1
|
Xue J, Ma H, Dong X, Shi K, Zhou X, Qiao Y, Gao Y, Liu Y, Feng Y, Jiang Q. Insights into the response of electroactive biofilm with petroleum hydrocarbons degradation ability to quorum sensing signals. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134407. [PMID: 38677122 DOI: 10.1016/j.jhazmat.2024.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Bioelectrochemical technologies based on electroactive biofilms (EAB) are promising for petroleum hydrocarbons (PHs) remediation as anode can serve as inexhaustible electron acceptor. However, the toxicity of PHs might inhibit the formation and function of EABs. Quorum sensing (QS) is ideal for boosting the performance of EABs, but its potential effects on reshaping microbial composition of EABs in treating PHs are poorly understood. Herein, two AHL signals, C4-HSL and C12-HSL, were employed to promote EABs for PHs degradation. The start-times of AHL-mediated EABs decreased by 18-26%, and maximum current densities increased by 28-63%. Meanwhile, the removal of total PHs increased to over 90%. AHLs facilitate thicker and more compact biofilm as well as higher viability. AHLs enhanced the electroactivity and direct electron transfer capability. The total abundance of PH-degrading bacteria increased from 52.05% to 75.33% and 72.02%, and the proportion of electroactive bacteria increased from 26.14% to 62.72% and 63.30% for MFC-C4 and MFC-C12. Microbial networks became more complex, aggregated, and stable with addition of AHLs. Furthermore, AHL-stimulated EABs showed higher abundance of genes related to PHs degradation. This work advanced our understanding of AHL-mediated QS in maintaining the stable function of microbial communities in the biodegradation process of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China
| | - Han Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xiaoyu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin 256600, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong 256600, China.
| |
Collapse
|
2
|
Cheng R, Xia JC, Shen LJ, Shen ZP, Shi L, Zheng X, Zheng JZ. Effect of humic acid on visible light photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO 2 nanofibers: insight into the mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30212-30227. [PMID: 38602633 DOI: 10.1007/s11356-024-33119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·μL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.
Collapse
Affiliation(s)
- Rong Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jin-Cheng Xia
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Liang-Jie Shen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
- Shougang Environment Industry Co., Ltd, Beijing, 100041, China
| | - Zhi-Peng Shen
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Lei Shi
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiang Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jian-Zhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
3
|
M.Munshi A. Collaborative impact of Cu/TiO2 nano composites for elimination of cationic dye from aqueous solution: Kinetics and isothermal modeling. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
4
|
Liu HH, Yang L, Li XT, Shi H, Guo LK, Tu LX, Wang J, Li YL. The ecotoxicological effects of chromium (III) oxide nanoparticles to Chlorella sp.: perspective from the physiological and transcriptional responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55079-55091. [PMID: 36890403 DOI: 10.1007/s11356-023-26301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Extensive application of nanomaterials enlarges its concentrations in the aquatic environments and poses a threat to algae. This study comprehensively analyzed the physiological and transcriptional responses of Chlorella sp. after being exposed to chromium (III) oxide nanoparticles (nCr2O3). The nCr2O3 at 0-100 mg/L presented adverse effects on cell growth (96 h EC50 = 16.3 mg/L), decreasing the photosynthetic pigment concentrations and photosynthetic activity. Moreover, more extracellular polymeric substances (EPS), especially polysaccharides in soluble EPS, were produced in algae cell, which mitigated the damage of nCr2O3 to cells. However, with the increase of nCr2O3 doses, the EPS protective responses were exhausted, accompanied by toxicity in the form of organelle damage and metabolic disturbance. The enhanced acute toxicity was closely related to the physical contact of nCr2O3 with cells, oxidative stress, and genotoxicity. Firstly, large amounts of nCr2O3 aggregated around and were attached to cells, causing physical damage. Then, the intracellular reactive oxygen species and malondialdehyde levels were significantly increased that led to lipid peroxidation, especially at 50-100 mg/L nCr2O3. Finally, the transcriptomic analysis further revealed that the transcription of ribosome, glutamine, and thiamine metabolism-related genes were impaired under 20 mg/L nCr2O3, suggesting nCr2O3 inhibited algal cell growth through metabolism, cell defense, and repair, etc.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hui Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li-Xin Tu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan-Li Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Yan Q, Lin X, Chen Z, Chen Z. Biosynthesis of bionanomaterials using Bacillus cereus for the recovery of rare earth elements from mine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117098. [PMID: 36563444 DOI: 10.1016/j.jenvman.2022.117098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The growing demand for rare earth elements (REEs) increasingly requires secondary resources such as mine wastewater containing high concentrations of REEs, to be used as a source of REEs. The current challenge is how to efficiently recover REEs from this feed source. In this paper, a functional bionanomaterial (FeNPs-EPS) was biosynthesized using Bacillus cereus as a possible means of recovering REEs. This composite was composed of both synthesized iron nanoparticles (FeNPs) and extracellular polymeric substances (EPS). Synthesis of the FeNPs-EPS composite via a one-step biosynthesis was confirmed by materials characterization. The peak in the material's UV-Vis spectra at 511 nm demonstrates the formation of FeNPs-EPS, where 3D-EEM showed that FeNPs-EPS was wrapped predominantly with tryptophan protein-like and humic acid-like substances. In addition, while FTIR indicated that the functional groups present in EPS where virtually identical to those observed in FeNPs-EPS, XPS demonstrated that Fe and O were the major elemental present as both FeO and Fe2O3. Zeta potential measurements indicated that FeNPs-EPS had good stability under different pH conditions, where BET analysis supported multilayer adsorption. Finally, on exposure to high concentrations of Eu(III) and Tb(III) in mine wastewater, the synthesized FeNPs-EPS demonstrated strong potential to remove two cations from the wastewater and hence a potentially practical way to efficiently recover REEs from such waste streams.
Collapse
Affiliation(s)
- Qiuting Yan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoyu Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zhibiao Chen
- School of Geography, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
6
|
Zhang B, Chen J, Wang C, Wang P, Cui G, Zhang J, Hu Y, Gao H. Insight into different adsorption behaviors of two fluoroquinolone antibiotics by sediment aggregation fractions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24329-24343. [PMID: 36335180 DOI: 10.1007/s11356-022-23947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Sediment, consisting of different aggregation fractions, is a hotspot site for transport and transformation of various pollutants including antibiotics. However, the fate of different antibiotics in aquatic sediments mediated by sediment aggregation fraction adsorption and the mechanism behinds are still unclear. In this study, we investigated the adsorption behavior of two fluoroquinolone antibiotics (ciprofloxacin and ofloxacin) on four aggregation fractions separated from the sediment of Taihu Lake, a typical lake contaminated by antibiotics in China. The results showed that the adsorption of ciprofloxacin and ofloxacin fitted the Freundlich model, irrespective of sediment aggregation size. The adsorption of ciprofloxacin and ofloxacin was depended on the size of sediment aggregation fractions, and the macroaggregation (> 200 μm) exhibited the strongest capacity, followed by large microaggregation (63-200 μm), medium microaggregation (20-63 μm), and small and primary microaggregation (< 20 μm). This fraction size-dependent effects of sediment aggregations on antibiotic adsorption might be closely related to the differences in their specific surface areas, organic matter contents, and surface functional groups. The adsorption of ciprofloxacin and ofloxacin by sediment aggregation fractions was characterized by a combination of chemical and physical adsorptions, with the former being the dominant process. Compared with ofloxacin, ciprofloxacin could be more rapidly and easily absorbed by four sediment aggregation fractions, and more readily complexed with carboxyl groups on macroaggregation surface. The adsorption of two antibiotics by extracellular polymeric substance showed that tryptophan and tyrosine protein-like, humic-like substance on the surface of sediment could bind to both antibiotics through a complexation reaction. The π-π electron donor-acceptor interaction and hydrogen bonds were responsible for the antibiotic adsorption by sediment aggregation.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| |
Collapse
|
7
|
Zhou D, Liang M, Xia Y, Li C, Huang M, Peng S, Huang Y. Reduction mechanisms of V 5+ by vanadium-reducing bacteria in aqueous environments: Role of different molecular weight fractionated extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158394. [PMID: 36058324 DOI: 10.1016/j.scitotenv.2022.158394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown. In this study, the EPS of Bacillus sp. PFYN01 was fractionated via ultrafiltration into six components with different kDa (EPS>100, EPS100-50, EPS50-30, EPS30-10, EPS10-3, and EPS<3). Batch reduction experiments of the intact cells, EPS-free cells, the pristine and fractionated EPS with V5+ were conducted and characterized. The results demonstrated that the extracellular reduction of V5+ into V4+ by EPS was the major reduction process. Among the functional groups in EPS, C=O/C-N of amide in protein/polypeptide and CO of carboxyl in fulvic acid-like substances might act as the reductants for V5+, while CO in polysaccharide molecules and PO in phosphodiester played a key role in the adsorption process. The intracellular reduction was via translocating V5+ into the cells and releasing V4+ by the intracellular reductases. The reducing capacity of the fractionated EPS followed a sequence of EPS<3 > EPS10-3 > EPS50-30 > EPS100-50 > EPS30-10 > EPS>100. The small molecules of fulvic acid-like substances and amino acids were responsible for the high reducing capacity of EPS<3. EPS>100 had the lowest reducing capacity due to its macromolecular structure decreasing the exposure of the reactive sites. In addition to reduction, those intermediate EPS components may also have supporting functions, such as connecting protein skeletons and increasing the specific surface area of EPS. Therefore, the diverse effects of the EPS components cannot be neglected in vanadium biogeochemical cycling.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mengmeng Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yonglian Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingzheng Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
8
|
Sun M, Xiao K, Zhu Y, Ou B, Yu W, Liang S, Hou H, Yuan S, Gan F, Mi R, Yang J. Deciphering the role of microplastic size on anaerobic sludge digestion: Changes of dissolved organic matter, leaching compounds and microbial community. ENVIRONMENTAL RESEARCH 2022; 214:114032. [PMID: 35952741 DOI: 10.1016/j.envres.2022.114032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 μm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 μm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 μm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.
