1
|
Desbordes C, Szabo V, Greco F, Chalard K, Dargazanli C, Molinari N, Matzner E, Macioce V, Pissarra J, Chanques G, Perrigault PF. Influence of meteorological changes on the occurrence of cerebral aneurysm rupture in the Montpellier region: A retrospective study. Neurochirurgie 2025; 71:101630. [PMID: 39798265 DOI: 10.1016/j.neuchi.2025.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND/CONTEXT Aneurysmal subarachnoid hemorrhage (aSAH) is a sudden and potentially serious event. Recognized risk factors of aSAH include smoking, high blood pressure, and alcohol consumption. Some studies have reported associations between risk of aSAH and climatic conditions, but no consensus exists. This study aimed to investigate the association between aSAH and meteorological conditions. METHODS We retrospectively included patients admitted for aSAH at Montpellier University Hospital between 2018-2022. We analyzed the correlation between the occurrence of aSAH and several meteorological factors, including precipitation, temperature, barometric pressure, wind speed, humidity, sunshine duration, and storms, within 24 h and 7 days before symptom onset. We collected meteorological data for days without aSAH cases as controls. A multivariate logistic regression with 10-block cross-validation and a penalty lasso method was performed. RESULTS For the 5-year period, 492 patients were analyzed. Incident cases per month in this period was higher in February and August and the highest in winter. Diagnoses were made predominantly between noon and midnight. The multivariate model based on 9 weather variables on the days preceding the aSAH event had an accuracy of 0.55. The area under the curve was 0.58 (95% CI 0.55-0.62). The barometric pressure was similar between aSAH days and the mean of the 5 preceding days. CONCLUSION Due to the low accuracy of the statistical model, our study could not provide evidence of a link between weather variables and occurrence of aSAH. This issue requires further investigation and reliable epidemiological data to fully understand the pathophysiology and real impact of weather on aSAH.
Collapse
Affiliation(s)
- Camille Desbordes
- Department of Anesthesia and Intensive Care Unit of Gui De Chauliac - University Hospital of Montpellier, France.
| | - Vivien Szabo
- Department of Anesthesia and Intensive Care Unit of Gui De Chauliac - University Hospital of Montpellier, France
| | - Frédéric Greco
- Department of Anesthesia and Intensive Care Unit of Gui De Chauliac - University Hospital of Montpellier, France
| | - Kévin Chalard
- Department of Anesthesia and Intensive Care Unit of Gui De Chauliac - University Hospital of Montpellier, France
| | - Cyril Dargazanli
- Department of Neuroradiology- University Hospital of Montpellier, France
| | - Nicolas Molinari
- IDESP, INSERM, PreMEdical INRIA, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Eric Matzner
- IDESP, INSERM, PreMEdical INRIA, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Valérie Macioce
- Clinical Research and Epidemiology Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Joana Pissarra
- Clinical Research and Epidemiology Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Gérald Chanques
- Department of Anesthesia and Intensive Care Unit of Saint Eloi - University Hospital of Montpellier, France
| | - Pierre Francois Perrigault
- Department of Anesthesia and Intensive Care Unit of Gui De Chauliac - University Hospital of Montpellier, France
| |
Collapse
|
2
|
Mukhopadhyay A, Haque Mondol M, Rahman M, Unicomb L, Khan R, Mazumder H, Nahian Ferdous M, Pickering EV, Makris KC, Caban-Martinez AJ, Ahmed F, Shamsudduha M, Mzayek F, Jia C, Zhang H, Musah A, Fleming LE, Smeltzer MP, Chang HH, Jefferies JL, Kovesdy CP, Mou X, Mohd Naser A. The direct and urinary electrolyte-mediated effects of ambient temperature on population blood pressure: A causal mediation analysis. ENVIRONMENT INTERNATIONAL 2024; 195:109208. [PMID: 39705978 DOI: 10.1016/j.envint.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
High ambient heat can directly influence blood pressure (BP) through the vasodilation of the skin vasculature and indirectly by affecting urinary volume and electrolyte levels. We evaluated the direct and urine electrolyte-mediated effects of ambient temperature on BP. We pooled 5,624 person-visit data from a community-based stepped-wedge randomized control trial in southwest coastal Bangladesh from December 2016 to May 2017. Same-day ambient temperature data from local weather stations were linked to participant BP and urine electrolytes using geo-locations of their residential addresses. We implemented causal mediation analyses using the product methods of coefficients with linear mixed models under the sequential ignorability assumption. Separate models were run for each urinary electrolyte mediator (sodium, potassium, calcium, and magnesium), followed by combined models to evaluate the natural direct and electrolyte-mediated indirect effects of temperature on BP. Models had participant-level random intercepts and were adjusted for age, sex, body mass index (BMI), religion, exercise, smoking status, sleep hours, alcohol consumption, urine creatinine, time trend, household assets, drinking water salinity, and seasonality. For the combined mediators (sodium, potassium, calcium, and magnesium), for every 5°C increase in average daily temperature: the direct effect on systolic BP was -1.42 (95 % CI: -1.94, -0.92) mmHg and urine sodium mediated effect was -0.12 (95 % CI: -0.20, -0.05) mmHg; while urine potassium mediated effect was 0.15 (95 % CI: 0.08, 0.25) mmHg; urine calcium-mediated effect 0.06 (95 % CI: 0.01, 0.12) mmHg; and urine magnesium mediated effect -0.00 (95 % CI: -0.03, 0.02) mmHg. We detected similar associations for diastolic BP, pulse pressure, and mean arterial pressure. We found a significant inverse direct effect of ambient temperature on BP compared to minimally mediated urine electrolyte effects. Further studies are needed to uncover the underlying mechanisms of ambient heat and BP associations and to describe the clinical consequences of these associations.
Collapse
Affiliation(s)
- Ayesha Mukhopadhyay
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Momenul Haque Mondol
- School of Population and Public Health, University of British Columbia, Vancouver, BC Canada; Department of Statistics, University of Barishal, Barishal, Bangladesh
| | - Mahbubur Rahman
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Leanne Unicomb
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Rizwana Khan
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Hoimonty Mazumder
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Mohammad Nahian Ferdous
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Emily V Pickering
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Faruk Ahmed
- Department of Engineering Technology, The University of Memphis, Memphis, TN, USA
| | - Mohammad Shamsudduha
- Department of Risk and Disaster Reduction, University College London, London, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Chunrong Jia
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Anwar Musah
- Department of Geography, University College London, London, UK
| | - Lora E Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, United Kingdom
| | - Matthew P Smeltzer
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Howard H Chang
- Department of Biostatistics & Bioinformatics, and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John L Jefferies
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Xichen Mou
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA
| | - Abu Mohd Naser
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
3
|
Zhang D, Kou W, Luo S, Chen J, An X, Fang S, Liang X. The effect of ambient temperature on lipid metabolism in children: From a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119692. [PMID: 39068968 DOI: 10.1016/j.envres.2024.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dyslipidemia is increasingly recognized as an essential risk factor for cardiovascular diseases. However, few studies illustrated the effects of ambient temperature exposure (TE) on lipid levels in children. The study aimed to examine the association between ambient TE and lipid levels in children. METHODS Based on a prospective cohort, a total of 2423 children (with 4466 lipids measure person-time) were collected from 2014 to 2019. The meteorological observation data and adjusted variables were collected. Mixed-effect models and generalized additive mixed model (GAMM) were applied to investigate the association between ambient TE and lipid levels. RESULTS A significant negative association was observed between TE and low-density lipoprotein cholesterol (LDL-C) or total cholesterol (TC) levels both in all children [LDL-C, β(95%CI) = -0.350(-0.434,-0.265), P < 0.001; TC, β(95%CI) = -0.274(-0.389,-0.160), P < 0.001] and by different sex group. However, no significant association was found in low-density lipoprotein cholesterol (HDL-C) or triglycerides (TG) levels. The estimated optimal ambient TEs for LDL-C were 18.273 °C and 18.024 °C for girls and boys, respectively. For TC, the optimal ambient TEs were 17.949 °C and 18.024 °C, respectively. With ambient TE decreased, the risk of dyslipidemia increased for both boys [OR = 0.032(0.006,0.179), P < 0.001] and girls [OR = 0.582(0.576,0.587), P < 0.001]. CONCLUSION This study provided a comprehensive illustration about the associations between ambient TE and lipid levels in different sex and ages from a prospective cohort study. The findings will provide evidence for the government to prevent dyslipidemia in vulnerable children through regulating TE.
Collapse
Affiliation(s)
- Di Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xizhou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shenying Fang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
4
|
Fonseca MCM, Sansone D, Farah D, Fiorini AC, Scorza CA, Scorza FA. Seasonality as a risk factor for deaths in Parkinson's disease. Clinics (Sao Paulo) 2024; 79:100506. [PMID: 39461195 PMCID: PMC11543644 DOI: 10.1016/j.clinsp.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND According to growing evidence, sleep disruption harms biological processes and circadian homeostasis. Diurnal motor symptom volatility in Parkinson's Disease (PD) has been extensively studied. Few studies examined seasonal variability in PD symptoms, some showing it and others not. OBJECTIVE To investigate whether PD patients' deaths follow a rhythmic pattern due to circadian rhythm alterations. METHODS This study used only unidentified patient databases. People with PD, ICD10 code G20, in at least one death certificate field were selected. The Continuous Wavelet Transform and Fourier Transform were checked for oscillation and its duration. RESULTS The 18-year analysis found 43,072 PD deaths. The Continuous Wavelet transform revealed a 351.87-day annual component (p < 0.05). Winter in the southern hemisphere saw more deaths, mainly in July. The Continuous Wavelet transform identified a significant daily component (p < 0.05) of 22.81 hours. Fatalities peaked around 9 a.m. Pneumonia is the leading cause of death in PD, and women and men have the same rhythm pattern. CONCLUSION Parkinson's disease mortality in Brazil follows a pattern. Using over 40.000 death certificates from 18 years, the authors found that Parkinson's patient fatalities rise in winter and peak in July at about 9 a.m. Sunlight reduction increases mortality risk in the long term. Low sunshine lowers temperatures, increasing short-term death risk. This is crucial because it prioritizes the sun, seasons, and circadian rhythm over low temperatures.
Collapse
Affiliation(s)
- Marcelo C M Fonseca
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil.
| | - Dayan Sansone
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil
| | - Daniela Farah
- Departamento de Ginecologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brasil
| | - Ana Claudia Fiorini
- Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil; Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, SP, Brasil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, SP, Brasil
| |
Collapse
|
5
|
Asaoka R, Murata H, Muto S, Obana A. Influence of meteorological factors on intraocular pressure variability using a large-scale cohort. Sci Rep 2024; 14:23703. [PMID: 39390019 PMCID: PMC11467223 DOI: 10.1038/s41598-024-69140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/01/2024] [Indexed: 10/12/2024] Open
Abstract
The effects of meteorological conditions on IOP using a large-scale health examination cohort were investigated. There were a total of 811,854 measurements from 126,630 eyes of 63,839 subjects in 9 years from a health checkup cohort followed up annually for age, sex, body height, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), and IOP. The effects of these variables and the meteorological data of daily average temperature (TP), daily average local atmospheric pressure (AP), daily average volumetric humidity (VH), and daily amount of rainfall (RF) on the day of IOP measurement on IOP were investigated. Several variables were significantly associated with IOP, including sex, age, body height, BMI, SBP, DBP, average TP, average AP, average VH, RF, white blood cell count, red blood cell count, hemoglobin, aspartate aminotransferase, alanine aminotransferase, guanosine triphosphate, calcium, and HbA1c. This study indicated a correlation between meteorological factors and IOP. Higher AP and RF were associated with elevated IOP, whereas higher TP and VH were associated with decreased IOP.
Collapse
Affiliation(s)
- Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku Hamamatsu, Hamamatsu, Japan.
- Seirei Christopher University, Shizuoka, Japan.
- Organization for Innovation and Social Collaboration, National University Corporation Shizuoka University, Shizuoka, Japan.
