1
|
Wang J, Yang Y, Wu J, Zhao K, Zhang X. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175240. [PMID: 39111445 DOI: 10.1016/j.scitotenv.2024.175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Biochar's interaction with soil-dwelling organisms, particularly earthworms, is crucial in ensuring the effective and secure utilization of biochar in the soil. This review introduces the application of biochar in soil, summarizes how earthworms respond to biochar-amended soil and the underlying factors that can influence their response, discusses the synergistic and antagonistic impacts of earthworm activity on the efficacy of biochar, and considers the feasibility of applying them together. A review of existing research has identified uncertainty in the effect of biochar exposure on earthworms, with biochar derived from animal wastes, produced at higher pyrolysis temperatures, and used at higher doses of biochar having more negative effects on earthworms. Habitat modification, toxicity release, particle effects, and contaminant immobilization are underlying factors in how biochar affects earthworm indicators. While biochar in contaminated soils may alleviate the stress of pollutants on earthworms by decreasing their bioaccumulation, this remedial effect is not always effective. Additionally, earthworm bioturbation can enhance the migration, fragmentation, and oxidation of biochar, while also stimulating extracellular enzymes that convert biochar into 'vermichar'. Earthworms and biochar can synergize well to improve soil fertility and remediate soil organic pollution, yet exhibit contrasting roles in soil C sequestration and immobilizing heavy metals in soil. These findings highlight both the advantages and risks of their co-application. Therefore, when considering the use of biochar alone or with earthworms, it is crucial to thoroughly assess its potential ecotoxicity on earthworms and other soil organisms, as well as the influence of bioturbation, such as that caused by earthworms, on the effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiang Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jizi Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Lara-Moreno A, Vargas-Ordóñez A, Villaverde J, Madrid F, Carlier JD, Santos JL, Alonso E, Morillo E. Bacterial bioaugmentation for paracetamol removal from water and sewage sludge. Genomic approaches to elucidate biodegradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136128. [PMID: 39426148 DOI: 10.1016/j.jhazmat.2024.136128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Wastewater treatment plants (WWTPs) are recognized as significant contributors of paracetamol (APAP) into the environment due to their limited ability to degrade it. This study used a bioaugmentation strategy with Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 to achieve APAP biodegradation in solution in wide ranges of temperature (10-40 °C) and pH (5-9), reaching DT50 values < 1.5 h to degrade 500 mg L-1 APAP. Bacterial strains also mineralized APAP in solution (<30 %), but when forming consortia with Mycolicibacterium aubagnense HPB1.1, mineralization significantly increased (up to 74 % and 58 % for CSW01 +HPB1.1 and CSW02 +HPB1.1, respectively), decreasing DT50 values to only 1 and 9 days. Despite the complete degradation of APAP and its high mineralization, residual toxicity throughout the process was observed. Three APAP metabolites were identified (4-aminophenol, hydroquinone and trans-2-hexenoic acid) that quickly disappeared, but residual toxicity remained, indicating the presence of other non-detected intermediates. CSW01 and CSW02 degraded also 100 % APAP (50 mg kg-1) adsorbed on sewage sludge, with DT50 values of only 0.7 and 0.3 days, respectively, but < 15 % APAP was mineralized. A genome-based analysis of CSW01 and CSW02 revealed that amidases, deaminases, hydroxylases, and dioxygenases enzymes were involved in APAP biodegradation, and a possible metabolic pathway was proposed.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - A Vargas-Ordóñez
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - J D Carlier
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Building 7, Faro 8005-139, Portugal
| | - J L Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain.
| |
Collapse
|
3
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Ambaye TG, Hassani A, Vaccari M, Franzetti A, Prasad S, Formicola F, Rosatelli A, Rehman MZU, Mohanakrishna G, Ganachari SV, Aminabhavi TM, Rtimi S. Emerging technologies for the removal of pesticides from contaminated soils and their reuse in agriculture. CHEMOSPHERE 2024; 362:142433. [PMID: 38815812 DOI: 10.1016/j.chemosphere.2024.142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Pesticides are becoming more prevalent in agriculture to protect crops and increase crop yields. However, nearly all pesticides used for this purpose reach non-target crops and remain as residues for extended periods. Contamination of soil by widespread pesticide use, as well as its toxicity to humans and other living organisms, is a global concern. This has prompted us to find solutions and develop alternative remediation technologies for sustainable management. This article reviews recent technological developments for remediating pesticides from contaminated soil, focusing on the following major points: (1) The application of various pesticide types and their properties, the sources of pesticides related to soil pollution, their transport and distribution, their fate, the impact on soil and human health, and the extrinsic and intrinsic factors that affect the remediation process are the main points of focus. (2) Sustainable pesticide degradation mechanisms and various emerging nano- and bioelectrochemical soil remediation technologies. (3) The feasible and long-term sustainable research and development approaches that are required for on-site pesticide removal from soils, as well as prospects for applying them directly in agricultural fields. In this critical analysis, we found that bioremediation technology has the potential for up to 90% pesticide removal from the soil. The complete removal of pesticides through a single biological treatment approach is still a challenging task; however, the combination of electrochemical oxidation and bioelectrochemical system approaches can achieve the complete removal of pesticides from soil. Further research is required to remove pesticides directly from soils in agricultural fields on a large-scale.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy; Department of Environment and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey; Research Center for Science, Technology and Engineering (BILTEM), Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Francesca Formicola
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Sharanabasava V Ganachari
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1210 Geneva, Switzerland.
