP-3) or benzophenone-1 (2,4-dihydoxybenzophenone, BP-1). BP-1 is generated by sequential demethylation, hydroxylation, and dehydrogenation reactions, while 5-OH-BP-3 is generated by one mono-oxygenation reaction. Of the two intermediates, 5-OH-BP-3 exhibited stronger inhibition than BP-1 or the original BP-3. Gene-completion mapping showed that R. ruber contains genes for demethylase, hydrolase, dehydrogenase, and mono-oxygenase reaction, which means that R. ruber could generate the less-toxic BP-1. Thus, bioaugmentation of R. ruber into BP-3-acclimated biomass eliminated the accumulation of 5-OH-BP-3 and, consequently, accelerated of BP-3 biodegradation via BP-1.
Collapse
Affiliation(s)
- Fei Liu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Yue Ma
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Wenxuan Li
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Jue Cai
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
3
|
Zhao Y, Wang C, Cao X, Song S, Wei P, Zhu G. Integrated environmental assessment of a diversion-project-type urban water source considering the risks of novel and legacy contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175380. [PMID: 39122036 DOI: 10.1016/j.scitotenv.2024.175380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The water diversion project is an effective engineering approach to overcome water scarcity as a water source for the area. However, the complex environmental conditions of long-distance water diversion bring many uncertainties for water security. In this study, we assessed the pollution condition and risk levels of emerging contaminants and traditional contaminants in the water and soil along a water diversion project in Tianjin. Then, we assessed the influence of eco-economic characteristics on environmental conditions and established a comprehensive assessment framework of water source sustainability by analytic hierarchy process (AHP). The results showed that excessive nutrient elements and heavy metal pollution mainly contributed to environmental problems in the water source area. Contrary to pollution assessment, the soil ecosystem was more subject to environmental pressure due to atmospheric deposition. The health risk assessment indicated that all contaminants had negligible non-carcinogenic risks for adults, with arsenic being considered a priority pollutant. The statistical analysis results indicated land use allocation was the most important factor in the environmental management of the water source area. According to the result of the integrated environmental assessment, the main characteristics of pressure zones were high pollution levels and human activity intensity. It is urgent to control agricultural pollution and allocate land use rationally for water source pressure zones. By considering the risks of traditional and emerging contaminants in water and soil, this study could support urban water source management and the sustainable development of the water diversion project.
Collapse
Affiliation(s)
- Yang Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Pei Wei
- Chongqing Field Scientific Observation and Research Station for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Guangyu Zhu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
5
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Kong W, Qiu L, Ishii S, Jia X, Su F, Song Y, Hao M, Shao M, Wei X. Contrasting response of soil microbiomes to long-term fertilization in various highland cropping systems. ISME COMMUNICATIONS 2023; 3:81. [PMID: 37596350 PMCID: PMC10439144 DOI: 10.1038/s43705-023-00286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Soil microbiomes play important roles in supporting agricultural ecosystems. However, it is still not well-known how soil microbiomes and their functionality respond to fertilization in various cropping systems. Here we examined the effects of 36 years of phosphorus, nitrogen, and manure application on soil bacterial communities, functionality and crop productivity in three contrasting cropping systems (i.e., continuous leguminous alfalfa (AC), continuous winter wheat (WC), and grain-legume rotation of winter wheat + millet - pea - winter wheat (GLR)) in a highland region of China's Loess Plateau. We showed that long-term fertilization significantly affected soil bacterial communities and that the effects varied with cropping system. Compared with the unfertilized control, fertilization increased soil bacterial richness and diversity in the leguminous AC system, whereas it decreased those in the GLR system. Fertilization, particularly manure application, enlarged the differences in soil bacterial communities among cropping systems. Soil bacterial communities were mostly affected by the soil organic carbon and nitrogen contents in the WC and GLR systems, but by the soil available phosphorous content in the AC system. Crop productivity was closely associated with the abundance of fertilization-responsive taxa in the three cropping systems. Our study highlights that legume and non-legume cropping systems should be disentangled when assessing the responses of soil microbial communities to long-term fertilizer application.
Collapse
Affiliation(s)
- Weibo Kong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Xiaoxu Jia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fuyuan Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Yu Song
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Mingde Hao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Mascellani A, Mercl F, Kurhan S, Pierdona L, Kudrna J, Zemanova V, Hnilicka F, Kloucek P, Tlustos P, Havlik J. Biochemical and physiological changes in Zea mays L. after exposure to the environmental pharmaceutical pollutant carbamazepine. CHEMOSPHERE 2023; 329:138689. [PMID: 37059200 DOI: 10.1016/j.chemosphere.2023.138689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The presence of pharmaceuticals in the environment is a matter of great concern. They are consistently found in the environment, raising concerns regarding human exposure through dietary intake. In this study, we observed the effect of the application of carbamazepine at 0.1, 1, 10, and 1000 μg per kg of soil contamination levels to assess stress metabolism in Zea mays L. cv. Ronaldinio at the 4th leaf, tasselling, and dent phenological stages. The transfer of carbamazepine to the aboveground and root biomass was assessed, and uptake increased dose-dependently. No direct effect on biomass production was observed, but multiple physiological and chemical changes were observed. Major effects were consistently observed at the 4th leaf phenological stage for all contamination levels, including reduced photosynthetic rate, reduced maximal and potential activity of photosystem II, decreased water potential, decreased carbohydrates (glucose and fructose) and γ-aminobutyric acid in roots, and increased maleic acid and phenylpropanoids (chlorogenic acid and its isomer, 5-O-caffeoylquinic acid) in aboveground biomass. A reduction in net photosynthesis was observed for the older phenological stages, whereas no other relevant and consistent physiological and metabolic changes related to contamination exposure were detected. Our results indicate that Z. mays can overcome the environmental stress caused by the accumulation of carbamazepine with notable metabolic changes at the early phenological stage; however, older plants adapted and only exhibited minor effects in the presence of the contaminant. The potential implications for agricultural practice could be associated with the plant's response to simultaneous stresses due to metabolite changes associated with oxidative stress.
Collapse
Affiliation(s)
- Anna Mascellani
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Lorenzo Pierdona
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Jiri Kudrna
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Veronika Zemanova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Frantisek Hnilicka
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Suchdol, Czech Republic.
| |
Collapse
|
8
|
Feng Y, Nuerla A, Tian M, Mamat A, Si A, Chang J, Abudureheman M, He C, Zhu J, Tong Z, Liu Z. Removal of chloramphenicol and resistance gene changes in electric-integrated vertical flow constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118143. [PMID: 37196621 DOI: 10.1016/j.jenvman.2023.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
The performance of an electric-integrated vertical flow constructed wetland (E-VFCW) for chloramphenicol (CAP) removal, changes in microbial community structure, and the fate of antibiotic resistance genes (ARGs) were evaluated. CAP removal in the E-VFCW system was 92.73% ± 0.78% (planted) and 90.80% ± 0.61% (unplanted), both were higher than the control system which was 68.17% ± 1.27%. The contribution of anaerobic cathodic chambers in CAP removal was higher than the aerobic anodic chambers. Plant physiochemical indicators in the reactor revealed electrical stimulation increased oxidase activity. Electrical stimulation enhanced the enrichment of ARGs in the electrode layer of the E-VFCW system (except floR). Plant ARGs and intI1 levels were higher in the E-VFCW than in the control system, suggesting electrical stimulation induces plants to absorb ARGs, reducing ARGs in the wetland. The distribution of intI1 and sul1 genes in plants suggests that horizontal transfer may be the main mechanism dispersing ARGs in plants. High throughput sequencing analysis revealed electrical stimulation selectively enriched CAP degrading functional bacteria (Geobacter and Trichlorobacter). Quantitative correlation analysis between bacterial communities and ARGs confirmed the abundance of ARGs relates to the distribution of potential hosts and mobile genetic elements (intI1). E-VFCW is effective in treating antibiotic wastewater, however ARGs potentially accumulate.