- The Graduate School for the Creation of Photon Industries, Hamamatsu, Japan.
| | - Hiroshi Murata
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shigetaka Muto
- Seirei Center for Health Promotion and Preventive Medicine, Shizuoka, Hamamatsu, Japan
| | - Akira Obana
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku Hamamatsu, Hamamatsu, Japan
| |
Collapse
|
6
|
Liang X, Liu Q, Wu X, Huang K, Qu P, Zhang D, Xiao L, Luo S. The impact of air temperature and humidity on Children's blood pressure mediated by Lipids: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2024; 192:109040. [PMID: 39353212 DOI: 10.1016/j.envint.2024.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Few studies illustrate the mechanism between air temperature and blood pressure (BP) in childhood. This study aims to investigate the associations between air temperature, humidity exposure, and BP trajectories in children and adolescents, and explore the potential mediating roles of lipid profiles in these relationships. METHODS This prospective cohort study included 5,971 children with 10,800 person-times measurements at baseline from the Chongqing Health Cohort, with evaluations conducted in 2014-2015 (baseline) and follow-ups in 2016 (urban areas) and 2019 (urban and rural areas). Multilevel mixed-effects models were used to analyse the impacts of air temperature and humidity on BP levels and the incidence of elevated BP, while accounting for potential confounders. Mediation analyses were performed to evaluate the mediating effects of lipid profiles, including low-density lipoprotein (LDL), total cholesterol (TC), and specific lipid species. RESULTS After adjusting for covariates, higher air temperature quartiles were associated with both decreased BP levels and elevated BP risk (RR: 0.83; 95 % CIs: 0.78, 0.89; P = 0.028). Conversely, higher humidity quartiles exhibited a U-shaped relationship with BP levels. Greater variability in air temperature was linked to increase BP levels. The cumulative effects of air temperature exposure on BP were significant from pregnancy to age 10, with females exhibiting larger effects (β:-3.291, 95 % CIs: -4.242,-2.340, P < 0.001). LDL and TC partially mediated the associations between air temperature and BP levels, particularly in males. Specific lipid species, including SM (d21:1), LPC (17:0), and PC (O-36:3), also exhibited significant mediating effects. CONCLUSIONS This study provides novel insights into the intricate interplay between air temperature, humidity, lipid metabolism, and blood pressure regulation in children. Lower average temperatures and extreme humidity levels were associated with increased risks of elevated BP, potentially mediated by lipid profiles. Early interventions targeting air temperature exposure and lipid metabolism could mitigate hypertension risk, promoting improved cardiovascular outcomes in children.
Collapse
Affiliation(s)
- Xiaohua Liang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| | - Qin Liu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xiaofei Wu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ping Qu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Di Zhang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lun Xiao
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shunqing Luo
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
7
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
8
|
Hao T, Wang X, Han S, Yao Q, Ding J. Investigating the impact of weather on stroke in summer. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2015-2027. [PMID: 38913080 DOI: 10.1007/s00484-024-02724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The objective of this study is to explore how changes in weather contribute to an increase in hospital admissions for stroke in summer. We collected 96,509 cases of stroke hospitalization data in Tianjin from 2016 to 2022 summer, along with corresponding meteorological data. The generalized additive model and distributed lag nonlinear model were used to analyze the lag and cumulative effects of temperature on stroke hospitalization. The research results show both the cold effect and the heat effect in summer would increase the risk of hospitalization. The effect of daily maximum temperature on stroke hospitalization was immediate when the temperature was higher, and delayed when the temperature was lower. However, the risk of stroke hospitalization increased more significantly with increasing temperature than with decreasing temperature. In the presence of one or more of the following three weather changes: sharp temperature increase, sharp temperature decrease, continuous high temperature, the daily number of stroke inpatients were higher than the average in the same period. 83% of the Inpatient-heavy events within the study period were caused by a combination of dramatic temperature changes and continuous high temperatures. In 48% of Inpatient-heavy events, continuous high temperature weather above 30℃ for at least 4 consecutive days were observed. And 55% of high temperature weather was accompanied by high humidity. When the daily relative humidity was greater than 70% and the daily maximum temperature was between 26 and 28℃ or more than 34℃, or the daily maximum temperature changes over 10℃ within 48 h, the number of daily inpatients was more than 1.2 times of the average daily inpatients. More attention should be paid to the combined effects of continuous high temperature and sudden temperature changes in summer stroke prevention.
Collapse
Affiliation(s)
- Tianyi Hao
- Tianjin Environmental Meteorological Center, Tianjin, 300074, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300074, China
- Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, 300074, China
| | - Xiaojia Wang
- Tianjin Environmental Meteorological Center, Tianjin, 300074, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300074, China
- Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, 300074, China
| | - Suqin Han
- Tianjin Environmental Meteorological Center, Tianjin, 300074, China.
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300074, China.
- Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, 300074, China.
| | - Qing Yao
- Tianjin Environmental Meteorological Center, Tianjin, 300074, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300074, China
- Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, 300074, China
| | - Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin, 300074, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300074, China
- Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, 300074, China
| |
Collapse
|
9
|
Psistaki K, Kouis P, Michanikou A, Yiallouros PK, Papatheodorou SI, Paschalidou AΚ. Temporal trends in temperature-related mortality and evidence for maladaptation to heat and cold in the Eastern Mediterranean region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173899. [PMID: 38862043 DOI: 10.1016/j.scitotenv.2024.173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
The eastern Mediterranean region is characterized by rising temperature trends exceeding the corresponding global averages and is considered a climate change hot-spot. Although previous studies have thoroughly investigated the impact of extreme heat and cold on human mortality and morbidity, both for the current and future climate change scenarios, the temporal trends in temperature-related mortality or the potential historical adaptation to heat and cold extremes has never been studied in this region. This study focuses on cardiovascular mortality and assesses the temporal evolution of the Minimum Mortality Temperature (MMT), as well as the disease-specific cold- and heat-attributable fraction of mortality in three typical eastern Mediterranean environments (Athens, Thessaloniki and Cyprus). Data on daily cardiovascular mortality (ICD-10 code: I00-I99) and meteorological parameters were available between 1999 and 2019 for Athens, 1999 to 2018 for Thessaloniki and 2004 to 2019 for Cyprus. Estimation of cardiovascular MMT and mortality fractions relied on time-series Poisson regressions with distributed lag nonlinear models (DLNM) controlling for seasonal and long-term trends, performed over a series of rolling sub-periods at each site. The results indicated that in Athens, the MMT decreased from 23 °C (67.5th percentile) in 1999-2007 to 21.8 °C (62nd percentile) in 2011-2019, while in Cyprus the MMT decreased from 26.3 °C (79th percentile) in 2004-2012 to 23.9 °C (66.5th percentile) in 2011-2019. In Thessaloniki, the decrease in MMT was rather negligible. In all regions under study, the fractions of mortality attributed to both cold and heat followed an upward trend throughout the years. In conclusion, the demonstrated increase in cold attributable fraction and the decreasing temporal trend of MMT across the examined sites are suggestive of maladaptation to extreme temperatures in regions with warm climate and highlight the need for relevant public health policies and interventions.
Collapse
Affiliation(s)
- Kyriaki Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| | | | | | | | - Stefania I Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Brunswick, NJ, USA.
| | - Anastasia Κ Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| |
Collapse
|
10
|
Wu WT, Kono M, Lee CP, Chang YY, Yang YH, Lin CC, Liu TM, Li HC, Chen YM, Chen PC. Climate Change Projections for Stroke Incidence in Taiwan: Impact of 2 °C and 4 °C Global Warming Level. J Epidemiol Glob Health 2024; 14:1319-1331. [PMID: 39222225 PMCID: PMC11442790 DOI: 10.1007/s44197-024-00289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES This study aimed to establish the exposure-lag-response effect between daily maximum temperature and stroke-related emergency department visits and to project heat-induced stroke impacts under global warming levels (GWL) of 2 °C and 4 °C. METHODS Stroke-related emergency department visits in Taiwan from 2001 to 2020 were identified using the National Health Insurance Research Database (NHIRD). The study population consisted of 1,100,074 initial stroke cases matched with 2,200,148 non-stroke controls. We employed Distributed Lag Nonlinear Models (DLNM) in a case-crossover study to investigate the association between temperature and stroke. Generalized Estimating Equations (GEE) models with a Poisson function were used to correlate high-temperature exposure with annual stroke incidence rates. Projections were made under two global warming scenarios, GWL 2.0 °C and 4.0 °C, using Coupled General Circulation Model (GCMs). Baseline data from 1995 to 2014 were transformed for spatial distribution at the township level. Geographic Information System (GIS) spatial analysis was performed using Quantum GIS 3.2.0 software. RESULTS DLNM exposure-lag-response effect revealed that daily maximum temperature exceeding 34 °C significantly increased the risk of stroke-related emergency department visits, particularly for ischemic stroke. Under the 2 °C GWL scenario, the frequency of days with temperatures surpassing 34 °C is projected to rise substantially by the median year of 2042, with a further increase to 92.6 ± 18.0 days/year by 2065 under the 4 °C GWL scenario. Ischemic stroke showed the highest increase in temperature-related incidence rates, notably rising from 7.80% under the GWL 2 °C to 36.06% under the GWL 4 °C. Specifically, the annual temperature-related incidence rate for ischemic stroke is expected to increase significantly by 2065. Regions such as Taichung, Hsinchu, Yilan, and Taitung demonstrated pronounced changes in heat-related ischemic stroke incidence under the GWL 4 °C. CONCLUSIONS The findings emphasize the importance of addressing temperature-related stroke risks, particularly in regions projected to experience significant temperature increases. Effective mitigation strategies are crucial to reduce the impact of rising temperatures on stroke incidence and safeguard public health.
Collapse
Affiliation(s)
- Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC.
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| | - Miku Kono
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Yin Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Tzu-Ming Liu
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Hsin-Chi Li
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Yung-Ming Chen
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Chen J, Hart JE, Fisher NDL, Yanosky JD, Roscoe C, James P, Laden F. Multiple Environmental Exposures and the Development of Hypertension in a Prospective US-Based Cohort of Female Nurses: A Mixture Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083359 DOI: 10.1021/acs.est.4c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We investigated the independent and joint associations between multiple environmental exposures and incident hypertension in a US nationwide prospective cohort of women: the Nurses' Health Study II. We followed 107,532 nonhypertensive participants from 1989 to diagnosis of hypertension, loss to follow-up, death, or end of follow-up in June 2019. We applied Cox proportional hazards models to assess associations of incident hypertension with time-varying residential exposure to air pollution, noise, surrounding greenness, temperature, and neighborhood socioeconomic status (nSES), adjusting for potential confounders and coexposures. We evaluated the joint association of simultaneous exposure using quantile g-computation. We observed 38,175 hypertension cases over 2,062,109 person-years. Increased hypertension incidence was consistently associated with lower nSES and higher levels of fine particles (PM2.5) and nighttime noise exposures: hazard ratio (HRs) and 95% confidence intervals (CIs) of 1.06 (1.04, 1.08), 1.04 (1.01, 1.07), and 1.01 (1.00, 1.03), respectively, per interquartile range change. Joint HR for a one-quartile change in simultaneous exposure to the mixture was 1.05 (95% CI: 1.02, 1.09), assuming additivity, or 1.13 (95% CI: 1.06, 1.20), considering potential interactions within the mixture. Hypertension prevention should focus on enhancing nSES and reducing PM2.5 and noise levels, recognizing that reducing the overall exposures may yield additional benefits.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jaime E Hart
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Naomi D L Fisher
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Population Sciences, Dana Faber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Peter James
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts 02215, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Wang L, Di J, Wang Q, Zhang H, Zhao W, Shi X, Di Q, Ji JS, Liang W, Huang C. Heat exposure induced risks of preterm birth mediated by maternal hypertension. Nat Med 2024; 30:1974-1981. [PMID: 38750350 DOI: 10.1038/s41591-024-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 07/21/2024]
Abstract
Heat exposure is associated with an increased risk of preterm birth (PTB), with previous work suggesting that maternal blood pressure may play a role in these associations. Here we conducted a cohort study of 197,080 singleton live births across 8 provinces in China from 2015 to 2018. The study first estimated the associations between heat exposure, maternal hypertension and clinical subtypes of PTB, and then quantified the role of maternal hypertension in heat and PTB using mediation analyses. We show that heat exposure (>85th, 90th and 95th percentiles of local temperature distributions) spanning from conception to the 20th gestational week was associated with a 15-21% increase in PTB, and a 20-22% increase in medically indicated PTB. Heat exposure is likely to increase the risk of maternal hypertension and elevated blood pressure. Maternal hypertension mediated 15.7% and 33.9% of the effects of heat exposure (>90th percentile) on PTB and medically indicated PTB, respectively. Based on this large-population study, we found that exposure to heat in early pregnancy can increase the risk of maternal hypertension, thereby affecting the incidence of PTB.
Collapse
Affiliation(s)
- Liyun Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Jiangli Di
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Zhao
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute of Healthy China, Tsinghua University, Beijing, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China.
