1
|
Han Q, Wang S, Han B, Su W, Yang J, Yu Q, Li H. Temporal dynamics of the diazotrophic community during corpse decomposition. Appl Microbiol Biotechnol 2024; 108:506. [PMID: 39520567 PMCID: PMC11550258 DOI: 10.1007/s00253-024-13329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Corpse decomposition affects soil organisms through the formation of "cadaver decomposition islands." Soil diazotrophic microbes possess essential ecological functions on nitrogen input and nutrient cycling in the terrestrial ecosystem. However, our knowledge about how soil diazotrophic communities respond to corpse decomposition is lacking. In this study, we focused on the succession patterns and biological interaction of nitrogen-fixing microorganisms during animal (Ochotona curzoniae) corpse decomposition in terrestrial ecosystems by targeting nifH gene with high-throughput sequencing. Our results revealed that corpse decomposition of pikas reduced the α diversity and significantly impacted the β diversity of diazotrophic community across different decomposition stages. The divergent succession of diazotrophic community occurred under corpse pressure. Furthermore, the relative importance of stochasticity to the community assembly was improved by corpse decomposition, while the importance decreased over decomposition time. Cadaver decay also simplified the diazotrophic networks and weakened the biological interactions among diazotrophic populations. Notably, NH4-N was the most important factor affecting diazotrophic community, followed by time and total carbon. This work emphasized that corpse decomposition perhaps influences the process of biological nitrogen fixation by altering soil diazotrophic communities, which is of great significance for understanding the terrestrial ecosystems' nitrogen cycle functions. KEY POINTS: • Corpse decomposition reduced the α diversity of diazotrophic community. • Corpse decomposition improved the stochasticity of diazotrophic community assembly. • Corpse decomposition weakened the interactions among diazotrophic populations.
Collapse
Affiliation(s)
- Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Turfan N, Kibar B, Davletova N, Kibar H. Ameliorative effects of humic acid and L-tryptophan on enzyme activity, mineral content, biochemical properties, and plant growth of spinach cultivated in saline conditions. Food Sci Nutr 2024; 12:8324-8339. [PMID: 39479606 PMCID: PMC11521683 DOI: 10.1002/fsn3.4435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 11/02/2024] Open
Abstract
Salinity poses a significant abiotic stress that limits plant productivity, thereby posing a serious threat to agricultural sustainability and worldwide food security. Techniques that can overcome this problem are needed. Recent focus has been placed on employing organic substances like humic acid (HA) and amino acids, including L-tryptophan (L-TRP), to mitigate the negative effects of salt stress on cultivated plants. Accordingly, in this research, the impact of foliar applications of HA and L-TRP, both separately and combined, on the growth parameters and biochemical properties of spinach subjected to salt stress was investigated. In the present study, eight treatments (1. control, 2. salt (NaCl), 3. HA, 4. L-TRP, 5. HA + NaCl, 6. L-TRP + NaCl, 7. HA + L-TRP, and 8. HA + L-TRP + NaCl) were investigated. The study showed that salt stress markedly reduced several growth properties in spinach, including plant height, number of leaves, leaf dimensions, and both fresh and dry weight. Additionally, it significantly lowered contents of chlorophyll (a, b, and total), carotenoid, polyphenol, lutein, anthocyanin, polyphenol oxidase, glycine betaine, relative water content, and the antioxidant enzyme activities (ascorbate peroxidase, catalase, peroxidase, and superoxide dismutase). On the other hand, significant increases were observed in sodium, chlorine, potassium, sulfur, zinc, nickel, proline, malondialdehyde, and hydrogen peroxide levels of spinach with salinity. Individual and combined applications of HA and L-TRP positively influenced plant growth, relative water content, activities of antioxidant enzyme, chlorophyll, and mineral contents of spinach under both normal and saline conditions. In conclusion, the combined use of HA and L-TRP under salt stress conditions is promising in mitigating the negative impacts of salinity and can be suggested as an effective alternative approach for cultivating spinach in saline environments.
Collapse
Affiliation(s)
- Nezahat Turfan
- Department of Biology, Faculty of ScienceKastamonu UniversityKastamonuTürkiye
| | - Beyhan Kibar
- Department of Horticulture, Faculty of AgricultureBolu Abant Izzet Baysal UniversityBoluTürkiye
| | - Nazakat Davletova
- Department of Biology, Faculty of ScienceKastamonu UniversityKastamonuTürkiye
| | - Hakan Kibar
- Department of Seed Science and Technology, Faculty of AgricultureBolu Abant Izzet Baysal UniversityBoluTürkiye
| |
Collapse
|
3
|
Li S, Lu S, Wang J, Liu Z, Yuan C, Wang M, Guo J. Divergent effects of single and combined stress of drought and salinity on the physiological traits and soil properties of Platycladus orientalis saplings. FRONTIERS IN PLANT SCIENCE 2024; 15:1351438. [PMID: 38903426 PMCID: PMC11187290 DOI: 10.3389/fpls.2024.1351438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old Platycladus orientalis saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of P. orientalis decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of P. orientalis saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to P. orientalis saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of P. orientalis saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.
