1
|
Jarquin-Yañez L, Cruz ET, Martinez-Acuña MI, Calderon-Hernandez J. Perceptions and attitudes about the contribution of the environment to childhood cancer: a pilot study in a medical guild and undergraduate students. BMC MEDICAL EDUCATION 2024; 24:1138. [PMID: 39402539 PMCID: PMC11476317 DOI: 10.1186/s12909-024-05914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Identifying and recognizing environmental risk factors for childhood cancer is crucial to prevent it. Medical guild are the first contact to monitor children's health. Therefore, courses about the contribution of chemical toxins in the environment and health outcomes such as cancer should be included in their professional training. This study aimed to evaluate the perceptions and attitudes of a medical guild and undergraduate students in health sciences about the contribution of the environment to childhood cancer. METHODS A pilot study was conducted, an online survey including thirteen questions was shared among medical guild members and undergraduate students in health sciences. Frequencies, percentages, and chi-square homogeneity tests were calculated to compare groups. RESULTS Genetic factors ranked as the first possible cause of childhood cancer (88.2% medical guild and 97.7% undergraduate students). However, 70.6% of medical guild and 64.6% of undergraduate students reported that they have ever suspected that childhood cancer could be related to the environmental conditions in which children live. More than 95% of the participants reported that they would find it useful to have more knowledge about environmental risks and cancer. When data were analyzed by profession (medical guild) and academic year (undergraduate students), no significant differences were observed. Nonetheless, comparisons by academic discipline between undergraduate students, showed that a higher percentage of medicine and environmental sciences and health (over 98%) reported environmental exposure as risk factors associated with childhood cancer compared to 75% from physiotherapy, (p = 0.001). CONCLUSIONS In this study, the environmental contribution to childhood cancer is not clear among the medical guild and undergraduate students. They should be trained on the topic of cancer and the environment.
Collapse
Affiliation(s)
- Lizet Jarquin-Yañez
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, Zacatecas, Zac, 98000, Mexico
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Insurgentes Sur Avenue # 1582, Credito Constructor, Mexico City, 03940, Mexico
| | - Eunice Tello Cruz
- Center for Applied Research in Environment and Health, CIACYT-Faculty of Medicine, Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, Lomas 2nd Section, San Luis Potosí, 78210, SLP, Mexico
| | - Monica Imelda Martinez-Acuña
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, Zacatecas, Zac, 98000, Mexico
| | - Jaqueline Calderon-Hernandez
- Center for Applied Research in Environment and Health, CIACYT-Faculty of Medicine, Autonomous University of San Luis Potosí, Avenida Sierra Leona No. 550, Lomas 2nd Section, San Luis Potosí, 78210, SLP, Mexico.
- Global Public Health Program, Schiller Institute for Integrated Science and Society, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
2
|
Caron-Beaudoin É, Akpo H, Doyle-Waters MM, Ronald LA, Friesen M, Takaro T, Leven K, Meyer U, McGregor MJ. The human health effects of unconventional oil and gas (UOG) chemical exposures: a scoping review of the toxicological literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0076. [PMID: 38985132 DOI: 10.1515/reveh-2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Many chemicals associated with unconventional oil and natural gas (UOG) are known toxicants, leading to health concerns about the effects of UOG. Our objective was to conduct a scoping review of the toxicological literature to assess the effects of UOG chemical exposures in models relevant to human health. We searched databases for primary research studies published in English or French between January 2000 and June 2023 on UOG-related toxicology studies. Two reviewers independently screened abstracts and full texts to determine inclusion. Seventeen studies met our study inclusion criteria. Nine studies used solely in vitro models, while six conducted their investigation solely in animal models. Two studies incorporated both types of models. Most studies used real water samples impacted by UOG or lab-made mixtures of UOG chemicals to expose their models. Most in vitro models used human cells in monocultures, while all animal studies were conducted in rodents. All studies detected significant deleterious effects associated with exposure to UOG chemicals or samples, including endocrine disruption, carcinogenicity, behavioral changes and metabolic alterations. Given the plausibility of causal relationships between UOG chemicals and adverse health outcomes highlighted in this review, future risk assessment studies should focus on measuring exposure to UOG chemicals in human populations.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Physical and Environmental Sciences, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Hélène Akpo
- Department of Occupational and Environmental Health, Université de Montréal, Quebec, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
| | - Lisa A Ronald
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Tim Takaro
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | | | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
3
|
Yuan MH, Kang S, Cho KS. A review of phyto- and microbial-remediation of indoor volatile organic compounds. CHEMOSPHERE 2024; 359:142120. [PMID: 38670503 DOI: 10.1016/j.chemosphere.2024.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Volatile organic compounds (VOCs) are crucial air pollutants in indoor environments, emitted from building materials, furniture, consumer products, cleaning products, smoking, fuel combustion, cooking, and other sources. VOCs are also emitted from human beings via breath and whole-body skin. Some VOCs cause dermal/ocular irritation as well as gastrointestinal, neurological, cardiovascular, and/or carcinogenic damage to human health. Because people spend most of their time indoors, active control of indoor VOCs has garnered attention. Phytoremediation and microbial remediation, based on plant and microorganism activities, are deemed sustainable, cost-effective, and public-friendly technologies for mitigating indoor VOCs. This study presents the major sources of VOCs in indoor environments and their compositions. Various herbaceous and woody plants used to mitigate indoor VOCs are summarized and their VOCs removal performance is compared. Moreover, this paper reviews the current state of active phytoremediation and microbial remediation for the control of indoor VOCs, and discusses future directions.
Collapse
Affiliation(s)
- Min-Hao Yuan
- Department of Occupational Safety and Health, China Medical University, Taichung, 406, Taiwan
| | - Sookyung Kang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Meng Z, Wei S, Li X, Su Z, Jiang Y, Wu H, Pan H, Wang J, Zhou Q, Qiao Y, Fan Y. Urinary volatile organic compound metabolites and COPD among US adults: mixture, interaction and mediation analysis. Environ Health 2024; 23:45. [PMID: 38702703 PMCID: PMC11067234 DOI: 10.1186/s12940-024-01086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample. METHODS We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin. RESULTS In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers. CONCLUSIONS Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.
Collapse
Affiliation(s)
- Ying Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Sen Wei
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zheng Su
- Department of Tobacco Control and Prevention of Respiratory Disease, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yong Jiang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youlin Qiao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Center of Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Tindle AN, Braman SL, Swafford BM, Trepanier LA. Environmental radon, fracking wells, and lymphoma in dogs. J Vet Intern Med 2024; 38:1659-1665. [PMID: 38437620 PMCID: PMC11099769 DOI: 10.1111/jvim.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Multicentric lymphoma (ML) in dogs resembles non-Hodgkin lymphoma (NHL) in humans. Human NHL is associated with multiple environmental exposures, including to radon and volatile organic compounds (VOCs). HYPOTHESIS/OBJECTIVES The objective of this study was to determine whether ML in dogs was associated with environmental radon or proximity to horizontal oil and drilling (fracking), a source of VOC pollution. METHODS We identified dogs from the Golden Retriever Lifetime Study that developed ML (n = 52) along with matched controls (n = 104). Dog home addresses were categorized by Environmental Protection Agency radon zone and average residential radon by county, as well as by distance from fracking and associated wastewater wells. RESULTS We found no significant differences in county level radon measurements. Individual household radon measurements were not available. There was no difference in residential proximity to active fracking wells between dogs with ML and unaffected dogs. While dogs with ML lived closer to wastewater wells (123 vs 206 km; P = .01), there was no difference in the percentage of cases vs controls that lived in close proximity (20 km) to a fracking well (11.5% for cases, 6.7% for controls; OR 1.81, 95% CI 0.55 to 5.22; P = .36), or a wastewater well (6.7% for cases, 4.4% for controls; P > .99). CONCLUSIONS AND CLINICAL IMPORTANCE These data suggest that more proximate sources of chemical exposures need to be assessed in dogs with ML, including measurements of individual household radon and household VOC concentrations.
Collapse
Affiliation(s)
- Ashleigh N. Tindle
- Department of Medical SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Samantha L. Braman
- Department of Medical SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Lauren A. Trepanier
- Department of Medical SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Zhang Z, Zhang Q, Xi Y, Zhou Y, Zhan M. Establishment of a headspace-thermal desorption and gas chromatography-mass spectrometry method (HS-TD-GC-MS) for simultaneous detection of 51 volatile organic compounds in human urine: Application in occupational exposure assessment. J Chromatogr A 2024; 1722:464863. [PMID: 38626538 DOI: 10.1016/j.chroma.2024.464863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
Volatile organic compounds (VOCs) are a group of ubiquitous environment pollutants especially released into the workplace. Assessment of VOCs exposure in occupational populations is therefore a crucial issue for occupational health. However, simultaneous biomonitoring of a variety of VOCs is less studied. In this study, a simple and sensitive method was developed for the simultaneous determination of 51 prototype VOCs in urine by headspace-thermal desorption coupled to gas chromatography-mass spectrometry (HS-TD-GC-MS). The urinary sample was pretreated with only adding 0.50 g of sodium chloride to 2 mL of urine and 51 VOCs should be determined with limits of detection (LODs) between 13.6 ng/L and 24.5 ng/L. The method linearity ranged from 0.005 to 10 μg/L with correlation coefficients (r) of 0.991 to 0.999. The precision for intraday and inter-day, measured by the variation coefficient (CV) at three levels of concentration, was below 15 %, except for 4-isopropyl toluene, dichloromethane, and trichloromethane at low concentration. For medium and high levels, recoveries of all target VOCs were within the standard range, but 1,1-dichloropropene and styrene, which were slightly under 80 % at low levels. In addition, the proposed method has been used to determine urine samples collected in three times (before, during and after working) from 152 workers at four different factories. 41 types of prototype VOCs were detected in workers urine. Significant differences (Kruskal-Wallis chi-squared = 117.18, df = 1, P < 0.05) in the concentration levels of VOCs between the exposed and unexposed groups were observed, but not between the three sampling times (Kruskal-Wallis chi-squared = 3.39, df = 2, P = 0.183). The present study provides an alternative method for biomonitoring and assessing mixed exposures to VOCs in occupational populations.