- Institute of Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Mazumder H, Mondol MH, Rahman M, Khan R, Doza S, Unicomb L, Jahan F, Mukhopadhyay A, Makris KC, Caban-Martinez A, Iqbal R, Ahmed F, Creencia L, Shamsudduha M, Mzayek F, Jia C, Zhang H, Musah A, Fleming LE, Mou X, Kovesdy CP, Gribble MO, Naser AM. Sex-Specific Association of Ambient Temperature With Urine Biomarkers in Southwest Coastal Bangladesh. Kidney Int Rep 2024; 9:1860-1875. [PMID: 38899224 PMCID: PMC11184407 DOI: 10.1016/j.ekir.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Men are vulnerable to ambient heat-related kidney disease burden; however, limited evidence exists on how vulnerable women are when exposed to high ambient heat. We evaluated the sex-specific association between ambient temperature and urine electrolytes, and 24-hour urine total protein, and volume. Methods We pooled a longitudinal 5624 person-visits data of 1175 participants' concentration and 24-hour excretion of urine electrolytes and other biomarkers (24-hour urine total protein and volume) from southwest coastal Bangladesh (Khulna, Satkhira, and Mongla districts) during November 2016 to April 2017. We then spatiotemporally linked ambient temperature data from local weather stations to participants' health outcomes. For evaluating the relationships between average ambient temperature and urine electrolytes and other biomarkers, we plotted confounder-adjusted restricted cubic spline (RCS) plots using participant-level, household-level, and community-level random intercepts. We then used piece-wise linear mixed-effects models for different ambient temperature segments determined by inflection points in RCS plots and reported the maximum likelihood estimates and cluster robust standard errors. By applying interaction terms for sex and ambient temperature, we determined the overall significance using the Wald test. Bonferroni correction was used for multiple comparisons. Results The RCS plots demonstrated nonlinear associations between ambient heat and urine biomarkers for males and females. Piecewise linear mixed-effects models suggested that sex did not modify the relationship of ambient temperature with any of the urine parameters after Bonferroni correction (P < 0.004). Conclusion Our findings suggest that women are as susceptible to the effects of high ambient temperature exposure as men.
Collapse
Affiliation(s)
- Hoimonty Mazumder
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Momenul Haque Mondol
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Statistics, University of Barishal, Barishal-8254, Bangladesh
| | - Mahbubur Rahman
- International Centre for Diarrheal Disease Research, Bangladesh, Bangladesh
| | - Rizwana Khan
- International Centre for Diarrheal Disease Research, Bangladesh, Bangladesh
| | - Solaiman Doza
- Environmental and Occupational Health, School of Biological and Population Health Sciences, Oregon State University, Oregon, USA
| | - Leanne Unicomb
- International Centre for Diarrheal Disease Research, Bangladesh, Bangladesh
| | - Farjana Jahan
- International Centre for Diarrheal Disease Research, Bangladesh, Bangladesh
| | - Ayesha Mukhopadhyay
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Alberto Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Romaina Iqbal
- Department of Community Health Sciences, Aga Khan University, Pakistan
| | - Faruk Ahmed
- Department of Engineering Technology, The University of Memphis, Memphis, Tennessee, USA
| | - Lota Creencia
- College of Fisheries and Aquatic Sciences, Western Philippines University, Palawan, Philippines
| | - Mohammad Shamsudduha
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Chunrong Jia
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Anwar Musah
- Department of Geography, University College London, London, UK
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Xichen Mou
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| | - Csaba P. Kovesdy
- Division of Nephrology, University of Tennessee Health Science Centre, Memphis, Tenessee; USA
| | - Matthew O. Gribble
- Department of Medicine, Division of Occupational, Environmental, and Climate Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Abu Mohd Naser
- Division of Epidemiology, Biostatistics, and Environmental Health; School of Public Health, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Huang Q, Li J, Li J. Physiological and perceptual responses to temperature step changes between cold and hot environments. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:587-598. [PMID: 38509715 DOI: 10.1080/10803548.2024.2326351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Objectives. This study explores the effects of temperature steps on thermal responses to understand abrupt temperature shifts faced by heat-exposed workers during winter. Methods. Three temperature step changes with three phases (S20: 20-40-20 °C, S30: 10-40-10 °C, S40: 0-40-0 °C) were conducted. Phase 1 took 30 min, phase 2 took 60 min and phase 3 took 40 min. Eleven participants remained sedentary throughout the experiment, and physiological responses, thermal perception and self-reported health symptoms were recorded. Results. In temperature up steps, steady skin temperature and sweating onset were delayed, and heart rate dropped by 10 bpm from S20 to S40. In temperature down steps to cold conditions, individuals transitioned from thermal comfort to discomfort and eventually cold strain. Blood pressure increased in temperature down steps, correlating with temperature step magnitudes. Thermal responses to temperature steps of equal magnitude but opposite directions were asymmetries, which weakened as step magnitude increased. Thermal perceptions responded faster than physiological changes after temperature steps, while self-reported health symptoms lagged behind physiological responses. Conclusions. These findings contribute to expanding basic data to understand the effects of temperature step magnitude and direction.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Fashion and Design, Donghua University, China
| | - Jian Li
- College of Fashion and Design, Donghua University, China
| | - Jun Li
- College of Fashion and Design, Donghua University, China
- Key Laboratory of Clothing Design and Technology (Donghua University), Ministry of Education, China
| |
Collapse
|
15
|
Blaustein JR, Quisel MJ, Hamburg NM, Wittkopp S. Environmental Impacts on Cardiovascular Health and Biology: An Overview. Circ Res 2024; 134:1048-1060. [PMID: 38662864 PMCID: PMC11058466 DOI: 10.1161/circresaha.123.323613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Environmental stressors associated with human activities (eg, air and noise pollution, light disturbance at night) and climate change (eg, heat, wildfires, extreme weather events) are increasingly recognized as contributing to cardiovascular morbidity and mortality. These harmful exposures have been shown to elicit changes in stress responses, circadian rhythms, immune cell activation, and oxidative stress, as well as traditional cardiovascular risk factors (eg, hypertension, diabetes, obesity) that promote cardiovascular diseases. In this overview, we summarize evidence from human and animal studies of the impacts of environmental exposures and climate change on cardiovascular health. In addition, we discuss strategies to reduce the impact of environmental risk factors on current and future cardiovascular disease burden, including urban planning, personal monitoring, and mitigation measures.
Collapse
Affiliation(s)
- Jacob R. Blaustein
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| | - Matthew J. Quisel
- Department of Medicine, Boston University Chobanian and Avedision School of Medicine
| | - Naomi M. Hamburg
- Section of Vascular Biology, Whitaker Cardiovascular Institute, Chobanian and Avedisian School of Medicine, Boston University, Boston, USA
| | - Sharine Wittkopp
- New York University Grossman School of Medicine, Department of Medicine, Leon H. Charney Division of Cardiology, New York, USA
| |
Collapse
|
16
|
Barbosa ECD, Feitosa ADM, Sentalin MVR, Mota-Gomes MA, Barroso WS, Miranda RD, Brandão AA, Farina G, Lima-Filho JL, Albuquerque J, Nascimento MLS, Paula ICBG, Barros BC, Freitas MCV, Silva HP, Sposito AC, Camafort M, Coca A, Nadruz W. Impact of environmental temperature on blood pressure phenotypes: a nationwide home blood pressure monitoring study. Eur J Prev Cardiol 2024; 31:e35-e37. [PMID: 38091969 DOI: 10.1093/eurjpc/zwad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Eduardo C D Barbosa
- Department of Hypertension and Cardiometabolism, São Francisco Hospital, Santa Casa de Porto Alegre, FEEVALE University, Porto Alegre, Brazil
| | - Audes D M Feitosa
- Pronto Socorro Cardiológico de Pernambuco (PROCAPE), University of Pernambuco, Recife, PE, Brazil
| | - Monizze V R Sentalin
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, SP, Brazil
| | | | - Weimar S Barroso
- Hypertension League, Cardiovascular Section, Federal University of Goiás, Goiânia, GO, Brazil
| | - Roberto D Miranda
- Cardiovascular Section, Geriatrics Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andréa A Brandão
- School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giovani Farina
- Department of Hypertension and Cardiometabolism, São Francisco Hospital, Santa Casa de Porto Alegre, FEEVALE University, Porto Alegre, Brazil
| | - José L Lima-Filho
- Keizo Asami Institute, Federal University of Pernambuco, Av. Prof. Morais Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Jones Albuquerque
- Keizo Asami Institute, Federal University of Pernambuco, Av. Prof. Morais Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| | - Maria L S Nascimento
- Institute for Risk and Disaster Reduction, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Isabel C B G Paula
- Institute for Risk and Disaster Reduction, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Beatriz C Barros
- Institute for Risk and Disaster Reduction, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Maria C V Freitas
- Institute for Risk and Disaster Reduction, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Hernande P Silva
- Institute for Risk and Disaster Reduction, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Andrei C Sposito
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, SP, Brazil
| | - Miguel Camafort
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centro de investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid Spain
| | - Wilson Nadruz
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, SP, Brazil
- Keizo Asami Institute, Federal University of Pernambuco, Av. Prof. Morais Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| |
Collapse
|
17
|
Xu Y, Han Y, Chen W, Chatzidiakou L, Yan L, Krause A, Li Y, Zhang H, Wang T, Xue T, Chan Q, Barratt B, Jones RL, Liu J, Wu Y, Zhao M, Zhang J, Kelly FJ, Zhu T. Susceptibility of hypertensive individuals to acute blood pressure increases in response to personal-level environmental temperature decrease. ENVIRONMENT INTERNATIONAL 2024; 185:108567. [PMID: 38460242 DOI: 10.1016/j.envint.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Environmental temperature is negatively associated with blood pressure (BP), and hypertension may exacerbate this association. The aim of this study is to investigate whether hypertensive individuals are more susceptible to acute BP increases following temperature decrease than non-hypertensive individuals. METHODS The study panel consisted of 126 hypertensive and 125 non-hypertensive (n = 251) elderly participants who completed 940 clinical visits during the winter of 2016 and summer of 2017 in Beijing, China. Personal-level environmental temperature (PET) was continuously monitored for each participant with a portable sensor platform. We associated systolic BP (SBP) and diastolic BP (DBP) with the average PET over 24 h before clinical visits using linear mixed-effects models and explored hourly lag patterns for the associations using distributed lag models. RESULTS We found that per 1 °C decrease in PET, hypertensive individuals showed an average (95 % confidence interval) increase of 0.96 (0.72, 1.19) and 0.28 (0.13, 0.42) mmHg for SBP and DBP, respectively; and non-hypertensive participants showed significantly smaller increases of 0.28 (0.03, 0.53) mmHg SBP and 0.14 (-0.01, 0.30) mmHg DBP. A lag pattern analysis showed that for hypertensive individuals, the increases in SBP and DBP were greatest following lag 1 h PET decrease and gradually attenuated up to lag 10 h exposure. No significant BP change was observed in non-hypertensive individuals associated with lag 1-24 h PET exposure. The enhanced increase in PET-associated BP in hypertensive participants (i.e., susceptibility) was more significant in winter than in summer. CONCLUSIONS We found that a decrease in environmental temperature was associated with acute BP increases and these associations diminished over time, disappearing after approximately 10 hours. This implies that any intervention measures to prevent BP increases due to temperature drop should be implemented as soon as possible. Such timely interventions are particularly needed for hypertensive individuals especially during the cold season due to their increased susceptibility.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Li Yan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Anika Krause
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Yilin Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Queenie Chan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Jing Liu
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Beijing, China
| | - Meiping Zhao
- College of Chemistry, Peking University, Beijing, China
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
18
|
Umishio W. Importance of measuring indoor temperature to understand blood pressure levels and variability at home. Hypertens Res 2024; 47:826-828. [PMID: 38216733 DOI: 10.1038/s41440-023-01576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Affiliation(s)
- Wataru Umishio
- Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
19
|
Gonçalves Soares A, Santos S, Seyve E, Nedelec R, Puhakka S, Eloranta AM, Mikkonen S, Yuan WL, Lawlor DA, Heron J, Vrijheid M, Lepeule J, Nieuwenhuijsen M, Fossati S, Jaddoe VW, Lakka T, Sebert S, Heude B, Felix JF, Elhakeem A, Timpson NJ. Prenatal Urban Environment and Blood Pressure Trajectories From Childhood to Early Adulthood. JACC. ADVANCES 2024; 3:100808. [PMID: 38939392 PMCID: PMC11198279 DOI: 10.1016/j.jacadv.2023.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
Background Prenatal urban environmental exposures have been associated with blood pressure in children. The dynamic of these associations across childhood and later ages is unknown. Objectives The purpose of this study was to assess associations of prenatal urban environmental exposures with blood pressure trajectories from childhood to early adulthood. Methods Repeated measures of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were collected in up to 7,454 participants from a UK birth cohort. Prenatal urban exposures (n = 43) covered measures of noise, air pollution, built environment, natural spaces, traffic, meteorology, and food environment. An exposome-wide association study approach was used. Linear spline mixed-effects models were used to model associations of each exposure with trajectories of blood pressure. Replication was sought in 4 independent European cohorts (up to 9,261). Results In discovery analyses, higher humidity was associated with a faster increase (mean yearly change in SBP for an interquartile range increase in humidity: 0.29 mm Hg/y, 95% CI: 0.20-0.39) and higher temperature with a slower increase (mean yearly change in SBP per interquartile range increase in temperature: -0.17 mm Hg/y, 95% CI: -0.28 to -0.07) in SBP in childhood. Higher levels of humidity and air pollution were associated with faster increase in DBP in childhood and slower increase in adolescence. There was little evidence of an association of other exposures with change in SBP or DBP. Results for humidity and temperature, but not for air pollution, were replicated in other cohorts. Conclusions Replicated findings suggest that higher prenatal humidity and temperature could modulate blood pressure changes across childhood.