Collapse
Affiliation(s)
- Mei Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| | - Yuwei Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bei Ou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Fangmao Gan
- Yangtze Ecology and Environment Co. Ltd., 96 Xudong Street, Wuhan, Hubei, 430074, China
| | - Rongxi Mi
- Yangtze Ecology and Environment Co. Ltd., 96 Xudong Street, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
9
|
Lu Y, Hu X, Tang L, Peng B, Tang J, Zeng T, Liu Q. Effect of CuO/ZnO/FTO electrode properties on the performance of a photo-microbial fuel cell sensor for the detection of heavy metals. CHEMOSPHERE 2022; 302:134779. [PMID: 35513075 DOI: 10.1016/j.chemosphere.2022.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The development of sustainable, low-cost and responsive technology for heavy metals detection in wastewater is crucial. In this study, by combining CuO/ZnO photocathode with microbial anode, a novel photo-microbial fuel cell (PMFC) sensor was developed. The self-powered PMFC was performed under light and dark condition for heavy metals detection. Compared with MFC sensor, PMFC sensor showed a wider detection range (0.1-4 mg L-1 of Cd2+ and 10-80 mg L-1 of Cu2+). The improved performance in sensing limit and sensitivity was mainly attributed to the intimate P-N heterojunctions formed in CuO/ZnO, which accelerated the electron transport between the photocathode and the microbial anode. Besides, the toxicity of five heavy metals tested in PMFC was shown as Cd2+>Cr6+>Zn2+>Hg2+>Cu2+. This study has taken advantage of the characteristics of PMFC and facilitated its application in heavy metals detection, which provides a new approach for the development of biosensors.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Xingxin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Bo Peng
- College of Geographic Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
10
|
Pei Z, Wang C, Wang P, Zhou G. Covalent-anion-driven self-assembled cadmium/ molybdenum sulfide hybrids for efficient nitenpyram degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115269. [PMID: 35576708 DOI: 10.1016/j.jenvman.2022.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology is an attractive and promising approach for nitenpyram degradation; however, how to ensure the carrier separation efficiency and catalytic sites exposure is still great challenges. In this study, we construct CdS@MoS2 (CM) nanohybrids with a 3D hierarchical configuration to enhance the separation and transfer efficiency of the photo-induced electron by a covalent-anion-driven self-assembly method. The vertical orientation of MoS2 ultrathin nanosheets not only provides a large specific surface area for the oxidation and reduction reactions but also enables the active edge sites of MoS2 to be maximally exposed. As a result, this structure drastically facilitates the exposure of the catalytic active region and the performance of the carrier transfer and injection into photocatalytic degradation for nitenpyram (NTP). The optimal CdS-MoS2 has an impressive and stable NTP removal efficiency with a high reaction rate constant up to 0.078 min-1, which is 3.25 times higher than that of pure cadmium sulfide. The photocatalytic degradation mechanism and degradation pathway of NTP were presented by synthesizing the results of experimental analysis and density flooding theory (DFT) calculations. In further, for the first time, the cytotoxicity and genotoxicity of NTP on moving bed biofilm reactors (MBBRs) was disclosed and a continuous photocatalytic wastewater pretreatment device based on the CM is proposed for the stable biological nitrogen removal activity of MBBRs, which can degrade more than 80% NTP per hour.
Collapse
Affiliation(s)
- Zhipeng Pei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Wu Y, Liu X, Wang Q, Han D, Lin S. Fe3O4-Fused Magnetic Air Stone Prepared From Wasted Iron Slag Enhances Denitrification in a Biofilm Reactor by Increasing Electron Transfer Flow. Front Chem 2022; 10:948453. [PMID: 35873056 PMCID: PMC9304712 DOI: 10.3389/fchem.2022.948453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
nFe3O4 was prepared from waste iron slag and loaded onto air stone (named magnetic air stone or MAS in the following text). The main component of air stone is carborundum. To study the magnetic effects of MAS on denitrification, a biofilm reactor was built, and its microbial community structure and electron transfer in denitrification were analyzed. The results showed that MAS improved the performance of the reactor in both carbon and nitrogen removal compared with air stone (AS) control, and the average removal efficiencies of COD, TN, and NH4+-N increased by 17.15, 16.1, and 11.58%, respectively. High-throughput sequencing revealed that magnetism of MAS had a significant effect on the diversity and richness of microorganisms in the biofilm. The MAS also reduced the inhibition of rotenone, mipalene dihydrochloride (QDH), and sodium azide on the respiratory chain in denitrification and enhanced the accumulation of nitrite, in order to provide sufficient substrate for the following denitrification process. Therefore, the denitrification process is accelerated by the MAS. The results allowed us to deduce the acceleration sites of MAS in the denitrification electron transport chain. The existence of MAS provides a new rapid method for the denitrifying electron transport process. Even in the presence of respiratory inhibitors of denitrifying enzymes, the electron transfer acceleration provided by MAS still exists objectively. This is the mechanism through which MAS can restore the denitrification process inhibited by respiratory inhibitors to a certain extent.
Collapse
|
12
|
Melo A, Quintelas C, Ferreira EC, Mesquita DP. The Role of Extracellular Polymeric Substances in Micropollutant Removal. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.778469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In biological wastewater treatment (WWT), microorganisms live and grow held together by a slime matrix comprised of extracellular polymeric substances (EPS), forming a three-dimensional microbial structure of aggregates (flocs or granules) and by chemical binding forces. Furthermore, microscopic observations showed that microbial cells within the flocs were cross linked with EPS, forming a network of polymers with pores and channels. The EPS are typically composed of organic substances such as polysaccharides (PS), proteins (PNs), humic acid substances (HAS), nucleic acids, and lipids. It has been established that EPS play an essential role in aggregate flocculation, settling, and dewatering. Moreover, in the presence of toxic substances, such as pharmaceutical compounds and pesticides, EPS form a protective layer for the aggregated biomass against environmental disturbances that might play an important role in the transport and transformation of micropollutants. Some researchers indicated that there is an increase in EPS concentration under toxic conditions, which can induce an increase in the size of microbial aggregates. In this contribution, we critically review the available information on the impact of micropollutants on microbial EPS production and the relationship between EPS and microbial aggregate structure. Also, a general definition, composition, and factors that affect EPS production are presented.