Collapse
Affiliation(s)
- Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Gugliucci W, Cirillo V, Maggio A, Romano I, Ventorino V, Pepe O. Valorisation of hydrothermal liquefaction wastewater in agriculture: effects on tobacco plants and rhizosphere microbiota. FRONTIERS IN PLANT SCIENCE 2023; 14:1180061. [PMID: 37342148 PMCID: PMC10277691 DOI: 10.3389/fpls.2023.1180061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Industrial wastewater obtained from hydrothermal liquefaction (HTL-WW) of food wastes for biofuels production could represent a source of crop nutrients since it is characterized by a high amount of organic and inorganic compounds. In the present work, the potential use of HTL-WW as irrigation water for industrial crops was investigated. The composition of the HTL-WW was rich in nitrogen, phosphorus, and potassium with high level of organic carbon. A pot experiment with Nicotiana tabacum L. plants was conducted using diluted wastewater to reduce the concentration of some chemical elements below the official accepted threshold values. Plants were grown in the greenhouse under controlled conditions for 21 days and irrigated with diluted HTL-WW every 24 hours. Soils and plants were sampled every seven days to evaluate, over time, the effect of wastewater irrigation both on soil microbial populations, through high-throughput sequencing, and plant growth parameters, through the measurement of different biometric indices. Metagenomic results highlighted that, in the HTL-WW treated rhizosphere, the microbial populations shifted via their mechanisms of adaptation to the new environmental conditions, establishing a new balance among bacterial and fungal communities. Identification of microbial taxa occurring in the rhizosphere of tobacco plants during the experiment highlighted that the HTL-WW application improved the growth of Micrococcaceae, Nocardiaceae and Nectriaceae, which included key species for denitrification, organic compounds degradation and plant growth promotion. As a result, irrigation with HTL-WW improved the overall performance of tobacco plants which showed higher leaf greenness and increased number of flowers compared to irrigated control plants. Overall, these results demonstrate the potential feasibility of using of HTL-WW in irrigated agriculture.
Collapse
Affiliation(s)
- Wanda Gugliucci
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
7
|
Yuan YH, Liu LX, Wang L, Dong GZ, Liu YG. Effects of different seasons on bacterial community structure in rose rhizosphere soil. Appl Microbiol Biotechnol 2022; 107:405-417. [DOI: 10.1007/s00253-022-12290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
|
8
|
Li Y, He X, Yuan H, Lv G. Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms 2022; 10:microorganisms10081644. [PMID: 36014066 PMCID: PMC9414475 DOI: 10.3390/microorganisms10081644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/02/2023] Open
Abstract
Lycium ruthenicum, a halophytic shrub, has been used to remediate saline soils in northwest China. However, little is known about its root-associated microbial community and how it may be affected by the plant’s growth cycle. In this study, we investigate the microbial community structure of L. ruthenicum by examining three root compartments (rhizosphere, rhizoplane, and endosphere) during four growth stages (vegetative, flowering, fruiting, and senescence). The microbial community diversity and composition were determined by Illumina MiSeq sequencing of the 16S V3–V4 and 18S ITS regions. Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most dominant fungal phyla. The alpha diversity of the bacterial communities was highest in the rhizosphere and decreased from the rhizosphere to the endosphere compartments; the fungal communities did not show a consistent trend. The rhizosphere, rhizoplane, and endosphere had distinct bacterial community structures among the three root compartments and from the bulk soil. Additionally, PERMANOVA indicated that the effect of rhizocompartments explained a large proportion of the total community variation. Differential and biomarker analysis not only revealed that each compartment had unique biomarkers and was enriched for specific bacteria, but also that the biomarkers changed with the plant growth cycle. Fungi were also affected by the rhizocompartment, but to a much less so than bacteria, with significant differences in the community composition along the root compartments observed only during the vegetative and flowering stages. Instead, the growth stages appear to account for most of the fungal community variation as demonstrated by PCoA and NMDS, and supported by differential and biomarker analysis, which revealed that the fungal community composition in the rhizosphere and endosphere were dynamic in response to the growth stage. Many enriched OTUs or biomarkers that were identified in the root compartments were potentially beneficial to the plant, meanwhile, some harmful OTUs were excluded from the root, implying that the host plant can select for beneficial bacteria and fungi, which can promote plant growth or increase salt tolerance. In conclusion, the root compartment and growth stage were both determinant factors in structuring the microbial communities of L. ruthenicum, but the effects were different in bacteria and fungi, suggesting that bacterial and fungal community structures respond differently to these growth factors.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Hongfei Yuan