Collapse
Affiliation(s)
- Ana Gonçalves Soares
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Susana Santos
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Emie Seyve
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Rozenn Nedelec
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Soile Puhakka
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute, Oulu, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Johanna Lepeule
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sylvain Sebert
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Janine F. Felix
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
De Vita A, Belmusto A, Di Perna F, Tremamunno S, De Matteis G, Franceschi F, Covino M. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases. J Clin Med 2024; 13:759. [PMID: 38337453 PMCID: PMC10856578 DOI: 10.3390/jcm13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is widely recognized as one of the most significant challenges facing our planet and human civilization. Human activities such as the burning of fossil fuels, deforestation, and industrial processes release greenhouse gases into the atmosphere, leading to a warming of the Earth's climate. The relationship between climate change and cardiovascular (CV) health, mediated by air pollution and increased ambient temperatures, is complex and very heterogeneous. The main mechanisms underlying the pathogenesis of CV disease at extreme temperatures involve several regulatory pathways, including temperature-sympathetic reactivity, the cold-activated renin-angiotensin system, dehydration, extreme temperature-induced electrolyte imbalances, and heat stroke-induced systemic inflammatory responses. The interplay of these mechanisms may vary based on individual factors, environmental conditions, and an overall health background. The net outcome is a significant increase in CV mortality and a higher incidence of hypertension, type II diabetes mellitus, acute myocardial infarction (AMI), heart failure, and cardiac arrhythmias. Patients with pre-existing CV disorders may be more vulnerable to the effects of global warming and extreme temperatures. There is an urgent need for a comprehensive intervention that spans from the individual level to a systemic or global approach to effectively address this existential problem. Future programs aimed at reducing CV and environmental burdens should require cross-disciplinary collaboration involving physicians, researchers, public health workers, political scientists, legislators, and national leaders to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Antonio De Vita
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Antonietta Belmusto
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Federico Di Perna
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Giuseppe De Matteis
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Francesco Franceschi
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Marcello Covino
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| |
Collapse
|
21
|
Seto H, Toki H, Kitora S, Oyama A, Yamamoto R. Seasonal variations of the prevalence of metabolic syndrome and its markers using big-data of health check-ups. Environ Health Prev Med 2024; 29:2. [PMID: 38246652 PMCID: PMC10808004 DOI: 10.1265/ehpm.23-00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND It is crucial to understand the seasonal variation of Metabolic Syndrome (MetS) for the detection and management of MetS. Previous studies have demonstrated the seasonal variations in MetS prevalence and its markers, but their methods are not robust. To clarify the concrete seasonal variations in the MetS prevalence and its markers, we utilized a powerful method called Seasonal Trend Decomposition Procedure based on LOESS (STL) and a big dataset of health checkups. METHODS A total of 1,819,214 records of health checkups (759,839 records for men and 1,059,375 records for women) between April 2012 and December 2017 were included in this study. We examined the seasonal variations in the MetS prevalence and its markers using 5 years and 9 months health checkup data and STL analysis. MetS markers consisted of waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG). RESULTS We found that the MetS prevalence was high in winter and somewhat high in August. Among men, MetS prevalence was 2.64 ± 0.42 (mean ± SD) % higher in the highest month (January) than in the lowest month (June). Among women, MetS prevalence was 0.53 ± 0.24% higher in the highest month (January) than in the lowest month (June). Additionally, SBP, DBP, and HDL-C exhibited simple variations, being higher in winter and lower in summer, while WC, TG, and FPG displayed more complex variations. CONCLUSIONS This finding, complex seasonal variations of MetS prevalence, WC, TG, and FPG, could not be derived from previous studies using just the mean values in spring, summer, autumn and winter or the cosinor analysis. More attention should be paid to factors affecting seasonal variations of central obesity, dyslipidemia and insulin resistance.
Collapse
Affiliation(s)
- Hiroe Seto
- Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Hiroshi Toki
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
- Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
| | - Shuji Kitora
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Asuka Oyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Ryohei Yamamoto
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
- Laboratory of Behavioral Health Promotion, Department of Health Promotion, Graduate School of Medicine, Osaka University, Osaka 565-0043, Japan
| |
Collapse
|
22
|
Cheng BJ, Li H, Meng K, Li TL, Meng XC, Wang J, Wang C, Jiang N, Sun MJ, Yang LS, Zhu XY, Liu R. Short-term effects of heatwaves on clinical and subclinical cardiovascular indicators in Chinese adults: A distributed lag analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108358. [PMID: 38056095 DOI: 10.1016/j.envint.2023.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
AIMS Previous studies have related heat waves to morbidity and mortality of cardiovascular diseases; however, potential mechanisms remained limited. Our aims were to investigate the short-term effects of heat waves on a series of clinical/subclinical indicators associated with cardiovascular health. METHODS Our study used 80,574 health examination records from the Health Management Center of Nanjing Zhongda Hospital during the warm seasons of 2019-2021, including 62,128 participants. A total of 11 recognized indicators of cardiovascular risk or injury were assessed. Air pollution and meteorological data were obtained from the Nanjing Ecological Environment Bureau and the China Meteorological Data Network, respectively. Heat waves were defined as a daily average temperature over the 95th percentile for three or more consecutive days from May to September. We used a combination of linear mixed effects models and distributed lag nonlinear models to assess the lagged effects of heat waves on clinical and subclinical cardiovascular indicators. Stratified analyses based on individuals' characteristics, including gender, age, body mass index (BMI), diabetes, and hypertension, were also performed. RESULTS Heat waves were related to significant changes in most indicators, with the magnitude of effects generally peaking at a lag of 0 to 3 days. Moreover, the cumulative percentage changes over lag 0-7 days were -0.82 % to -2.55 % in blood pressure, 1.32 % in heart rate, 0.20 % to 2.66 % in systemic inflammation markers, 0.36 % in a blood viscosity parameter, 9.36 % in homocysteine, and 1.35 % to 3.25 % in injuring myocardial enzymes. Interestingly, females and males showed distinct susceptibilities in different indicators. Stronger effects were also found in participants aged 50 years or over, individuals with abnormal BMI status, and patients with diabetes. CONCLUSION Short-term exposure to heat waves could significantly alter clinical/subclinical cardiovascular indicator profiles, including blood pressure changes, increased heart rate, acute systemic inflammation, elevated blood viscosity, and myocardial injury.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ke Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Tian-Lin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xing-Chen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Chun Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ming-Jun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xin-Yi Zhu
- The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
23
|
Mohammed H, Chen HB, Li Y, Sabor N, Wang JG, Wang G. Meta-Analysis of Pulse Transition Features in Non-Invasive Blood Pressure Estimation Systems: Bridging Physiology and Engineering Perspectives. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1257-1281. [PMID: 38015673 DOI: 10.1109/tbcas.2023.3334960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The pulse transition features (PTFs), including pulse arrival time (PAT) and pulse transition time (PTT), hold significant importance in estimating non-invasive blood pressure (NIBP). However, the literature showcases considerable variations in terms of PTFs' correlation with blood pressure (BP), accuracy in NIBP estimation, and the comprehension of the relationship between PTFs and BP. This inconsistency is exemplified by the wide-ranging correlations reported across studies investigating the same feature. Furthermore, investigations comparing PAT and PTT have yielded conflicting outcomes. Additionally, PTFs have been derived from various bio-signals, capturing distinct characteristic points like the pulse's foot and peak. To address these inconsistencies, this study meticulously reviews a selection of such research endeavors while aligning them with the biological intricacies of blood pressure and the human cardiovascular system (CVS). Each study underwent evaluation, considering the specific signal acquisition locale and the corresponding recording procedure. Moreover, a comprehensive meta-analysis was conducted, yielding multiple conclusions that could significantly enhance the design and accuracy of NIBP systems. Grounded in these dual aspects, the study systematically examines PTFs in correlation with the specific study conditions and the underlying factors influencing the CVS. This approach serves as a valuable resource for researchers aiming to optimize the design of BP recording experiments, bio-signal acquisition systems, and the fine-tuning of feature engineering methodologies, ultimately advancing PTF-based NIBP estimation.
Collapse
|
24
|
Janssen H, Ford K, Gascoyne B, Hill R, Roberts M, Bellis MA, Azam S. Cold indoor temperatures and their association with health and well-being: a systematic literature review. Public Health 2023; 224:185-194. [PMID: 37820536 DOI: 10.1016/j.puhe.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE The study aimed to identify, appraise and update evidence on the association between cold temperatures (i.e. <18°C) within homes (i.e. dwellings) and health and well-being outcomes. STUDY DESIGN This study was a systematic review. METHODS Seven databases (MEDLINE, Embase, Cochrane Database of Systematic Reviews, CINAHL, APA PsycInfo, Applied Social Sciences Index and Abstracts, Coronavirus Research Database) were searched for studies published between 2014 and 2022, which explored the association between cold indoor temperatures and health and well-being outcomes. Studies were limited to those conducted in temperate and colder climates due to the increased risk of morbidity and mortality during winter in those climatic zones. Studies were independently quality assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. RESULTS Of 1209 studies, 20 were included for review. Study outcomes included cardiovascular (blood pressure, electrocardiogram abnormalities, blood platelet count), respiratory (chronic obstructive pulmonary disease symptoms, respiratory viral infection), sleep, physical performance and general health. Seventeen studies found exposure to cold indoor temperatures was associated with negative effects on health outcomes studied. Older individuals and those with chronic health problems were found to be more vulnerable to negative health outcomes. CONCLUSION Evidence suggests that indoor temperatures <18°C are associated with negative health effects. However, the evidence is insufficient to allow clear conclusions regarding outcomes from specific temperature thresholds for different population groups. Significant gaps in the current evidence base are identified, including research on the impacts of cold indoor temperatures on mental health and well-being, studies involving young children, and the long-term health effects of cold indoor temperatures.
Collapse
Affiliation(s)
- H Janssen
- World Health Organization Collaborating Centre on Investment for Health and Well-being, Public Health Wales, Wrexham, LL13 7YP, UK.
| | - K Ford
- College of Human Sciences, Bangor University, Wrexham, LL13 7YP, UK
| | - B Gascoyne
- London Metropolitan University, London, N7 8DB, UK
| | - R Hill
- World Health Organization Collaborating Centre on Investment for Health and Well-being, Public Health Wales, Cardiff, CF10 4BZ, UK
| | - M Roberts
- World Health Organization Collaborating Centre on Investment for Health and Well-being, Public Health Wales, Cardiff, CF10 4BZ, UK
| | - M A Bellis
- World Health Organization Collaborating Centre on Investment for Health and Well-being, Public Health Wales, Wrexham, LL13 7YP, UK; Faculty of Health, Liverpool John Moores University, L2 2ER, UK
| | - S Azam
- World Health Organization Collaborating Centre on Investment for Health and Well-being, Public Health Wales, Cardiff, CF10 4BZ, UK
| |
Collapse
|
25
|
Zhao B, Zhu Z, Qi W, Liu Q, Zhang Q, Jiang L, Wang C, Weng X. Construction and validation of a risk prediction model for intraoperative hypothermia in elderly patients undergoing total hip arthroplasty. Aging Clin Exp Res 2023; 35:2127-2136. [PMID: 37490260 PMCID: PMC10520156 DOI: 10.1007/s40520-023-02500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
AIMS To construct and validate an intraoperative hypothermia risk prediction model for elderly patients undergoing total hip arthroplasty (THA). METHODS We collected data from 718 patients undergoing THA in a tertiary hospital from January 2021 to December 2022. Of these patients, 512 were assigned to the modeling group from January 2021 to April 2022, and 206 participants were assigned to the validation group from May 2022 to December 2022. A logistic regression analysis was performed to construct the model. The area under the curve (AUC) was used to test the model's predictive ability. RESULTS The incidence rate of intraoperative hypothermia was 51.67%. The risk factors entered into the risk prediction model were age, preoperative hemoglobin level, intraoperative blood loss, postoperative hemoglobin level, and postoperative systolic blood pressure. The model was constructed as follows: logit (P) = - 10.118 + 0.174 × age + 1.366 × 1 (preoperative hemoglobin level) + 0.555 × 1 (postoperative hemoglobin level) + 0.009 × 1 (intraoperative blood loss) + 0.066 × 1 (postoperative systolic blood pressure). Using the Hosmer-Lemeshow test, the P value was 0.676 (AUC, 0.867). The Youden index, sensitivity, and specificity were 0.602, 0.790, and 0.812, respectively. The incidence rates of intraoperative hypothermia in the modeling and validation groups were 53.15% and 48.06%, respectively. The correct practical application rate was 89.81%. This model had good application potential. CONCLUSIONS This risk prediction model has good predictive value and can accurately predict the occurrence of intraoperative hypothermia in patients who undergo THA, which provides reliable guidance for clinical work and has good clinical application value.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Anesthesiology and SICU, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China
| | - Zhe Zhu
- Department of Anesthesiology and SICU, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China
| | - Wenwen Qi
- Department of Psychogeriatric, School of Medicine, Shanghai Mental Health Center, Shanghai Jiao Tong University, South Wanping Road 600, Shanghai, 200030, China
| | - Qiuli Liu
- Department of Anesthesiology and SICU, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China
| | - Qi Zhang
- Department of Emergency, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China
| | - Liping Jiang
- Department of Nursing, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China.