Collapse
|
13
|
Niu L, Hu J, Li Y, Wang C, Zhang W, Hu Q, Wang L, Zhang H. Effects of long-term exposure to silver nanoparticles on the structure and function of microplastic biofilms in eutrophic water. ENVIRONMENTAL RESEARCH 2022; 207:112182. [PMID: 34648762 DOI: 10.1016/j.envres.2021.112182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are frequently detected in natural aquatic systems proximate to populated areas, such as urban rivers and lakes, and can be rapidly colonized by microbial communities. Microplastics and silver nanoparticles (AgNPs) share similar pathways into natural waters and tend to form heteroaggregations. However, very little is known about the long-term impacts on the structure and function of microplastic biofilms when chronically exposed to silver nanoparticles. Thus, the present study assessed the accumulation property of AgNPs on polymethyl methacrylate (PMMA) microplastics via adsorption tests and studied the chronic effects of AgNPs on the structure and function of microplastic biofilms via 30-day microcosmic experiments in eutrophic water. The adsorption tests showed that the biofilms-colonized PMMA microplastics presented the highest adsorption of 0.98 mg/g in the 1 mg/L AgNPs microcosms. After the 30-day exposure, lactic dehydrogenase release and reactive oxygen species generation of PMMA biofilms increased by 33.23% and 23.98% compared to the MPs-control group with no-AgNPs, indicating that the number of dead cells colonizing microplastics significantly increased. Network analysis suggested that the stabilization of the bacterial community declined with the long-term exposure to AgNPs through the reduction of the modularity and average path length of the network. Compared to the MPs-control group, long-term exposure to AgNPs caused cumulatively inhibitory effects on the nitrogen removal and the N2O emissions in eutrophic water. The isotopomer analysis revealed that the contribution rate of NO2- reduction to N2O emissions was gradually increasing with the AgNPs exposure. Real-time PCR analysis showed that denitrification genes were less sensitive to AgNPs than the nitrification genes, with gene nosZ performed the most negligible response. Overall, our results revealed that long-term exposure to AgNPs could alter biogeochemical cycling involved by microplastic biofilms and cumulatively reduce the self-recovery of the eutrophic ecosystem.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Xu L, Zhao Z, Yan Z, Zhou G, Zhang W, Wang Y, Li X. Defense pathways of Chlamydomonas reinhardtii under silver nanoparticle stress: Extracellular biosorption, internalization and antioxidant genes. CHEMOSPHERE 2022; 291:132764. [PMID: 34752836 DOI: 10.1016/j.chemosphere.2021.132764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have been investigated the toxic effects of silver nanoparticle (Ag-NPs) on algae; however, little attention has been paid to the defense pathways of algae cells to Ag-NPs. In the study, Chlamydomonas reinhardtii (C. reinhardtii) was selected as a model organism to investigate the defense mechanisms to Ag-NPs exposure. The results showed that exopolysaccharide and protein in bound-extracellular polymeric substances significantly increased under Ag-NPs stress. These metal-binding groups including C-O-C (exopolysaccharide), CH3/CH2 (proteins), O-H/N-H (hydroxyl group) and C-H (alkyl groups) played a key role in extracellular biosorption. The internalized or strongly bound Ag (1.90%-17.45% of total contents) was higher than the loosely surface biosorption (0.31%-1.79%). The accumulation of glutathione disulfide (GSSG), together with the decline of reduced glutathione/GSSG (GSH/GSSG) ratio in C. reinhardtii cells, indicated a significant oxidative stress caused by exposure of Ag-NPs. The increasing phytochelatin accompanied with the decreasing GSH level indicated a critical role to intracellular detoxification of Ag. Furthermore, upregulation of antioxidant genes (MSOD, QTOX2, CAT1, GPX2, APX and VTE3) can cope with oxidative stress of Ag-NPs or Ag+. The up-regulation of ascorbate peroxidase (APX) and glutathione peroxidase (GPX2) genes and the reduction in GSH contents showed that the toxicity of Ag-NPs could be mediated by an intracellular ascorbate-GSH defense pathway. These findings can provide valuable information on ecotoxicity of Ag-NPs, potential bioremediation and adaptation capabilities of algal cells to Ag-NPs.
Collapse
Affiliation(s)
- Limei Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhilin Zhao
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhen Yan
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
15
|
Miao L, Guo S, Wu J, Adyel TM, Liu Z, Liu S, Hou J. Polystyrene nanoplastics change the functional traits of biofilm communities in freshwater environment revealed by GeoChip 5.0. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127117. [PMID: 34534802 DOI: 10.1016/j.jhazmat.2021.127117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
There is an increasing concern regarding the potential effects of nanoplastics (NPs) on freshwater ecosystems. Considering the functional values of biofilms in freshwater, knowledge on whether and to what extent NPs can influence the ecosystem processes of biofilms were still limited. Herein, the freshwater biofilms cultured in lab were exposed to 100 nm polystyrene NPs (PS-NPs) of different dosages (1 and 10 mg/L) for 14 days. Confocal laser scanning microscope observation indicated that biofilms were dominated by filamentous, and spiral algae species and the intensity of extracellular polymeric substances increased under PS-NPs exposure. GeoChip 5.0 analysis revealed that PS-NPs exposure triggered a significant increase in functional genes α diversity (p < 0.05) and altered biofilms' functional structure. Furthermore, the abundance of genes involved in the total carbon and nitrogen cycling were increased under PS-NPs exposure. The abundance of nitrogen fixation genes experienced the most pronounced increase (24.4%) under 1 mg/L PS-NPs treatment, consistent with the increase of ammonium in overlying water. Whereas antibiotic resistance genes and those related to photosynthetic pigments production were suppressed. These results provided direct evidence for PS-NPs' effects on the biofilm functions in terms of biogeochemical cycling, improving our understanding of the potentials of NPs on freshwater ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road 1st, Nanjing 210098, People's Republic of China
| | - Song Guo
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road 1st, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road 1st, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road 1st, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road 1st, Nanjing 210098, People's Republic of China,.
| |
Collapse
|
16
|
Razavipour M, Gonzalez M, Singh N, Cimenci CE, Chu N, Alarcon EI, Villafuerte J, Jodoin B. Biofilm Inhibition and Antiviral Response of Cold Sprayed and Shot Peened Copper Surfaces: Effect of Surface Morphology and Microstructure. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2022; 31:130-144. [PMID: 37520908 PMCID: PMC8735887 DOI: 10.1007/s11666-021-01315-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 08/01/2023]
Abstract
Antibacterial properties of copper against planktonic bacteria population are affected by surface microstructure and topography. However, copper interactions with bacteria in a biofilm state are less studied. This work aims at better understanding the difference in biofilm inhibition of bulk, cold-sprayed, and shot-peened copper surfaces and gaining further insights on the underlying mechanisms using optical and scanning electron microscopy to investigate the topography and microstructure of the surfaces. The biofilm inhibition ability is reported for all surfaces. Results show that the biofilm inhibition performance of cold sprayed copper, while initially better, decreases with time and results in an almost identical performance than as-received copper after 18h incubation time. The shot-peened samples with a rough and ultrafine microstructure demonstrated an enhanced biofilm control, especially at 18 hr. The biofilm control mechanisms were explained by the diffusion rates and concentration of copper ions and the interaction between these ions and the biofilm, while surface topography plays a role in the bacteria attachment at the early planktonic state. Furthermore, the data suggest that surface topography plays a key role in antiviral activity of the materials tested, with a smooth surface being the most efficient. Graphical Abstract
Collapse
Affiliation(s)
- Maryam Razavipour
- Cold Spray Research Laboratory, University of Ottawa, Ottawa, ON Canada
| | - Mayte Gonzalez
- Division of Cardiac Surgery, BEaTS Research, University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Naveen Singh
- Cold Spray Research Laboratory, University of Ottawa, Ottawa, ON Canada
| | - Cagla Eren Cimenci
- Division of Cardiac Surgery, BEaTS Research, University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Nicole Chu
- Division of Cardiac Surgery, BEaTS Research, University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, BEaTS Research, University of Ottawa Heart Institute, Ottawa, Ontario Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
| | | | - Bertrand Jodoin
- Cold Spray Research Laboratory, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
17
|
Alam MM, Masud A, Scharf B, Bradley I, Aich N. Long-Term Exposure and Effects of rGO-nZVI Nanohybrids and Their Parent Nanomaterials on Wastewater-Nitrifying Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:512-524. [PMID: 34931813 DOI: 10.1021/acs.est.1c02586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single nanomaterials and nanohybrids (NHs) can inhibit microbial processes in wastewater treatment, especially nitrification. While existing studies focus on short-term and acute exposures of single nanomaterials on wastewater microbial community growth and function, long-term, low-exposure, and emerging NHs need to be examined. These NHs have distinctly different physicochemical properties than their parent nanomaterials and, therefore, may exert previously unknown effects onto wastewater microbial communities. This study systematically investigated long-term [∼6 solid residence time [(SRT)] exposure effects of a widely used carbon-metal NH (rGO-nZVI = 1:2 and 1:0.2, mass ratio) and compared these effects to their single-parent nanomaterials (i.e., rGO and nZVI) in nitrifying sequencing batch reactors. nZVI and NH-dosed reactors showed relatively unaffected microbial communities compared to control, whereas rGO showed a significantly different (p = 0.022) and less diverse community. nZVI promoted a diverse community and significantly higher (p < 0.05) biomass growth under steady-state conditions. While long-term chronic exposure (10 mg·L-1) of single nanomaterials and NHs had limited impact on long-term nutrient recovery, functionally, the reactors dosed with higher iron content, that is, nZVI and rGO-nZVI (1:2), promoted faster NH4+-N removal due to higher biomass growth and upregulation of amoA genes at the transcript level, respectively. The transmission electron microscopy images and scanning electron microscopy─energy-dispersive X-ray spectroscopy analysis revealed high incorporation of iron in nZVI-dosed biomass, which promoted higher cellular growth and a diverse community. Overall, this study shows that NHs have unique effects on microbial community growth and function that cannot be predicted from parent materials alone.