Collapse
Affiliation(s)
- Yuran Feng
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Ailijiang Nuerla
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Menghan Tian
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Ang Si
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan, 614000, PR China
| | - Mukadasi Abudureheman
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Jinjin Zhu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Zhaohong Tong
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Zhaojiang Liu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| |
Collapse
|
9
|
Hamza TA, Hussein ES, Kadhim MM, Rheima AM, Al-Marjani MF, Alattia LH, Mahdi ZM, Hachim SK, Adel M. Cyclophosphamide drug sensing characteristics by using pure and Ti-doped graphyne-like BN-yne. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Kadhim MM, Rheima AM, Hachim SK, Abdullaha SAH, Taban TZ, Malik SA. Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C 3Al) Monolayer: a DFT Study. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04305-9. [PMID: 36656537 DOI: 10.1007/s12010-022-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Because nanomaterials are highly reactive and electronically sensitive towards a variety of drug molecules, they are thought of as efficient drug sensors. In the present research study, an aluminum carbide (C3Al) monolayer is employed and its interaction is examined with cyclophosphamide (CP) by performing DFT computations. The C3Al monolayer is highly reactive and sensitive towards CP according to the computations. CP interacts with the C3Al monolayer with the adsorption energy of -31.39 kcal/mol. A considerable charge transfer (CT) indicates an enhancement in the conductivity. Also, the charge density is explained based on the electron density differences (EDD). The decrease in CP/C3Al energy gap (Eg) by approximately 52.91% is due to the remarkable effect of adsorption on the LUMO and the HOMO levels. Therefore, due to the decrease in Eg which can generate an electrical signal, the electrical conductivity is considerably increased. These results suggest that the C3Al monolayer can be employed as a proper electronic drug sensor for CP. Also, the recovery time for the desorption process of CP form the surface of C3Al is 351 s at 598 K.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, 10022, Baghdad, Iraq
| | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Taleeb Zedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, Iraq.
| | - Samir Azzat Malik
- Pharmacy Department, Al- Mustaqbal University College, 51001, Hilla, Iraq
| |
Collapse
|
11
|
Pacholak A, Zgoła-Grześkowiak A, Kaczorek E. Dynamics of microbial communities during biotransformation of nitrofurantoin. ENVIRONMENTAL RESEARCH 2023; 216:114531. [PMID: 36244438 DOI: 10.1016/j.envres.2022.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this research was to investigate the biodegradation of nitrofurantoin (NFT), a typical nitrofuran antibiotic of potential carcinogenic properties, by two microbial communities derived from distinct environmental niches - mountain stream (NW) and seaport water (SS). The collected environmental samples represent the reserve of the protected area with no human intervention and the contaminated area that concentrates intense human activities. The structure, composition, and diversity of the communities were analyzed at three timepoints during NFT biodegradation. Comamonadaceae (43.2%) and Pseudomonadaceae (19.6%) were the most abundant families in the initial NW sample. The top families in the initial SS sample included Aeromonadaceae (31.4%) and Vibrionaceae (25.3%). The proportion of the most abundant families in both consortia was remarkably reduced in all samples treated with NFT. The biodiversity significantly increased in both consortia treated with NFT suggesting that NFT significantly alters community structure in the aquatic systems. In this study, NFT removal efficiency and transformation products were also studied. The biodegradation rate decreased with the increasing initial NFT concentration. Biodegradation followed similar pathways for both consortia and led to the formation of transformation products: 1-aminohydantoin, semicarbazide (SEM), and hydrazine (HYD). SEM and HYD were detected for the first time as NFT biotransformation products. This study demonstrates that the structure of the microbial community may be directly correlated with the presence of NFT. Enchanced biodiversity of the microbial community does not have to be correlated with increase in functional capacity, such as the ability to biodegradation because higher biodiversity corresponded to lower biodegradation. Our findings provide new insights into the effect of NFT contamination on aquatic microbiomes. The study also increases our understanding of the environmental impact of nitrofuran residues and their biodegradation.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poland.
| | | | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poland
| |
Collapse
|
12
|
Zhang Q, Wu M, Ailijiang N, Mamat A, Chang J, Pu M, He C. Impact of Voltage Application on Degradation of Biorefractory Pharmaceuticals in an Anaerobic-Aerobic Coupled Upflow Bioelectrochemical Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15364. [PMID: 36430083 PMCID: PMC9690855 DOI: 10.3390/ijerph192215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.
Collapse
Affiliation(s)
- Qiongfang Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
13
|
Koner S, Tsai HC, Chen JS, Hussain B, Rajendran SK, Hsu BM. Exploration of pristine plate-tectonic plains and mining exposure areas for indigenous microbial communities and its impact on the mineral-microbial geochemical weathering process in ultramafic setting. ENVIRONMENTAL RESEARCH 2022; 214:113802. [PMID: 35810813 DOI: 10.1016/j.envres.2022.113802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal release from harsh ultramafic settings influences microbial diversity and function in soil ecology. This study aimed to determine how serpentine mineralosphere bacterial assemblies and their functions differed in two different plate-tectonic plains and mining exposure sites under heavy metal release conditions. The results showed that the Proteobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Chloroflexi were the most abundant bacterial groups among all the sites. The log10-based LDA scores highlighted that some specific groups of bacterial assemblies were enriched in plate-tectonic plains and mining activity areas of the serpentine mineralosphere. Functional prediction revealed that the abundance of heavy metal (Cr and Ni) resistance and biogeochemical cycles involving functional KEGG orthology varied in samples from plate-tectonic plains and mining activity sites. The bipartite plot showed that the enrichment of the biogeochemical cycle and heavy metal resistance functional genes correlated with the abundance of serpentine mineralosphere bacterial groups at a 0.005% confidence level. The co-occurrence network plot revealed that the interconnection pattern of the indigenous bacterial assemblies changed in different plate-tectonic plains and mining exposure areas. Finally, this study concluded that due to heavy metal release, the variation in bacterial assemblies, their functioning, and intercommunity co-occurrence patterns were clarified the synergetic effect of mineral-microbial geochemical weathering process in serpentine mining areas.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu Chi General Hospital, Hualien, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Senthil Kumar Rajendran
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
14
|
Bhattacharya S, Das P, Bhowal A, Majumder SK. Metal-oxide coated Graphene oxide nano-composite for the treatment of pharmaceutical compound in photocatalytic reactor: Batch, Kinetics and Mathematical Modeling using Response Surface Methodology and Artificial Neural Network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61938-61953. [PMID: 35066847 DOI: 10.1007/s11356-021-18227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO2, the photocatalytic activity of TiO2 is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO2 nanoparticles (TiO2 consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO2 (Type 2)) and the efficiency of both the TiO2-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated. The TiO2-GO nanocomposite with the Type 1 TiO2 exhibited greater efficiency hence further studies were conducted with that composite. The efficiency of TiO2-GO nanocomposite for the purpose of removing CBZ were investigated in presence of different types of incident radiation like Solar radiation, white light and three type of Ultraviolet radiation (A, B, C). The removal of the drug by TiO2-GO composite has been optimized using response surface methodology and artificial neural network. From this study, the maximum reduction was observed was 91.2% and whereas in case of the RSM optimization study the maximum removal that was observed was 91.7%. The validation of the RSM model was done using the mathematical analysis of the model equation of RSM. Different kinetics models was also analyzed using the experimental data and it was observed that it followed pseudo-second-order kinetics. The optimization using ANN also showed a close interaction with the experimental results.
Collapse
Affiliation(s)
- Sandipan Bhattacharya
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
- School of Advanced Studies in Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India.
| | - Avijit Bhowal
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
- School of Advanced Studies in Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India
| | | |
Collapse
|
15
|
Chen PF, Zhang RJ, Du ZL, Wang GH, Dong HT, Cui B, Fan RP, Li LX, Wang QB, Liu YS, Sun ZM. Microbial composition and nitrogen removal pathways in a novel sequencing batch reactor integrated with semi-fixed biofilm carrier: evidence from a pilot study for low- and high-strength sewage treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49105-49115. [PMID: 35212897 DOI: 10.1007/s11356-022-19382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The sequencing batch reactor (SBR) activated sludge process is a well-established technology for sewage treatment. One of the drawbacks of SBRs, however, total nitrogen (TN) removals is insufficient. By means of introducing four improvements, including semi-fixed biofilm carrier, sludge elevation mixing and change for the mode of influent and effluent, compliant standard for TN discharge was obtained in this novel SBR configuration during low- and high-strength sewage load. To illustrate the microbial compositions and functions of the attached biofilm on semi-fixed carrier and the suspended aggregates, as well as the nitrogen removal pathway, high throughput 16S rRNA gene amplicon sequencing, PICRUSt2 algorithm, and KEGG database were applied. The results revealed that (i) the microbial communities from suspended aggregates and biofilm samples were significantly different from each other; (ii) during low-strength sewage loads, TN removal was mainly by nitrification-denitrification. The suspended aggregates was responsible for denitrification, while the biofilm was focused on ammonium oxidation; (iii) during high-strength sewage loads, function of nitrate reductase from suspended aggregates was faded, and anammox and N assimilation by biofilm became dominant. Meanwhile, TN removal referring to the formation of L-glutamine via assimilation was the main pathway.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Rui-Jian Zhang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China.