Collapse
Affiliation(s)
- Zhongheng Zhang
- School of Public Health, Fudan University, 200032, Shanghai, China
| | - Qing Zhang
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China
| | - Ye Xi
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China
| | - Ying Zhou
- School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Ming Zhan
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China.
| |
Collapse
|
7
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
8
|
Underhill V, Allison G, Huntzinger H, Mason C, Noreck A, Suyama E, Vera L, Wylie S. Increases in trade secret designations in hydraulic fracturing fluids and their potential implications for environmental health and water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119611. [PMID: 38056330 PMCID: PMC10872473 DOI: 10.1016/j.jenvman.2023.119611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Hydraulic fracturing is an increasingly common method of oil and gas extraction across the United States. Many of the chemicals used in hydraulic fracturing processes have been proven detrimental to human and environmental health. While disclosure frameworks have advanced significantly in the last 20 years, the practice of withholding chemical identities as "trade secrets" or "proprietary claims" continues to represent a major absence in the data available on hydraulic fracturing. Here, we analyze rates of trade secret claims using FracFocus, a nationwide database of hydraulic fracturing data, from January 1, 2014 to December 31, 2022. We use the open-source tool Open-FF, which collates FracFocus data, makes it accessible for systematic analysis, and performs several quality-control measures. We found that the use by mass of chemicals designated as trade secrets has increased over the study time period, from 728 million pounds in 2014 to 2.96 billion pounds in 2022 (or a 43.7% average yearly increase). A total of 10.4 billion pounds of chemicals were withheld as trade secrets in this time period. The water volume used (and therefore total mass of fracturing fluid) per fracturing job has shown a large increase from 2014 to 2022, which partly explains the increase in mass of chemicals withheld as trade secrets over this time period, even as total fracturing jobs and individual counts of proprietary records have decreased. Our analysis also shows increasing rates of claiming proppants (which can include small grains of sand, ceramic, or other mineral substances used to prop open fractures) as proprietary. However, the mean and median masses of non-proppant constituents designated as trade secrets have also increased over the study period. We also find that the total proportion of all disclosures including proprietary designations has increased by 1.1% per year, from 79.3% in 2014 to 87.5% in 2022. In addition, most disclosures designate more than one chemical record as proprietary: trade secret withholding is most likely to apply to 10-25% of all records in an individual disclosure. We also show the top ten reported purposes that most commonly include proprietary designations, after removing vague or multiple entries, the first three of which are corrosion inhibitors, friction reducers, and surfactants. Finally, we report the top ten operators and suppliers using and supplying proprietary chemicals, ranked by mass used or supplied, over our study period. These results suggest the importance of revisiting the role of proprietary designations within state and federal disclosure mechanisms.
Collapse
Affiliation(s)
- Vivian Underhill
- Social Science Environmental Health Research Institute, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Gary Allison
- Department of Geography, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - Holden Huntzinger
- University of Michigan School of Information, 105 S State St, Ann Arbor, MI 48109, USA
| | - Cole Mason
- Center for Environmental Studies, Williams College, 880 Main St, Williamstown, MA 01267, USA
| | - Abigail Noreck
- College of Science, Northeastern University, 115 Richards Hall, 360 Huntington Ave, Boston, MA 02115, USA
| | - Emi Suyama
- Bouvé College of Health Science, Northeastern University, Behrakis Health Sciences Center, 360 Huntington Ave, Boston, MA 02115, USA
| | - Lourdes Vera
- Department of Sociology, University at Buffalo, 430 Park Hall, Buffalo, NY 14260, USA; Department of Environment and Sustainability, University at Buffalo, 430 Park Hall, Buffalo, NY 14260, USA
| | - Sara Wylie
- Department of Sociology and Anthropology and Social Science Environmental Health Research Institute, Northeastern University, 1135 Tremont St, Boston, MA 02120, USA
| |
Collapse
|
9
|
Christian WJ, Walker CJ, McDowell J, Huang B, Tucker TC, Villano J, Durbin EB. Geographic and temporal trends in pediatric and young adult brain tumors in Kentucky, 1995-2019. Cancer Epidemiol 2024; 88:102499. [PMID: 38056245 PMCID: PMC10842684 DOI: 10.1016/j.canep.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Pediatric and young adult brain tumors (PYBT) account for a large share of cancer-related morbidity and mortality among children in the United States, but their etiology is not well understood. Previous research suggests the Appalachian region of Kentucky has high rates of PYBT. This study explored PYBT incidence over 25 years in Kentucky to identify geographic and temporal trends and generate hypotheses for future research. METHODS The Kentucky Cancer Registry contributed data on all PYBT diagnosed among those aged 0-29 during years 1995-2019. Age- and sex-adjusted spatio-temporal scan statistics-one for each type of PYBT, and one for all types-comprised the primary analysis. These results were mapped along with environmental and occupational data. RESULTS Findings indicated that north-central Kentucky and the Appalachian region experienced higher rates of some PYBT. High rates of astrocytomas were clustered in a north-south strip of central Kentucky toward the end of the study period, while high rates of other specified types of intracranial and intraspinal neoplasms were significantly clustered in eastern Kentucky. The area where these clusters overlapped, in north-central Kentucky, had significantly higher rates of PYBT generally. DISCUSSION This study demonstrates north-central Kentucky and the Appalachian region experienced higher PYBT risk than the rest of the state. These regions are home to some of Kentucky's signature industries, which should be examined in further research. Future population-based and individual-level studies of genetic factors are needed to explore how the occupations of parents, as well as prenatal and childhood exposures to pesticides and air pollutants, impact PYBT incidence.
Collapse
Affiliation(s)
- W J Christian
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Markey Cancer Center, University of Kentucky, USA.
| | - C J Walker
- Dept. of Behavioral Science, College of Medicine, University of Kentucky, USA
| | - J McDowell
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Kentucky Cancer Registry, USA
| | - B Huang
- Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA; Div. of Cancer Biostatistics, Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA
| | - T C Tucker
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA
| | - J Villano
- Markey Cancer Center, University of Kentucky, USA; Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA
| | - E B Durbin
- Div. of Biomedical Informatics, Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA; Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA
| |
Collapse
|
10
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
11
|
Masoud C, Modi M, Bhattacharyya N, Jahn LG, McPherson KN, Abue P, Patel K, Allen DT, Hildebrandt Ruiz L. High Chlorine Concentrations in an Unconventional Oil and Gas Development Region and Impacts on Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15454-15464. [PMID: 37783466 PMCID: PMC10586373 DOI: 10.1021/acs.est.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Collapse
Affiliation(s)
- Catherine
G. Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kristi N. McPherson
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kanan Patel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Yang X, Liao HM, Tan AJ, Gan SX, Yang GL. Effects of microplastics and cadmium on growth rate, photosynthetic pigment content and antioxidant enzymes of duckweed (Lemma minor). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96181-96190. [PMID: 37566334 DOI: 10.1007/s11356-023-29164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) and polyethylene (PE) seriously contaminate the aquatic environment and threaten human health. Many studies have reported the toxic effects of Cd and PE on plants, whereas few have reported the combined contamination of these two pollutants. In this study, duckweed (Lemma minor) was used as an indicator to explore the effect of PE microplastics (PE-MPs) at concentrations of 10, 50, 100, 200, and 500 mg/L on tolerance to 1 mg/L Cd. The results showed that different concentrations of PE-MPs inhibited the growth rate and chlorophyll content of duckweed to different degrees, both of which were minimal at 50 mg/L PE-MPs, 0.11 g/d, and 0.32 mg/g, respectively. The highest Cd enrichment (7.77 mg/kg) and bioaccumulation factors (94.22) of duckweed were detected when Cd was co-exposed with 50 mg/L of PE-MPs. Catalase and peroxidase activity first decreased and then increased with increasing PE-MPs concentrations, showing "hormesis effects", with minimum values of 11.47 U/g and 196.00 U/g, respectively. With increasing concentrations of PE-MPs, the effect on superoxide dismutase activity increased and then declined, peaking at 162.05 U/g, and displaying an "inverted V" trend. The amount of malondialdehyde rose with different PE-MPs concentrations. This research lay a foundation for using duckweed to purify water contaminated with MPs and heavy metals.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringng, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hai-Min Liao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringng, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringng, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Sheng-Xian Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringng, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringng, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China.