Collapse
Affiliation(s)
- Md Mahbubul Alam
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Arvid Masud
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brianna Scharf
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ian Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
18
|
Chen GQ, Wu YH, Wang YH, Chen Z, Tong X, Bai Y, Luo LW, Xu C, Hu HY. Effects of microbial inactivation approaches on quantity and properties of extracellular polymeric substances in the process of wastewater treatment and reclamation: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125283. [PMID: 33582467 DOI: 10.1016/j.jhazmat.2021.125283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial extracellular polymeric substances (EPS) have a profound role in various wastewater treatment and reclamation processes, in which a variety of technologies are used for disinfection and microbial growth inhibition. These treatment processes can induce significant changes in the quantity and properties of EPS, and altered EPS could further adversely affect the wastewater treatment and reclamation system, including membrane filtration, disinfection, and water distribution. To clarify the effects of microbial inactivation approaches on EPS, these effects were classified into four categories: (1) chemical reactions, (2) cell lysis, (3) changing EPS-producing metabolic processes, and (4) altering microbial community. Across these different effects, treatments with free chlorine, methylisothiazolone, TiO2, and UV irradiation typically enhance EPS production. Among the residual microorganisms in EPS matrices after various microbial inactivation treatments, one of the most prominent is Mycobacterium. With respect to EPS properties, proteins and humic acids in EPS are usually more susceptible to treatment processes than polysaccharides. The affected EPS properties include changes in molecular weight, hydrophobicity, and adhesion ability. All of these changes can undermine wastewater treatment and reclamation processes. Therefore, effects on EPS quantity and properties should be considered during the application of microbial inactivation and growth inhibition techniques.
Collapse
Affiliation(s)
- Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xing Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Chuang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
19
|
Wu Y, Wu J, Shen Q, Zheng X, Chen Y. Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. WATER RESEARCH 2021; 197:117081. [PMID: 33813170 DOI: 10.1016/j.watres.2021.117081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Engineered nanoparticles are observed to be released into the environment and ended up in wastewater treatment plants. It has been reported that these nanoparticles in sewage might have a toxic effect on microorganisms, and thus affect anaerobic microbial fermentation. However, the mechanisms involved in nanoparticles-induced effects on the anaerobic acidification process and its related bacterial metabolism are still unclear. This work indicated that copper nanoparticles (Cu NPs) were able to cause cell membrane oxidative damage and inhibit the growth and metabolism of Moorella thermoacetica (a model acetogen). The OD600 and acetic acid production of M. thermoacetica in the presence of 1 mg/L of Cu NPs were decreased to 29.2% and 40.7% of the control, respectively. The key mechanism of the inhibitory effect was governed by the fact that Cu NPs significantly reduced the glucose consumption, and led to the decreased pyruvate metabolism levels. Additionally, Cu NPs inhibited the gene expressions and catalytic activities of the key enzymes related to acetic acid production. It was identified that the relative activities of phosphofructokinase, pyruvate kinase, phosphotransacetylase, and acetate kinase of M. thermoacetica in the presence of 1 mg/L of Cu NPs decreased to only 70.1%, 69.3%, 50.1%, and 65.2% of the control, respectively. These results demonstrated that the release of Cu NPs in the environment could pose risks to anaerobic fermentation processes via regulating microbial transcriptional response and enzyme activity.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuting Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|
21
|
Wang R, Lou J, Fang J, Cai J, Hu Z, Sun P. Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. REV CHEM ENG 2020. [DOI: 10.1515/revce-2018-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractWith the rapid growth of economics and nanotechnology, a significant portion of the anthropogenic emissions of heavy metals and nanoparticles (NPs) enters wastewater streams and discharges to wastewater treatment plants, thereby potentially posing a risk to the bacteria that facilitate the successful operation of the enhanced biological phosphorus (P) removal (EBPR) process. Although some efforts have been made to obtain detailed insights into the effects of heavy metals and metal (oxide) nanoparticles [Me(O)NPs], many unanswered questions remain. One question is whether the toxicity of Me(O)NPs originates from the released metal ions. This review aims to holistically evaluate the effects of heavy metals and Me(O)NPs. The interactions among extracellular polymeric substances, P, and heavy metals [Me(O)NPs] are presented and discussed for the first time. The potential mechanisms of the toxicity of heavy metals [Me(O)NPs] are summarized. Additionally, mathematical models of the toxicity and removal of P, heavy metals, and Me(O)NPs are overviewed. Finally, knowledge gaps and opportunities for further study are discussed to pave the way for fully understanding the inhibition of heavy metals [Me(O)NPs] and for reducing their inhibitory effect to maximize the reliability of the EBPR process.
Collapse
Affiliation(s)
- Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhirong Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- GL Environment Inc., Hamilton, Canada
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
22
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Cheng Q, Jiang Y, Jin Z, Hui C, Xu L, Zhou Q, Zhao Y, Du L, Jiang H. Enhanced excretion of extracellular polymeric substances associated with nonylphenol tolerance in Dictyosphaerium sp. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122644. [PMID: 32315798 DOI: 10.1016/j.jhazmat.2020.122644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Dictyosphaerium sp. is tolerant to nonylphenol (NP); however, knowledge regarding the mechanisms involved in NP tolerance is limited. In this study, a batch of algal culture experiments were carried out to elucidate the underlying mechanisms by investigating the production and composition of extracellular polymeric substances (EPS) in algae exposed to NP. The excretion of EPS was significantly enhanced (P < 0.001) in algae exposed to 4 and 8 mg/L of NP. The polysaccharides in soluble EPS and the proteins in bound EPS were specifically overproduced. The three-dimensional excitation and emission matrix fluorescence spectra analyses indicated that tyrosine- and tryptophan-like substances were the main functional compositions in the proteins of EPS. In addition, enhanced EPS secretion significantly alleviated the toxicity of NP to the algae by the reduction of cell internalization, as indicated by the higher IC50, biomass, and cell growth rate in the algae with EPS. These discoveries along with the characterizations by algal cell surface hydrophobicity analysis, scanning electron microscopy, and Fourier transform infrared spectra spectroscopy demonstrated the vital role of EPS in the algal resistance to NP.
Collapse
Affiliation(s)
- Qilu Cheng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhuo Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Hui
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ligen Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China.