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
- Correspondence:
| |
Collapse
|
9
|
Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIR03 and Biochar. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) with biochar is apprised to be a promising bio-fertilizer for improving the soil fertility and plant growth and development. The current study aimed to identify a potential plant growth-promoting rhizobacterium alongside biochar to improve sesame seedling productivity. Our results revealed that among the nine isolates, SIR01, SIR03, and SIR07 significantly improved the growth and biomass of sesame and Waito-C rice seedlings. The increase in growth of Waito-C rice seedlings through isolate SIR01, SIR03, and SIR07, suggests their ability to produce phytohormones such as GA4, GA9, GA24, and GA34. Furthermore, the application of isolate SIR03 and biochar together revealed a synergistic increase in sesame seedling growth and biomass (fresh and dry weight) compared with their individual applications. This may be explained by enhancement of photosynthetic rate, chlorophyll fluorescence, stomatal conductance, and transpiration rate by the combined SIR03 and biochar treatment. This suggests that co-inoculation with SIR03 alongside the application of biochar can be considered an eco-friendly, low-cost bio-fertilizer to potentially improve sesame seedling growth and development.
Collapse
|
10
|
Loganathachetti DS, Alhashmi F, Chandran S, Mundra S. Irrigation water salinity structures the bacterial communities of date palm ( Phoenix dactylifera)-associated bulk soil. FRONTIERS IN PLANT SCIENCE 2022; 13:944637. [PMID: 35991423 PMCID: PMC9388049 DOI: 10.3389/fpls.2022.944637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The irrigation of date palms (Phoenix dactylifera) with saline groundwater is routinely practiced in the agroecosystems of arid environments because of freshwater scarcity. This leads to salts deposition in topsoil layers and increases soil salinization. However, how different irrigation sources affect soil microbiota is poorly understood. Bulk soil samples were collected from date farms receiving non-saline water and saline groundwater to examine bacterial communities using metabarcoding. Overall, bacterial diversity measures (Shannon diversity index, richness, and evenness) did not vary between irrigation sources. Bacterial communities were structured based on irrigation water sources and were significantly associated with their electrical conductivity. Of 5,155 operational taxonomic units (OTUs), 21.3% were unique to soil irrigated with saline groundwater, 31.5% received non-saline water irrigation, and 47.2% were shared. The Proteobacteria abundance was higher in soil under saline groundwater irrigation while Actinobacteriota abundance was lower. A compositional shift at the genera level was also evident; the abundance of Subgroup_10 and Mycobacterium was higher under saline groundwater irrigation. Mycobacterium was a key indicator of OTU under saline groundwater irrigation while Solirubrobacter was an indicator of non-saline water irrigation. Functional gene analyses showed enrichment of fatty acid, cell wall, and starch biosynthesis pathways in soil under saline groundwater irrigation. These findings provide insights into how "salinity filtering" influences bacterial communities, key taxa, and the potential metabolic function in soil under increasing irrigation water salinities, and have broad implications for arid agroecosystems.
Collapse
Affiliation(s)
| | - Fardous Alhashmi
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
| | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirate University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Microbial Community Composition and Activity in Saline Soils of Coastal Agro-Ecosystems. Microorganisms 2022; 10:microorganisms10040835. [PMID: 35456884 PMCID: PMC9027772 DOI: 10.3390/microorganisms10040835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is a serious problem for agriculture in coastal regions. Nevertheless, the effects of soil salinity on microbial community composition and their metabolic activities are far from clear. To improve such understanding, we studied microbial diversity, community composition, and potential metabolic activity of agricultural soils covering non–, mild–, and severe–salinity. The results showed that salinity had no significant effect on bacterial richness; however, it was the major driver of a shift in bacterial community composition and it significantly reduced microbial activity. Abundant and diverse of microbial communities were detected in the severe–salinity soils with an enriched population of salt–tolerant species. Co–occurrence network analysis revealed stronger dependencies between species associated with severe salinity soils. Results of microcalorimetric technology indicated that, after glucose amendment, there was no significant difference in microbial potential activity among soils with the three salinity levels. Although the salt prolonged the lag time of microbial communities, the activated microorganisms had a higher growth rate. In conclusion, salinity shapes soil microbial community composition and reduces microbial activity. An addition of labile organic amendments can greatly alleviate salt restrictions on microbial activity, which provides new insight for enhancing microbial ecological functions in salt–affected soils.