| |
Collapse
|
13
|
Walker CJ, Kucharska-Newton AM, Browning SR, Christian WJ. County incidence and geospatial trends of early-onset hypertensive disorders of pregnancy in Kentucky, 2008-2017. BMC Pregnancy Childbirth 2023; 23:453. [PMID: 37337164 DOI: 10.1186/s12884-023-05699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Early-onset hypertensive disorders of pregnancy (eHDP) are associated with more severe maternal and infant outcomes than later-onset disease. However, little has been done to evaluate population-level trends. Therefore, in this paper, we seek to address this understudied area by describing the geospatial and temporal patterns of county-level incidence of eHDP and assessing county-level demographics that may be associated with an increased incidence of eHDP. METHODS Employing Kentucky certificates of live and stillbirth from 2008-2017, this ecological study detected county-level clusters of early-onset hypertensive disorders of pregnancy using SaTScan, calculated average annual percent change (AAPC) with a join point analysis, and identified county-level covariates (% of births to women ≥ 35 years of age, % with BMI ≥ 30 kg/m2, % currently smoking, % married, and % experienced eHDP) with a fixed-effects negative binomial regression model for longitudinal data with an autoregressive (AR) correlation structure offset with the natural log of the number of births in each county and year. RESULTS County-level incidence of eHDP had a non-statistically significant increase of almost 3% (AAPC: 2.84, 95% CI: -4.26, 10.46), while maternal smoking decreased by almost 6% over the study period (AAPC:-5.8%, 95%CI: -7.5, -4.1), Risk factors for eHDP such as pre-pregnancy BMI ≥ 30 and proportion of births to women ≥ 35 years of age increased by 2.3% and 3.4% respectively (BMI AAPC:2.3, 95% CI: 0.94, 3.7; ≥ 35 years AAPC:3.4, 95% CI: 0.66, 6.3). After adjusting for race, county-level proportions of college attainment, and maternal smoking throughout pregnancy, counties with the highest proportion of births to women with BMI ≥ 30 kg/m2 reported an eHDP incidence 20% higher than counties with a lower proportion of births to mothers with a BMI ≥ 30 kg/m2 and a 20% increase in eHDP incidence (aRR = 1.20, 95% CI: 1.00, 1.44). We also observed that counties with the highest proportion vs. the lowest of mothers ≥ 35 years old (> 6.1%) had a 26% higher incidence of eHDP (RR = 1.26, 95%CI: 1.04, 1.50) compared to counties with the lowest incidence (< 2.5%). We further identified two county-level clusters of elevated eHDP rates. We also observed that counties with the highest vs. lowest proportion of mothers ≥ 34 years old (> 6.1% vs. < 2.5%) had a 26% increase in the incidence of eHDP (RR = 1.26, 95% CI: 1.04, 1.50). We further identified two county-level clusters of elevated incidence of eHDP. CONCLUSIONS This study identified two county-level clusters of eHDP, county-level covariates associated with eHDP, and that while increasing, the average rate of increase for eHDP was not statistically significant. This study also identified the reduction in maternal smoking over the study period and the concerning increase in rates of elevated pre-pregnancy BMI among mothers. Further work to explore the population-level trends in this understudied pregnancy complication is needed to identify community factors that may contribute to disease and inform prevention strategies.
Collapse
Affiliation(s)
- Courtney J Walker
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Department of Behavioral Sciences, University of Kentucky College of Medicine, CE Barnhart, Lexington, KY, 40536, USA.
| | - Anna M Kucharska-Newton
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven R Browning
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - W Jay Christian
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Hüls A, Van Cor S, Christensen GM, Li Z, Liu Y, Shi L, Pearce JL, Bayakly R, Lash TL, Ward K, Switchenko JM. Environmental, social and behavioral risk factors in association with spatial clustering of childhood cancer incidence. Spat Spatiotemporal Epidemiol 2023; 45:100582. [PMID: 37301597 PMCID: PMC10258443 DOI: 10.1016/j.sste.2023.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Childhood cancer incidence is known to vary by age, sex, and race/ethnicity, but evidence is limited regarding external risk factors. We aim to identify harmful combinations of air pollutants and other environmental and social risk factors in association with the incidence of childhood cancer based on 2003-2017 data from the Georgia Cancer Registry. We calculated the standardized incidence ratios (SIR) of Central Nervous System (CNS) tumors, leukemia and lymphomas based on age, gender and ethnic composition in each of the 159 counties in Georgia, USA. County-level information on air pollution, socioeconomic status (SES), tobacco smoking, alcohol drinking and obesity were derived from US EPA and other public data sources. We applied two unsupervised learning tools (self-organizing map [SOM] and exposure-continuum mapping [ECM]) to identify pertinent types of multi-exposure combinations. Spatial Bayesian Poisson models (Leroux-CAR) were fit with indicators for each multi-exposure category as exposure and SIR of childhood cancers as outcomes. We identified consistent associations of environmental (pesticide exposure) and social/behavioral stressors (low socioeconomic status, alcohol) with spatial clustering of pediatric cancer class II (lymphomas and reticuloendothelial neoplasms), but not for other cancer classes. More research is needed to identify the causal risk factors for these associations.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Sara Van Cor
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuxi Liu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John L Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rana Bayakly
- Georgia Department of Public Health, Atlanta, GA, USA
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kevin Ward
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Underhill V, Fiuza A, Allison G, Poudrier G, Lerman-Sinkoff S, Vera L, Wylie S. Outcomes of the Halliburton Loophole: Chemicals regulated by the Safe Drinking Water Act in US fracking disclosures, 2014-2021. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:120552. [PMID: 36368552 PMCID: PMC10187986 DOI: 10.1016/j.envpol.2022.120552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 05/18/2023]
Abstract
Hydraulic fracturing (fracking) has enabled the United States to lead the world in gas and oil production over the past decade; 17.6 million Americans now live within a mile of an oil or gas well (Czolowski et al., 2017). This major expansion in fossil fuel production is possible in part due to the 2005 Energy Policy Act and its "Halliburton Loophole," which exempts fracking activity from regulation under the Safe Drinking Water Act (SDWA). To begin quantifying the environmental and economic impacts of this loophole, this study undertakes an aggregate analysis of chemicals that would otherwise be regulated by SDWA within FracFocus, an industry-sponsored fracking disclosure database. This paper quantifies the total disclosures and total mass of these chemicals used between 2014 and 2021, examines trends in their use, and investigates which companies most use and supply them. We find that 28 SDWA-regulated chemicals are reported in FracFocus, and 62-73% of all disclosures (depending on year) report at least one SDWA-regulated chemical. Of these, 19,700 disclosures report using SDWA-regulated chemicals in masses that exceed their reportable quantities as defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Finally, while the most common direct-supplier category is "company name not reported," Halliburton is the second-most named direct supplier of SWDA regulated chemicals. Halliburton is also the supplier most frequently associated with fracks that use SDWA regulated chemicals. These results show the necessity of a more robust and federally mandated disclosure system and suggest the importance of revisiting exemptions such as the Halliburton Loophole.
Collapse
Affiliation(s)
- Vivian Underhill
- Social Science Environmental Health Research Institute, Northeastern University, USA.
| | - Angelica Fiuza
- Bouvé College of Health Sciences, Northeastern University, USA
| | | | - Grace Poudrier
- Department of Sociology & Anthropology, Northeastern University, USA
| | | | - Lourdes Vera
- Department of Sociology and Department of Environment and Sustainability, University at Buffalo, USA
| | - Sara Wylie
- Department of Sociology & Anthropology and Department of Health Sciences, Northeastern University, USA
| |
Collapse
|
16
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
17
|
Willis MD, Carozza SE, Hystad P. Congenital anomalies associated with oil and gas development and resource extraction: a population-based retrospective cohort study in Texas. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:84-93. [PMID: 36460921 PMCID: PMC9852077 DOI: 10.1038/s41370-022-00505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oil and gas extraction-related activities produce air and water pollution that contains known and suspected teratogens. To date, health impacts of in utero exposure to these activities is largely unknown. OBJECTIVE We investigated associations between in utero exposure to oil and gas extraction activity in Texas, one of the highest producers of oil and gas, and congenital anomalies. METHODS We created a population-based birth cohort between 1999 and 2009 with full maternal address at delivery and linked to the statewide congenital anomaly surveillance system (n = 2,234,138 births, 86,315 cases). We examined extraction-related exposures using tertiles of inverse distance-squared weighting within 5 km for drilling site count, gas production, oil production, and produced water. In adjusted logistic regression models, we calculated odds of any congenital anomaly and 10 specific organ sites using two comparison groups: 1) 5 km of future drilling sites that are not yet operating (a priori main models), and 2) 5-10 km of an active well. RESULTS Using the temporal comparison group, we find increased odds of any congenital anomaly in the highest tertile exposure group for site count (OR: 1.25; 95% CI: 1.21, 1.30), oil production (OR: 1.08; 95% CI: 1.04, 1.12), gas production (1.20; 95% CI: 1.17, 1.23), and produced water (OR: 1.17; 95% CI: 1.14, 1.20). However, associations did not follow a consistent exposure-response pattern across tertiles. Associations are highly attenuated, but still increased, with the spatial comparison group in the highest tertile exposure group. Cardiac and circulatory defects are strongly and consistently associated with all exposure metrics. SIGNIFICANCE Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm findings, examine specific exposure pathways, and identify potential avenues to reduce exposures among local populations. IMPACT About 5% of the U.S. population (~17.6 million people) resides within 1.6 km of an active oil or gas extraction site, yet the influence of this industry on population health is not fully understood. In this analysis, we examined associations between oil and gas extraction-related exposures and congenital anomalies by organ site using birth certificate and congenital anomaly surveillance data in Texas (1999-2009). Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm these findings.
Collapse
Affiliation(s)
- Mary D Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA.
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
18
|
Forster F, Herrera R, Hoopmann M, Kieschke J, Deitermann B, Radon K. Residential proximity to oil and gas production sites and hematologic malignancies: A case-control study. Am J Ind Med 2022; 65:985-993. [PMID: 36250627 DOI: 10.1002/ajim.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND We investigated the association between residential proximity to oil and gas production sites and hematologic malignancies, due to a cancer cluster in the German state of Lower Saxony. METHODS A registry-based case-control study was conducted including 3978 cases of hematologic malignancies diagnosed within 2013-2016 and 15,912 frequency-matched controls randomly drawn by population registries. Residential proximity to 5333 oil and gas production sites at the time of diagnosis was calculated. Unconditional logistic regression models were used to estimate the association between living within 1 km of any exposure site and developing a hematologic malignancy. Models were adjusted for matching variables sex, age group, district, and year of diagnosis as well as for proximity to main streets and to agricultural land. RESULTS We found no association between the development of hematologic malignancies and the proximity to all oil and gas production sites (odds ratio: 0.97; 95% confidence interval: 0.85, 1.11). Focusing on gas production sites increased the odds of developing hematologic cancer (odds ratio: 1.19; 95% confidence interval: 0.97, 1.45). In stratified analyses, associations were stronger in women and for acute myeloblastic leukemia. We also found an association in the district where the initial cluster occurred. CONCLUSIONS Our results suggest that residential proximity to oil and gas production is not a risk factor for all hematologic malignancies in general. Sporadic and past exposures are the most likely scenarios for mechanisms involving oil and gas production, leading to increased risk for certain subtypes of cancer in certain populations.