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Wang C, Liu S, Hou J, Wang P, Miao L, Li T. Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122130. [PMID: 31978824 DOI: 10.1016/j.jhazmat.2020.122130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The effects of varying concentrations of Ag NPs on coupled nitrification and denitrification (CND) in two suspended sediments (SPSs) sizes were investigated using isotopic tracer method. In general, 0.5 and 5 mg/L Ag NPs had less effect on CND, while 2 and 10 mg/L Ag NPs exhibited the improvement and inhibition effect, respectively. The CND improvement by 2 mg/L NPs was mainly due to the enhanced nitrifying and denitrifying enzyme activity. However, 10 mg/L Ag NPs inhibited NH4+ oxidation by directly reducing the AMO activity and AOB abundance. The inhibition on NAR and NIR activity and their encoding narG and nirK gene abundance further inhibited NO3- and NO2- reduction, leading to a dramatic decrease in the 15N-N2 production. The above inhibition effects were attributed to the nano-effects of Ag NPs, which led to the excessive ROS amount and the decreased T-AOC level in microbial systems. But the connection between nitrification and denitrification was not broken after Ag NPs exposure. Moreover, the results indicated that N-cycling in clay and silt-type SPS systems could be more sensitive than sand-type SPS systems to NP exposure. The findings provide a basis for evaluating the environmental risks of Ag NPs in water-sediment systems.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Tengfei Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
25
|
Li L, Jeon Y, Ryu H, Santo Domingo JW, Seo Y. Assessing the chemical compositions and disinfection byproduct formation of biofilms: Application of fluorescence excitation-emission spectroscopy coupled with parallel factor analysis. CHEMOSPHERE 2020; 246:125745. [PMID: 31927366 PMCID: PMC7485375 DOI: 10.1016/j.chemosphere.2019.125745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
There are increased concerns over the contributions of biofilms to disinfection byproduct (DBP) formation in engineered water systems (EWS). However, monitoring the biomolecular characteristics of biofilms to understand their impacts on DBP formation has been a great challenge as it requires complex analytical techniques. This study aimed to examine the applicability of fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) to assess the chemical compositions and DBP formation of biofilms. Biofilms were collected from reactors grown on R2A media, as well as two drinking water-related organic substrates such as humic substances and algal organic matter. The chemical composition and formation of carbonaceous and nitrogenous DBPs of biofilms were continuously monitored every 21 days for 168 days and correlated with the derived EEM-PARAFAC components. Results indicated that all biofilm samples comprised mostly of protein-like components (∼90%), and to a lesser extent, humic-like components (∼10%). Strong correlations were generally found between tryptophan-like substances and the studied DBP formation (R2min ≥ 0.76, P < 0.05), indicating that they play a major role in producing biofilm-derived DBPs upon chlorination. Moreover, significant discrepancies between the chemical compositions and DBP formation of biofilms and their corresponding feed solutions were observed, likely due to biotransformation and biosorption processes. Overall, this work highlights that EEM-PARAFAC analysis is a promising tool to monitor the biomolecular characteristics of biofilm components and to predict the subsequent DBP formation in optimizing disinfection protocols for EWS.
Collapse
Affiliation(s)
- Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA
| | - Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA
| | - Hodon Ryu
- Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Jorge W Santo Domingo
- Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3048, Nitschke Hall, Toledo, OH, USA; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, USA.
| |
Collapse
|
26
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
27
|
Ye J, Gao H, Wu J, Chang Y, Chen Z, Yu R. Responses of nitrogen transformation processes and N 2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135916. [PMID: 31822409 DOI: 10.1016/j.scitotenv.2019.135916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Although the adverse effects of ZnO nanoparticles (ZnO NPs) on biological nitrogen removal (BNR) processes have widely been reported, the impacts of ZnO NPs on the whole nitrogen transformation processes, especially the production of nitrous oxide (N2O), a typical greenhouse gas in a BNR system have rarely been systematically studied yet. In this study, the performances of both the nitrification and denitrification processes were investigated and the N2O emission was simultaneously monitored in a sequencing batch reactor (SBR) when exposed to 1, 25 or 50 mg/L ZnO NPs for one cycle. The dose-dependent ZnO NP depression effects were generally observed on denitrification processes, total nitrogen (TN) removal efficiency and N2O emissions but not nitrification process. Meanwhile, the N2O emission was positively correlated with NO2--N accumulation in the oxic stage. Further investigation showed that the expressions of nitrate (NO3-) reduction associated narG gene were down-regulated with the increase of NP stress, and the transcript ratios of NO2-/NO reduction gene to N2O reduction one (nirK/nosZ and norB/nosZ) decreased. The released Zn2+ from ZnO NPs took an important role in the inhibition of denitrification processes. ZnO NPs addition also induced the dose-dependent variations in the superoxide dismutase (SOD) and catalase (CAT) activities, which probably contributed to the suppression of the excess reactive oxygen species (ROS) generations to mitigate nanotoxicity. The excessive secretion of protein (PN) in tightly bound EPS (TB-EPS) when ZnO NPs were no <25 mg/L further supported the system's potential self-regulation mechanism for nanotoxicity resistance. CAPSULE: The effects of ZnO NPs on the whole nitrogen transformation processes in a biological nitrogen removal sequencing batch reactor, including the N2O emissions were investigated. The system's potential self-regulation mechanism for nanotoxicity resistance was addressed.
Collapse
Affiliation(s)
- Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Chang
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhoukai Chen
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
28
|
Liu B, Zhan H, Lu X, Liu Y, Huang L, Wei Z. Biodegradation of carbon tetrachloride from groundwater in an upflow solid-phase biofilm system. RSC Adv 2020; 10:7500-7508. [PMID: 35492176 PMCID: PMC9049827 DOI: 10.1039/c9ra08794j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/30/2020] [Indexed: 12/04/2022] Open
Abstract
In the present study, an upflow solid-phase denitrification biofilm reactor (US-DBR) was applied for simultaneous carbon tetrachloride (CT) and nitrate removal from groundwater by using poly(butylene succinate) (PBS) as carbon source and biocarrier. After 80 days continuous operation, the nitrate and CT removal efficiencies in the biofilm reactor were high of 98% and 94.3%, respectively. After PBS-biofilm formation, protein (PN) content in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) significantly increased 2.6 and 4.0 times higher in the presence of CT than those of absence of CT, while PS increased 1.9 and 2.0 times higher. According to excitation-emission matrix (EEM), CT exposure contributed to the increased fluorescent intensities of the aromatic PN-like and tryptophan PN-like substances. Along with the height of US-DBR, the denitrification activity was inhibited by the CT exposure, and most of CT was significant transformed accompanied by nitrate removal. Two components of soluble microbial products (SMP) were identified, including humic-like substances for component 1 and PN-like substances for component 2, respectively. It was found from high-throughput 16S rRNA gene sequencing analysis that significant differences were observed at genus level by taxonomic assignments to CT exposure. Thiobacillus, Thauera, Candidatus_Competibacter and Hydrogenophaga were the main genus in the presence of CT at the proportion of 6.77%, 5.47%, 3.59% and 3.17%, respectively. An US-DBR was applied for simultaneous carbon tetrachloride (CT) and nitrate removal from groundwater.![]()
Collapse
Affiliation(s)
- Benhua Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- PR China
| | - Hao Zhan
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- PR China
| | - Xuchun Lu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- PR China
| | - Yiran Liu
- School of Water Resources and Environment
- China University of Geosciences (Beijing)
- Beijing 100083
- PR China
| | - Linxian Huang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- PR China
| | - Zhengrun Wei
- Shandong Institute of Geological Survey
- Jinan
- PR China
| |
Collapse
|
29
|
Gomes IB, Simões LC, Simões M. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. BIOFOULING 2020; 36:1-13. [PMID: 31997661 DOI: 10.1080/08927014.2019.1708334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. Stenotrophomonas maltophilia isolated from drinking water was used as a model microorganism and biofilms were developed in a rotating cylinder reactor using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg l-1 of free chlorine for 10 min, an increased shear stress (a fluid velocity of 1.5 m s-1 for 30s), and a combination of both treatments. These shock treatments were not effective in biofilm control. The benefits from the use of copper surfaces was found essentially in reducing the numbers of non-damaged cells. Copper materials demonstrated better performance in biofilm prevention than chlorine. In general, copper alloys may have a positive public health impact by reducing the number of non-damaged cells in the water delivered after chlorine exposure.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - L C Simões