Collapse
|
12
|
Adhikari A, Khan MA, Imran M, Lee KE, Kang SM, Shin JY, Joo GJ, Khan M, Yun BW, Lee IJ. The Combined Inoculation of Curvularia lunata AR11 and Biochar Stimulates Synthetic Silicon and Potassium Phosphate Use Efficiency, and Mitigates Salt and Drought Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:816858. [PMID: 35310624 PMCID: PMC8928408 DOI: 10.3389/fpls.2022.816858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 06/12/2023]
Abstract
Synthetic chemical fertilizers are a fundamental source of nutrition for agricultural crops; however, their limited availability, low plant uptake, and excessive application have caused severe ecological imbalances. In addition, the gravity of environmental stresses, such as salinity and water stress, has already exceeded the threshold limit. Therefore, the optimization of nutrient efficiency in terms of plant uptake is crucial for sustainable agricultural production. To address these challenges, we isolated the rhizospheric fungus Curvularia lunata ARJ2020 (AR11) and screened the optimum doses of biochar, silicon, and potassium phosphate (K2HPO4), and used them-individually or jointly-to treat rice plants subjected to salt (150 mM) and drought stress (20-40% soil moisture). Bioassay analysis revealed that AR11 is a highly halotolerant and drought-resistant strain with an innate ability to produce gibberellin (GA1, GA3, GA4, and GA7) and organic acids (i.e., acetic, succinic, tartaric, and malic acids). In the plant experiment, the co-application of AR11 + Biochar + Si + K2HPO4 significantly improved rice growth under both salt and drought stresses. The plant growth regulator known as abscisic acid, was significantly reduced in co-application-treated rice plants exposed to both drought and salt stress conditions. These plants showed higher Si (80%), P (69%), and K (85%) contents and a markedly low Na+ ion (208%) concentration. The results were further validated by the higher expression of the Si-carrying gene OsLSi1, the salt-tolerant gene OsHKT2, and the OsGRAS23's drought-tolerant transcriptome. Interestingly, the beneficial effect of AR11 was significantly higher than that of the co-application of Biochar + Si + K2HPO4 under drought. Moreover, the proline content of AR11-treated plants decreased significantly, and an enhancement of plant growth-promoting characteristics was observed. These results suggest that the integrated co-application of biochar, chemical fertilizers, and microbiome could mitigate abiotic stresses, stimulate the bioavailability of essential nutrients, relieve phytotoxicity, and ultimately enhance plant growth.
Collapse
Affiliation(s)
- Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ko-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jin Y. Shin
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Gil-Jae Joo
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Khan A, Jiang H, Bu J, Adnan M, Gillani SW, Zhang M. An insight to rhizosphere bacterial community composition and structure of consecutive winter-initiated sugarcane ratoon crop in Southern China. BMC PLANT BIOLOGY 2022; 22:74. [PMID: 35183114 PMCID: PMC8857817 DOI: 10.1186/s12870-022-03463-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ratooning in sugarcane is a crucial strategy for ensuring the long-term sustainability of the sugarcane industry. Knowledge gap relating to the interaction between rhizosphere microbiome and ratooning crop, particularly the impact of different sugarcane cultivars on the rhizosphere microbiome in consecutive ratooning, requires additional research. The response of two different sugarcane cultivars, viz ZZ-1 and ZZ-13, were evaluated in consecutive ratooning towards the rhizosphere microbial community and cane morphological characters. RESULTS Significant changes in the rhizosphere microbiome were observed in the second ratooning over the years. Several important genera were observed in high abundance during the second ratooning, including Burkholderia, Sphingomonas, Bradyzhizobium, and Acidothermus. Cultivar ZZ-13 caused more alterations in the rhizosphere microbiome than ZZ-1, resulting in a more favorable rhizosphere environment for sugarcane growth. The genotypes also varied in terms of nutrients and enzyme activity over the years. There were significant differences between the genotypes and year for number of stalks and yield was significant for genotypes, years and genotype × year. CONCLUSION This finding will help to understand thorough interactions between rhizosphere microorganisms and ratoon sugarcane and lay the foundation for promoting and maximizing yield as far as possible. In the future, this work can serve as guidance in sugarcane husbandry, mainly in Guangxi, China.