| | - Zhi-Li Du
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Guang-Hua Wang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Hao-Tao Dong
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Bin Cui
- Graduate School, Guangzhou University, Guangzhou, 510060, China
| | - Ru-Pei Fan
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Lu-Xin Li
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Qian-Bin Wang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Ying-Shi Liu
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Zhi-Min Sun
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| |
Collapse
|
16
|
Chen J, Yang Y, Ke Y, Chen X, Jiang X, Chen C, Xie S. Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics. ENVIRONMENT INTERNATIONAL 2022; 165:107332. [PMID: 35687947 DOI: 10.1016/j.envint.2022.107332] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sulfonamide (SA) antibiotics are ubiquitous pollutants in livestock breeding and aquaculture wastewaters, which increases the propagation of antibiotic resistance genes. Microbes with the ability to degrade SA play important roles in SA dissipation, but their diversity and the degradation mechanism in the field remain unclear. In the present study, we employed DNA-stable isotope probing (SIP) combined with metagenomics to explore the active microorganisms and mechanisms of SA biodegradation in antibiotic-contaminated wetland sediments. DNA-SIP revealed various SA-assimilating bacteria dominated by members of Proteobacteria, such as Bradyrhizobium, Gemmatimonas, and unclassified Burkholderiaceae. Both sulfadiazine and sulfamethoxazole were dissipated mainly through the initial ipso-hydroxylation, and were driven by similar microbes. sadA gene, which encodes an NADH-dependent monooxygenase, was enriched in the 13C heavy DNA, confirming its catalytic capacity for the initial ipso-hydroxylation of SA in sediments. In addition, some genes encoding dioxygenases were also proposed to participate in SA hydroxylation and aromatic ring cleavage based on metagenomics analysis, which might play an important role in SA metabolism in the sediment ecosystem when Proteobacteria was the dominant active bacteria. Our work elucidates the ecological roles of uncultured microorganisms in their natural habitats and gives a deeper understanding of in-situ SA biodegradation mechanisms.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Sensing of carbamazepine by AlN and BN nanoclusters in gas and solvent phases: DFT and TD-DFT calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Exploring the gut microbiota composition of Indian major carp, rohu (Labeo rohita), under diverse culture conditions. Genomics 2022; 114:110354. [PMID: 35364266 DOI: 10.1016/j.ygeno.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/10/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Gut microbiota of freshwater carps are often investigated for their roles in nutrient absorption, enzyme activities and probiotic properties. However, little is known about core microbiota, assembly pattern and the environmental influence on the gut microbiota of the Indian major carp, rohu. The gut microbial composition of rohu reared in different culture conditions was analysed by 16S rRNA amplicon sequencing. There was variation on gut microbial diversity and composition. A significant negative correlation between dissolved oxygen content (DO) and alpha diversity was observed, thus signifying DO content as one of the key environmental factors that regulated the diversity of rohu gut microbial community. A significant positive correlation was observed between phosphate concentration and abundance of Actinobacteria in different culture conditions. Two phyla, Proteobacteria and Actinobacteria along with OTU750868 (Streptomyces) showed significant (p < 0.05) differences in their abundance among all culture conditions. The Non-metric multidimensional scaling ordination (NMDS) analysis using Bray-Curtis distances, showed the presence of unique gut microbiota in rohu compared to other herbivorous fish. Based on niche breadth, 3 OTUs were identified as core generalists, persistent across all the culture conditions whereas the specialists dominated in the rohu gut microbiota assembly. Co-occurrence network analysis revealed positive interaction within core members while mutual exclusion between core and non-core members. Predicted microbiota function revealed that different culture conditions affected the metabolic capacity of gut microbiota of rohu. The results overall indicated the significant effect of different rearing environments on gut microbiota structure, assembly and inferred community function of rohu which might be useful for effective manipulation of gut microbial communities of rohu to promote better health and growth under different husbandry settings.
Collapse
|
19
|
Gallego S, Brienza M, Béguet J, Chiron S, Martin-Laurent F. Impact of repeated irrigation of lettuce cultures with municipal wastewater on soil bacterial community diversity and composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29236-29243. [PMID: 34117546 DOI: 10.1007/s11356-021-14734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The effect of wastewater irrigation on the diversity and composition of bacterial communities of soil mesocosms planted with lettuces was studied over an experiment made of five cultivation campaigns. A limited effect of irrigation with either raw or treated wastewater was observed in both α-diversity and β-diversity of soil bacterial communities. However, the irrigation with wastewater fortified with a complex mixture of fourteen relevant chemicals at 10 μg/L each, including pharmaceutical, biocide, and pesticide active substances, led to a drift in the composition of soil bacterial community. One hundred operational taxonomic units (OTUs) were identified as responsible for changes between treated and fortified wastewater irrigation treatments. Our findings indicate that under a realistic agronomical scenario, the irrigation of vegetables with domestic (treated or raw) wastewater has no effect on soil bacterial communities. Nevertheless, under the worst-case scenario tested here (i.e., wastewater fortified with a mixture of chemicals), non-resilient changes were observed suggesting that continuous/repeated irrigation with wastewater could lead to the accumulation of contaminants in soil and induce changes in bacterial communities with unknown functional consequences.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, UMR Agroécologie, INRAE, 17 rue Sully, BP86510, 21065, Dijon Cedex, France
| | - Monica Brienza
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
- Department of Science, University of Basilicata, Vial dell'Ateneo Lucano, 10 85100, Potenza, Italy
| | - Jérémie Béguet
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, UMR Agroécologie, INRAE, 17 rue Sully, BP86510, 21065, Dijon Cedex, France
| | - Serge Chiron
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, UMR Agroécologie, INRAE, 17 rue Sully, BP86510, 21065, Dijon Cedex, France.
| |
Collapse
|
20
|
Gopalakrishnappa C, Gowda K, Prabhakara KH, Kuehn S. An ensemble approach to the structure-function problem in microbial communities. iScience 2022; 25:103761. [PMID: 35141504 PMCID: PMC8810406 DOI: 10.1016/j.isci.2022.103761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolic activity of microbial communities plays a primary role in the flow of essential nutrients throughout the biosphere. Molecular genetics has revealed the metabolic pathways that model organisms utilize to generate energy and biomass, but we understand little about how the metabolism of diverse, natural communities emerges from the collective action of its constituents. We propose that quantifying and mapping metabolic fluxes to sequencing measurements of genomic, taxonomic, or transcriptional variation across an ensemble of diverse communities, either in the laboratory or in the wild, can reveal low-dimensional descriptions of community structure that can explain or predict their emergent metabolic activity. We survey the types of communities for which this approach might be best suited, review the analytical techniques available for quantifying metabolite fluxes in communities, and discuss what types of data analysis approaches might be lucrative for learning the structure-function mapping in communities from these data.