Collapse
Affiliation(s)
- Felix Forster
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ronald Herrera
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Hoopmann
- Governmental Institute of Public Health of Lower Saxony, Hanover, Germany
| | | | | | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
20
|
Pascual F. Fracking and Childhood Leukemia: New Evidence Supports Greater Residential Setbacks. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:94002. [PMID: 36178796 PMCID: PMC9524600 DOI: 10.1289/ehp11982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
|
21
|
Clark CJ, Johnson NP, Soriano M, Warren JL, Sorrentino KM, Kadan-Lottick NS, Saiers JE, Ma X, Deziel NC. Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case-Control Study in Pennsylvania, 2009-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87001. [PMID: 35975995 PMCID: PMC9383266 DOI: 10.1289/ehp11092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. OBJECTIVE The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. METHODS We conducted a registry-based case-control study of 405 children ages 2-7 y diagnosed with ALL in Pennsylvania between 2009-2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). RESULTS Children with at least one UOG well within 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) = 1.74 (95% CI: 0.93, 3.27) and OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. DISCUSSION Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD's impacts on children's health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092.
Collapse
Affiliation(s)
- Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicholaus P. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Keli M. Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Nina S. Kadan-Lottick
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - James E. Saiers
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Ogbodo JO, Arazu AV, Iguh TC, Onwodi NJ, Ezike TC. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front Immunol 2022; 13:928379. [PMID: 35967306 PMCID: PMC9373925 DOI: 10.3389/fimmu.2022.928379] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The etiopathogenesis of inflammatory and autoimmune diseases, including pulmonary disease, atherosclerosis, and rheumatoid arthritis, has been linked to human exposure to volatile organic compounds (VOC) present in the environment. Chronic inflammation due to immune breakdown and malfunctioning of the immune system has been projected to play a major role in the initiation and progression of autoimmune disorders. Macrophages, major phagocytes involved in the regulation of chronic inflammation, are a major target of VOC. Excessive and prolonged activation of immune cells (T and B lymphocytes) and overexpression of the master pro-inflammatory constituents [cytokine and tumor necrosis factor-alpha, together with other mediators (interleukin-6, interleukin-1, and interferon-gamma)] have been shown to play a central role in the pathogenesis of autoimmune inflammatory responses. The function and efficiency of the immune system resulting in immunostimulation and immunosuppression are a result of exogenous and endogenous factors. An autoimmune disorder is a by-product of the overproduction of these inflammatory mediators. Additionally, an excess of these toxicants helps in promoting autoimmunity through alterations in DNA methylation in CD4 T cells. The purpose of this review is to shed light on the possible role of VOC exposure in the onset and progression of autoimmune diseases.
Collapse
Affiliation(s)
- John Onyebuchi Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Amarachukwu Vivan Arazu
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Tochukwu Chisom Iguh
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ngozichukwuka Julie Onwodi
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
- *Correspondence: Tobechukwu Christian Ezike,
| |
Collapse
|
23
|
Liu L, Wang Y, Liu Y, Wang S, Li T, Feng S, Qin S, Zhang T. Heteronanostructural metal oxide-based gas microsensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:85. [PMID: 35911378 PMCID: PMC9329395 DOI: 10.1038/s41378-022-00410-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance, portable and miniaturized gas sensors has aroused increasing interest in the fields of environmental monitoring, security, medical diagnosis, and agriculture. Among different detection tools, metal oxide semiconductor (MOS)-based chemiresistive gas sensors are the most popular choice in commercial applications and have the advantages of high stability, low cost, and high sensitivity. One of the most important ways to further enhance the sensor performance is to construct MOS-based nanoscale heterojunctions (heteronanostructural MOSs) from MOS nanomaterials. However, the sensing mechanism of heteronanostructural MOS-based sensors is different from that of single MOS-based gas sensors in that it is fairly complex. The performance of the sensors is influenced by various parameters, including the physical and chemical properties of the sensing materials (e.g., grain size, density of defects, and oxygen vacancies of materials), working temperatures, and device structures. This review introduces several concepts in the design of high-performance gas sensors by analyzing the sensing mechanism of heteronanostructural MOS-based sensors. In addition, the influence of the geometric device structure determined by the interconnection between the sensing materials and the working electrodes is discussed. To systematically investigate the sensing behavior of the sensor, the general sensing mechanism of three typical types of geometric device structures based on different heteronanostructural materials are introduced and discussed in this review. This review will provide guidelines for readers studying the sensing mechanism of gas sensors and designing high-performance gas sensors in the future.
Collapse
Affiliation(s)
- Lin Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Yingyi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Yinhang Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Nano Science and Nano Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu China
| | - Shuqi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Tie Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Sujie Qin
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Nano-X, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui PR China
- Gusu Laboratory of Materials, Suzhou, Jiangsu PR China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
24
|
Ewing Sarcoma of the 9th Rib Subsequent to Pediatric Leukemia: A Case Series. J Pediatr Hematol Oncol 2022; 44:e609-e611. [PMID: 35200228 DOI: 10.1097/mph.0000000000002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
Ewing sarcoma is an aggressive malignancy of bone and soft tissue that accounts for ∼2% of cases of childhood cancer. It has been rarely reported as a secondary neoplasm. Data from the Childhood Cancer Survivor Study has evaluated secondary sarcomas in 5-year survivors of childhood cancer. We report 2 pediatric patients in northeast Pennsylvania, who developed secondary Ewing sarcoma of the 9th rib within 5 years of primary childhood leukemia diagnoses.
Collapse
|
25
|
Li L, Dominici F, Blomberg AJ, Bargagli-Stoffi FJ, Schwartz JD, Coull BA, Spengler JD, Wei Y, Lawrence J, Koutrakis P. Exposure to Unconventional Oil and Gas Development and All-cause Mortality in Medicare Beneficiaries. NATURE ENERGY 2022; 7:177-185. [PMID: 35425643 PMCID: PMC9004666 DOI: 10.1038/s41560-021-00970-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2021] [Indexed: 05/28/2023]
Abstract
Little is known about whether exposure to unconventional oil and gas development is associated with higher mortality risks in the elderly and whether related air pollutants are exposure pathways. We studied a cohort of 15,198,496 Medicare beneficiaries (136,215,059 person-years) in all major U.S. unconventional exploration regions from 2001 to 2015. We gathered data from records of more than 2.5 million oil and gas wells. For each beneficiary's ZIP code of residence and year in the cohort, we calculated a proximity-based and a downwind-based pollutant exposure. We analyzed the data using two methods: Cox proportional hazards model and Difference-in-Differences. We found evidence of statistically significant higher mortality risk associated with living in proximity to and downwind of unconventional oil and gas wells. Our results suggest that primary air pollutants sourced from unconventional oil and gas exploration can be a major exposure pathway with adverse health effects in the elderly.
Collapse
Affiliation(s)
- Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Annelise J. Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - John D. Spengler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joy Lawrence
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Clark CJ, Xiong B, Soriano MA, Gutchess K, Siegel HG, Ryan EC, Johnson NP, Cassell K, Elliott EG, Li Y, Cox AJ, Bugher N, Glist L, Brenneis RJ, Sorrentino KM, Plano J, Ma X, Warren JL, Plata DL, Saiers JE, Deziel NC. Assessing Unconventional Oil and Gas Exposure in the Appalachian Basin: Comparison of Exposure Surrogates and Residential Drinking Water Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1091-1103. [PMID: 34982938 PMCID: PMC10259677 DOI: 10.1021/acs.est.1c05081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.
Collapse
Affiliation(s)
- Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
- University of Minnesota, Department of Civil, Environmental and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Mario A Soriano
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Kristina Gutchess
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Helen G Siegel
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Emma C Ryan
- Tufts University, Department of Public Health and Community Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Kelsie Cassell
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elise G Elliott
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yunpo Li
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Austin J Cox
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Nicolette Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lukas Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Rebecca J Brenneis
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Keli M Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Julie Plano
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Xiaomei Ma
- Yale School of Public Health, Department of Chronic Disease Epidemiology, 60 College Street, New Haven, Connecticut 06510, United States
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College Street, New Haven, Connecticut 06510, United States
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - James E Saiers
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
27
|
Zhang K, Chang S, Fu Q, Sun X, Fan Y, Zhang M, Tu X, Qadeer A. Occurrence and risk assessment of volatile organic compounds in multiple drinking water sources in the Yangtze River Delta region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112741. [PMID: 34481355 DOI: 10.1016/j.ecoenv.2021.112741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) are widely present in water environment, which can threaten ecological sustainability and human health. The concentrations of VOCs and their ecological risks in drinking water are of great concern to human beings. Therefore, 54 kinds of VOCs were investigated from 58 locations of the Yangtze River Delta Region (Yangtze River, Qiantang River, Huangpu River, Taihu Lake and Jiaxing Urban River). Out of 54 target compounds, only 31 VOCs were detected, with total concentrations ranging from 0.570 to 46.820 μg/L from 58 locations of all drinking water sources. Among all detected VOCs compounds, only toluene and styrene can cause high-level ecological risk at location TH-2 of Taihu Lake. According to the carcinogenic and non-carcinogenic risk index, compounds such as 1,2-dichloroethane, bromodichloromethane and 1,1,2-trichloroethane posed a higher carcinogenic risk, and 1,2-dichloroethane, trichloroethylene and toluene posed a higher non-carcinogenic risk. Olfactory risks of water bodies in the Yangtze River Delta region are negligible. Although the concentrations of VOCs in the Yangtze River Delta region did not exceed national standards in China and guidelines of the World Health Organization (WHO) for drinking water, the presence of some ecological and health risks indicated that future monitoring studies and control practices are important to ensure ecological safety of drinking water sources.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Sheng Chang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Qing Fu
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xingbin Sun
- College of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yueting Fan
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Moli Zhang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Abdul Qadeer
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
28
|
Faber AH, Brunner AM, Dingemans MML, Baken KA, Kools SAE, Schot PP, de Voogt P, van Wezel AP. Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148727. [PMID: 34323756 DOI: 10.1016/j.scitotenv.2021.148727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Paul P Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Pim de Voogt
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Erickson CL, Barron IG, Zapata I. The effects of hydraulic fracturing activities on birth outcomes are evident in a non-individualized county-wide aggregate data sample from Colorado. J Public Health Res 2021; 11. [PMID: 34619860 PMCID: PMC8859723 DOI: 10.4081/jphr.2021.2551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background: There is growing concern about the recent increase in oil and gas development using hydraulic fracturing. Studies linking adverse birth outcomes and maternal proximity to hydraulic fracturing wells exist but tend to use individualized maternal and infant data contained in protected health care records. In this study, we extended the findings of these past studies to evaluate if analogous effects detected with individualized data could be detected from non-individualized county-wide aggregated data. Design and methods: This study used a retrospective cohort of 252,502 birth records from 1999 to 2019 gathered from a subset sample of 5 counties in the state of Colorado where hydraulic fracturing activities were conducted. We used Generalized Linear Models to evaluate the effect of county-wide well density and production data over unidentified birth weight, and prematurity data. Covariates used in the model were county-wide statistics sourced from the US Census. Results: Our modeling approach showed an interesting effect where hydraulic fracturing exposure metrics have a mixed effect directional response. This effect was detected on birth weight when well density, production and their interaction are accounted for. The interaction effect provides an additional interpretation to discrepancies reported previously in the literature. Our approach only detected a positive association to prematurity with increased production. Conclusions: Our findings demonstrate two main points: First, the effect of hydraulic fracturing is detectable by using countywide unidentified data. Second, the effect of hydraulic fracturing can be complicated by the number of operations and the intensity of the activities in the area. Significance for public health The proliferation of hydraulic fracturing for oil and natural gas production has led to an increase in interest in the public health impact of this industry. Research in this field can be complicated due to data accessibility and concerns of privacy violations. In this study we focus on the assessment of maternal health outcomes while considering data privacy. The main goal of our study was to evaluate the potential of using non-individualized, county-wide data to detect the effects of hydraulic fracturing activities on birth outcomes. This goal was achieved by using county-wide exposure metrics of hydraulic fracturing well density and production and by adjusting to known demographic covariates sourced from Census data. Our study provides and alternate approach to evaluate health effects of hydraulic fracturing activities and provides additional evidence highlighting the complicated effects associations that should be considered in further studies.