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Zhou H, Xu G. Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: Performance, biofilm characteristics and microbial community. BIORESOURCE TECHNOLOGY 2019; 293:122004. [PMID: 31454730 DOI: 10.1016/j.biortech.2019.122004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The integrated effects of temperature and COD/N ratio on performance, biofilm characteristics and microbial community in up-flow anaerobic filter-biological aerated filters (UAF-BAFs) were investigated. Results indicated that the UAF-BAF system could achieve excellent COD, NH4+-N and TN removal, in which effluent quality well met the Class 1A standard. Biofilm physicochemical characteristics showed that the biomass, biofilm thickness and extracellular polymeric substance (EPS) content in the UAF-BAFs reduced with the decrease in COD/N ratio, but were enhanced under low temperature. The biofilm structure characterized by CLSM in the UAF-BAFs significantly shifted, which was closely correlated with operational conditions. Sequencing analysis revealed that Proteobacteria, Epsilonbacteraeota, Bacteroidetes and Firmicutes were dominant in the UAFs and the abundance of ammonium oxidizing bacteria (AOB) was responsible for nitrification performance in the BAFs. Functions analysis indicated that amino acid metabolism, carbohydrate metabolism, energy metabolism and lipid metabolism were clearly regulated by parameters changes.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Zhou L, Ye B, Xia S. Assessment of membrane bioreactor fouling with the addition of suspended aluminum nitride nanoparticles. CHEMOSPHERE 2019; 237:124473. [PMID: 31376697 DOI: 10.1016/j.chemosphere.2019.124473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed fouling in a membrane bioreactor (MBR) with the addition of suspended aluminum nitride (AlN) nanoparticles (NPs). Three parallel laboratory-scale submerged MBRs were operated with 0, 10, and 50 mg AlN NPs/L for over 70 days. The results showed that the addition of suspended AlN NPs did not significantly affect pollutant biodegradation; there was only a slight decrease in NH4+-N removal. Furthermore, the membrane's permeability was increased with effective fouling mitigation by the addition of a high amount of suspended AlN NPs. This was because the suspended AlN NPs decreased the content of polysaccharides in both the extracellular polymeric substances and soluble microbial products, and decreased the sludge floc size. However, the AlN NPs also promoted pore-blocking, particularly standard blocking, which enhanced irreversible fouling. Additionally, owing to the larger ionic radius and higher electronegativity, the AlN NPs inhibited the accumulation of framework components (SiO2). Therefore, suspended AlN NPs resulted in a thinner cake layer.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Biao Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Pudong Architectural Design & Research Institute, Shanghai, 201204, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
32
|
Xu JJ, Cheng YF, Xu LZJ, Zhu XL, Zhu WQ, Jin RC. The performance and microbial community in response to MnO 2 nanoparticles in anammox granular sludge. CHEMOSPHERE 2019; 233:625-632. [PMID: 31195266 DOI: 10.1016/j.chemosphere.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The response of anaerobic ammonium oxidation (anammox) process and granular sludge in the upflow anaerobic sludge blanket reactor was analyzed under long-term exposure to MnO2 nanoparticles (NPs) (1-200 mg L-1). The addition of 200 mg L-1 MnO2 NPs had a significantly positive effect on nitrogen removal and this system exhibited excellent performance, with a total nitrogen removal efficiency of 93.1%. Moreover, the specific anammox activity enhanced with increasing concentrations of MnO2 NPs up to the maximum value of 657.3 ± 9.3 mg TN g-1 VSS d-1 under MnO2 NPs concentration of 200 mg L-1. This value was approximately 1.6-fold higher than that of the reactor in the absence of MnO2 NPs. The extracellular polymeric substances and settling velocity were both increased with MnO2 NPs addition. Meanwhile, the high-throughput sequencing results revealed that MnO2 NPs increased the relative abundance of dominant bacteria (Candidatus Kuenenia) from 17.3% at the absence of MnO2 NPs to 23.9% at 200 mg L-1 MnO2 NPs, which resulted in a higher efficiency of biological nitrogen removal on the anammox system. These results indicated that MnO2 NPs enhanced nitrogen removal performance of anammox process.
Collapse
Affiliation(s)
- Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
33
|
Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng 2019; 43:153-167. [PMID: 31549306 DOI: 10.1007/s00449-019-02213-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM-EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.
Collapse
|
34
|
Alizadeh S, Abdul Rahim A, Guo B, Hawari J, Ghoshal S, Comeau Y. Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9148-9159. [PMID: 31294965 DOI: 10.1021/acs.est.9b01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 μg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor, and effluent of MBBRs using single particle inductively coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Arshath Abdul Rahim
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Bing Guo
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Jalal Hawari
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| |
Collapse
|
35
|
Zhang S, Wang Y, Song H, Lu J, Yuan Z, Guo J. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. ENVIRONMENT INTERNATIONAL 2019; 129:478-487. [PMID: 31158594 DOI: 10.1016/j.envint.2019.05.054] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu2+) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu2+ at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu2+ exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, No.219, Ningliu Road, Nanjing 210044, China
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Hailiang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Zhou H, Xu G. Effect of silver nanoparticles on an integrated fixed-film activated sludge-sequencing batch reactor: Performance and community structure. J Environ Sci (China) 2019; 80:229-239. [PMID: 30952340 DOI: 10.1016/j.jes.2018.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The effects of silver nanoparticles (AgNPs) on reactor performance, extracellular polymeric substances composition and microbial community structure and function in integrated fixed-film activated sludge-sequencing batch reactors (IFAS-SBRs) were investigated. Results showed that the addition of AgNPs from 0.1 to 10 mg/L exhibited no significant effects on nutrient removal. The average overall removal of COD, NH4+-N and PO43--P was 96.6%, 99.9% and 98.8%, respectively. The introduction of AgNPs caused an increase in extracellular polymeric substances content for the sludge and biofilm of IFAS-SBRs. The release of Ag+ from AgNPs and lactate dehydrogenase test implied the low toxicity of AgNPs to IFAS-SBRs. High-throughput sequencing revealed that microbial community structure showed significant shifts at phylum and genus levels after long-term exposure to AgNPs, but core functional groups responsible for nutrient removal remained at high abundance. Bacterial function prediction indicated that the metabolic categories showed no significant shifts under AgNPs stress, therefore good process performance could still be achieved.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
37
|
Nascimento JR, Silveira AEF, Bidone ED, Sabadini-Santos E. Microbial community activity in response to multiple contaminant exposure: a feasible tool for sediment quality assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:392. [PMID: 31123827 DOI: 10.1007/s10661-019-7532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Sediments represent complex mixtures and the impacts of their physical and chemical processes on biota are important for assessing potential health risks. We aimed to rank sediment samples from Guanabara Bay by developing an algorithm (quality ratio-QR), focusing on key sediment parameters (fine grain size, total organic carbon (TOC), metal concentrations) and enzymatic activities (dehydrogenase (DHA-energy production into cell) and esterases (EST-hydrolase organic matter outside the cell membrane)) of in situ microbial communities. Our QR is supported by quantitative information and significant correlations between geochemical and microbial processes. The QR is a function of the dependent term DHA/EST and the geochemical term (TOC×∑CF)/fine-grained sediment, where ∑CF is the sum of contamination factors (ratio between actual and background metal concentrations). We could rank our sampling sites into three risk classes based on QR: low, medium, and high. Our findings suggest altered homeostasis due to the development of contamination resistance. We applied a sensitivity analysis, using Brazilian law for sediment quality assessment, to calibrate our risk index. Our QR is suitable for measuring the potential health risk of any sediment, especially in developing countries with serious technical limitations, since its evaluated parameters are cheap, fast, and easy to obtain.