Collapse
Affiliation(s)
| | - Karna Gowda
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Kaumudi H. Prabhakara
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Zhou J, Wang D, Ju F, Hu W, Liang J, Bai Y, Liu H, Qu J. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127167. [PMID: 34536843 DOI: 10.1016/j.jhazmat.2021.127167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Although there is growing evidence that micropollutants can be microbially converted in rapid sand filters of drinking water treatment plants (DWTPs), little is known about the biotransformation pathways and associated microbial strains in this process. Here, we constructed sand filter columns filled with manganese or quartz sand obtained from full-scale DWTPs to explore the biotransformation of eight micropollutants. Under seven different empty bed contact times (EBCTs), the column experiments showed that caffeine and atenolol were easily removed (up to 92.1% and 97.6%, respectively) with adsorption and microbial biotransformation of the filters. In contrast, the removal of other six micropollutants (i.e., naproxen, carbamazepine, atrazine, trimethoprim, sulfamethoxazole, and sulfadiazine) in the filters were less than 27.1% at shorter EBCTs, but significantly increased at EBCT = 4 h, indicating the dominant role of microbial biotransformation in these micropollutants removal. Integrated analysis of metagenomic reads and transformation products of micropollutants showed a shift in caffeine oxidation and demethylation pathways at different EBCTs, simultaneous occurrence of atrazine hydrolysis and oxidation pathways, and sulfadiazine and sulfamethoxazole oxidation in the filters. Furthermore, using genome-centric analysis, we observed previously unidentified degrading strains, e.g., Piscinibacter, Hydrogenophaga, and Rubrivivax for caffeine transformation, and Methylophilus and Methyloversatilis for atenolol transformation.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Wanchao Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Zhang Y, Zheng X, Xu X, Cao L, Zhang H, Zhang H, Li S, Zhang J, Bai N, Lv W, Cao X. Straw return promoted the simultaneous elimination of sulfamethoxazole and related antibiotic resistance genes in the paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150525. [PMID: 34582855 DOI: 10.1016/j.scitotenv.2021.150525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Straw return could provide a natural available carbon source for the soil microorganisms, which might affect the environmental behaviours of organic pollutants. In this study, microcosm system was constructed to investigate the effect of rice straw return on the fate of sulfamethoxazole (SMX) and related antibiotic resistance genes (ARGs). The results showed that straw return (1% of soil dry mass) could accelerate the degradation of SMX via co-metabolism. In the treatment group with rice straw, SMX was rapidly decomposed into small molecular compounds (e.g., (Z)-1-amino-3-oxobut-1-en-1-aminium and benzenesulfinic acid) within the first six days, and SMX was undetectable after 60 days; while for the SMX group without rice straw, 1.3 mg kg-1 of SMX still remained at the 60th day. Straw return could enhance the relative abundances of Proteobacteria involved in SMX degradation, including Microvirga and Ramlibacter, which co-metabolized SMX via the degradation pathways of mineralizable components and aromatic compound. Furthermore, straw return significantly eliminated the ARGs. After 60 days, the int1 and sul1 abundances of the treatment group with rice straw were less than one-tenth of the SMX group without rice straw. The redundancy and network analysis of bacterial community and environmental factors showed that dissolved organic carbon and bacteria belonged to Proteobacteria and Actinobacteria might play positive roles in eliminating ARGs. Our results demonstrate that straw return could promote the simultaneous elimination of SMX and corresponding ARGs, which provides a promising approach to effectively treat antibiotics and ARGs in the farmland.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyun Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Hanlin Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Shuangxi Li
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Juanqin Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Naling Bai
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
| | - Weiguang Lv
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
23
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
24
|
Cupples AM, Thelusmond JR. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. METHODS IN MICROBIOLOGY 2021; 193:106401. [PMID: 34973287 DOI: 10.1016/j.mimet.2021.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Cometabolic oxidation involves the oxidation of chemicals often by monooxygenases or dioxygenases and can be a removal process for environmental contaminants such as trichloroethene (TCE) or 1,4-dioxane. Information on the occurrence of these genes and their associated microorganisms in environmental samples has the potential to enhance our understanding of contaminant removal. The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo, dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1, dbfA2 and phenol 2-monooxygenase. A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five. Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase. All other genes investigated were predicted to be present and were associated with a number of microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo), T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA). These findings suggest in soils contaminant removal via pMMO/AMO or phenol monooxygenase/T2MO may be common because of the occurrence of these enzymes with a large number of phylotypes.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Bacterial Community Structure and Metabolic Function Succession During the Composting of Distilled Grain Waste. Appl Biochem Biotechnol 2021; 194:1479-1495. [PMID: 34748150 DOI: 10.1007/s12010-021-03731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.
Collapse
|
26
|
Gallego S, Montemurro N, Béguet J, Rouard N, Philippot L, Pérez S, Martin-Laurent F. Ecotoxicological risk assessment of wastewater irrigation on soil microorganisms: Fate and impact of wastewater-borne micropollutants in lettuce-soil system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112595. [PMID: 34390984 DOI: 10.1016/j.ecoenv.2021.112595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 μg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.
Collapse
Affiliation(s)
- Sara Gallego
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Nicola Montemurro
- ENFOCHEM, Environmental Chemistry Department, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jérémie Béguet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Nadine Rouard
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Laurent Philippot
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, INRAE, Agroécologie, Dijon, France
| | - Sandra Pérez
- ENFOCHEM, Environmental Chemistry Department, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | | |
Collapse
|
27
|
Zhang C, Barron L, Sturzenbaum S. The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146684. [PMID: 33794458 DOI: 10.1016/j.scitotenv.2021.146684] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Soil dwelling organisms, plants and many primary consumers in food webs face the challenge of exposure to contaminants of emerging concern (CECs) present in terrestrial systems, including thousands of substances derived from pharmaceutical and personal care products (PPCPs). The recent increase in the consumption of modern human or veterinary drugs has resulted in a surge of anthropogenic pharmaceuticals, frequently introduced into terrestrial environments via untreated/treated wastewater. Pharmaceuticals display diverse degradation and accumulation behaviours in receiving bodies, however their impact on soils has, at large, been overlooked. Details about adsorption, absorption, degradation and uptake behaviours, as well as the fate and actual environmental impact of pharmaceuticals are a prerequisite before the traditional transportation prediction models originally designed for the aquatic environment can be extrapolated to terrestrial systems. Without this knowledge, our ability for informed risk assessments and the resultant implementation of contamination management strategies of soils will remain limited. This review discusses the current knowledgebase pertaining the introduction of pharmaceuticals to soils via wastewater irrigation or the application of biosolids. The focus on the transportation, transformation and accumulation of pharmaceuticals through the food chain highlights the urgent need to strengthen our capabilities concerning their detection and characterization in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Chubin Zhang
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Leon Barron
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Stephen Sturzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
28
|
Wang B, Yan J, Li G, Cao Q, Chen H, Zhang J. The addition of bean curd dreg improved the quality of mixed cow manure and corn stalk composting: enhancing the maturity and improving the micro-ecological environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27095-27108. [PMID: 33501580 DOI: 10.1007/s11356-021-12572-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Bean curd dreg (BCD) is a by-product of bean products, which can be used as a great ingredient for composting, but it combined with cow manure and corn stalk composting was rarely reported. In this study, the effect of BCD on the maturity and the micro-ecological environment was investigated under a lab-scale composting experiment and found that BCD was conducive to improve the maturity of compost during the BCD application. The excitation-emission matrix (EEM) showed that the final humus content in BCD treatments was richer than that in CK treatment. High-throughput sequencing results showed that BCD-applied better ameliorated the bacteria community structure with higher Actinomycetes abundance and lower denitrifying bacteria abundance in the late stage of composting. PICRUSt results showed that BCD-added decreased the abundance of microbial metabolic genes in the high temperature period (> 70 °C), but the metabolic abundance increased rapidly as the temperature cooled down. Compared with CK, the metabolic abundance decreased significantly on day 24, which was consistent with the conclusion of composting maturity. Redundancy analysis (RDA) results indicated that there were significant discrepancies in the microbial community structure of samples at different composting periods and the change of the dominant population in the BCD-treated compost samples were more outstanding than that in the CK treatment. Hence, BCD is a very good composting modifier that compensates for the disadvantages of composting and enhances the fertility of the compost product.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, NO.169 Changchun Road, Chuanying District, Jilin City, 132012, Jilin Province, China.
| | - Jianquan Yan
- College of Chemical Engineering, Northeast Electric Power University, NO.169 Changchun Road, Chuanying District, Jilin City, 132012, Jilin Province, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, NO.169 Changchun Road, Chuanying District, Jilin City, 132012, Jilin Province, China
| | - Qingtong Cao
- College of Chemical Engineering, Northeast Electric Power University, NO.169 Changchun Road, Chuanying District, Jilin City, 132012, Jilin Province, China
| | - Houhe Chen
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, NO.169 Changchun Road, Chuanying District, Jilin City, 132012, Jilin Province, China
| |
Collapse
|
29
|
Gallego S, Nos D, Montemurro N, Sanchez-Hernandez JC, Pérez S, Solé M, Martin-Laurent F. Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116647. [PMID: 33582628 DOI: 10.1016/j.envpol.2021.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, β-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie Dijon, France
| | - David Nos
- ENFOCHEM, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain; Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Montserrat Solé
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie Dijon, France.