| |
Collapse
|
5
|
Affholder MC, Mench M, Gombert-Courvoisier S, Cohen GJV. Dieldrin accumulation, distribution in plant parts and phytoextraction potential for several plant species and Cucurbita pepo varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172968. [PMID: 38705310 DOI: 10.1016/j.scitotenv.2024.172968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Dieldrin, an organochlorine pesticide (OCP) widely used for crop protection in the second half of the 20th century till the 70's, is worldwide still present in arable soils. It can be transferred to crops, notably cucurbits, depending on plant species and cultivars. Finding strategies to decrease OCP bioavailability in soil is therefore a main concern. Phytomanagement strategies could provide (i) ready-to-use short term solution for maintaining the production of edible plant parts with dieldrin concentrations below the Maximum Residue Limits (MRL) and (ii) long-term solution for dieldrin phytoextraction reducing progressively its bioavailability in the soil. This field study aimed at determining dieldrin accumulation capacities and allocation pattern in 17 non-Cucurbitaceae species and 10 Cucurbita pepo varieties, and assessing the dieldrin phytoextraction potential of these plant species when grown to maturity in a historically dieldrin-contaminated soil. Out of the non-Cucurbitaceae species, vetiver was the only one able to accumulate significant amounts of dieldrin, which mainly remained in its roots. All C. pepo varieties were able to uptake and translocate high dieldrin amounts into the shoots, leading to the highest phytoextraction potential. Despite the intraspecific variability in dieldrin concentration in zucchini plant parts, mainly in the reproductive organs, the phytoextraction capacity for shoots and fruits was high for all tested varieties (147 to 275 μg dieldrin plant-1, corresponding to 5.6 % of the n-heptane extractable soil dieldrin), even for the one with low fruit dieldrin concentration. Both food safety and phytoextraction could be achieved by selecting productive zucchini varieties displaying low dieldrin concentration in fruits and high one in shoots.
Collapse
Affiliation(s)
- M-C Affholder
- Univ. Bordeaux, CNRS, Bordeaux-INP, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France; Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 Pessac Cedex, France
| | - M Mench
- Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 Pessac Cedex, France
| | - S Gombert-Courvoisier
- Univ. Bordeaux-Montaigne, Univ. Bordeaux, Ecole Nationale Supérieure d'Architecture et de Paysage de Bordeaux, CNRS, PASSAGES UMR 5319, Pessac, France
| | - G J V Cohen
- Univ. Bordeaux, CNRS, Bordeaux-INP, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France.
| |
Collapse
|
6
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
8
|
Wu C, Song X, Wang D, Ma Y, Shan Y, Ren X, Hu H, Cui J, Ma Y. Combined effects of mulch film-derived microplastics and pesticides on soil microbial communities and element cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133656. [PMID: 38306832 DOI: 10.1016/j.jhazmat.2024.133656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Pesticides and microplastics (MPs) derived from mulch film in agricultural soil can independently impact soil ecology, yet the consequences of their combined exposure remain unclear. Therefore, the effects of simultaneous exposure to commonly used pesticides (imidacloprid and flumioxazin) and aged mulch film-derived MPs on soil microorganisms and element cycles in cotton fields were investigated. The combined exposure influenced soil microorganisms, alongside processes related to carbon, nitrogen, and phosphorus cycles, exhibiting effects that were either neutralized or enhanced compared to individual exposures. The impact of pesticides in combined exposure was notably more significant and played a dominant role than that of MPs. Specifically, combined exposure intensified changes in soil bacterial community and symbiotic networks. The combined exposure neutralized NH4+, NO3-, DOC, and A-P contents, shifting from 0.33 % and 40.23 % increase in MPs and pesticides individually to a 40.24 % increase. Moreover, combined exposure resulted in the neutralization or amplification of the nitrogen-fixing gene nifH, nitrifying genes (amoA and amoB), and denitrifying genes (nirS and nirK), the carbon cycle gene cbbLG and the phosphorus cycle gene phoD from 0.48 and 2.57-fold increase to a 2.99-fold increase. The combined exposure also led to the neutralization or enhancement of carbon and nitrogen cycle functional microorganisms, shifting from a 1.53-fold inhibition and 10.52-fold increase to a 6.39-fold increase. These findings provide additional insights into the potential risks associated with combined pesticide exposure and MPs, particularly concerning soil microbial communities and elemental cycling processes.