Collapse
Affiliation(s)
| | - Ileana G Barron
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL .
| | - Isain Zapata
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO.
| |
Collapse
|
30
|
Willis MD, Hill EL, Boslett A, Kile ML, Carozza SE, Hystad P. Associations between Residential Proximity to Oil and Gas Drilling and Term Birth Weight and Small-for-Gestational-Age Infants in Texas: A Difference-in-Differences Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77002. [PMID: 34287013 PMCID: PMC8293911 DOI: 10.1289/ehp7678] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Oil and natural gas extraction may produce environmental pollution at levels that affect reproductive health of nearby populations. Available studies have primarily focused on unconventional gas drilling and have not accounted for local population changes that can coincide with drilling activity. OBJECTIVE Our study sought to examine associations between residential proximity to oil and gas drilling and adverse term birth outcomes using a difference-in-differences study design. METHODS We created a retrospective population-based term birth cohort in Texas between 1996 and 2009 composed of mother-infant dyads (n=2,598,025) living <10km from an oil or gas site. We implemented a difference-in-differences approach to estimate associations between drilling activities and infant health: term birth weight and term small for gestational age (SGA). Using linear and logistic regression, we modeled interactions between births before (unexposed) or during (exposed) drilling activity and residential proximity near (0-1, 1-2, or 2-3km) or far (3-10km) from an active or future drilling site, adjusting for individual- and neighborhood-level characteristics. RESULTS The adjusted mean difference in term birth weight for mothers living 0-1 vs. 3-10km from a current or future drilling site was -7.3g [95% confidence interval (CI): -11.6, -3.0] for births during active vs. future drilling. The corresponding adjusted odds ratio for SGA was 1.02 (95% CI: 0.98, 1.06). Negative associations with term birth weight were observed for the 1-2 and 2-3km near groups, and no consistent differences were identified by type of drilling activity. Larger, though imprecise, adverse associations were found for infants born to Hispanic women, women with the lowest educational attainment, and women living in cities. CONCLUSIONS Residing near oil and gas drilling sites during pregnancy was associated with a small reduction in term birth weight but not SGA, with some evidence of environmental injustices. Additional work is needed to investigate specific drilling-related exposures that might explain these associations. https://doi.org/10.1289/EHP7678.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Elaine L Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Andrew Boslett
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Rochester Data Science Consortium, Rochester, New York, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
31
|
Sandl E, Cahill AG, Welch L, Beckie R. Characterizing oil and gas wells with fugitive gas migration through Bayesian multilevel logistic regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144678. [PMID: 33736248 DOI: 10.1016/j.scitotenv.2020.144678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Oil and gas wells are engineered with barriers to prevent fluid movement along the wellbore. If the integrity of one or more of these barriers fails, it may result in subsurface leakage of natural gas outside the well casing, a process termed fugitive gas migration (GM). Knowledge of the occurrence and causes of GM is essential for effective management of associated potential risks. In the province of British Columbia, Canada (BC), oil and gas producers are required to report well drilling, completion, production, and abandonment records for all oil and gas wells to the provincial regulator. This well data provides a unique opportunity to identify well characteristics with higher likelihoods for GM to develop. Here we employ Bayesian multilevel logistic regression to understand the associations between various well attributes and reported occurrences of GM in 0.6% of the 25,000 oil and gas wells in BC. Our results indicate that there is no association between the occurrence of GM and hydraulic fracturing. Overall, there appears to be no well construction or operation attribute in the study database that is conclusively associated with GM. Wells with GM more frequently exhibit indicators of well integrity loss (i.e., surface casing vent flow, remedial treatments, and blowouts) and geographic location appears to be important. We ascribe the spatial clustering of GM cases to the local geologic environment, and we speculate that there are links between particular intermediate gas-bearing formations and GM occurrence in the Fort Nelson Plains Area. The results of this study suggest that oil and gas wells in high GM occurrence areas and those showing any attribute associated with integrity failure (e.g., surface casing vent flow) should be prioritized for monitoring to improve the detection of GM.
Collapse
Affiliation(s)
- E Sandl
- Earth Ocean and Atmospheric Science, University of British Columbia, 2020-2007 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - A G Cahill
- The Lyell Centre, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, United Kingdom
| | - L Welch
- British Columbia Oil and Gas Commission, 1500 Hardy St #203, Kelowna, BC V1Y 8H2, Canada
| | - R Beckie
- Earth Ocean and Atmospheric Science, University of British Columbia, 2020-2007 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
32
|
Pordanjani SR, Kavousi A, Mirbagheri B, Shahsavani A, Etemad K. Identification of high-risk and low-risk clusters and estimation of the relative risk of acute lymphoblastic leukemia in provinces of Iran during 2006-2014 period: A geo-epidemiological study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:18. [PMID: 34084197 PMCID: PMC8106411 DOI: 10.4103/jrms.jrms_662_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND The present study was conducted to determine the epidemiological status, identify high-risk and low-risk clusters, and estimate the relative risk (RR) of acute lymphoblastic leukemia (ALL) in provinces of Iran. MATERIALS AND METHODS This is an ecological study carried out using an Exploratory Multiple-Group design on 3769 children under 15 years of age with ALL from 2006 to 2014. Data analysis was performed using Mann-Whitney U, Global Moran's I and Kuldorff's purely spatial scan statistic tests at a significance level of 0.05. RESULTS The average annual incidence rate of ALL during 2006-2014 period was 2.25/100,000 children under 15 years of age. The most likely high-risk cluster with log-likelihood ratio (LLR) =327.47 is located in the southwestern part of Iran with a radius of 294.93 km and a centrality of 30.77 N and 50.83 E, which contained 1276 patients with a RR of 2.56. It includes Fars, Bushehr, Kohgiluyeh and Boyer-Ahmad, Khuzestan and Chahar Mahall and Bakhtiari provinces. On the other hand, the most likely low-risk cluster with 517 patients, and a RR 0.49 and LLR = 227.03 was identified in the northwestern part of Iran with a radius of 270.38 km and a centrality of 37.25 N and 49.49 E. It includes Zanjan, Qazvin, Gilan and East Azerbaijan, Ardabil, Alborz and Tehran provinces. CONCLUSION High-risk clusters were observed in Southwestern, central, and eastern Iran, while low-risk clusters were identified in Northern and Western Iran.
Collapse
Affiliation(s)
- Sajjad Rahimi Pordanjani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Kavousi
- Workplace Health Promotion Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mirbagheri
- Center for Remote Sensing and GIS Research, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Etemad
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Liang J, Wang Q, Li QX, Jiang L, Kong J, Ke M, Arslan M, Gamal El-Din M, Chen C. Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. BIORESOURCE TECHNOLOGY 2020; 313:123687. [PMID: 32574748 DOI: 10.1016/j.biortech.2020.123687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Flowback water from shale gas extraction is highly saline and comprises complex organic substances, thereby posing a significant challenge for the environmental management of the unconventional natural gas industry. In this work, an aerobic granular sludge (AGS) method was successfully used for the treatment of flowback water from shale gas extraction. The formed AGS had a diameter of 0.25-2.0 mm and the total sludge volume index was 23.40 mL g-1. The AGS efficiently removed COD, NH4+-N and TN by 70.1%, 92.1%, and 59.2%, respectively. The bacterial communities responsible for the removal of nitrogen and degradation of organics were enriched in AGS. The dynamics of contaminant removal was further explained with a three-layered artificial neural network model. The results showed that the initial concentration of COD, TDS, NH4+-N and TN governed the contaminants' removal. As for operating parameters, aerating time showed a strong effect on NH4+-N and TN removal, whereas settling time impacted the COD removal.