| |
Collapse
|
30
|
Jiang Y, Huang H, Tian Y, Yu X, Li X. Stochasticity versus determinism: Microbial community assembly patterns under specific conditions in petrochemical activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124372. [PMID: 33338810 DOI: 10.1016/j.jhazmat.2020.124372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
The pattern of microbial community assembly in petrochemical sludge is not well-explained. In this study, three kinds of petrochemical activated sludge (AS) from the same seed sludge were investigated to determine their microbial assembly pattern for long-term adaptation. Beta Nearest Taxon Index analysis revealed that the assembly strategies of the abundant and rare operational taxonomic unit (OTU) sub-communities are different for archaeal and bacterial communities. Abundant OTUs preferred deterministic processes, whereas rare OTUs randomly formed due to weak selection. Canonical correspondence analysis/variation partition analysis and Mantel testing results revealed that ammonium, petroleum, and chromium (Cr (VI)) mainly structured the abundant sub-communities. On the other hand, environmental variables, including ammonium, petroleum, and heavy metals, shaped the rare sub-communities. The PICRUSt2 tool was used to predict the functions. Results indicated a greater abundance of microbes harboring the hydrocarbon degradation pathway and heavy-metal-resistant enzymes. Cross-treatment experiments using one type of AS to treat the other two kinds of wastewater were conducted. The results of the cross-treatment experiments and qPCR both suggest the functional adaptation of the microbial community. We revealed selection strategies for the adaptation of bacteria and archaea in AS during environmental changes, providing a theoretical basis for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Yanrong Tian
- Sewage Disposal Plant, Lanzhou Petrochemical Company, PetroChina, Huanxingdonglu #88, Lanzhou, Gansu 730060, PR China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
31
|
Jiang J, Yu D, Wang Y, Zhang X, Dong W, Zhang X, Guo F, Li Y, Zhang C, Yan G. Use of additives in composting informed by experience from agriculture: Effects of nitrogen fertilizer synergists on gaseous nitrogen emissions and corresponding genes (amoA and nirS). BIORESOURCE TECHNOLOGY 2021; 319:124127. [PMID: 32971331 DOI: 10.1016/j.biortech.2020.124127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
The effects of two nitrogen fertilizer synergists (urease inhibitor, UI; nitrification inhibitor, NI) on NH3 and N2O emissions and the successions of the amoA and nirS genes during composting were assessed. Results showed that the UI and UI + NI treatments reduced NH3 emissions by 26.3% and 24.3%, respectively, and N2O emissions were reduced by 63.9% for UI + NI treatment but were not reduced by UI. The addition of UI and NI significantly reduced the abundance of the nirS gene during thermophilic stage, while significantly increased that of the amoA gene during maturation stage. Crenarchaeota was the principal nitrifying archaeal phylum and was significantly affected by pH. Proteobacteria was the main denitrifying bacterial phylum, whose relative abundance was higher for UI + NI treatment than the other treatments. PICRUSt analysis showed that the addition of UI and NI inhibited enzymatic activity related to N transformation during thermophilic stage while enriching enzymatic activity during maturation phase.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Dou Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
32
|
Kodešová R, Chroňáková A, Grabicová K, Kočárek M, Schmidtová Z, Frková Z, Vojs Staňová A, Nikodem A, Klement A, Fér M, Grabic R. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141134. [PMID: 32768780 DOI: 10.1016/j.scitotenv.2020.141134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals may enter soils due to the application of treated wastewater or biosolids. Their leakage from soils towards the groundwater, and their uptake by plants is largely controlled by sorption and degradation of those compounds in soils. Standard laboratory batch degradation and sorption experiments were performed using soil samples obtained from the top horizons of seven different soil types and 6 pharmaceuticals (carbamazepine, irbesartan, fexofenadine, clindamycin and sulfamethoxazole), which were applied either as single-solute solutions or as mixtures (not for sorption). The highest dissipation half-lives were observed for citalopram (average DT50,S for a single compound of 152 ± 53.5 days) followed by carbamazepine (106.0 ± 17.5 days), irbesartan (24.4 ± 3.5 days), fexofenadine (23.5 ± 20.9 days), clindamycin (10.8 ± 4.2 days) and sulfamethoxazole (9.6 ± 2.0 days). The simultaneous application of all compounds increased the half-lives (DT50,M) of all compounds (particularly carbamazepine, citalopram, fexofenadine and irbesartan), which is likely explained by the negative impact of antibiotics (sulfamethoxazole and clindamycin) on soil microbial community. However, this trend was not consistent in all soils. In several cases, the DT50,S values were even higher than the DT50,M values. Principal component analyses showed that while knowledge of basic soil properties determines grouping of soils according sorption behavior, knowledge of the microbial community structure could be used to group soils according to the dissipation behavior of tested compounds in these soils. The derived multiple linear regression models for estimating dissipation half-lives (DT50,S) for citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole always included at least one microbial factor (either amount of phosphorus in microbial biomass or microbial biomarkers derived from phospholipid fatty acids) that deceased half-lives (i.e., enhanced dissipations). Equations for citalopram, clindamycin, fexofenadine and sulfamethoxazole included the Freundlich sorption coefficient, which likely increased half-lives (i.e., prolonged dissipations).
Collapse
Affiliation(s)
- Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic.
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Zuzana Schmidtová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Zuzana Frková
- Institute of Soil Biology, Biology Centre CAS, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic; University of Luxembourg, Faculty of Science, Technology and Communication, 6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-84215 Bratislava, Slovak Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| |
Collapse
|
33
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
34
|
Miao Y, Johnson NW, Phan T, Heck K, Gedalanga PB, Zheng X, Adamson D, Newell C, Wong MS, Mahendra S. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. WATER RESEARCH 2020; 173:115540. [PMID: 32018172 DOI: 10.1016/j.watres.2020.115540] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Microbial community dynamics were characterized following combined catalysis and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Although a few specific bacterial taxa are capable of removing 1,4-dioxane and individual CVOCs, many microorganisms are inhibited when these contaminants are present in mixtures. Chemical catalysis by tungstated zirconia (WOx/ZrO2) and hydrogen peroxide (H2O2) as a non-selective treatment was designed to achieve nearly 20% 1,4-dioxane and over 60% trichloroethene and 50% dichloroethene removals. Post-catalysis, bioaugmentation with 1,4-dioxane metabolizing bacterial strain,Pseudonocardia dioxanivorans CB1190, removed the remaining 1,4-dioxane. The evolution of the microbial community under different conditions was time-dependent but relatively independent of the concentrations of contaminants. The compositions of microbiomes tended to be similar regardless of complex contaminant mixtures during the biodegradation phase, indicating a r-K strategy transition attributed to the shock experienced during catalysis and the subsequent incubation. The originally dominant genera Pseudomonas and Ralstonia were sensitive to catalytic oxidation, and were overwhelmed by Sphingomonas, Rhodococcus, and other catalyst-tolerant microbes, but microbes capable of biodegradation of organics thrived during the incubation. Methane metabolism, chloroalkane-, and chloroalkene degradation pathways appeared to be responsible for CVOC degradation, based on the identifications of haloacetate dehalogenases, 2-haloacid dehalogenases, and cytochrome P450 family. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase that were in line with shifting predominant genera, confirming the deterministic processes guiding the microbial assembly. Collectively, this study demonstrated that catalysis followed by bioaugmentation is an effective treatment for 1,4-dioxane in the presence of high CVOC concentrations, and it enhanced our understanding of microbial ecological impacts resulting from abiotic-biological treatment trains. These results will be valuable for predicting treatment synergies that lead to cost savings and improve remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Thien Phan
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Kimberly Heck
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Public Health, California State University, Fullerton, CA, 92834, United States
| | - Xiaoru Zheng
- Department of Statistics, University of California, Los Angeles, CA, 90095, United States
| | - David Adamson
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Charles Newell
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
35
|
Lin S, Rong K, Lamichhane KM, Babcock RW, Kirs M, Cooney MJ. Anaerobic-aerobic biofilm-based digestion of chemical contaminants of emerging concern (CEC) and pathogen indicator organisms in synthetic wastewater. BIORESOURCE TECHNOLOGY 2020; 299:122554. [PMID: 31870707 DOI: 10.1016/j.biortech.2019.122554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The efficacy of biofilm based anaerobic-aerobic treatment to reduce caffeine, carbamazepine, and three estrogens (Estrone (E1), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2)), as well as E. coli (CN-13) and F+ specific coliphage (MS2), from synthetic wastewater was investigated. Results showed no observable reduction of carbamazepine by either anaerobic or aerobic biofilms over a dosing period of 51-days followed by an additional 23 days of observation. Caffeine, by contrast, was reduced by 11.09% in the upflow anaerobic packed bed biofilm reactor (UAnPBBR) and by 91.90% in the aerobic trickling filter biofilm reactor (TF). Estrone (E1) and 17β-estradiol (E2) showed minimal reduction in the UAnPBBR but 99.67% reduction in the TF, while EE2 was reduced 1.62% in the AnPBBR and 20.36% in the TF. On average, a 3-log reduction of E. coli (CN-13) and a 1-log reduction of F+ specific coliphage (MS2) concentration was observed across the overall reactor system.