Collapse
Affiliation(s)
- Changcai Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, 450001 Zhengzhou, China.
| |
Collapse
|
9
|
Lu H, Wang X, Cong Q, Chen X, Li Q, Li X, Zhong S, Deng H, Yan B. Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron. Molecules 2024; 29:1130. [PMID: 38474642 DOI: 10.3390/molecules29051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Biochar (BC) is a new type of carbon material with a high specific surface area, porous structure, and good adsorption capacity, which can effectively adsorb and enrich organic pollutants. Meanwhile, nano zero-valent iron (nZVI) has excellent catalytic activity and can rapidly degrade organic pollutants through reduction and oxidation reactions. The combined utilization of BC and nZVI can not only give full play to their advantages in the adsorption and catalytic degradation of organic pollutants, but also help to reduce the agglomeration of nZVI, thus improving its efficiency in water treatment and providing strong technical support for water resources protection and environmental quality improvement. This article provides a detailed introduction to the preparation method and characterization technology, reaction mechanism, influencing factors, and specific applications of BC and nZVI, and elaborates on the research progress of BC-nZVI in activating persulfate (PS) to degrade organic pollutants in water. It has been proven experimentally that BC-nZVI can effectively remove phenols, dyes, pesticides, and other organic pollutants. Meanwhile, in response to the existing problems in current research, this article proposes future research directions and challenges, and summarizes the application prospects and development trends of BC-nZVI in water treatment. In summary, BC-nZVI-activated PS is an efficient technology for degrading organic pollutants in water, providing an effective solution for protecting water resources and improving environmental quality, and has significant application value.
Collapse
Affiliation(s)
- Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qiao Cong
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xinglin Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Qingpo Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xueqi Li
- Urban Construction College, Changchun University of Architecture, Changchun 130607, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Huan Deng
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| | - Bojiao Yan
- College of Visual Arts, Changchun Sci-Tech University, Changchun 130600, China
| |
Collapse
|
10
|
Aguilar-Romero I, Madrid F, Villaverde J, Morillo E. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132970. [PMID: 37976863 DOI: 10.1016/j.jhazmat.2023.132970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
11
|
Herrera W, Vera J, Hermosilla E, Diaz M, Tortella GR, Dos Reis RA, Seabra AB, Diez MC, Rubilar O. The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO 2 and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:299. [PMID: 38334570 PMCID: PMC10856829 DOI: 10.3390/nano14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO2, ZnO nanoparticles, and nanocomposites of TiO2 and ZnO supported on SPIONs (SPION@SiO2@TiO2 and SPION@SiO2@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO2@TiO2 and SPION@SiO2@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO2 and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO2@TiO2, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.
Collapse
Affiliation(s)
- Wence Herrera
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Joelis Vera
- Programa de Doctorado en Ciencias de la Ingeniería Mención Bioprocesos, Universidad de la Frontera, Temuco 4780000, Chile;
| | - Edward Hermosilla
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Marcela Diaz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
12
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
13
|
Mohy-Ud-Din W, Bashir S, Akhtar MJ, Asghar HMN, Ghafoor U, Hussain MM, Niazi NK, Chen F, Ali Q. Glyphosate in the environment: interactions and fate in complex soil and water settings, and (phyto) remediation strategies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:816-837. [PMID: 37994831 DOI: 10.1080/15226514.2023.2282720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.