Collapse
Affiliation(s)
- Juliana Ribeiro Nascimento
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Ana Elisa Fonseca Silveira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
38
|
Zhang X, Chen Z, Zhou Y, Ma Y, Zhang H, Zhou L, Fang S. Comparisons of Nitrogen Removal and Microbial Communities in Anammox Systems upon Addition of Copper-Based Nanoparticles and Copper Ion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojing Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Zhao Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yue Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yongpeng Ma
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Hongzhong Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Liming Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Shaoming Fang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| |
Collapse
|
39
|
Zhao J, Liu S, Liu N, Zhang H, Zhou Q, Ge F. Accelerated productions and physicochemical characterizations of different extracellular polymeric substances from Chlorella vulgaris with nano-ZnO. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:582-589. [PMID: 30580213 DOI: 10.1016/j.scitotenv.2018.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 05/06/2023]
Abstract
Extracellular polymeric substances (EPS) play significant roles in protecting cells against environmental stresses. However, little information is known about the roles of different EPS in these processes. In this study, the productions and physicochemical characterizations of soluble-EPS (S-EPS) and bound-EPS (B-EPS), the two different fractions of EPS from a green alga Chlorella vulgaris under the stress of ZnO nanoparticle (nano-ZnO) were investigated. The contents of S-EPS and B-EPS which described as dissolved organic carbon, polysaccharides and proteins, both increased with the addition of tested nano-ZnO (0.01 and 0.04 mM) in a 72 h cultivation. EPS-Free (EPS-F) cells produced more S-EPS and B-EPS than the EPS-Cover (EPS-C) cells did with the tested nano-ZnO, especially the contents of protein in the S-EPS of EPS-F cells increased by 45.5% with 0.04 mM nano-ZnO compared to the control at 72 h. Tryptophan-like substances of the protein in S-EPS exhibited a stronger chemical static quenching than tyrosine-like substances with nano-ZnO. In addition, the hydroxyl (OH) as well as carboxyl (CO) group, and CO of amide I, NH/CN of amide II groups in proteins were confirmed that involved in the reaction of S-EPS and B-EPS with nano-ZnO, meanwhile hemiacetal groups in saccharides were oxidized to carboxyl groups. This study could provide a better understanding of EPS in protecting against cells damage with nanoparticles.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Shixiang Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Han Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Qiongzhi Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
40
|
Huangfu X, Xu Y, Liu C, He Q, Ma J, Ma C, Huang R. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. CHEMOSPHERE 2019; 219:766-783. [PMID: 30572231 DOI: 10.1016/j.chemosphere.2018.12.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Engineered nanoparticles (ENPs) will inevitably enter wastewater treatment plants (WWTPs) due to their widespread application; thus, it is necessary to study the migration and transformation of nanoparticles in sewage treatment systems. Extracellular polymeric substances (EPSs) such as polysaccharides, proteins, nucleic acids, humic acids and other polymers are polymers released by microorganisms under certain conditions. Intracellular polymeric substances (IPSs) are microbial substances contained in the body with compositions similar to those of extracellular polymers. In this review, we summarize the characteristics of EPSs and IPSs from sewage-collecting microbial aggregates containing pure bacteria, activated sludge, granular sludge and biofilms. We also further investigate the dissolution, adsorption, aggregation, deposition, oxidation and other chemical transformation processes of nanoparticles, such as metals, metal oxides, and nonmetallic oxides. In particular, the review deeply analyzes the migration and transformation mechanisms of nanoparticles in EPS and IPS matrices, including physical, chemical, biological interactions mechanisms. Moreover, various factors, such as ionic strength, ionic valence, pH, light, oxidation-reduction potential and dissolved oxygen, influencing the interaction mechanisms are discussed. In recent years, studies on the interactions between EPSs/IPSs and nanoparticles have gradually increased, but the mechanisms of these interactions are seldom explored. Therefore, developing a systematic understanding of the migration and transformation mechanisms of ENPs is significant.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, China
| | - Chengxue Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| |
Collapse
|
41
|
Response of Freshwater Biofilms to Antibiotic Florfenicol and Ofloxacin Stress: Role of Extracellular Polymeric Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050715. [PMID: 30818877 PMCID: PMC6427337 DOI: 10.3390/ijerph16050715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
Antibiotic residues have been detected in aquatic environments worldwide. Biofilms are one of the most successful life forms, and as a result are ubiquitous in natural waters. However, the response mechanism of freshwater biofilms to the stress of various antibiotic residues is still unclear. Here, the stress of veterinary antibiotic florfenicol (FF) and fluoroquinolone antibiotic ofloxacin (OFL) on freshwater biofilms were investigated by determining the changes in the key physicochemical and biological properties of the biofilms. The results showed that the chlorophyll a content in biofilms firstly decreased to 46–71% and then recovered to original content under the stress of FF and OFL with high, mid, and low concentrations. Meanwhile, the activities of antioxidant enzymes, including superoxide dismutase and catalase, increased between 1.3–6.7 times their initial values. FF was more toxic to the biofilms than OFL. The distribution coefficients of FF and OFL binding in extracellular polymeric substances (EPS)-free biofilms were 3.2 and 6.5 times higher than those in intact biofilms, respectively. It indicated that EPS could inhibit the FF and OFL accumulation in biofilm cells. The present study shows that the EPS matrix, as the house of freshwater biofilms, is the primary barrier that resists the stress from antibiotic residues.
Collapse
|
42
|
Miao L, Wang P, Hou J, Yao Y, Liu Z, Liu S. Low concentrations of copper oxide nanoparticles alter microbial community structure and function of sediment biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:705-713. [PMID: 30759596 DOI: 10.1016/j.scitotenv.2018.10.354] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the effects of copper oxide (CuO) NPs on freshwater sediment biofilms in terms of the functional properties and microbial community structure. Biofilms were incubated in microcosms and CuO NPs (1 mg/L uncoated and humic-acid-coated) were exposed with Cu2+ (Cu(NO3)2) as the positive control. As determined from DO (dissolved oxygen) microelectrodes measurements, a high-DO region emerged inside the biofilms after 5-day exposure to CuO NPs compared with those before NP additions, which suggested CuO NPs inhibit the oxygen respiration activity. These results were consistent with the decreased heterotrophic respiration. CuO NPs significantly altered the bacterial community composition and decreased the abundances of Anaerolineaceae, Acidobacteria, Aminicenantes, and Anaerolinea. Functional analysis from PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)-predicted metagenomes indicated that bacterial genera depleted by CuO NP treatments were related to carbohydrate and glycan biosynthesis and metabolism, and biosynthesis of other secondary metabolites. These functional profiles combined with the decreased activities of extracellular enzymes, β-glucosidase (GLU) and l-leucine aminopeptidase (LAP), suggested that the introduction of CuO NPs exhibit negative effects on the biogeochemical processes and the cycling of carbon and nitrogen in biofilm systems. Whereas these toxic effects of CuO NPs could be mitigated when the aquatic environment is enriched with natural organic matters such as humic acid.
Collapse
Affiliation(s)
- Lingzhan Miao
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Hou
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Yu Yao
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
43
|
Li H, Zhou L, Lin H, Xu X, Jia R, Xia S. Dynamic response of biofilm microbial ecology to para-chloronitrobenzene biodegradation in a hydrogen-based, denitrifying and sulfate-reducing membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:842-849. [PMID: 29958172 DOI: 10.1016/j.scitotenv.2018.06.245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The dynamic response of biofilm microbial ecology to para-chloronitrobenzene (p-CNB) biodegradation was systematically evaluated according to the composition and loading of electron acceptors and H2 availability (controlled by H2 pressure) in a hydrogen-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR). To accomplish this, a laboratory-scale MBfR was set up and operated with different influent p-CNB concentrations (0, 2, and 5 mg p-CNB/L) and H2 pressures (0.04 and 0.05 MPa). Polymerase chain reaction-denaturing gel electrophoresis (PCR-DGGE) and cloning were then applied to investigate the bacterial diversity response of biofilm during p-CNB biodegradation. The results showed that denitrification and sulfate reduction largely controlled the total demand for H2. Additionally, the DGGE fingerprint demonstrated that the addition of p-CNB, which acted as an electron acceptor, was a critical factor in the dynamics of the MBfR biofilm microbial ecology. The presence of p-CNB also had a more advantageous effect on the biofilm microbial community. Additionally, clone library analysis showed that Proteobacteria (especially beta- and gamma-) comprised the majority of the microbial biofilm response to p-CNB biodegradation, and that Pseudomonas sp. (Gammaproteobacteria) played a significant role in the biotransformation of p-CNB to aniline.