Collapse
Affiliation(s)
- Sara Lin
- Hawaii Natural Energy Institute, United States; University of Hawaii at Manoa, Department of Civil Engineering, United States
| | - Kexin Rong
- Hawaii Natural Energy Institute, United States
| | | | - Roger W Babcock
- University of Hawaii at Manoa, Department of Civil Engineering, United States; Water Resource Research Center, United States
| | - Marek Kirs
- Water Resource Research Center, United States
| | | |
Collapse
|
36
|
Fang Y, Vanzin G, Cupples AM, Strathmann TJ. Influence of terminal electron-accepting conditions on the soil microbial community and degradation of organic contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135327. [PMID: 31846887 DOI: 10.1016/j.scitotenv.2019.135327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Better understanding of the fate and persistence of trace organic contaminants of emerging concern (CEC) in agricultural soils is critical for assessing the risks associated with using treated wastewater effluent to irrigate crops and land application of wastewater biosolids. This study reports on the influence of prevailing terminal electron-accepting processes (TEAPs, i.e., aerobic, nitrate-reducing, iron(III)-reducing, and sulfate-reducing conditions) and exposure to a mixture of nine trace CEC (90 ng/g each) on both the microbial community structure and CEC degradation in agricultural soil. DNA analysis revealed significant differences in microbial community composition following establishment of different TEAPs, but no significant change upon exposure to the mixture of CEC. The largest community shift was observed after establishing nitrate-reducing conditions and the smallest shift for sulfate-reducing conditions. Two of the CEC (atrazine and sulfamethoxazole) showed significant degradation in both bioactive and abiotic (i.e., sterilized) conditions, with half-lives ranging from 1 to 64 days for different TEAPs, while six of the CEC (amitriptyline, atenolol, trimethoprim, and three organophosphate flame retardants) only degraded in bioactive samples, with half-lives ranging from 27 to 90 days; carbamazepine did not degrade appreciably within 90 days in any of the incubations. Amplicon sequence variants (ASVs) from Firmicutes Hydrogenispora, Gemmatimonadetes Gemmatimonadaceae, and Verrucomicrobia OPB34 soil group were identified as potentially responsible for the biodegradation of organophosphate flame retardants, and ASVs from other taxa groups were suspected to be involved in biodegrading the other target CEC. These results demonstrate that CEC fate and persistence in agricultural soils is influenced by the prevailing TEAPs and their influence on the microbial community, suggesting the need to incorporate these factors into contaminant fate models to improve risk assessment predictions.
Collapse
Affiliation(s)
- Yida Fang
- Colorado School of Mines, Department of Civil & Environmental Engineering, 1012 14th Street, Golden, CO 80401, United States.
| | - Gary Vanzin
- Colorado School of Mines, Department of Civil & Environmental Engineering, 1012 14th Street, Golden, CO 80401, United States.
| | - Alison M Cupples
- Michigan State University, Department of Civil and Environmental Engineering, 1449 Engineering Research Court, East Lansing, MI 48824, United States.
| | - Timothy J Strathmann
- Colorado School of Mines, Department of Civil & Environmental Engineering, 1012 14th Street, Golden, CO 80401, United States.
| |
Collapse
|
37
|
|
38
|
Zhang X, Song Z, Hao Ngo H, Guo W, Zhang Z, Liu Y, Zhang D, Long Z. Impacts of typical pharmaceuticals and personal care products on the performance and microbial community of a sponge-based moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2020; 295:122298. [PMID: 31675521 DOI: 10.1016/j.biortech.2019.122298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Four lab-scale moving bed biofilm reactors (MBBRs) were built to treat simulated wastewater containing typical pharmaceuticals and personal care products (PPCPs). The efficiency in removing different PPCPs at different concentrations (1, 2 and 5 mg/L) and their effects on the performance of MBBRs were investigated. Results showed that the average removal efficiencies of sulfadiazine, ibuprofen and carbamazepine were 61.1 ± 8.8%, 74.9 ± 8.8% and 28.3 ± 7.4%, respectively. Compared to the reactor without PPCPs, the total nitrogen (TN) removal efficiency of the reactors containing sulfadiazine, ibuprofen and carbamazepine declined by 21%, 30% and 42%, respectively. Based on the microbial community analysis, increasing the PPCPs concentration within a certain range (<2 mg/L) could stimulate microbial growth and increase microbial diversity yet the diversity reduced when the concentration (5 mg/L) exceeded the tolerance of microorganisms. Furthermore the presence and degradation of different PPCPs resulted in a different kind of microbial community structure in the MBBRs.
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zumin Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yang Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zhongliang Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
39
|
Wei ZS, He YM, Huang ZS, Xiao XL, Li BL, Ming S, Cheng XL. Photocatalytic membrane combined with biodegradation for toluene oxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109618. [PMID: 31487569 DOI: 10.1016/j.ecoenv.2019.109618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Photocatalytic membrane coupled to biodegradation offers potential for degrading volatile organic compounds (VOCs) in photocatalytic membrane biofilm reactor. An intimately coupled photocatalysis and biodegradation reactor was operated in continuous operation for 500 days to treat simulated waste gas containing toluene. Toluene removal efficiency obtained 99%, with the elimination capacity of 550 g m-3·h-1. Membrane photocatalysis coupled to biodegradation was created to improve toluene removal from 11 to 20%. The dominant genera were Lysinibacillus, Hydrogenophaga, Pseudomonas at 30 d, Rudaea, Dongia, Litorilinea at 230 d xyl, Tod, Tcb, Bed, Tmo, Tbu, Tou, Dmp, Cat were functional genes of toluene metabolism, as shown by16S rDNA and metagenomic sequencing. Photocatalysis destroyed part of the toluene into biodegradable intermediates that were immediately mineralized by microorganisms in biofilm, some toluene was directly degraded by toluene degrading bacterial community into carbon dioxide and water. The novel hybrid photocatalytic membrane biofilm reactor is a cost-effective and robust alternative to VOCs treatment.
Collapse
Affiliation(s)
- Z S Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Y M He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Z S Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - X L Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - B L Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - S Ming
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - X L Cheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
40
|
Alanis-Sánchez BM, Pérez-Tapia SM, Vázquez-Leyva S, Mejía-Calvo I, Macías-Palacios Z, Vallejo-Castillo L, Flores-Ortiz CM, Guerrero-Barajas C, Cruz-Maya JA, Jan-Roblero J. Utilization of naproxen by Amycolatopsis sp. Poz 14 and detection of the enzymes involved in the degradation metabolic pathway. World J Microbiol Biotechnol 2019; 35:186. [DOI: 10.1007/s11274-019-2764-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022]
|
41
|
Variation of Microbial Communities in Aquatic Sediments under Long-Term Exposure to Decabromodiphenyl Ether and UVA Irradiation. SUSTAINABILITY 2019. [DOI: 10.3390/su11143773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abiotic components create different types of environmental stress on bacterial communities in aquatic ecosystems. In this study, the long-term exposure to various abiotic factors, namely a high-dose of the toxic chemical decabromodiphenyl ether (BDE-209), continuous UVA irradiation, and different types of sediment, were evaluated in order to assess their influence on the bacterial community. The dominant bacterial community in a single stress situation, i.e., exposure to BDE-209 include members of Comamonadaceae, members of Xanthomonadaceae, a Pseudomonas sp. and a Hydrogenophaga sp. Such bacteria are capable of biodegrading polybrominated diphenyl ethers (PBDEs). When multiple environmental stresses were present, Acidobacteria bacterium and a Terrimonas sp. were predominant, which equipped the population with multiple physiological characteristics that made it capable of both PBDE biodegradation and resistance to UVA irradiation. Methloversatilis sp. and Flavisolibacter sp. were identified as representative genera in this population that were radioresistant. In addition to the above, sediment heterogeneity is also able to alter bacterial community diversity. In total, seventeen species of bacteria were identified in the microcosms containing more clay particles and higher levels of soil organic matter (SOM). This means that these communities are more diverse than in microcosms that contained more sand particles and a lower SOM, which were found to have only twelve identifiable bacterial species. This is the first report to evaluate how changes in bacterial communities in aquatic sediment are affected by the presence of multiple variable environmental factors at the same time.