Collapse
Affiliation(s)
- Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Hongtao Jiang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Junyao Bu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Muhammad Adnan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Syeda Wajeeha Gillani
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
14
|
Chen YP, Tsai CF, Hameed A, Chang YJ, Young CC. Agricultural management and cultivation period alter soil enzymatic activity and bacterial diversity in litchi (Litchi chinensis Sonn.) orchards. BOTANICAL STUDIES 2021; 62:13. [PMID: 34568997 PMCID: PMC8473471 DOI: 10.1186/s40529-021-00322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Agricultural management and temporal change including climate conditions and soil properties can result in the alteration of soil enzymatic activity and bacterial community, respectively. Therefore, different agricultural practices have been used globally to explore the soil quality. In this study, the temporal variations in soil property, enzymatic activity, and bacterial community at three successive trimester sampling intervals were performed in the soil samples of litchi orchards that were maintained under conventional and sustainable agricultural practices. RESULTS Agricultural management found to significantly influence arylsulfatase, β-glucosidase, and urease activities across time as observed by repeated-measures analysis of variance. Shannon and Simpson diversity indices, and the relative abundance of predominant Acidobacteria and Proteobacteria were significantly influenced by temporal change but not agricultural management. This suggested that soil enzymatic activity was more susceptible to the interaction of temporal change and agricultural management than that of the bacterial community. Multiple regression analysis identified total nitrogen, EC, and phosphorus as the significant predictors of acid phosphatase, arylsulfatase, and β-glucosidase for explaining 29.5-39% of the variation. Moreover, the soil pH and EC were selected for the SOBS, Chao, ACE, and Shannon index to describe 33.8%, 79% of the variation, but no significant predictor was observed in the dominant bacterial phyla. Additionally, the temporal change involved in the soil properties had a greater effect on bacterial richness and diversity, and enzymatic activity than that of the dominant phyla of bacteria. CONCLUSIONS A long-term sustainable agriculture in litchi orchards would also decrease soil pH and phosphorus, resulting in low β-glucosidase and urease activity, bacterial richness, and diversity. Nevertheless, application of chemical fertilizer could facilitate the soil acidification and lead to adverse effects on soil quality. The relationship between bacterial structure and biologically-driven ecological processes can be explored by the cross-over analysis of enzymatic activity, soil properties and bacterial composition.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023 Fujian China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Asif Hameed
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300 Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
15
|
Towards sustainable agriculture: rhizosphere microbiome engineering. Appl Microbiol Biotechnol 2021; 105:7141-7160. [PMID: 34508284 DOI: 10.1007/s00253-021-11555-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Soil microbiomes are extremely complex, with dense networks of interconnected microbial species underpinning vital functions for the ecosystem. In advanced agricultural research, rhizosphere microbiome engineering is gaining much attention, as the microbial community has been acknowledged to be a crucial partner of associated plants for their health fitness and yield. However, single or combined effects of a wide range of soil biotic and abiotic factors impact the success of engineered microbiomes, as these microbial communities exhibit uneven structural and functional networks in diverse soil conditions. Therefore, once a deep understanding of major influential factors and corresponding microbial responses is developed, the microbiome can be more effectively manipulated and optimized for cropping benefits. In this mini-review, we propose the concept of a microbiome-mediated smart agriculture system (MiMSAS). We summarize some of the advanced strategies for engineering the rhizosphere microbiome to withstand the stresses imposed by dominant abiotic and biotic factors. This work will help the scientific community gain more clarity about engineered microbiome technologies for increasing crop productivity and environmental sustainability.Key points• Individual or combined effects of soil biotic and abiotic variables hamper the implementation of engineered microbiome technologies in the field.• As a traditional approach, reduced-tillage practices coinciding with biofertilization can promote a relatively stable functional microbiome.• Increasing the complexity and efficiency of the synthetic microbiome is one way to improve its field-application success rate.• Plant genome editing/engineering is a promising approach for recruiting desired microbiomes for agricultural benefit.
Collapse
|
16
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS One 2021; 16:e0252242. [PMID: 34061881 PMCID: PMC8168849 DOI: 10.1371/journal.pone.0252242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.
Collapse
Affiliation(s)
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum, Turkey
| | | | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| | - Donald L. Suarez
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| |
Collapse
|
17
|
A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. Int J Mol Sci 2021; 22:ijms22073438. [PMID: 33810508 PMCID: PMC8036350 DOI: 10.3390/ijms22073438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.
Collapse
|
18
|
Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Curr Microbiol 2021; 78:1069-1085. [PMID: 33611628 DOI: 10.1007/s00284-021-02375-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/05/2021] [Indexed: 01/29/2023]
Abstract
Interactions between microorganisms and host plants determine the growth and development as well as the health of the host plant. Various microbial groups inhabit the rhizosphere, each with its peculiar function. The survival of each microbial group depends to a large extent on its ability to colonize the plant root and outcompete the native organisms. The role of the rhizospheric microbiome in enhancing plant growth has not been fully maximized. An understanding of the complexities of microbial interactions and factors affecting their assembly in the community is necessary to benefit maximally from the cooperations of various microbial communities for sustainable crop production. In this review, we outline the various organisms associated with the plant rhizosphere with emphasis on their interactions and mechanisms used in plant growth promotion.