Collapse
Affiliation(s)
- Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Liangyan Jiang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawen Kong
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
34
|
Blinn HN, Utz RM, Greiner LH, Brown DR. Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA. PLoS One 2020; 15:e0237325. [PMID: 32810134 PMCID: PMC7446921 DOI: 10.1371/journal.pone.0237325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/25/2020] [Indexed: 01/27/2023] Open
Abstract
Recent research has shown relationships between health outcomes and residence proximity to unconventional oil and natural gas development (UOGD). The challenge of connecting health outcomes to environmental stressors requires ongoing research with new methodological approaches. We investigated UOGD density and well emissions and their association with symptom reporting by residents of southwest Pennsylvania. A retrospective analysis was conducted on 104 unique, de-identified health assessments completed from 2012-2017 by residents living in proximity to UOGD. A novel approach to comparing estimates of exposure was taken. Generalized linear modeling was used to ascertain the relationship between symptom counts and estimated UOGD exposure, while Threshold Indicator Taxa Analysis (TITAN) was used to identify associations between individual symptoms and estimated UOGD exposure. We used three estimates of exposure: cumulative well density (CWD), inverse distance weighting (IDW) of wells, and annual emission concentrations (AEC) from wells within 5 km of respondents' homes. Taking well emissions reported to the Pennsylvania Department of Environmental Protection, an air dispersion and screening model was used to estimate an emissions concentration at residences. When controlling for age, sex, and smoker status, each exposure estimate predicted total number of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information criterion values revealed that CWD was the better predictor of adverse health symptoms in our sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular) constituted 50% of reported symptoms across exposures, suggesting these groupings of symptoms may be more likely reported by respondents when UOGD intensity increases. Our results do not confirm that UOGD was the direct cause of the reported symptoms but raise concern about the growing number of wells around residential areas. Our approach presents a novel method of quantifying exposures and relating them to reported health symptoms.
Collapse
Affiliation(s)
- Hannah N. Blinn
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - Ryan M. Utz
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
| | - Lydia H. Greiner
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - David R. Brown
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| |
Collapse
|
35
|
Rahimi Pordanjani S, Kavousi A, Mirbagheri B, Shahsavani A, Etemad K. Temporal trend and spatial distribution of acute lymphoblastic leukemia in Iranian children during 2006-2014: a mixed ecological study. Epidemiol Health 2020; 42:e2020057. [PMID: 32777882 PMCID: PMC7871159 DOI: 10.4178/epih.e2020057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The present study investigated the spatiotemporal epidemiological status of acute lymphoblastic leukemia (ALL), the most common childhood cancer, in Iran. METHODS Using an exploratory mixed design, this ecological study examined 3,769 under-15 children with ALL recorded in the National Cancer Registry of Iran during 2006-2014. Data were analyzed using the Mann-Whitney U test, the Getis-Ord general G (GOGG) index, optimized hot spot analysis, and Pearson correlation coefficients (PCC) at a significance level of 0.05. RESULTS The average annual incidence of the disease was 2.25 per 100,000 under-15 children, and the cumulative incidence rate (CIR) was 21.31 per 100,000 under-15 children. Patients' mean age was 5.90 years (standard deviation, 3.68), and the peak incidence was observed among 2-year to 5-year-olds. No significant difference was found in mean age between boys and girls (p=0.261). The incidence of ALL was more common during spring and summer than in other seasons. The GOGG index was 0.039 and significant (p<0.001). Hot spots were identified in south, central, and eastern Iran and cold spots in the north and west of Iran. The PCC between the CIR and latitude was negative (r=-0.507; p=0.003) but that between the CIR and longitude was positive (r=0.347; p=0.055). CONCLUSIONS The incidence of ALL in Iranian children was lower than that observed in developed countries, but showed an increasing trend. It can be argued that the incidence of ALL is due to synergistic interactions between environmental, infectious, geographical, and genetic risk factors.
Collapse
Affiliation(s)
- Sajjad Rahimi Pordanjani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Kavousi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Workplace Health Promotion Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mirbagheri
- Center for Remote Sensing and GIS Research, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Etemad
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sumner AJ, Plata DL. A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:945-955. [PMID: 32037427 DOI: 10.1039/c9em00505f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydraulically fractured wells with horizontal drilling (HDHF) accounted for 69% of all oil and gas wells drilled and 670 000 of the 977 000 producing wells in 2016. However, only 238 flowback and produced water samples have been analyzed to date for specific organic chemicals. To aid the development of predictive tools, we constructed a database combining additive disclosure reports and physicochemical conditions at respective well sites with the goal of making synthesized analyses accessible. As proof-of-concept, we used this database to evaluate transformation pathways through two case studies: (1) a filter-based approach for flagging high-likelihood halogenation sites according to experimental criteria (e.g., for a model compound, cinnamaldehyde) and (2) a semi-quantitative, regionally comparative trihalomethane formation model that leverages an empirically derived equation. Study (1) highlighted 173 wells with high cinnamaldehyde halogenation likelihood based on combined criteria related to subsurface conditions and oxidant additive usage. Study (2) found that trihalomethane formation in certain wells within five specific basins may exceed regulatory limits for drinking water based on reaction-favorable subsurface conditions, albeit with wide uncertainty. While experimentation improves our understanding of subsurface reaction pathways, this database has immediate applications for informing environmental monitors and engineers about potential transformation products in residual fluids, guiding well operators' decisions to avoid unwanted transformations. In the future, we envision more robust components incorporating transformation, transport, toxicity, and other physicochemical parameters to predict subsurface interactions and flowback composition.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
37
|
Li Q, Wang H, Wang H, Wang Z, Li Y, Ran J, Zhang C. Re-investigation of cadmium accumulation in Mirabilis jalapa L.: evidences from field and laboratory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12065-12079. [PMID: 31983000 DOI: 10.1007/s11356-020-07785-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mirabilis jalapa L. was identified as a cadmium (Cd) hyperaccumulator, but data were mainly from laboratory conditions. The main aim of the present study was to confirm whether M. jalapa is a Cd hyperaccumulator by field survey and laboratory experiment. The field survey was conducted at 3 sites and 66 samples were collected, and the results showed that although M. jalapa did not exhibit any visible damage when growing on soil containing 139 mg Cd kg-1, a low concentration of Cd (11.85 ± 3.45 mg kg-1) in its leaves was observed. Although the translocation factor (TF) was up to 3.24 ± 0.42, the bioconcentration factor (BCF) was only 0.13 ± 0.07. The Cd accumulation in leaves of Lanping (LP, contaminated site) and Kunming (KM, clean site) populations reached 93.88 and 81.76 mg kg-1 when artificially spiked soil Cd was 175 mg kg-1, respectively. The BCFs of LP and KM populations were 0.55 and 0.48, and the TFs of the two populations were 3.98 and 4.15, respectively. Under hydroponic condition, the Cd concentration in young leaves of LP and KM populations was 78.5 ± 0.8 and 46.3 ± 1.2 mg kg-1 at 5 mg L-1 Cd treatment, respectively. Furthermore, a significantly positive correlation between tissue Cd concentration and total Cd, CaCl2-extractable Cd, and TCLP-Cd (toxicity characteristic leaching procedure) in soil was established. Therefore, M. jalapa had constitutional characteristics for Cd tolerance and accumulation, but it was not a Cd hyperaccumulator.
Collapse
Affiliation(s)
- Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Yang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Jiakang Ran
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Chunyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| |
Collapse
|
38
|
Wollin KM, Damm G, Foth H, Freyberger A, Gebel T, Mangerich A, Gundert-Remy U, Partosch F, Röhl C, Schupp T, Hengstler JG. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. Arch Toxicol 2020; 94:967-1016. [PMID: 32385535 PMCID: PMC7225182 DOI: 10.1007/s00204-020-02758-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/26/2020] [Indexed: 02/02/2023]
Abstract
The use of hydraulic fracturing (HF) to extract oil and natural gas has increased, along with intensive discussions on the associated risks to human health. Three technical processes should be differentiated when evaluating human health risks, namely (1) drilling of the borehole, (2) hydraulic stimulation, and (3) gas or oil production. During the drilling phase, emissions such as NOx, NMVOCs (non-methane volatile organic compounds) as precursors for tropospheric ozone formation, and SOx have been shown to be higher compared to the subsequent phases. In relation to hydraulic stimulation, the toxicity of frac fluids is of relevance. More than 1100 compounds have been identified as components. A trend is to use fewer, less hazardous and more biodegradable substances; however, the use of hydrocarbons, such as kerosene and diesel, is still allowed in the USA. Methane in drinking water is of low toxicological relevance but may indicate inadequate integrity of the gas well. There is a great concern regarding the contamination of ground- and surface water during the production phase. Water that flows to the surface from oil and gas wells, so-called 'produced water', represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water. Particularly critical is the use of produced water for watering of agricultural areas, where persistent compounds may accumulate. Air contamination can occur as a result of several HF-associated activities. In addition to BTEX, 20 HF-associated air contaminants are group 1A or 1B carcinogens according to the IARC. In the U.S., oil and gas production (including conventional production) represents the second largest source of anthropogenic methane emissions. High-quality epidemiological studies are required, especially in light of recent observations of an association between childhood leukemia and multiple myeloma in the neighborhood of oil and gas production sites. In conclusion, (1) strong evidence supports the conclusion that frac fluids can lead to local environmental contamination; (2) while changes in the chemical composition of soil, water and air are likely to occur, the increased levels are still often below threshold values for safety; (3) point source pollution due to poor maintenance of wells and pipelines can be monitored and remedied; (4) risk assessment should be based on both hazard and exposure evaluation; (5) while the concentrations of frac fluid chemicals are low, some are known carcinogens; therefore, thorough, well-designed studies are needed to assess the risk to human health with high certainty; (6) HF can represent a health risk via long-lasting contamination of soil and water, when strict safety measures are not rigorously applied.