Collapse
|
42
|
Saccà ML, Ferrero VEV, Loos R, Di Lenola M, Tavazzi S, Grenni P, Ademollo N, Patrolecco L, Huggett J, Caracciolo AB, Lettieri T. Chemical mixtures and fluorescence in situ hybridization analysis of natural microbial community in the Tiber river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:7-19. [PMID: 30981201 PMCID: PMC6509555 DOI: 10.1016/j.scitotenv.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The Water Framework Directive (WFD) regulates freshwater and coastal water quality assessment in Europe. Chemical and ecological water quality status is based on measurements of chemical pollutants in water and biota together with other indicators such as temperature, nutrients, species compositions (phytoplankton, microalgae, benthos and fish) and hydromorphological conditions. However, in the current strategy a link between the chemical and the ecological status is missing. In the present WFD, no microbiological indicators are foreseen for integrating the different anthropogenic pressures, including mixtures of chemicals, nutrients and temperature changes, to provide a holistic view of the freshwater ecosystem water quality. The main aim of this work was to evaluate if natural microbial populations can be valuable indicators of multiple stressors (e.g. chemical pollutants, temperature, nutrients etc.) to guide preventive and remediation actions by water authorities. A preliminary survey was conducted to identify four sites reflecting a contamination gradient from the source to the mouth of a river suitable to the objectives of the European Marie Curie project, MicroCoKit. The River Tiber (Italy) was selected as a pilot case study to investigate the correlation between bacteria taxa and the chemical status of the river. The main physicochemical parameters, inorganic elements, organic pollutants and natural microbial community composition were assessed at four selected sites corresponding to pristine, agricultural, industrial and urban areas for three consecutive years. The overall chemical results indicated a correspondence between different groups of contaminants and the main contamination sources at the selected sampling points. Phylogenetic analysis of the microbial community analyzed by Fluorescence In Situ Hybridization method (FISH) revealed differences among the four sampling sites which could reflect an adaptive bacterial response to the different anthropogenic pressures.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | | | - Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Martina Di Lenola
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Paola Grenni
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Nicoletta Ademollo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Luisa Patrolecco
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Jim Huggett
- Molecular and Cell Biology team, LGC, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom; School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Anna Barra Caracciolo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
43
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
44
|
Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1138-1149. [PMID: 30677881 DOI: 10.1016/j.scitotenv.2018.12.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released into the environment due to their poor removal during wastewater treatment. Agricultural soils subject to irrigation with wastewater effluent and biosolids application are possible reservoirs for these chemicals. This study examined the impact of the pharmaceutical carbamazepine (CBZ), and the antimicrobial agents triclocarban (TCC) and triclosan (TCS) on four soil microbial communities using shotgun sequencing (HiSeq Illumina) with the overall aim of determining possible degraders as well as the functional genes related to general xenobiotic degradation. The biodegradation of CBZ and TCC was slow, with ≤50% decrease during the 80-day incubation period. In contrast, TCS biodegradation was rapid, with ~80% removal in 25 days. For each chemical, when all four soils were considered together, between three and ten phylotypes (from multiple phyla) were more abundant in the soil samples compared to the live controls. The genera of a number of previously reported CBZ, TCC or TCS degrading isolates were present; Rhodococcus (CBZ), Streptomyces (CBZ), Pseudomonas (CBZ, TCC, TCS), Sphingomonas (TCC, TCS), Methylobacillus (TCS) and Stenotrophomonas (TCS) were among the most abundant (chemical previously reported to be degraded is shown in parenthesis). From the analysis of xenobiotic degrading pathways, genes from five KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology pathways were the most dominant, including those associated with aminobenzoate, benzoate (most common), chlorocyclohexane/chlorobenzene, dioxin and nitrotoluene biodegradation. Several phylotypes including Bradyrhizobium, Mycobacterium, Rhodopseudomonas, Pseudomonas, Cupriavidus, and Streptomyces were common genera associated with these pathways. Overall, the data suggest several phylotypes are likely involved in the biodegradation of these PPCPs with Pseudomonas being an important genus.
Collapse
Affiliation(s)
- Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
45
|
Yuan X, Li S, Hu J, Yu M, Li Y, Wang Z. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1125-1138. [PMID: 30577106 DOI: 10.1016/j.scitotenv.2018.11.290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
We examined the occurrence and fate of pharmaceuticals and personal care products in surface water by combining laboratory experiments with numerical simulations. The degradation processes of two typical PPCPs (triclosan and carbamazepine) collected from the Shahe Stream were studied. Hydrolysis, biodegradation, and photolysis were the three major routes of triclosan (TCS) and carbamazepine (CBZ) degradation. A central composite design method was used to investigate the effects of related natural parameters (including pH, dissolved oxygen, salinity, temperature, light intensity, and humic acid) on the TCS and CBZ degradation processes in the laboratory. Our results showed that the main degradation pathway of CBZ and TCS was direct photolysis during the daytime and that the maximal biodegradation rates of CBZ and TCS occurred at 22 °C when the optimum temperature function was used. Based on our experimental results, the observed degradation of CBZ and TCS followed pseudo-first-order kinetics, and the degradation kinetic equations under the influence of multiple natural parameters were established with estimated average degradation rate constants of 1.2452E-7 s-1 and 3.1260E-5 s-1 for CBZ and TCS, respectively. The degradation rate constants were incorporated into a one-dimensional, simply integrated hydrodynamic and water quality model. The proposed numerical model was applied to depict the transportation and transformation of CBZ and TCS in surface water and was validated by observational data from the Shahe Stream. The results showed that our model reproduced the observed patterns of CBZ and TCS concentrations reasonably, with slight overestimations compared to the observed data; the relative errors between the simulated and the observed concentrations were 5.85%-6.82% for CBZ and -156.85%--7.18% for TCS. According to our simulation, the spatial distribution of TCS in surface water was determined by biochemical degradation processes that were most affected by temperature under natural conditions; in contrast, the distribution of CBZ was largely controlled by diffusion.
Collapse
Affiliation(s)
- Xiao Yuan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shiyu Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jiatang Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Mianzi Yu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuying Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyun Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Wang S, Qian K, Zhu Y, Yi X, Zhang G, Du G, Tay JH, Li J. Reactivation and pilot-scale application of long-term storage denitrification biofilm based on flow cytometry. WATER RESEARCH 2019; 148:368-377. [PMID: 30396102 DOI: 10.1016/j.watres.2018.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
The work provides a method on the basis of flow cytometry to evaluate the performance of denitrification biofilm during the preservation, reactivation and pilot-scale operation process. The viable cell ratio of denitrification biofilm significantly reduced and further led to the decrease of denitrification capacity after long-term preservation for 5 months. Protein component in tightly bound extracellular polymeric substances (TB-EPS) could serve to enhance microbial adhesion and promote denitrification biofilm formation. With the significant correlation of viable cell ratio and microbial characteristics, 4 °C was more appropriate for preserving denitrification biofilm and conducive to maintain the relatively high denitrification capacity. A maximum denitrification rate of 5.80 gNO3--N/m2·d was obtained in pilot-scale anoxic-oxic (AO) process and Dechloromonas became greater prevalence in denitrification suspended carriers. Furthermore, the enrichment of Pseudomonas, Parcubacteria, Acidovorax, Aquabacterium and Unclassified_Flavobacteriaceae enhanced biofilm formation and nutrient conservation. The significantly positive correlation between viable cell ratio and the ratio of nitrate reduction to COD consumption was discovered, and the indices of Chao, ACE, Shannon and Simpson of denitrification biofilm were positively correlated with viable cell ratio, meaning that flow cytometry analysis was reasonable and suitable to evaluate the performances of denitrification biofilm.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China; Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| | - Kai Qian
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuesong Yi
- School of Environmental Science and Engineering, Hainan University, Haikou, 570028, China
| | - Guangsheng Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Guocheng Du
- Ministry Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Joo-Hwa Tay
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
47
|
Li M, Ding T, Wang H, Wang W, Li J, Ye Q. Uptake and translocation of 14C-Carbamazepine in soil-plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1352-1359. [PMID: 30273861 DOI: 10.1016/j.envpol.2018.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/29/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine (CBZ) is an antiepileptic drug that is frequently detected in wastewater treatment plants, soil and plants after irrigation with treated wastewater or application of biosolids. However, little information is available on the fate and uptake of CBZ in edible vegetables. In this study, radioautographic visualization of the 14C distribution revealed that 14C-CBZ can be taken up by all three ready-to-eat vegetables. Furthermore, a mass-balance study was conducted to evaluate the dynamic processes of the uptake and translocation of CBZ by 14C labeling. 14C-CBZ was gradually taken up with the growth of vegetables, with maximum uptake ratios of 2.19 ± 0.15, 2.86 ± 0.24 and 0.25 ± 0.05% of applied 14C in celery, carrot and pak choi, respectively. The bioconcentration factors (BCFs) based on 14C measurements ranged from 7.6 to 26.1 for celery, 3.6-12.9 for carrot, and 4.4-44 for pak choi. 14C-CBZ was easily translocated from the roots to the leaves and/or stems. The amendment of biosolids had a significant inhibitory effect on the uptake and translocation of 14C-CBZ from soil.