Collapse
|
19
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
20
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
21
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
22
|
Benidire L, El Khalloufi F, Oufdou K, Barakat M, Tulumello J, Ortet P, Heulin T, Achouak W. Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139020. [PMID: 32498175 DOI: 10.1016/j.scitotenv.2020.139020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 05/25/2023]
Abstract
Increased global warming, caused by climate change and human activities, will seriously hinder plant development, such as increasing salt concentrations in soils, which will limit water availability for plants. To ensure optimal plant growth under such changing conditions, microorganisms that improve plant growth and health must be integrated into agricultural practices. In the present work, we examined the fate of Vicia faba microbiota structure and interaction network upon inoculation with plant-nodulating rhizobia (Rhizobium leguminosarum RhOF125) and non-nodulating strains (Paenibacillus mucilaginosus BLA7 and Ensifer meliloti RhOL1) in the presence (or absence) of saline stress. Inoculated strains significantly improved plant tolerance to saline stress, suggesting either a direct or indirect effect on the plant response to such stress. To determine the structure of microbiota associated with V. faba, samples of the root-adhering soil (RAS), and the root tissues (RT) of seedlings inoculated (or not) with equal population size of RhOF125, BLA7 and RhOL1 strains and grown in the presence (or absence) of salt, were used to profile the microbial composition by 16S rRNA gene sequencing. The inoculation did not show a significant impact on the composition of the RT microbiota or RAS microbiota. The saline stress shifted the RAS microbiota composition, which correlated with a decrease in Enterobacteriaceae and an increase in Sphingobacterium, Chryseobacterium, Stenotrophomonas, Agrobacterium and Sinorhizobium. When the microbiota of roots and RAS are considered together, the interaction networks for each treatment are quite different and display different key populations involved in community assembly. These findings indicate that upon seed inoculation, community interaction networks rather than their composition may contribute to helping plants to better tolerate environmental stresses. The way microbial populations interfere with each other can have an impact on their functions and thus on their ability to express the genes required to help plants tolerate stresses.
Collapse
Affiliation(s)
- Loubna Benidire
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France; Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; High School of Technology Laayoune, Ibn Zohr University, Morocco
| | - Fatima El Khalloufi
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France; Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Barakat
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Joris Tulumello
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France; Biointrant, SAS BioIntrant, 84120 Pertuis, France
| | - Philippe Ortet
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Thierry Heulin
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Wafa Achouak
- Aix-Marseille Univ, CEA, CNRS, UMR7265, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France.
| |
Collapse
|
23
|
Li Y, Lian J, Wu B, Zou H, Tan SK. Phytoremediation of pharmaceutical-contaminated wastewater: Insights into rhizobacterial dynamics related to pollutant degradation mechanisms during plant life cycle. CHEMOSPHERE 2020; 253:126681. [PMID: 32278919 DOI: 10.1016/j.chemosphere.2020.126681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Rhizobacterial dynamics, relating to pollutant degradation mechanisms, over the course of plant lifespan have rarely been reported when using phytoremediation technologies for pharmaceutical-contaminated wastewater treatment. This study investigated the rhizobacterial dynamics of Typha angustifolia in constructed wetlands to treat ibuprofen (IBP)-polluted wastewater throughout plant development from seedling, vegetative, bolting, mature, to senescent stages. It was found that conventional pollutant and IBP removals increased with plant development, reaching to the best performance at bolting or mature stage (removal efficiencies: 92% organics, 52% ammonia, 60% phosphorus and 76% IBP). In the IBP-stressed wetlands, the rhizobacterial diversity during plant development was adversely affected by IBP accompanied with a reduced evenness. The bacterial communities changed dynamically at different developmental stages and showed significant differences compared to the control wetlands (free of IBP). The dominant bacteria colonized in the rhizosphere was the phylum Actinobacteria, having a final relative abundance of 0.79 and containing a large amount of genus norank_o__PeM15. Positive interactions were evident among the rhizobacteria in IBP-stressed wetlands and the predicted functions of 16S rRNA genes revealed the potential co-metabolism and metabolism of IBP. The co-metabolism of IBP might be related to root exudates such as amino acid, lipid, fatty acid and organic acid. In addition, positive correlations between the organic compounds of interstitial water (bulk environment) and the rhizobacterial communities were observed in IBP-stressed wetlands, which suggests that the influence of IBP on bulk microbiome might be able to modulate rhizosphere microbiome to achieve the degradation of IBP via co-metabolism or metabolism.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, PR China
| | - Jie Lian
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, PR China
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Hua Zou
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, PR China.