| | - Chenglong Wang
- Department of Orthopaedic Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China.
| | - Xiaojian Weng
- Department of Anesthesiology and SICU, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Kongjiang Road 1665, Shanghai, 200092, China.
| |
Collapse
|
26
|
Baig E, Tannous J, Potter T, Pan A, Prince T, Britz G, Vahidy FS, Bako AT. Seasonal variation in the incidence of primary intracerebral hemorrhage: a 16-year nationwide analysis. Front Neurol 2023; 14:1179317. [PMID: 37456639 PMCID: PMC10338911 DOI: 10.3389/fneur.2023.1179317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Data on nationwide trends and seasonal variations in the incidence of Intracerebral Hemorrhage (ICH) in the United States (US) are lacking. Methods We used the Nationwide Inpatient Sample (2004-2019) and Census Bureau data to calculate the quarterly (Q1:January-March; Q2:April-June; Q3:July-September; Q4:October-December) incidence rates (IR) of adult (≥18 years) ICH hospitalizations, aggregated across Q1-Q4 and Q2-Q3. We report adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI) for differences in the quarterly incidence of ICH, as compared to acute ischemic stroke (AIS), between Q1Q4 and Q2Q3 using a multivariable Poisson regression model. We additionally performed stratified analyses across the four US regions. Results Among 822,143 (49.0% female) ICH and 6,266,234 (51.9% female) AIS hospitalizations, the average quarterly crude IR of ICH was consistently higher in Q1Q4 compared to Q2Q3 (5.6 vs. 5.2 per 100,000) (aIRR, CI: 1.09, 1.08-1.11)-this pattern was similar across all four US regions. However, a similar variation pattern was not observed for AIS incidence. The incidence (aIRR, CI) of both ICH (1.01, 1.00-1.02) and AIS (1.03, 1.02-1.03) is rising. Conclusion Unlike AIS, ICH incidence is consistently higher in colder quarters, underscoring the need for evaluation and prevention of factors driving seasonal variations in ICH incidence.
Collapse
Affiliation(s)
- Eman Baig
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Jonika Tannous
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Thomas Potter
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Alan Pan
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX, United States
| | - Taya Prince
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| | - Farhaan S. Vahidy
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
- Center for Health Data Science and Analytics, Houston Methodist, Houston, TX, United States
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States
| | - Abdulaziz T. Bako
- Department of Neurosurgery, Houston Methodist, Houston, TX, United States
| |
Collapse
|
27
|
Sun Y, Zhang M, Chen S, Zhang W, Zhang Y, Su S, Zhang E, Sun L, Yang K, Wang J, Yue W, Wu Q, Liu R, Yin C. Potential impact of ambient temperature on maternal blood pressure and hypertensive disorders of pregnancy: A nationwide multicenter study based on the China birth cohort. ENVIRONMENTAL RESEARCH 2023; 227:115733. [PMID: 36965789 DOI: 10.1016/j.envres.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Limited evidence exists regarding the association between ambient temperature and blood pressure (BP) level of pregnant women. To investigate the associations of ambient temperature with maternal BP and hypertensive disorders of pregnancy (HDP), we studied 105,063 participants in 38 centers of 17 provinces from November 2017 to December 2021. BP was measured with standardized automated digital sphygmomanometers. Ambient temperature was classified into five classes as very hot, moderate hot, mild, moderate cold, and very cold. Generalized linear mixed models were used to investigate the ambient temperature-BP/HDP associations, controlling for multiple covariates. No significant associations of first-trimester ambient temperature with maternal BP and HDP prevalence were observed. Compared with mild temperature, second-trimester very cold and second-trimester moderate cold were statistically associated with the increase of 1.239 mmHg (95% CI: 0.908, 1.569) and 0.428 mmHg (95% CI: 0.099, 0.757) for second-trimester systolic blood pressure (SBP), respectively. Similar trends were also observed in the association between second-trimester cold exposure and second-trimester diastolic blood pressure (DBP), in the association between second-trimester cold exposure and third-trimester SBP/DBP as well as in the association between third-trimester cold exposure and third-trimester SBP/DBP although some estimates were not statistically significant. Furthermore, in the second and third trimester, very cold [second trimester: adjusted odds ratio (aOR) = 1.298; third trimester: aOR = 1.236) and moderate cold (second trimester: aOR = 1.208; third trimester: aOR = 1.146) exposures also increased the odds of HDP, and these associations were stronger among participants aged ≥35 years or from North China. The second and third trimesters are the critical exposure windows for ambient temperature exposure-BP/HDP associations. During this period, exposure to cold ambient temperature was associated with elevated BP as well as increased HDP prevalence among most Chinese pregnant women, those aged ≥35 years or from North China being more vulnerable.
Collapse
Affiliation(s)
- Yongqing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yue Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Shaofei Su
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Enjie Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Lijuan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jingjing Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chenghong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
28
|
Gu KD, Faulkner KC, Thorndike AN. Housing instability and cardiometabolic health in the United States: a narrative review of the literature. BMC Public Health 2023; 23:931. [PMID: 37221492 PMCID: PMC10203673 DOI: 10.1186/s12889-023-15875-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Housing instability is variably defined but generally encompasses difficulty paying rent, living in poor or overcrowded conditions, moving frequently, or spending the majority of household income on housing costs. While there is strong evidence that people experiencing homelessness (i.e., lack of regular housing) are at increased risk for cardiovascular disease, obesity, and diabetes, less is known about housing instability and health. We synthesized evidence from 42 original research studies conducted in the United States examining the association of housing instability and cardiometabolic health conditions of overweight/obesity, hypertension, diabetes, and cardiovascular disease. The included studies varied widely in their definitions and methods of measuring housing instability, but all exposure variables were related to housing cost burden, frequency of moves, living in poor or overcrowded conditions, or experiencing eviction or foreclosure, measured at either the individual household level or at a population level. We also included studies examining the impact of receipt of government rental assistance, which serves as a marker of housing instability given that its purpose is to provide affordable housing for low-income households. Overall, we found mixed but generally adverse associations between housing instability and cardiometabolic health, including higher prevalence of overweight/obesity, hypertension, diabetes, and cardiovascular disease; worse hypertension and diabetes control; and higher acute health care utilization among those with diabetes and cardiovascular disease. We propose a conceptual framework for pathways linking housing instability and cardiometabolic disease that could be targeted in future research and housing policies or programs.
Collapse
Affiliation(s)
- Kristine D. Gu
- Division of Endocrinology, Massachusetts General Hospital, 50 Staniford Street, Suite 340, Boston, MA 02114 USA
- Harvard Medical School, Boston, MA USA
| | - Katherine C. Faulkner
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Anne N. Thorndike
- Harvard Medical School, Boston, MA USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
29
|
Nilles EK, Champon X, Mulder H, Shaw KM, Smith M, Lampron ZM, Wozniak G, Chamberlain AM, Carton T, Viera AJ, Ahmad FS, Steinberg BA, Chuang CH, Mctigue KM, McClay JC, Polonsky TS, Maeztu C, Sanders M, Warren N, Singh R, Liu M, VanWormer JJ, Park S, Modrow MF, Rakotz M, Cooper-Dehoff RM, Pletcher MJ, O'Brien EC. Seasonal variation in blood pressure control across US health systems. J Hypertens 2023; 41:751-758. [PMID: 36883471 PMCID: PMC10714346 DOI: 10.1097/hjh.0000000000003396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE We aimed to characterize seasonal variation in US population-based blood pressure (BP) control and BP-related metrics and evaluate the association between outdoor temperature and BP control variation. METHODS We queried electronic health records (EHRs) from 26 health systems, representing 21 states, to summarize BP metrics by quarters of 12-month periods from January 2017 to March 2020. Patients with at least one ambulatory visit during the measurement period and a hypertension diagnosis during the first 6 months or prior to the measurement period were included. Changes in BP control, BP improvement, medication intensification, average SBP reduction after medication intensification across quarters and association with outdoor temperature were analyzed using weighted generalized linear models with repeated measures. RESULTS Among 1 818 041 people with hypertension, the majority were more than 65 years of age (52.2%), female (52.1%), white non-Hispanic (69.8%) and had stage 1/2 hypertension (64.8%). Overall, BP control and process metrics were highest in quarters 2 and 3, and lowest in quarters 1 and 4. Quarter 2 had the highest percentage of improved BP (31.95 ± 0.90%) and average SBP reduction after medication intensification (16 ± 0.23 mmHg). Quarter 3 had the highest percentage of BP controlled (62.25 ± 2.55%) and lowest with medication intensification (9.73 ± 0.60%). Results were largely consistent in adjusted models. Average temperature was associated with BP control metrics in unadjusted models, but associations were attenuated following adjustment. CONCLUSION In this large, national, EHR-based study, BP control and BP-related process metrics improved during spring/summer months, but outdoor temperature was not associated with performance following adjustment for potential confounders.
Collapse
Affiliation(s)
- Ester Kim Nilles
- Duke Clinical Research Institute, School of Medicine, Duke University, Durham, North Carolina
| | - XiaoXia Champon
- Duke Clinical Research Institute, School of Medicine, Duke University, Durham, North Carolina
| | - Hillary Mulder
- Duke Clinical Research Institute, School of Medicine, Duke University, Durham, North Carolina
| | - Kathryn M Shaw
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida
| | - Myra Smith
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida
| | - Zachary M Lampron
- Duke Clinical Research Institute, School of Medicine, Duke University, Durham, North Carolina
| | | | - Alanna M Chamberlain
- Department of Quantitative Health Sciences
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Thomas Carton
- Louisiana Public Health Institute, Tulane University, New Orleans, Louisiana
| | - Anthony J Viera
- Department of Family Medicine and Community Health, School of Medicine, Duke University, Durham, North Carolina
| | - Faraz S Ahmad
- Departments of Medicine and Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | - Kathleen M Mctigue
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tamar S Polonsky
- Biological Sciences Division, University of Chicago, Chicago, Illinois
| | - Carlos Maeztu
- Department of Health Outcomes and Policy, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Margaret Sanders
- Louisiana Public Health Institute, Tulane University, New Orleans, Louisiana
| | | | | | - Mei Liu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida
| | - Jeffrey J VanWormer
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, Marshfield, Wisconsin
| | - Soo Park
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | | | | | - Rhonda M Cooper-Dehoff
- Department of Pharmacotherapy and Translational Research, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark J Pletcher
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Emily C O'Brien
- Duke Clinical Research Institute, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
30
|
Fan JF, Xiao YC, Feng YF, Niu LY, Tan X, Sun JC, Leng YQ, Li WY, Wang WZ, Wang YK. A systematic review and meta-analysis of cold exposure and cardiovascular disease outcomes. Front Cardiovasc Med 2023; 10:1084611. [PMID: 37051068 PMCID: PMC10083291 DOI: 10.3389/fcvm.2023.1084611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundCold exposure has been considered an essential risk factor for the global disease burden, while its role in cardiovascular diseases is still underappreciated. The increase in frequency and duration of extreme cold weather events like cold spells makes it an urgent task to evaluate the effects of ambient cold on different types of cardiovascular disease and to understand the factors contributing to the population's vulnerability.MethodsIn the present systematic review and meta-analysis, we searched PubMed, Scopus, and Cochrane. We included original research that explored the association between cold exposure (low temperature and cold spell) and cardiovascular disease outcomes (mortality and morbidity). We did a random-effects meta-analysis to pool the relative risk (RR) of the association between a 1°C decrease in temperature or cold spells and cardiovascular disease outcomes.ResultsIn total, we included 159 studies in the meta-analysis. As a result, every 1°C decrease in temperature increased cardiovascular disease-related mortality by 1.6% (RR 1.016; [95% CI 1.015–1.018]) and morbidity by 1.2% (RR 1.012; [95% CI 1.010–1.014]). The most pronounced effects of low temperatures were observed in the mortality of coronary heart disease (RR 1.015; [95% CI 1.011–1.019]) and the morbidity of aortic aneurysm and dissection (RR 1.026; [95% CI 1.021–1.031]), while the effects were not significant in hypertensive disease outcomes. Notably, we identified climate zone, country income level and age as crucial influential factors in the impact of ambient cold exposure on cardiovascular disease. Moreover, the impact of cold spells on cardiovascular disease outcomes is significant, which increased mortality by 32.4% (RR 1.324; [95% CI 1.2341.421]) and morbidity by 13.8% (RR 1.138; [95% CI 1.015–1.276]).ConclusionCold exposure could be a critical risk factor for cardiovascular diseases, and the cold effect varies between disease types and climate zones.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO, identifier: CRD42022347247.