Collapse
Affiliation(s)
- Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Xiaoyin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Renyong Jia
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
44
|
Ma B, Li S, Wang S, Gao M, Guo L, She Z, Zhao Y, Jin C, Yu N, Zhao C. Effect of Fe3O4 nanoparticles on composition and spectroscopic characteristics of extracellular polymeric substances from activated sludge. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Yi Y, Xie B, Zhao T, Liu H. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. BIORESOURCE TECHNOLOGY 2018; 265:415-421. [PMID: 29933189 DOI: 10.1016/j.biortech.2018.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance.
Collapse
Affiliation(s)
- Yue Yi
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China.
| | - Ting Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
46
|
Su C, Zhao L, Liao L, Qin J, Lu Y, Chen M, Huang M, Huang Z. Performance and microbial community of CIC anaerobic reactor treating food waste under different grease contents and inner circulation ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21623-21634. [PMID: 29785600 DOI: 10.1007/s11356-018-2279-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
High concentrations of grease easily inhibit anaerobic digestion. The stability of the process and microbial responses in the controlling internal circulation (CIC) reactor used for treating food waste were investigated under different grease contents and inner circulation ratios. Results showed that at the grease content of 1 g/L, the removal rates of 94% and 86-93% were achieved for chemical oxygen demand (COD) and NH3-N, respectively. In contrast, when the grease content increased to 7 g/L, removal rates for COD and NH3-N significantly decreased to 42.8 and 10%, respectively. In the three-dimensional excitation and emission matrix (3D-EEM) spectra of LB-EPS (loosely bound extracellular polymeric substances), the fluorescence intensity of coenzyme F420 was weakened in the granular sludge, and the fluorescence peak of aromatic protein disappeared in the TB-EPS (tightly bound EPS). The activity and stability of the granular sludge deteriorated with increasing grease content, in this case at 7 g/L. However, when the inner cycle ratio was increased to 4, the removal rate of COD and NH3-N increased to about 70 and 76%, respectively. The adverse effects of grease could be decreased by increasing the inner cycle ratio. When the grease content increased from 1 to 7 g/L, the abundance of Methanofollis increased from 9.93 to 46.41%, while Methanothrix abundance was reduced from 18.4 to 3.07%. It could indicate that Methanothrix was sensitive to high grease content.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China.
- School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, People's Republic of China.
| | - Lijian Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Liming Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Jingjing Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Mei Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| | - Zhi Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, People's Republic of China
| |
Collapse
|
47
|
Zhang L, Yue Q, Yang K, Zhao P, Gao B. Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. CHEMOSPHERE 2018; 193:645-654. [PMID: 29169139 DOI: 10.1016/j.chemosphere.2017.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/22/2017] [Accepted: 11/12/2017] [Indexed: 05/22/2023]
Abstract
Extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis and up-flow biological aerated filter (UBAF) process for the treatment of high-level ciprofloxacin (CIP) were analyzed. The research demonstrated a great potential of Fe-C micro-electrolysis-UBAF for the elimination of high-level CIP. Above 90% of CIP removal was achieved through the combined process at 100 mg L-1 of CIP loading. In UBAF, the pollutants were mainly removed at 0-70 cm heights. Three-dimensional fluorescence spectrum (3D-EEM) was used to characterize the chemical structural of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) extracted from biofilm sample in UBAF. The results showed that the protein-like substances in LB-EPS and TB-EPS had no clear change in the study. Nevertheless, an obvious release of polysaccharides in EPSs was observed during long-term exposure to CIP, which was considered as a protective response of microbial to CIP toxic. The high-throughput sequencing results revealed that the biodiversity of bacteria community became increasingly rich with gradual ciprofloxacin biodegradation in UBAF. The ciprofloxacin-degrading microbial community was mainly dominated by Proteobacteria and Bacteroidetes. Microorganisms from genera Dechloromonas, Brevundimonas, Flavobacterium, Sphingopyxis and Bosea might take a major role in ciprofloxacin degradation. This study provides deep theoretical guidance for real CIP wastewater treatment.
Collapse
Affiliation(s)
- Longlong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Kunlun Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Pin Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
48
|
Zheng X, Su Y, Chen Y, Huang H, Shen Q. Global transcriptional responses of denitrifying bacteria to functionalized single-walled carbon nanotubes revealed by weighted gene-coexpression network analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1240-1249. [PMID: 28958131 DOI: 10.1016/j.scitotenv.2017.09.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Functionalized single-walled carbon nanotubes (f-SWNTs) are widely used in many fields due to the unique structure and the excellent properties. Although these nanomaterials have been reported to enable to cause negative effects on denitrifying bacteria once they enter the environment, the toxic behaviors and regulatory mechanisms of f-SWNTs to denitrification remain unclear. In this study, the denitrification performance of a model denitrifier exposed to pristine and functionalized SWNTs was investigated, and the global transcriptional responses were comprehensively explored by RNA-seq and weighted gene-coexpression network analysis (WGCNA). Although both hydroxyl SWNTs (SWNTs-OH) and carboxyl SWNTs (SWNTs-COOH) showed inhibitory effects on bacterial denitrification, the former more severely inhibited denitrification than the latter. Transcriptional profiles showed that compared with SWNTs-COOH, SWNTs-OH much more strongly influenced the expressions of the key genes related to signal transduction, substance transport, electron transfer and transcriptional regulation. Functional analysis further indicated that the genes associated with substrate transport, carbon source metabolism and electron transfer underwent dramatic down-regulation. Using WGCNA, 12 gene modules were established corresponding to various types of carbon nanotubes, and eigengene adjacency analysis revealed the key gene modules related to denitrification performance under different conditions. Hub gene network analysis revealed the key regulatory factors of bacterial denitrification induced by f-SWNTs. The results suggested that f-SWNTs modulated the key genes responsible for the glycerolipid/free fatty acid (GL/FFA) cycle, and thus disturb processes associated with denitrification, including signaling process, energy homeostasis, intracellular redox balance and transportation.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuting Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
49
|
A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Zheng XY, Lu D, Chen W, Gao YJ, Zhou G, Zhang Y, Zhou X, Jin MQ. Response of Aerobic Granular Sludge to the Long-Term Presence of CuO NPs in A/O/A SBRs: Nitrogen and Phosphorus Removal, Enzymatic Activity, and the Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10503-10510. [PMID: 28832135 DOI: 10.1021/acs.est.7b02768] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing use of cupric oxide nanoparticles (CuO NPs) has raised concerns about their potential environmental toxicity. Aerobic granular sludge (AGS) is a special form of microbial aggregates. In this study, the removal efficiencies of nitrogen and phosphorus, enzyme activities and microbial community of AGS under long-term exposure to CuO NPs (at concentrations of 5, 20, 50 mg/L) in aerobic/oxic/anoxic (A/O/A) sequencing batch reactors (SBRs) were investigated. The results showed the chronic toxicity caused by different concentrations of CuO NPs (5, 20, 50 mg/L) resulted in increases in the production of ROS of 110.37%, 178.64%, and 188.93% and in the release of lactate dehydrogenase (LDH) of 108.33%, 297.05%, 335.94%, respectively, compared to the control. Besides, CuO NPs decreased the activities of polyphosphate kinase (PPK) and exophosphatase (PPX), leading to lower phosphorus removal efficiency. However, the NH4+-N removal rates remained stable, and the removal efficiencies of TN increased due to the synthesis of nitrite and nitrous oxide (N2O) reductases. In addition, CuO NPs at concentrations of 0, 5, 20 mg/L increased the secretion of protein (PN) to 90, 91, 105 mg/gVSS, respectively, which could alleviate the toxicity of CuO NPs. High-throughput sequencing showed that CuO NPs increased the abundance of nitrogen-removal bacteria and reduced the abundance of phosphorus-removal bacteria, which is consistent with the results of pollutant removal upon long-term exposure to CuO NPs.
Collapse
Affiliation(s)
- Xiao-Ying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University , Nanjing 210098, PR China
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Dan Lu
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University , Nanjing 210098, PR China
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Ya-Jie Gao
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Gan Zhou
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Yuan Zhang
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Xiang Zhou
- College of Environment, Hohai University , Nanjing 210098, PR China
| | - Meng-Qi Jin
- College of Environment, Hohai University , Nanjing 210098, PR China
| |
Collapse
|