Collapse
Affiliation(s)
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| | - A Freyberger
- Research and Development, Translational Sciences-Toxicology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Constance, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - F Partosch
- Institute for Occupational, Social and Environmental Medicine, University Medical Center, Göttingen, Germany
| | - C Röhl
- Department of Environmental Health Protection, Schleswig-Holstein State Agency for Social Services, Kiel, Germany
| | - T Schupp
- Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), University of Dortmund, Dortmund, Germany.
| |
Collapse
|
39
|
Deziel NC, Brokovich E, Grotto I, Clark CJ, Barnett-Itzhaki Z, Broday D, Agay-Shay K. Unconventional oil and gas development and health outcomes: A scoping review of the epidemiological research. ENVIRONMENTAL RESEARCH 2020; 182:109124. [PMID: 32069745 DOI: 10.1016/j.envres.2020.109124] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hydraulic fracturing together with directional and horizontal well drilling (unconventional oil and gas (UOG) development) has increased substantially over the last decade. UOG development is a complex process presenting many potential environmental health hazards, raising serious public concern. AIM To conduct a scoping review to assess what is known about the human health outcomes associated with exposure to UOG development. METHODS We performed a literature search in MEDLINE and SCOPUS for epidemiological studies of exposure to UOG development and verified human health outcomes published through August 15, 2019. For each eligible study we extracted data on the study design, study population, health outcomes, exposure assessment approach, statistical methodology, and potential confounders. We reviewed the articles based on categories of health outcomes. RESULTS We identified 806 published articles, most of which were published during the last three years. After screening, 40 peer-reviewed articles were selected for full text evaluation and of these, 29 articles met our inclusion criteria. Studies evaluated pregnancy outcomes, cancer incidence, hospitalizations, asthma exacerbations, sexually transmitted diseases, and injuries or mortality from traffic accidents. Our review found that 25 of the 29 studies reported at least one statistically significant association between the UOG exposure metric and an adverse health outcome. The most commonly studied endpoint was adverse birth outcomes, particularly preterm deliveries and low birth weight. Few studies evaluated the mediating pathways that may underpin these associations, highlighting a clear need for research on the potential exposure pathways and mechanisms underlying observed relationships. CONCLUSIONS This review highlights the heterogeneity among studies with respect to study design, outcome of interest, and exposure assessment methodology. Though replication in other populations is important, current research points to a growing body of evidence of health problems in communities living near UOG sites.
Collapse
Affiliation(s)
- Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States.
| | - Eran Brokovich
- Natural Resources Administration, Ministry of Energy, Jerusalem, Israel.
| | - Itamar Grotto
- Ministry of Health, Jerusalem, Israel; School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer, Sheva, Israel.
| | - Cassandra J Clark
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Zohar Barnett-Itzhaki
- Public Health Services, Ministry of Health, Jerusalem, Israel; Research Center for Health Informatics, School of Engineering, Ruppin Academic Center, Israel.
| | - David Broday
- Department of Environmental, Water, and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Keren Agay-Shay
- Department of Population Health, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
40
|
Xu X, Zhang X, Carrillo G, Zhong Y, Kan H, Zhang B. A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:128-136. [PMID: 31075693 DOI: 10.1016/j.envpol.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thousands of chemicals exist in hydraulic-fracturing (HF) fluids and wastewater from unconventional oil gas development. The carcinogenicity of these chemicals in HF fluids and wastewater has never been systematically evaluated. OBJECTIVES In this study, we assessed the carcinogenicity of 1,173 HF-related chemicals in the HF chemical data from the US Environmental Protection Agency (EPA). METHODS We linked the HF chemical data with the agent classification data from the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) (N = 998 chemicals) to evaluate human carcinogenic risk of the chemicals and with the Carcinogenic Potency Database (CPDB) from Toxnet (N = 1,534 chemicals) to evaluate potential carcinogenicity of the chemicals. RESULTS The Chemical Abstract Service Registry Numbers (CASRNs) for chemicals were used for data linkage. Among 1,173 chemicals, 1,039 were identified only in HF fluids, 97 only in wastewater, and 37 in both. Compared with IARC, we found information of 104 chemicals, and 48 of them may have potentially carcinogenic risk to human, among which 14 are definitely carcinogenic, 7 probably carcinogenic, and 27 possibly carcinogenic. Using the CPDB data, it suggests that 66 chemicals are potentially carcinogenic based on rats and mouse models. CONCLUSIONS Conclusions Our evaluation suggests that exposure to some chemicals in HF fluids and wastewater may increase cancer risk, and the identified chemicals could be selected as the priority list for drinking water exposure assessment or cancer-related health studies.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, USA.
| | - Xiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, USA
| | - Yan Zhong
- Department of Statistics, College of Science, Texas A&M University, USA
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Bangning Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, USA
| |
Collapse
|
41
|
Sumner AJ, Plata DL. Oxidative Breakers Can Stimulate Halogenation and Competitive Oxidation in Guar-Gelled Hydraulic Fracturing Fluids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8216-8226. [PMID: 31276388 DOI: 10.1021/acs.est.9b01896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A number of flowback samples derived from horizontally drilled hydraulic fracturing (HDHF) operations reveal consistent detections of halogenated organic species , yet the source of these compounds remains uncertain. Studies simulating subsurface conditions have found that oxidative "breakers" can halogenate certain additives, but these pathways are unverified in the presence of cross-linked-gels, common features of HDHF operations. Using a high-throughput custom reactor system, we implemented a reaction matrix to test the capacity for halogenation of two frequently disclosed compounds with demonstrated halogenation pathways (cinnamaldehyde and citric acid) across guar gels with varied types and concentrations of cross-linkers and oxidative breakers. Cinnamaldehyde halogenation proceeded most readily in borate cross-linked gels at high ammonium persulfate dosages. Citric acid formed trihalomethanes (THMs) broadly across the matrix, generating brominated THMs at higher levels of hypochlorite breaker. Isolated removals of cross-linker or guar enhanced or diminished certain product formations, highlighting additional capacities for relevant ingredients to influence halogenation. Finally, we analyzed flowback samples from the Denver-Julesberg Basin, finding that additions of oxidant enhanced halogenation. As a more realistic subsurface simulation, this work demonstrates strict criteria for the subsurface halogenation of cinnamaldehyde and the broad capacity for THM formation due to systematic oxidant usage as gel breakers in HDHF operations.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Desiree L Plata
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
42
|
Filippini T, Hatch EE, Rothman KJ, Heck JE, Park AS, Crippa A, Orsini N, Vinceti M. Association between Outdoor Air Pollution and Childhood Leukemia: A Systematic Review and Dose-Response Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:46002. [PMID: 31017485 PMCID: PMC6785230 DOI: 10.1289/ehp4381] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND A causal link between outdoor air pollution and childhood leukemia has been proposed, but some older studies suffer from methodological drawbacks. To the best of our knowledge, no systematic reviews have summarized the most recently published evidence and no analyses have examined the dose-response relation. OBJECTIVE We investigated the extent to which outdoor air pollution, especially as resulting from traffic-related contaminants, affects the risk of childhood leukemia. METHODS We searched all case-control and cohort studies that have investigated the risk of childhood leukemia in relation to exposure either to motorized traffic and related contaminants, based on various traffic-related metrics (number of vehicles in the closest roads, road density, and distance from major roads), or to measured or modeled levels of air contaminants such as benzene, nitrogen dioxide, 1,3-butadiene, and particulate matter. We carried out a meta-analysis of all eligible studies, including nine studies published since the last systematic review and, when possible, we fit a dose-response curve using a restricted cubic spline regression model. RESULTS We found 29 studies eligible to be included in our review. In the dose-response analysis, we found little association between disease risk and traffic indicators near the child's residence for most of the exposure range, with an indication of a possible excess risk only at the highest levels. In contrast, benzene exposure was positively and approximately linearly associated with risk of childhood leukemia, particularly for acute myeloid leukemia, among children under 6 y of age, and when exposure assessment at the time of diagnosis was used. Exposure to nitrogen dioxide showed little association with leukemia risk except at the highest levels. DISCUSSION Overall, the epidemiologic literature appears to support an association between benzene and childhood leukemia risk, with no indication of any threshold effect. A role for other measured and unmeasured pollutants from motorized traffic is also possible. https://doi.org/10.1289/EHP4381.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elizabeth E. Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kenneth J. Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- RTI Health Solutions, Research Triangle Park, North Carolina, USA
| | - Julia E. Heck
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Andrew S. Park
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Orsini
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Garcia-Gonzales DA, Shonkoff SB, Hays J, Jerrett M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 2019; 40:283-304. [DOI: 10.1146/annurev-publhealth-040218-043715] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.
Collapse
Affiliation(s)
- Diane A. Garcia-Gonzales
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Seth B.C. Shonkoff
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Environment Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake Hays
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
44
|
He M, Chen WJ, Tian L, Shao B, Lin Y. Plant-microbial synergism: An effective approach for the remediation of shale-gas fracturing flowback and produced water. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:170-178. [PMID: 30308355 DOI: 10.1016/j.jhazmat.2018.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Effective and affordable treatment of hydraulic fracturing flowback and produced water (FPW) is a major challenge for the sustainability of unconventional shale-gas exploration and development. We investigated the effectiveness of different combinations of activated sludge (AS), three microbial preparations, and ten plants (ryegrass, water dropwort, typha, reed, iris, canna, water caltrop, rape, water spinach, and Alternanthera philoxeroides) on the treatment performance of FPW. Water quality parameters (NH4-N, NO3-N, NO2-N, CODcr, and BOD) and the algal toxicity of the treated FPW were used as metrics to assess the treatment efficiency. The results showed that AS had higher treatment efficiency than the prepared microorganisms, and water dropwort was the best plant candidate for boosting performance of AS treatment of FPW. The treated FPW showed improved water quality and microbial diversity. The Shannon-Wiener index increased from 4.76 to 7.98 with FPW treatment. The relative abundance of microbes with a greater resistance to high salt conditions, such as Bacteroidetes, Firmicutes, Chloroflexi, increased substantially in the treated FPW. The combination of water dropwort and AS showed the greatest improvement in water quality, the highest algal density and microbial diversity, thus indicating good potential for this candidate in the treatment of FPW.