Collapse
|
31
|
Fan P, Xue X, Hu J, Qiao Q, Yin T, Yang X, Chen X, Hou Y, Chen R. Ambient temperature and ambulatory blood pressure: An hourly-level, longitudinal panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160854. [PMID: 36521627 DOI: 10.1016/j.scitotenv.2022.160854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Variations of blood pressure (BP) related to air temperature have been reported previously; however, no evidence is available regarding the association of hourly ambient temperature with ambulatory blood pressure. METHODS We conducted a longitudinal panel study among 1895 patients from an outpatient department who received repeated ambulatory blood pressure monitoring in Urumqi, China between July 2020 and December 2021. We obtained hourly ambient temperature from the nearest monitoring station to the residential address, and measured 4 ambulatory blood pressure indicators. Linear mixed-effect model combined with distributed lag models were applied to investigate the cumulative associations of hourly temperature with BP. RESULTS A total of 97,466 valid blood pressure measurements were evaluated. We observed almost linear and monotonically decreasing relationships between temperature and blood pressure. The effects occurred in the same hour, attenuated thereafter and became insignificant approximately 36 h. A 10 °C decrease in temperature was significantly associated with increments of 0.84 mmHg in systolic blood pressure, 0.56 mmHg in diastolic blood pressure, 1.38 mmHg in mean arterial pressure, and 0.66 mmHg in pulse pressure over lag 0 to 36 h. Stronger associations were found among patients of female sex, age between 18 and 65 years, overweight or obesity, minority, less education or in the cold season, as well as those without hypertension or with coronary heart disease, or did not take anti-hypertension medication. CONCLUSION Our study provides robust evidence that hourly ambient temperature is inversely associated with ambulatory blood pressure. It also highlights a linear relationship between decreased ambient temperature and elevated BP, which may have implications for the prevention and management of hypertension in susceptible populations.
Collapse
Affiliation(s)
- Ping Fan
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China; Department of Function, Bazhou people's Hospital, Korla, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Qingxia Qiao
- Department of Function, Bazhou people's Hospital, Korla, China
| | - Tingting Yin
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiaoling Yang
- Department of Science and Education, Bazhou people's Hospital, Korla, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yuemei Hou
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Kanagasabai T, Carter E, Yan L, Chan Q, Elliott P, Ezzati M, Kelly F, Xie G, Yang X, Zhao L, Guo D, Daskalopoulou SS, Wu Y, Baumgartner J. Cross-sectional study of household solid fuel use and renal function in older adults in China. ENVIRONMENTAL RESEARCH 2023; 219:115117. [PMID: 36549492 PMCID: PMC7615253 DOI: 10.1016/j.envres.2022.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Emerging evidence links outdoor air pollution and declined renal function but the relationship between household air pollution and renal function is not well understood. METHODS Using cross-sectional data from the multi-provincial INTERMAP-China Prospective Study, we collected blood samples and questionnaire information on stove use and socio-demographic factors. We calculated estimated glomerular filtration rate (eGFR) from serum creatinine to assess renal function. Participants with eGFR <60 mL/min per 1.73 m2 were defined as having chronic kidney disease (CKD) in this analysis. Generalized estimating equations were used to estimate the association of household fuel with renal function and prevalent CKD in models adjusting for confounders. RESULTS Among the 646 enrolled adults (40-79y; 56% female), one-third exclusively used clean fuel (gas and electric) cookstoves and 11% of northern China participants (n = 49 of 434) used only clean fuel heaters, whereas the rest used solid fuel. In multivariable models, use of solid fuel cookstoves was associated with 0.17 ml/min/1.73 m2 (95% CI: -0.30, 0.64) higher eGFR and 19% (0.86, 1.64) higher prevalence of CKD than exclusive clean fuel use. Greater intensity of solid fuel use was associated with 0.25 ml/min/1.73 m2 (-0.71, 0.21) lower eGFR per 5 stove-use years, though the confidence intervals included the null, while greater current intensity of indoor solid fuel use was associated with 1.02 (1.00, 1.04) higher prevalent CKD per 100 stove-use days per year. Larger associations between current solid fuel use and intensity of use with lower eGFR and prevalent CKD were observed among participants in southern China, those with hypertension or diabetes (eGFR only), and females (CKD only), through these groups had small sample sizes and some confidence intervals included the null. CONCLUSION We found inconsistent evidence associating household solid fuel use and renal function in this cross-sectional study of peri-urban Chinese adults.
Collapse
Affiliation(s)
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Li Yan
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Majid Ezzati
- Department of Epidemiology and Biostatistics, and MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Frank Kelly
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Gaoqiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Liancheng Zhao
- Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongshuang Guo
- Department of Cardiology, Yuxian Hospital, Yuxian, Shanxi, China
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China.
| | - Jill Baumgartner
- School of Population and Global Health, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Chen Q, Wang Y, Tang HR, Wang Y, Gu AH, Zhai XJ, Zheng MM. Cumulative effects of temperature on blood pressure during pregnancy: A cohort study of differing effects in three trimesters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160143. [PMID: 36375544 DOI: 10.1016/j.scitotenv.2022.160143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Little is known about the non-linear cumulative effects of temperature on blood pressure (BP) during pregnancy. We investigated the differing effects of daily ambient temperature on BP for up to 30 days in three trimesters. METHODS The first, second, and third trimester analyses included 2547, 2299, and 2011 pregnant women, respectively, from a prospective cohort in Nanjing from January 2017 to January 2020. BP was measured at each follow-up visit. The individual daily temperature exposures were calculated for 30 days prior to the follow-up date. The Distributed Lag Non-linear Model was used to investigate the relationship between temperature and BP in each trimester. RESULTS Temperatures under 15 °C elevate systolic, diastolic BP, and mean arterial pressure (SBP, DBP, and MAP) in the first trimester, while temperatures above 15 °C reduce SBP in the second and third trimesters. By using Distributed Lag Linear Models, we estimated that with a 1 °C decrease in daily temperature, the SBP and DBP increased by 0.32 (95 % CI: 0.12, 0.52) and 0.23 (95 % CI: 0.07, 0.39) mmHg, respectively, in the first trimester with a 20-day cumulative lag, while with a 1 °C increase in daily temperature, the SBP decreased by 0.23 (0.35, 0.10) mmHg in the third trimester with a 30-day cumulative lag. The significant effects of temperature mainly manifested between 2 and 4 weeks of exposure. CONCLUSIONS Temperature has different effects on BP over three trimesters. Protective measures to reduce cold-related BP rise will help reduce the risk of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Qi Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Ya Wang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Hui-Rong Tang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yuan Wang
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Xiang-Jun Zhai
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ming-Ming Zheng
- Center for Obstetrics and Gynecology, The Affiliated Drum and Tower Hospital of Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
34
|
The association of ambient temperature variability with blood pressure in southern China. Blood Press Monit 2023; 28:33-41. [PMID: 36606477 DOI: 10.1097/mbp.0000000000000625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Numerous studies have shown a positive relationship between temperature variability and mortality, but few studies have investigated the effect of temperature variability on blood pressure (BP). We aimed to estimate the effect of temperature variability on BP in Guangdong Province, southern China. METHODS Data on meteorological factors were obtained from the Guangdong Meteorological Center, and BP was collected from a series of cross-sectional surveys conducted in Guangdong Province, China, from 2004 to 2015. There were 38 088 participants aged 18 years and over. A generalized additive model was used to estimate the association between temperature variability and BP after adjusting for confounding variables. RESULTS Our study found a significant positive association between temperature variability and SBP, and this effect increased with the increment of exposure days in total population. The highest estimate was for temperature variability at 7 days lag (TV 0-7 ) with a 0.497 (95% confidence interval, 0.335-0.660) mmHg rise of SBP for each 1°C increase of TV 0-7 . The effects of TV 0-1 and TV 0-2 on SBP were higher for hypertensives than that for normotensives, and in warm season higher than that in cold season. However, we did not observe statistical significance between temperature variability and DBP. CONCLUSIONS There was a positive association between temperature variability and SBP in Guangdong Province, which should be considered in clinical management and epidemiological survey of hypertension.
Collapse
|
35
|
Ye XF, Huang QF, Li Y, Wang JG. Seasonal variation in the effect of antihypertensive treatment with the irbesartan/hydrochlorothiazide combination. Hypertens Res 2023; 46:507-515. [PMID: 36418530 DOI: 10.1038/s41440-022-01084-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
Abstract
There is increasing awareness of seasonal variation in blood pressure (BP). In the present analysis, we investigated seasonal variation in the antihypertensive treatment effect of the irbesartan/hydrochlorothiazide combination in patients with stage 2 and 3 hypertension. The study participants were hypertensive patients enrolled in a 12-week therapeutic study. Antihypertensive treatment was initiated with irbesartan/hydrochlorothiazide 150/12.5 mg/day, with possible uptitration to 300/12.5 mg/day and 300/25 mg/day at 4 and 8 weeks of follow-up, respectively. The month of treatment commencement was classified as spring/summer (May to August) and autumn/winter (September to December). Of the 501 enrolled patients, 313 and 188 commenced antihypertensive treatment in spring/summer and autumn/winter, respectively. The mean changes in systolic/diastolic BP at 8 and 12 weeks of follow-up were greater in patients who commenced treatment in autumn/winter (-32.3/-16.5 and -34.2/-16.7 mmHg, respectively) than those who commenced treatment in spring/summer (-28.4/-13.9 and -27.1/-12.8 mmHg, respectively), with a between-season difference of 3.9 (95% confidence interval [CI], 1.4-6.4, P = 0.002)/2.6 (95% CI, 0.9-4.2, P = 0.002) mmHg and 7.0 (95% CI, 4.7-9.3, P < 0.0001)/3.9 (95% CI, 2.4-5.4, P < 0.0001) mmHg, respectively. Further subgroup analyses according to several baseline characteristics showed a greater between-season difference in the changes in systolic BP in patients aged ≥55 years than in those <55 years (n = 255, 12.6 mmHg vs. n = 246, 6.9 mmHg, P = 0.02), especially in patients who did not use antihypertensive medication at baseline (n = 94, 15.4 mmHg vs. n = 132, 5.4 mmHg, P = 0.006). In conclusion, there is indeed seasonality in the antihypertensive treatment effect, with a greater BP reduction in patients who commenced treatment in cold than warm seasons.
Collapse
Affiliation(s)
- Xiao-Fei Ye
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Yan M, Xie Y, Zhu H, Ban J, Gong J, Li T. Cardiovascular mortality risks during the 2017 exceptional heatwaves in China. ENVIRONMENT INTERNATIONAL 2023; 172:107767. [PMID: 36716635 DOI: 10.1016/j.envint.2023.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Climate change has made disastrous heatwaves more frequent. Heatwave-related health impacts are much more devastating for more intense heatwaves. In the summer of 2017, exceptional heatwaves occurred in many regions, including China. This study aims to evaluate the cardiovascular mortality risk associated with the 2017 exceptional heatwaves and compare the mortality risk of the severe heatwaves with those in other years. Using daily data for a spectrum of cardiovascular mortality and temperature for 102 Chinese counties (2014-2017), we estimated the association between heatwave and mortality by generalized linear mixed-effects models. Compared with matched non-heatwave days, mortality risks on heatwaves days in 2017 increased 27.8% (95% CI, 14.8-42.3%), 26.7% (8.0-48.5%), 30.1% (10.2-53.7%), 27.3% (1.4-59.9%), 32.2% (3.4-68.4%), and 25.2% (1.0-57.7%) for total circulatory diseases, cerebrovascular disease, ischemic heart disease (IHD), acute IHD, chronic IHD, and myocardial infarction. The 2017 exceptional heatwaves impacted ischemic heart disease mortality and myocardial infarction mortality more than heatwaves in 2014-2016. Here we show that the severe heatwaves in 2017 posed catastrophic death threats for those under-studied cardiovascular diseases.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, China; Future Cities Lab, Beihang University, China
| | - Huanhuan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology and State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
37
|
Lerman Ginzburg S, Vazquez-Dodero T, Mason C, Hudda N, Meunier L, Sprague Martínez L, Eliasziw M, Brugge D. Adapting an In-Home Randomized Intervention Trial Protocol for COVID-19 Precautions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1987. [PMID: 36767354 PMCID: PMC9915540 DOI: 10.3390/ijerph20031987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The COVID-19 pandemic has significantly impacted the status of clinical trials in the United States, requiring researchers to reconsider their approach to research studies. In light of this, we discuss the changes we made to the protocol of the Home Air Filtration for Traffic-Related Air Pollution (HAFTRAP) study, a randomized crossover trial of air filtration in homes next to a major highway. The senior authors designed the trial prior to the pandemic and included in-person data collection in participants' homes. Because of the pandemic, we delayed the start of our trial in order to revise our study protocol to ensure the health and well-being of participants and staff during home visits. To our knowledge, there have been few reports of attempts to continue in-home research during the pandemic. METHODS When pandemic-related protective measures were imposed in March 2020, we were close to launching our trial. Instead, we postponed recruitment, set a new goal of starting in September 2020, and spent the summer of 2020 revising our protocol by developing increased safety precautions. We reviewed alternative approaches to installing portable air filtration units in study participants' homes, in order to reduce or eliminate entry into homes. We also developed a COVID-19 safety plan that covered precautionary measures taken to protect both field team staff and study participants. RESULTS Our primary approach was to minimize contact with participants when collecting the following measures in their homes: (1) placing portable air filtration units; (2) conducting indoor air quality monitoring; (3) obtaining blood samples and blood pressure measurements; and (4) administering screening, consent, and follow-up questionnaires that coincided with collection of biological measures. Adapting our public health trial resulted in delays, but also helped ensure ethical and safe research practices. Perceived risk of COVID-19 infection appeared to have been the primary factor for an individual in deciding whether or not to participate in our trial, particularly at the beginning of the pandemic, when less was known about COVID-19. CONCLUSIONS We needed to be flexible, creative, and calm when collaborating with community members, the IRB, and the universities, while repeatedly adjusting to changing guidelines as we determined what worked and what did not for in-home data collection. We learned that high-quality air monitoring data could be collected with minimal in-person contact and without compromising the integrity of the trial. Furthermore, we were able to collect blood pressure and phlebotomy data with minimal risk to the participant.