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
| |
Collapse
|
24
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL, Ma J, Ghasemimianaei A, Yang CH. Functional relationships between aboveground and belowground spinach (Spinacia oleracea L., cv. Racoon) microbiomes impacted by salinity and drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137207. [PMID: 32070896 DOI: 10.1016/j.scitotenv.2020.137207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major problem facing agriculture in arid and semiarid regions of the world. This problem may vary among seasons affecting both above- and belowground plant microbiomes. However, very few studies have been conducted to examine the influence of salinity and drought on microbiomes and on their functional relationships. The objective for the study was to examine the effects of salinity and drought on above- and belowground spinach microbiomes and evaluate seasonal changes in their bacterial community composition and diversity. Furthermore, potential consequences for community functioning were assessed based on 16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on results obtained with Piphillin. The experiment was repeated three times from early fall to late spring in sand tanks planted with spinach (Spinacia oleracea L., cv. Racoon) grown with saline water of different concentrations and provided at different amounts. Proteobacteria, Cyanobacteria, and Bacteroidetes accounted for 77.1% of taxa detected in the rhizosphere; Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil, while Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria accounted for 55.35% of taxa detected in the phyllosphere. Salinity significantly affected root microbiome beta-diversity according to weighted abundances (p = 0.032) but had no significant effect on the relative abundances of microbial taxa (p = 0.568). Pathways and functional genes analysis of soil, rhizosphere, and phyllosphere showed that the most abundant functional genes were mapped to membrane transport, DNA repair and recombination, signal transduction, purine metabolism, translation-related protein processing, oxidative phosphorylation, bacterial motility protein secretion, and membrane receptor proteins. Monoterpenoid biosynthesis was the most significantly enriched pathway in rhizosphere samples when compared to the soil samples. Overall, the predictive abundances indicate that, functionally, the rhizosphere bacteria had the highest gene abundances and that salinity and drought affected the above- and belowground microbiomes differently.
Collapse
Affiliation(s)
- A Mark Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA.
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum 25240, Turkey
| | - Jorge F S Ferreira
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Donald L Suarez
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Jincai Ma
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Alaleh Ghasemimianaei
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
25
|
Rhizosphere Bacterial Community Characteristics over Different Years of Sugarcane Ratooning in Consecutive Monoculture. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4943150. [PMID: 31815142 PMCID: PMC6878781 DOI: 10.1155/2019/4943150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/05/2022]
Abstract
To understand dynamic changes in rhizosphere microbial community in consecutive monoculture, Illumina MiSeq sequencing was performed to evaluate the V3-V4 region of 16S rRNA in the rhizosphere of newly planted and three-year ratooning sugarcane and to analyze the rhizosphere bacterial communities. A total of 126,581 and 119,914 valid sequences were obtained from newly planted and ratooning sugarcane and annotated with 4445 and 4620 operational taxonomic units (OTUs), respectively. Increased bacterial community abundance was found in the rhizosphere of ratooning sugarcane when compared with the newly planted sugarcane. The dominant bacterial taxa phyla were similar in both sugarcane groups. Proteobacteria accounted for more than 40% of the total bacterial community, followed by Acidobacteria and Actinobacteria. The abundance of Actinobacteria was higher in the newly planted sugarcane, whereas the abundance of Acidobacteria was higher in the ratooning sugarcane. Our study showed that Sphingomonas, Bradyrhizobium, Bryobacter, and Gemmatimonas were dominant genera. Moreover, the richness and diversity of the rhizosphere bacterial communities slightly increased and the abundance of beneficial microbes, such as Bacillus, Pseudomonas, and Streptacidiphilus, in ratooning sugarcane were more enriched. With the consecutive monoculture of sugarcane, the relative abundance of functional groups related to energy metabolism, glycan biosynthesis, metabolism, and transcription were overrepresented in ratooning sugarcane. These findings could provide the way for promoting the ratooning ability of sugarcane by improving the soil bacterial community.