Collapse
Affiliation(s)
- Mei He
- Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China; School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Wen-Jie Chen
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Lei Tian
- Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, China; School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
| | - Bo Shao
- School of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo 0349, Norway; School of Resources and Environment, Yangtze University, Wuhan 430100, China.
| |
Collapse
|
45
|
Seifi M, Niazi S, Johnson G, Nodehi V, Yunesian M. Exposure to ambient air pollution and risk of childhood cancers: A population-based study in Tehran, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:105-110. [PMID: 30053660 DOI: 10.1016/j.scitotenv.2018.07.219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 05/21/2023]
Abstract
The relationship between air pollution and childhood cancer is inconclusive. We investigated the associations between exposure to ambient air pollution and childhood cancers in Tehran, Iran. This project included children between 1 and 15 years-of-age with a cancer diagnosis by the Center for the Control of Non Communicable Disease (n = 161) during 2007 to 2009. Controls were selected randomly within the city using a Geographic Information System (GIS) (n = 761). The cases were geocoded based on exact home addresses. Air pollution exposure of cases and random controls were estimated by a previously developed Land Use Regression (LUR) model for the 2010 calendar year. The annual mean concentrations of Particulate Matter ≤ 10 μm (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the locations of cancer cases were 101.97 μg/m3, 49.42 ppb and 38.92 ppb respectively, while in the random control group, respective mean exposures were 98.63 μg/m3, 45.98 ppb and 38.95 ppb. A logistic regression model was used to find the probability of childhood cancer per unit increase in PM10, NO2 and SO2. We observed a positive association between exposures to PM10 with childhood cancers. We did, however, observe a positive, but not statistically significant association between NO2 exposure and childhood cancer. Our study is the first to highlight an association between air pollution exposure and childhood cancer risk in Iran, however these findings require replication through future studies.
Collapse
Affiliation(s)
- Morteza Seifi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Niazi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Graham Johnson
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Vahideh Nodehi
- Department of geography, Kharazmi University, Tehran, Iran
| | - Masud Yunesian
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Faber AH, Annevelink M, Gilissen HK, Schot P, van Rijswick M, de Voogt P, van Wezel A. How to Adapt Chemical Risk Assessment for Unconventional Hydrocarbon Extraction Related to the Water System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 246:1-32. [PMID: 29280081 DOI: 10.1007/398_2017_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We identify uncertainties and knowledge gaps of chemical risk assessment related to unconventional drillings and propose adaptations. We discuss how chemical risk assessment in the context of unconventional oil and gas (UO&G) activities differs from conventional chemical risk assessment and the implications for existing legislation. A UO&G suspect list of 1,386 chemicals that might be expected in the UO&G water samples was prepared which can be used for LC-HRMS suspect screening. We actualize information on reported concentrations in UO&G-related water. Most information relates to shale gas operations, followed by coal-bed methane, while only little is available for tight gas and conventional gas. The limited research on conventional oil and gas recovery hampers comparison whether risks related to unconventional activities are in fact higher than those related to conventional activities. No study analyzed the whole cycle from fracturing fluid, flowback and produced water, and surface water and groundwater. Generally target screening has been used, probably missing contaminants of concern. Almost half of the organic compounds analyzed in surface water and groundwater exceed TTC values, so further risk assessment is needed, and risks cannot be waived. No specific exposure scenarios toward groundwater aquifers exist for UO&G-related activities. Human errors in various stages of the life cycle of UO&G production play an important role in the exposure. Neither at the international level nor at the US federal and the EU levels, specific regulations for UO&G-related activities are in place to protect environmental and human health. UO&G activities are mostly regulated through general environmental, spatial planning, and mining legislation.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands.
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mark Annevelink
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Herman Kasper Gilissen
- Utrecht Centre for Water, Oceans and Sustainability Law, Faculty of Law, Economics and Governance, Utrecht University, Utrecht, The Netherlands
| | - Paul Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Marleen van Rijswick
- Utrecht Centre for Water, Oceans and Sustainability Law, Faculty of Law, Economics and Governance, Utrecht University, Utrecht, The Netherlands
| | - Pim de Voogt
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van Wezel
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
| |
Collapse
|
47
|
Ghazarian AA, Martin DN, Lam TK. Opportunities and Challenges in Rural Cancer Research: An Epidemiologic Perspective. Cancer Epidemiol Biomarkers Prev 2018; 27:1245-1247. [PMID: 30385496 DOI: 10.1158/1055-9965.epi-18-0962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Armen A Ghazarian
- Division of Cancer Control and Population Sciences, NCI, NIH, Department of Health and Human Services, Bethesda, Maryland.
| | - Damali N Martin
- Division of Cancer Control and Population Sciences, NCI, NIH, Department of Health and Human Services, Bethesda, Maryland
| | - Tram K Lam
- Division of Cancer Control and Population Sciences, NCI, NIH, Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
48
|
Elliott EG, Ma X, Leaderer BP, McKay LA, Pedersen CJ, Wang C, Gerber CJ, Wright TJ, Sumner AJ, Brennan M, Silva GS, Warren JL, Plata DL, Deziel NC. A community-based evaluation of proximity to unconventional oil and gas wells, drinking water contaminants, and health symptoms in Ohio. ENVIRONMENTAL RESEARCH 2018; 167:550-557. [PMID: 30145431 DOI: 10.1016/j.envres.2018.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/28/2023]
Abstract
Over 4 million Americans live within 1.6 km of an unconventional oil and gas (UO&G) well, potentially placing them in the path of toxic releases. We evaluated relationships between residential proximity to UO&G wells and (1) water contamination and (2) health symptoms in an exploratory study. We analyzed drinking water samples from 66 Ohio households for 13 UO&G-related volatile organic compounds (VOCs) (e.g., benzene, disinfection byproducts [DBPs]), gasoline-range organics (GRO), and diesel-range organics. We interviewed participants about health symptoms and calculated metrics capturing proximity to UO&G wells. Based on multivariable logistic regression, odds of detection of bromoform and dibromochloromethane in surface water decreased significantly as distance to nearest UO&G well increased (odds ratios [OR]: 0.28-0.29 per km). Similarly, distance to nearest well was significantly negatively correlated with concentrations of GRO and toluene in ground water (rSpearman: -0.40 to -0.44) and with concentrations of bromoform and dibromochloromethane in surface water (rSpearman: -0.48 to -0.50). In our study population, those with higher inverse-distance-squared-weighted UO&G well counts within 5 km around the home were more likely to report experiencing general health symptoms (e.g. stress, fatigue) (OR: 1.52, 95%CI: 1.02-2.26). This exploratory study, though limited by small sample size and self-reported health symptoms, suggests that those in closer proximity to multiple UO&G wells may be more likely to experience environmental health impacts. Further, presence of brominated DBPs (linked to UO&G wastewater) raises the question of whether UO&G activities are impacting drinking water sources in the region. The findings from this study support expanded studies to advance knowledge of the potential for water quality and human health impacts; such studies could include a greater number of sampling sites, more detailed chemical analyses to examine source attribution, and objective health assessments.
Collapse
Affiliation(s)
- Elise G Elliott
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Xiaomei Ma
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Brian P Leaderer
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Lisa A McKay
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Courtney J Pedersen
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Chang Wang
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Christopher J Gerber
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Thomas J Wright
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Andrew J Sumner
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Mairead Brennan
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Genevieve S Silva
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Joshua L Warren
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Desiree L Plata
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Nicole C Deziel
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA.
| |
Collapse
|
49
|
Paulik LB, Hobbie KA, Rohlman D, Smith BW, Scott RP, Kincl L, Haynes EN, Anderson KA. Environmental and individual PAH exposures near rural natural gas extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:397-405. [PMID: 29857308 PMCID: PMC7169985 DOI: 10.1016/j.envpol.2018.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants' homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Collapse
Affiliation(s)
- L Blair Paulik
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Kevin A Hobbie
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Brian W Smith
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Laurel Kincl
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Erin N Haynes
- College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
50
|
Willis MD, Jusko TA, Halterman JS, Hill EL. Unconventional natural gas development and pediatric asthma hospitalizations in Pennsylvania. ENVIRONMENTAL RESEARCH 2018; 166:402-408. [PMID: 29936288 PMCID: PMC6110967 DOI: 10.1016/j.envres.2018.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Pediatric asthma is a common chronic condition that can be exacerbated by environmental exposures, and unconventional natural gas development (UNGD) has been associated with decreased community air quality. This study aims to quantify the association between UNGD and pediatric asthma hospitalizations. METHODS We compare pediatric asthma hospitalizations among zip codes with and without exposure to UNGD between 2003 and 2014 using a difference-in-differences panel analysis. Our UNGD exposure metrics include cumulative and contemporaneous drilling as well as reported air emissions by site. RESULTS We observed consistently elevated odds of hospitalizations in the top tertile of pediatric patients exposed to unconventional drilling compared with their unexposed peers. During the same quarter a well was drilled, we find a 25% increase (95% CI: 1.07, 1.47) in the odds of being hospitalized for asthma. Ever-establishment of an UNGD well within a zip code was associated with a 1.19 (95% CI: 1.04, 1.36) increased odds of a pediatric asthma hospitalization. Our results further demonstrate that increasing specific air emissions from UNGD sites are associated with increased risks of pediatric asthma hospitalizations (e.g. 2,2,4-trimethylpentane, formaldehyde, x-hexane). These results hold across multiple age groups and sensitivity analyses. CONCLUSIONS Community-level UNGD exposure metrics were associated with increased odds of pediatric asthma-related hospitalization among young children and adolescents. This study provides evidence that additional regulations may be necessary to protect children's respiratory health from UNGD activities.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Todd A Jusko
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jill S Halterman
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Elaine L Hill
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|