Collapse
Affiliation(s)
- Shir Lerman Ginzburg
- Department of Public Health, School of Arts and Sciences, MCPHS University, Boston, MA 02115, USA
| | - Teresa Vazquez-Dodero
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Chermaine Mason
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02476, USA
| | - Leigh Meunier
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Misha Eliasziw
- Department of Public Health and Community Medicine, Tufts University, Boston, MA 02111, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
38
|
Khan MI, Rasheed Z. Ambient Temperature and Cardiac Biomarkers: A Meta-Analysis. Curr Cardiol Rev 2023; 19:82-92. [PMID: 37539936 PMCID: PMC10636793 DOI: 10.2174/1573403x19666230804095744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
This study quantified the effect of cold or heat exposure of ambient temperature on the alteration of well-known cardiac markers. A meta-analysis was performed using the PRISMA guidelines. Peer-reviewed studies on ambient temperature and cardiac biomarkers were retrieved from MEDLINE, ScienceDirect and Google Scholar from January 2000 to February 2022. The pooled effect sizes of ambient temperature on cardiac biomarkers c-reactive protein, soluble-cell adhesion-molecule-1, soluble-intercellular-adhesion-molecule-1, total cholesterol, low-densitylipoprotein, interleukin-6, B-type-Natriuretic-Peptide; systolic/diastolic blood pressure were quantified using a random-effects meta-analysis. A total of 26 articles were included in the metaanalysis after screening the titles, abstracts and full texts. The pooled results for a 1°C decrease of ambient temperature showed an increase of 0.31% (95% CI= 0.26 to 0.38) in cardiac biomarkers (p=0.00; I-squared=99.2%; Cochran's Q=5636.8). In contrast, the pooled results for a 1°C increase in ambient temperature showed an increase of 2.03% (95% CI= 1.08 to 3.82) in cardiac biomarkers (p=0.00; I-squared=95.7%; Cochran's Q=235.2). In the cardiovascular (CV) population, the percent increase in cardiac biomarkers levels due to a decrease/increase in ambient temperature was greater. This study showed the decrease/increase in ambient temperature has a direct correlation with the alterations in cardiac biomarkers. These findings are useful for managing temperatureassociated cardiovascular mortality.
Collapse
Affiliation(s)
- Muhammad Ismail Khan
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, Australia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Buraidah, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
39
|
Umishio W, Ikaga T, Kario K, Fujino Y, Suzuki M, Ando S, Hoshi T, Yoshimura T, Yoshino H, Murakami S. Role of housing in blood pressure control: a review of evidence from the Smart Wellness Housing survey in Japan. Hypertens Res 2023; 46:9-18. [PMID: 36224288 PMCID: PMC9747607 DOI: 10.1038/s41440-022-01060-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 02/03/2023]
Abstract
Current countermeasures for preventing hypertension emphasize only improvements to lifestyle. Recently, improving life environment has attracted attention, in parallel with publication of the WHO Housing and health guidelines. We quantitatively evaluated the relationship between housing thermal environment and blood pressure (BP) in a real-world setting. We conducted a nationwide, prospective intervention study-the Smart Wellness Housing survey-in Japan, as a non-randomized controlled trial. The intervention was the retrofitting of thermal insulation in houses. Participant recruitment was done by construction companies in all 47 prefectures of Japan. Measurements of home BP and indoor temperature at 1.0 m above the floor in the living room, changing room, and bedroom were taken for 2 weeks before and after the intervention each winter (November-March) of FY 2014-2019. As of July 2022, over 2500 households and 5000 participants were registered in the database. We found that (1) about 90% of Japanese lived in cold homes (minimum indoor temperature <18 °C), (2) indoor temperature was non-linearly associated with home BP, (3) morning systolic BP (SBP) was more sensitive than evening SBP to changes in indoor temperature, (4) SBP was influenced by indoor temperature change particularly in older participants and women, (5) unstable indoor temperature was associated with large BP variability, and (6) insulation retrofitting intervention significantly reduced home BP, especially in hypertensive patients. We proposed that the BP reduction effect of the life-environment is comparable to that achievable by lifestyle.
Collapse
Affiliation(s)
- Wataru Umishio
- Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan.
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| | - Toshiharu Ikaga
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | - Kazuomi Kario
- Department of Cardiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Masaru Suzuki
- Department of Emergency Medicine, Ichikawa General Hospital, Tokyo Dental College, Ichikawa, Chiba, Japan
| | - Shintaro Ando
- Department of Architecture, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Tanji Hoshi
- Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takesumi Yoshimura
- University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | | | - Shuzo Murakami
- Institute for Built Environment and Carbon Neutral for SDGs, Hirakawacho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
40
|
Peng K, Yan W, Cao Y, Cai W, Liu F, Lin K, Xie Y, Li Y, Lei L, Bao J. Impacts of birthplace and complications on the association between cold exposure and acute myocardial infarction morbidity in the Migrant City: A time-series study in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158528. [PMID: 36063933 DOI: 10.1016/j.scitotenv.2022.158528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ke Peng
- National Clinical Research Center for Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, Guangdong, China; Shenzhen Center for Chronic Disease Control, Shenzhen 518020, Guangdong, China
| | - Wenhua Yan
- Department of Cardiology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yue Cao
- Department of Biostatistics and Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Weicong Cai
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, Guangdong, China
| | - Fangjiang Liu
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, Guangdong, China
| | - Kaihao Lin
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, Guangdong, China
| | - Yuxin Xie
- National Clinical Research Center for Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, Guangdong, China; Scool of public health, Hengyang Medical School, University of South China, 421009, Hunan, China
| | - Yichong Li
- National Clinical Research Center for Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, Guangdong, China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, Guangdong, China.
| | - Junzhe Bao
- Department of Biostatistics and Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
41
|
Zhang Q, Kan H. Author response: Effect of temperature changes between neighboring days on acute aortic dissection in non-heating periods. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 30:100659. [PMID: 36506755 PMCID: PMC9727631 DOI: 10.1016/j.lanwpc.2022.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haidong Kan
- Corresponding author. Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China.
| |
Collapse
|
42
|
Khraishah H, Alahmad B, Ostergard RL, AlAshqar A, Albaghdadi M, Vellanki N, Chowdhury MM, Al-Kindi SG, Zanobetti A, Gasparrini A, Rajagopalan S. Climate change and cardiovascular disease: implications for global health. Nat Rev Cardiol 2022; 19:798-812. [PMID: 35672485 DOI: 10.1038/s41569-022-00720-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Climate change is the greatest existential challenge to planetary and human health and is dictated by a shift in the Earth's weather and air conditions owing to anthropogenic activity. Climate change has resulted not only in extreme temperatures, but also in an increase in the frequency of droughts, wildfires, dust storms, coastal flooding, storm surges and hurricanes, as well as multiple compound and cascading events. The interactions between climate change and health outcomes are diverse and complex and include several exposure pathways that might promote the development of non-communicable diseases such as cardiovascular disease. A collaborative approach is needed to solve this climate crisis, whereby medical professionals, scientific researchers, public health officials and policymakers should work together to mitigate and limit the consequences of global warming. In this Review, we aim to provide an overview of the consequences of climate change on cardiovascular health, which result from direct exposure pathways, such as shifts in ambient temperature, air pollution, forest fires, desert (dust and sand) storms and extreme weather events. We also describe the populations that are most susceptible to the health effects caused by climate change and propose potential mitigation strategies, with an emphasis on collaboration at the scientific, governmental and policy levels.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.,Environmental & Occupational Health Department, Faculty of Public Health, Kuwait University, Hawalli, Kuwait
| | | | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Mazen Albaghdadi
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nirupama Vellanki
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammed M Chowdhury
- Department of Vascular and Endovascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Sadeer G Al-Kindi
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Antonio Gasparrini
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK.,Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.,Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjay Rajagopalan
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
43
|
Yan M, Hou F, Xu J, Liu H, Liu H, Zhang Y, Liu H, Lu C, Yu P, Wei J, Tang NJ. The impact of prolonged exposure to air pollution on the incidence of chronic non-communicable disease based on a cohort in Tianjin. ENVIRONMENTAL RESEARCH 2022; 215:114251. [PMID: 36063911 DOI: 10.1016/j.envres.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the associations of prolonged ambient pollutants exposure with chronic non-communicable diseases among middle-aged and elderly residents is still limited. This prospective cohort study intends to investigate the long-term effects of ambient pollution on hypertension and diabetes incidence among relatively older residents in China. Individual particulate matter exposure levels were estimated by satellite-based model. Individual gaseous pollutants exposure levels were estimated by Inverse Distance Weighted model. A Cox regression model was employed to assess the risks of hypertension and diabetes morbidity linked to air pollutants exposures. The cross-product term of ambient pollutants exposure and covariates was further added into the regression model to test whether covariates would modify these air pollution-morbidity associations. During the period from 2014 to 2018, a total of 97,982 subjects completed follow-up. 12,371 incidents of hypertension and 2034 of diabetes occurred. In the multi-covariates model, the hazard ratios (HR) and 95% confidence interval (CI) were 1.49 (1.45-1.52), 1.28 (1.26-1.30), 1.17 (1.15-1.18), 1.21 (1.17-1.25) and 1.33 (1.31-1.35) for hypertension morbidity per 10 μg/m3 increment in PM1, PM2.5, PM10, NO2 and SO2, respectively. For diabetes onsets, the HR (95% CI) were 1.17 (1.11-1.23), 1.09 (1.04-1.13), 1.06 (1.02-1.09), 1.02 (0.95-1.10), and 1.24 (1.19-1.29), respectively. In addition, for hypertension analyses, the effect estimates were more pronounced in the participants with age <60 years old, BMI ≥24 kg/m2, and frequent alcohol drinking. These findings provided the evidence on elevated risks of morbidity of hypertension and diabetes associated with prolonged ambient pollutants exposure at relatively high levels.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Fang Hou
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Jiahui Xu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Huanyu Liu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yourui Zhang
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Hao Liu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Chunlan Lu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
44
|
Mohammed H, Wang K, Wu H, Wang G. Subject-wise model generalization through pooling and patching for regression: Application on non-invasive systolic blood pressure estimation. Comput Biol Med 2022; 151:106299. [PMID: 36423530 DOI: 10.1016/j.compbiomed.2022.106299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Subject-wise modeling using machine learning is useful in many applications requiring low error and complexity, such as wearable medical devices. However, regression accuracy depends highly on the data available to train the model and the model's generalization ability. Adversely, the prediction error may increase severely if unknown data patterns test the model; such a model is known to be overfitted. In medicine-related applications, such as Non-Invasive Blood Pressure (NIBP) estimation, the high error renders the estimation model useless and dangerous. METHODS This paper presents a novel algorithm to handle overfitting by editing the training data to achieve generalization for subject-wise models. The pooling and patching (PaP) algorithms use a relatively short record segment of a subject as a Key-Segment (KS) to search through a larger dataset for similar subjects. Then samples taken from the matched subjects' pool records are used to patch the original subject's KS. Due to the significance of systolic blood pressure (SBP) and the complexity of its variability, non-invasive estimation of SBP from electrocardiography (ECG) and photoplethysmography (PPG) is introduced as an application to assess the algorithm. The study was performed on 2051 subjects with a wide range of age, height, weight, length, and health status. The subjects' records were taken from a large public dataset, VitalDB, which is acquired from subjects undergoing different surgeries. Finally, all the results are obtained without using other model generalization techniques. RESULTS The generalization effect of the proposed algorithm, PaP, significantly outperformed cross-validation, which is widely used in regression model generalization. Moreover, the testing results show that a KS of 200 to 2000 samples is sufficient for providing high accuracy for much longer testing data of about 12000 to 24000 samples long, which is less than %10 of the record length on average. Furthermore, compared to other works based on the same dataset, PaP provides a significantly lower mean error of -0.75 ± 5.51 mmHg, with a small training data portion of 15% over 2051 subjects.