Collapse
|
26
|
Xu H, Shao H, Lu Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109476. [PMID: 31352211 DOI: 10.1016/j.ecoenv.2019.109476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This research is aimed to investigate the effect of arbuscular mycorrhiza (AM) fungi on soil microbial activity and carbon mineralization in the maize rhizosphere under potted condition. Glomus etunicatum was used for our experiment. Results showed that AM symbiosis increased the levels of microorganism in the maize rhizosphere soil, and enhanced activity of soil microbial enzymes. After inoculating AM fungi, the contents of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and readily oxidizable carbon (ROC) in the rhizosphere soil of maize increased with varying degrees. We obtained strong evidence that higher contents of MBC, DOC, ROC, superior number of microbes and stronger soil enzyme activities could be responsible for the higher rate of carbon mineralization in AM fungi treatment. AM fungi inoculation was confirmed to be effective to improve the soil quality for larger-scale ecoengineering.
Collapse
Affiliation(s)
- Hongwen Xu
- School of Urban and Environmental Science, Huaiyin Normal University, Huaian, 223300, China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, 210014, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224002, China; College of Environment and Safety Engineering, Qingdao University of Science & Technology(QUST), Qingdao, 266000, China.
| | - Yan Lu
- School of Urban and Environmental Science, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|
27
|
Tran HT, Wang HC, Hsu TW, Sarkar R, Huang CL, Chiang TY. Revegetation on abandoned salt ponds relieves the seasonal fluctuation of soil microbiomes. BMC Genomics 2019; 20:478. [PMID: 31185914 PMCID: PMC6558789 DOI: 10.1186/s12864-019-5875-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Background Salt pond restoration aims to recover the environmental damages that accumulated over the long history of salt production. Of the restoration strategies, phytoremediation that utilizes salt-tolerant plants and soil microorganisms to reduce the salt concentrations is believed to be environmentally-friendly. However, little is known about the change of bacterial community during salt pond restoration in the context of phytoremediation. In the present study, we used 16S metagenomics to compare seasonal changes of bacterial communities between the revegetated and barren salterns at Sicao, Taiwan. Results In both saltern types, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes were predominant at the phylum level. In the revegetated salterns, the soil microbiomes displayed high species diversities and underwent a stepwise transition across seasons. In the barren salterns, the soil microbiomes fluctuated greatly, indicating that mangroves tended to stabilize the soil microorganism communities over the succession. Bacteria in the order Halanaerobiaceae and archaea in the family Halobacteriaceae that were adapted to high salinity exclusively occurred in the barren salterns. Among the 441 persistent operational taxonomic units detected in the revegetated salterns, 387 (87.5%) were present as transient species in the barren salterns. Only 32 persistent bacteria were exclusively detected in the revegetated salterns. Possibly, salt-tolerant plants provided shelters for those new colonizers. Conclusions The collective data indicate that revegetation tended to stabilize the microbiome across seasons and enriched the microbial diversity in the salterns, especially species of Planctomycetes and Acidobacteria. Electronic supplementary material The online version of this article (10.1186/s12864-019-5875-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huyen-Trang Tran
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan, 70101.,Department of Biology, Institute of Natural Science Education, Vinh University, Vinh, Nghe An, 461010, Vietnam
| | - Hao-Chu Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan, 70101
| | - Tsai-Wen Hsu
- Taiwan Endemic Species Research Institute, Nantou, Taiwan, 55244
| | - Rakesh Sarkar
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan, 70101
| | - Chao-Li Huang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan, 70101.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan, 70101.
| |
Collapse
|
28
|
Kong X, Jin D, Jin S, Wang Z, Yin H, Xu M, Deng Y. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:142-150. [PMID: 29660700 DOI: 10.1016/j.jhazmat.2018.04.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 05/26/2023]
Abstract
Phthalate esters (PAEs) are a type of plasticizer that has aroused great concern due to their mutagenic, teratogenic, and carcinogenic effects, wherefore dibutyl phthalate (DBP) and other PAEs have been listed as priority pollutants. In this study, the impacts of DBP on a soil-vegetable ecosystem were investigated. The results showed that DBP could accumulate within vegetable tissues, and the accumulative effect was enhanced with higher levels of DBP contamination in soils. DBP accumulation also decreased vegetable quality in various ways, including decreased soluble protein content and increased nitrate content. The diversity of bacteria in soils gradually decreased with increasing DBP concentration, while no clear association with endophytic bacteria was observed. Also, the relative abundance, structure, and composition of soil bacterial communities underwent successional change during the DBP degradation period. The variation of bulk soil bacterial community was significantly associated with DBP concentration, while changes in the rhizosphere soil bacteria community were significantly associated with the properties of both soil and vegetables. The results indicated that DBP pollution could increase the health risk from vegetables and alter the biodiversity of indigenous bacteria in soil-vegetable ecosystems, which might further alter ecosystem functions in agricultural fields.
Collapse
Affiliation(s)
- Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shulan Jin
- School of History Geography and Tourism, Shangrao Normal University, Shangrao 334000, China
| | - Zhigang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|