Collapse
Affiliation(s)
- Ming Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Songliao Aquatic Environment Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
48
|
Vasileiadis S, Puglisi E, Papadopoulou ES, Pertile G, Suciu N, Pappolla RA, Tourna M, Karas PA, Papadimitriou F, Kasiotakis A, Ipsilanti N, Ferrarini A, Sułowicz S, Fornasier F, Menkissoglu-Spiroudi U, Nicol GW, Trevisan M, Karpouzas DG. Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms. Appl Environ Microbiol 2018; 84:e01536-18. [PMID: 30194100 PMCID: PMC6210116 DOI: 10.1128/aem.01536-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Pesticides are key stressors of soil microorganisms with reciprocal effects on ecosystem functioning. These effects have been mainly attributed to the parent compounds, while the impact of their transformation products (TPs) has been largely overlooked. We assessed in a meadow soil (soil A) the transformation of iprodione and its toxicity in relation to (i) the abundance of functional microbial groups, (ii) the activity of key microbial enzymes, and (iii) the diversity of bacteria, fungi, and ammonia-oxidizing microorganisms (AOM) using amplicon sequencing. 3,5-Dichloroaniline (3,5-DCA), the main iprodione TP, was identified as a key explanatory factor for the persistent reduction in enzymatic activities and potential nitrification (PN) and for the observed structural changes in the bacterial and fungal communities. The abundances of certain bacterial (Actinobacteria, Hyphomicrobiaceae, Ilumatobacter, and Solirubrobacter) and fungal (Pichiaceae) groups were negatively correlated with 3,5-DCA. A subsequent study in a fallow agricultural soil (soil B) showed limited formation of 3,5-DCA, which concurred with the lack of effects on nitrification. Direct 3,5-DCA application in soil B induced a dose-dependent reduction of PN and NO3--N, which recovered with time. In vitro assays with terrestrial AOM verified the greater toxicity of 3,5-DCA over iprodione. "Candidatus Nitrosotalea sinensis" Nd2 was the most sensitive AOM to both compounds. Our findings build on previous evidence on the sensitivity of AOM to pesticides, reinforcing their potential utilization as indicators of the soil microbial toxicity of pesticides in pesticide environmental risk analysis and stressing the need to consider the contribution of TPs in the toxicity of pesticides on the soil microbial community.IMPORTANCE Pesticide toxicity on soil microorganisms is an emerging issue in pesticide risk assessment, dictated by the pivotal role of soil microorganisms in ecosystem services. However, the focus has traditionally been on parent compounds, while transformation products (TPs) are largely overlooked. We tested the hypothesis that TPs can be major contributors to the soil microbial toxicity of pesticides using iprodione and its main TP, 3,5-dichloroaniline, as model compounds. We demonstrated, by measuring functional and structural endpoints, that 3,5-dichloroaniline and not iprodione was associated with adverse effects on soil microorganisms, with nitrification being mostly affected. Pioneering in vitro assays with relevant ammonia-oxidizing bacteria and archaea verified the greater toxicity of 3,5-dichloroaniline. Our findings are expected to advance environmental risk assessment, highlighting the potential of ammonia-oxidizing microorganisms as indicators of the soil microbial toxicity of pesticides and stressing the need to consider the contribution of TPs to pesticide soil microbial toxicity.
Collapse
Affiliation(s)
- S Vasileiadis
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - E Puglisi
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - E S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
- Aristotle University of Thessaloniki, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Thessaloniki, Greece
| | - G Pertile
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - N Suciu
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - R A Pappolla
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - M Tourna
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - P A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - F Papadimitriou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - A Kasiotakis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - N Ipsilanti
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - A Ferrarini
- Universita Cattolica del Sacro Cuore, Department of Sustainable Crop Production, Piacenza, Italy
| | - S Sułowicz
- University of Silesia, Department of Microbiology, Katowice, Poland
| | - F Fornasier
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianti e Suolo, Gorizia, Italy
| | - U Menkissoglu-Spiroudi
- Aristotle University of Thessaloniki, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Thessaloniki, Greece
| | - G W Nicol
- Ecole Centrale de Lyon, Group of Environmental Microbial Genomics, Lyon, France
| | - M Trevisan
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - D G Karpouzas
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| |
Collapse
|
49
|
Wang F, Men X, Zhang G, Liang K, Xin Y, Wang J, Li A, Zhang H, Liu H, Wu L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 2018; 8:182. [PMID: 30415449 PMCID: PMC6230335 DOI: 10.1186/s13568-018-0713-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/03/2018] [Indexed: 11/10/2022] Open
Abstract
Selection of optimal primer pairs in 16S rRNA gene sequencing is a pivotal issue in microorganism diversity analysis. However, limited effort has been put into investigation of specific primer sets for analysis of the bacterial diversity of aging flue-cured tobaccos (AFTs), as well as prediction of the function of the bacterial community. In this study, the performance of four primer pairs in determining bacterial community structure based on 16S rRNA gene sequences in AFTs was assessed, and the functions of genes were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results revealed that the primer set 799F-1193R covering the amplification region V5V6V7 gave a more accurate picture of the bacterial community structure of AFTs, with lower co-amplification levels of chloroplast and mitochondrial genes, and more genera covered than when using the other primers. In addition, functional gene prediction suggested that the microbiome of AFTs was involved in kinds of interested pathways. A high abundance of functional genes involved in nitrogen metabolism was detected in AFTs, reflecting a high level of bacteria involved in degrading harmful nitrogen compounds and generating nitrogenous nutrients for others. Additionally, the functional genes involved in biosynthesis of valuable metabolites and degradation of toxic compounds provided information that the AFTs possess a huge library of microorganisms and genes that could be applied to further studies. All of these findings provide a significance reference for researchers working on the bacterial diversity assessment of tobacco-related samples.
Collapse
Affiliation(s)
- Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaichao Liang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Yuhua Xin
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Juan Wang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Aijun Li
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haobao Liu
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
- Tobacco Research Institute of Chinese Academy of Agriculture Sciences, Qingdao, 266101 Shandong China
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106 China
| |
Collapse
|
50
|
Thelusmond JR, Kawka E, Strathmann TJ, Cupples AM. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1393-1410. [PMID: 30021306 DOI: 10.1016/j.scitotenv.2018.05.403] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 04/15/2023]
Abstract
The incomplete elimination of pharmaceuticals and personal care products (PPCPs) during wastewater treatment has resulted in their detection in the environment. PPCP biodegradation is a potential removal mechanism; however, the microorganisms and pathways involved in soils are generally unknown. Here, the biodegradation of diclofenac (DCF), carbamazepine (CBZ) and triclocarban (TCC) in four agricultural soils at concentrations typically detected in soils and biosolids (50 ng g-1) was examined. Rapid DCF removal (<7 days) was observed under aerobic conditions, but only limited biodegradation was noted under other redox conditions. CBZ and TCC degradation under aerobic conditions was slow (half-lives of 128-241 days and 165-190 days for CBZ and TCC). Phylotypes in the Proteobacteria, Gemmatimonadales and Actinobacteria were significantly more abundant during DCF biodegradation compared to the controls (no DCF). For CBZ, those in the Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia were enriched compared to the controls. Actinobacteria and Proteobacteria were also enriched during TCC biodegradation. Such differences could indicate these microorganisms are associated with the biodegradation of these compounds, as they appear to be benefiting from their removal. The impact of these PPCPs on the KEGG pathways associated with metabolism was also examined. Four pathways were positively impacted during DCF biodegradation (propanoate, lysine, fatty acid & benzoate metabolism). These pathways are likely common in soils, explaining the rapid removal of DCF. There was limited impact of CBZ on the metabolic pathways. TCC removal was linked to genes associated with the degradation of simple and complex substrates. The results indicate even low concentrations of PPCPs significantly affect soil communities. The recalcitrant nature of TCC and CBZ suggests soils receiving biosolids could accumulate these chemicals, representing risks concerning crop uptake.
Collapse
Affiliation(s)
- Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Emily Kawka
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|