Collapse
Affiliation(s)
- Hazem Mohammed
- Department of Micro/Nano Electronics, School of Electrical, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China; Electrical Engineering Department, Faculty of Engineering, Assuit University, Asyut, Egypt.
| | - Kai Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong, China.
| | - Guoxing Wang
- Department of Micro/Nano Electronics, School of Electrical, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Zhou Y, Zhao L, Meng X, Cai QJ, Zhao XL, Zhou XL, Hu AH. Seasonal variation of ambulatory blood pressure in Chinese hypertensive adolescents. Front Pediatr 2022; 10:1022865. [PMID: 36467472 PMCID: PMC9715761 DOI: 10.3389/fped.2022.1022865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Blood pressure (BP) exhibits seasonal variation with lower levels at higher temperatures and vice versa. This phenomenon affects both sexes and all age groups. So far, only a few research studies have investigated this condition in adolescents and none of them were based on hypertensive population or ever applied ambulatory blood pressure monitor (ABPM). Therefore, we carried out the first study that used ABPM to record seasonal variation of blood pressure in hypertensive adolescents. METHODS From March 2018 to February 2019, 649 ABPMs from hypertensive adolescents between 13 and 17 years who were referred to wear an ABPM device in Beijing and Baoding were extracted. Seasonal change in ambulatory BP value, dipping status, and prevalence of different BP phenotypes were analyzed and compared. RESULTS Mean age of participants was 14.9 ± 1.5 years and 65.8% of them were boys. Of the participants, 75.3% met the criteria of overweight or obesity. From summer to winter, average 24-hour, day-time, and night-time BP showed significant rise, which was 9.8/2.8, 9.8/3.0, and 10.9/3.4 mmHg, respectively. This seasonal effect on BP was not dependent on the obesity degree. In addition, higher prevalence of nondippers and risers existed in winter while white coat hypertension was more frequent in warmer seasons. CONCLUSION Hypertensive adolescents showed evident seasonal change in their ABPM results, which was featured by elevated BP level and more frequent abnormal dipping patterns in winter. On the contrary, higher prevalence of white coat hypertension was found in warmer seasons. Physicians should take seasonal variation into consideration when managing adolescent hypertension.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Lin Zhao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Qiu-Jing Cai
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiao-Lei Zhao
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Ai-Hua Hu
- Department of Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
46
|
Senra RL, Ramírez-López CJ, Magalhães-Júnior MJ, Neves JGDS, Barros E, Waddington B, Guimarães SEF, Guimarães JD, Baracat-Pereira MC. Kallikrein proteoforms and reproductive parameters in stallion are conditioned by climate. Sci Rep 2022; 12:18690. [PMID: 36333376 PMCID: PMC9636271 DOI: 10.1038/s41598-022-21350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Horses are seasonal polyoestrous animals, and the photoperiod is the main factor modulating their reproductive activity. There is no consensus on the andrological and biochemical factors that influence breeding seasonality. To assess the involvement of climate in reproduction, Mangalarga Marchador stallions were monitored over 1 year regarding semen quality and seminal plasma proteome. Here, we show that kallikrein (KLKs) proteoforms in seminal plasma are involved in climate conditioning of reproduction. During the breeding season, greater abundance and different types of KLKs occurred simultaneously to lower sperm motility, greater semen volumes and higher concentrations of glucose and cholesterol. Considering that vasodilation due to activation of the kallikrein-kinin system and the consequent inhibition of the renin-angiotensin system may be associated with lower sperm motility, unravelling the involvement of KLK proteoforms in reproductive seasonality is a priority in horse breeding.
Collapse
Affiliation(s)
- Renato Lima Senra
- grid.12799.340000 0000 8338 6359Proteomics and Protein Biochemistry Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Camilo José Ramírez-López
- grid.12799.340000 0000 8338 6359Proteomics and Protein Biochemistry Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil ,grid.12799.340000 0000 8338 6359Animal Reproduction Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcos Jorge Magalhães-Júnior
- grid.12799.340000 0000 8338 6359Proteomics and Protein Biochemistry Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | - João Gabriel da Silva Neves
- grid.12799.340000 0000 8338 6359Proteomics and Protein Biochemistry Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil ,grid.12799.340000 0000 8338 6359Animal Reproduction Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Edvaldo Barros
- grid.12799.340000 0000 8338 6359Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bruna Waddington
- grid.12799.340000 0000 8338 6359Animal Reproduction Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Domingos Guimarães
- grid.12799.340000 0000 8338 6359Animal Reproduction Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria Cristina Baracat-Pereira
- grid.12799.340000 0000 8338 6359Proteomics and Protein Biochemistry Laboratory, Universidade Federal de Viçosa, Viçosa, Brazil ,grid.12799.340000 0000 8338 6359Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
47
|
Lin Z, Yang L, Chen P, Wei T, Zhang J, Wang Y, Gao L, Zhang C, Zhao L, Wang Q, Wang H, Xu D. Short-term effects of personal exposure to temperature variability on cardiorespiratory health based on subclinical non-invasive biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157000. [PMID: 35777570 DOI: 10.1016/j.scitotenv.2022.157000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Growing literatures have explored the cardiorespiratory health effects of the daily temperature, but such effects of temperature variability remain unclear. We investigated the acute associations of personal levels of temperature variability with cardiorespiratory biomarkers. This is a panel study with four repeated measurements among forty eligible college students in Hefei, Anhui Province, China. We collected personal-level temperature data using temperature/humidity data loggers. Temperature variability parameters included diurnal temperature range (DTR), the standard-deviation of temperature (SDT) and temperature variability (TV). Cardiorespiratory health indicators included three BP parameters [systolic BP (SBP), diastolic BP (DBP) and mean article pressure (MAP)], fractional exhaled nitric oxide (FeNO), and four saliva biomarkers [C-reactive protein (CRP), cortisol, alpha-amylase and lysozyme]. Linear mixed-effect models were then used to assess the associations of temperature variability with these cardiorespiratory biomarkers. We found that short-term exposure to the three temperature variability parameters was associated with these cardiorespiratory biomarkers. The magnitude, direction and significance of these associations varied by temperature variability parameters, by biomarkers and by lags of exposure. Specifically, temperature variability parameters were inversely associated with BP and saliva lysozyme; positively associated with airway inflammation biomarkers (FeNO and saliva CRP) and stress response biomarkers (saliva cortisol and alpha-amylase). The results were robust to further control for air pollutants, and these associations were more prominent in females and in subjects with abnormal body mass index. Our findings suggested that acute exposure to temperature variability could significantly alter cardiorespiratory biomarker profiles among healthy young adults in China.
Collapse
Affiliation(s)
- Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
48
|
Influence of depression on the association between colder indoor temperature and higher blood pressure. J Hypertens 2022; 40:2013-2021. [PMID: 36052524 DOI: 10.1097/hjh.0000000000003221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Cold exposure accounts for more than 7% of all-cause mortality worldwide, and cold-induced blood pressure (BP) elevation and consequent cardiovascular events are partially responsible. For prevention, it is important to identify risk factors for exaggerated temperature-sensitivity of BP but this is not fully understood. This study investigated whether depressive symptoms affect the relationship between indoor temperature and BP. METHODS We conducted a cross-sectional analysis of 1076 community-based individuals who were at least 60 years of age. Depressive symptoms were assessed using the 15-item Geriatric Depression Scale at a cutoff point of 4/5. We performed ambulatory BP monitoring and indoor temperature measurement on two consecutive days during the cold season in Nara, Japan. RESULTS When using daytime SBP as a dependent variable, multilevel linear regression analyses showed that lower daytime indoor temperature was significantly associated with higher daytime SBP in the depressive group (n = 216, β = -0.804, P < 0.001) but not in the nondepressive group (n = 860, β = -0.173, P = 0.120); moreover, a significant interaction between depression and daytime indoor temperature was observed (P = 0.014). These relationships were independent of potential confounders including age, gender, BMI, medications, and physical activity. Similar results were obtained for morning SBP, nocturnal SBP dipping, and morning BP surge. CONCLUSION The results suggest that depressive participants are more likely to have cold-induced BP elevation than nondepressive participants. Further longitudinal studies are warranted to determine whether people with depressive symptoms are at a high risk for cold-related cardiovascular events.
Collapse
|
49
|
Effects of indoor and outdoor temperatures on blood pressure and central hemodynamics in a wintertime longitudinal study of Chinese adults. J Hypertens 2022; 40:1950-1959. [PMID: 35969204 DOI: 10.1097/hjh.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We aimed to estimate the effects of indoor and outdoor temperature on wintertime blood pressure (BP) among peri-urban Beijing adults. METHODS We enrolled 1279 adults (ages: 40-89 years) and conducted measurements in two winter campaigns in 2018-2019 and 2019-2020. Study staff traveled to participant homes to administer a questionnaire and measure brachial and central BP. Indoor temperature was measured in the 5 min prior to BP measurement. Outdoor temperature was estimated from regional meteorological stations. We used multivariable mixed-effects regression models to estimate the within-individual and between-individual effects of indoor and outdoor temperatures on BP. RESULTS Indoor and outdoor temperatures ranged from 0.0 to 28 °C and -14.3 to 6.4 °C, respectively. In adjusted models, a 1 °C increase in indoor temperature was associated with decreased SBP [-0.4 mmHg, 95% confidence interval (CI): -0.7 to -0.1 (between-individual; brachial and central BP); -0.5 mmHg, 95% CI: -0.8 to -0.2 (within-individual, brachial BP); -0.4 mmHg, 95% CI: -0.7 to -0.2 (within-individual, central BP)], DBP [-0.2 mmHg, 95% CI:-0.4 to -0.03 (between-individual); -0.3 mmHg, 95% CI: -0.5 to -0.04 (within-individual)], and within-individual pulse pressure [-0.2 mmHg, 95% CI: -0.4 to -0.04 (central); -0.3 mmHg, 95% CI: -0.4 to -0.1 (brachial)]. Between-individual SBP estimates were larger among participants with hypertension. There was no evidence of an effect of outdoor temperature on BP. CONCLUSION Our results support previous findings of inverse associations between indoor temperature and BP but contrast with prior evidence of an inverse relationship with outdoor temperature. Wintertime home heating may be a population-wide intervention strategy for high BP and cardiovascular disease in China.
Collapse
|
50
|
Park C, Yang J, Lee W, Kang C, Song IK, Kim H. Excess out-of-hospital cardiac arrests due to ambient temperatures in South Korea from 2008 to 2018. ENVIRONMENTAL RESEARCH 2022; 212:113130. [PMID: 35339469 DOI: 10.1016/j.envres.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/05/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Out-of-hospital cardiac arrest (OHCA) is a notable public health issue with negative outcomes, such as high mortality and aftereffects. Additionally, the adverse effects of extreme temperatures on health have become more important under climate change; however, few studies have investigated the relationship between temperature and OHCA. In this study, we examined the association between temperature and OHCA and its underlying risk factors. We conducted a two-stage time-series analysis using a Poisson regression model with a distributed lag non-linear model (DLNM) and meta-analysis, based on a nationwide dataset from South Korea (2008-2018). We found that 17.4% of excess OHCA was attributed to cold, while 0.9% was attributed to heat. Based on central estimates, excess OHCA attributed to cold were more prominent in the population with hypertension comorbidity (31.0%) than the populations with diabetes (24.3%) and heart disease (17.4%). Excess OHCA attributed to heat were larger in the populations with diabetes (2.7%) and heart disease comorbidity (2.7%) than the population with hypertension (1.2%) based on central estimates. Furthermore, the time-varying excess OHCA attributed to cold have decreased over time, and although those of heat did not show a certain pattern during the study period, there was a weak increasing tendency since 2011. In conclusion, we found that OHCAs were associated with temperature, and cold temperatures showed a greater impact than that of hot temperatures. The effects of cold and hot temperatures on OHCA were more evident in the populations with hypertension, diabetes, and heart diseases, compared to the general population. In addition, the impacts of heat on OHCA increased in recent years, while those of cold temperatures decreased. Our results provide scientific evidence for policymakers to mitigate the OHCA burden attributed to temperature.
Collapse
Affiliation(s)
- Chaerin Park
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Juyeon Yang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Whanhee Lee
- School of the Environment, Yale University, New Haven, CT, United States
| | - Cinoo Kang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - In-Kyung Song
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|