Collapse
Affiliation(s)
- Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan Pakistan
- Institute of Marine and Environmental Technology, University of MD Center for Environmental Science, Baltimore, MD, USA
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan Pakistan
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
| | | | - Umber Ghafoor
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | | | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of MD Center for Environmental Science, Baltimore, MD, USA
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
14
|
Garrido I, Martínez-Escudero CM, Contreras F, Flores P, Hellín P, Fenoll J. Abatement of pesticides residues in commercial farm soils by combined ozonation-solarization treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1406. [PMID: 37917230 DOI: 10.1007/s10661-023-12010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
The widespread use of pesticides against agricultural pest and diseases introduces these pollutants and their transformation products into soils. The toxicity and permanence of these substances make it necessary for the development of remediation strategies in order to mitigate contamination and to further protect consumers. This work was aimed to evaluate the applicability of ozonation-solarization technology in the degradation of pesticide residues in commercial farm soils. The trial was conducted in two exploitations devoted during decades to tomato cultivation under greenhouse and net systems. Treatments were carried out using a pipping network (both superficial and sub-superficial) that delivered ozone in gaseous state after covering the soil with gas-tight plastic film to avoid ozone leaks to atmosphere. Control soil treatments, without ozone exposure, were also conducted. After 40 days of treatment, mean degradation percentages of about 55-61% for both cultivation systems were obtained, when the reduction of these pollutants in the control soils was about 8-15%. Ozonation-solarization impact was also assessed by changes on soil physical-chemical properties. Results suggest that ozonation in combination with solarization technique could be considered as a feasible approach for the remediation of pesticide-polluted farm soils.
Collapse
Affiliation(s)
- Isabel Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain.
| | - Carmen María Martínez-Escudero
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Fulgencio Contreras
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Pilar Flores
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Pilar Hellín
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - José Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), C/ Mayor s/n. La Alberca, 30150, Murcia, Spain.
| |
Collapse
|
15
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
16
|
C FC, Kamalesh T, Senthil Kumar P, Rangasamy G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122114. [PMID: 37379877 DOI: 10.1016/j.envpol.2023.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Organochlorine pesticides (OCPs) have been used in agriculture, increasing crop yields and representing a serious and persistent global contaminant that is harmful to the environment and human health. OCPs are typically bioaccumulative and persistent chemicals that can spread over long distances. The challenge is to reduce the impacts caused by OCPs, which can be achieved by treating OCPs in an appropriate soil and water environment. Therefore, this report summarizes the process of bioremediation with commercially available OCPs, considering their types, impacts, and characteristics in soil and water sources. The methods explained in this report were considered to be an effective and environmentally friendly technique because they result in the complete transformation of OCPs into a non-toxic end product. This report suggests that the bioremediation process can overcome the challenges and limitations of physical and chemical treatment for OCP removal. Advanced methods such as biosurfactants and genetically modified strains can be used to promote bioremediation of OCPs.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - T Kamalesh
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
17
|
de Souza AJ, Santos E, Ribeiro FP, de Araújo Pereira AP, Viana DG, da Silva Coelho I, Filho FBE, Santaren KCF. Crotalaria juncea L. enhances the bioremediation of sulfentrazone-contaminated soil and promotes changes in the soil bacterial community. Braz J Microbiol 2023; 54:2319-2331. [PMID: 37578738 PMCID: PMC10485233 DOI: 10.1007/s42770-023-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Sulfentrazone (STZ) is an efficient tool for the pre- and post-emergence control of monocotyledonous and dicotyledonous weeds in fields of crops such as pineapple, coffee, sugarcane, citrus, eucalyptus, tobacco, and soybean. However, this herbicide persists in the soil, causing phytotoxicity in the subsequent crop. Therefore, it is important to use efficient strategies for the remediation of STZ-contaminated areas. The aim of this study was to evaluate the effects of Crotalaria juncea L. on the remediation of STZ-contaminated soil and on the microbial activity and bacterial community structure therein. The study was conducted in three stages: (i) cultivation of C. juncea in soil contaminated with 200, 400, and 800 g ha-1 STZ; (ii) determination of the soil microbial activity (basal respiration, microbial biomass carbon, and bacterial community structure); and (iii) cultivation of a bioindicator species and determination of the residual fraction of STZ. The soil microbial activity was impacted by the soil type and STZ dose. Soil previously cultivated with C. juncea (rhizospheric soil) displayed higher CO2 and lower qCO2 values than non-rhizospheric soil (no previous C. juncea cultivation). Increasing doses of STZ reduced the activity and lowered the diversity indices of the soil microorganisms. The bacterial community structure was segregated between the rhizospheric and non-rhizospheric soils. Regardless of soil type, the bioindicator of remediation (Pennisetum glaucum R.Br.) grew only at the STZ dose of 200 g ha-1, and the plant intoxication level was also lower in rhizospheric soil treated with this herbicide dose. All P. glaucum plants died in the soils treated with 400 and 800 g ha-1 STZ. Previous cultivation of C. juncea in soils contaminated with 200, 400, and 800 g ha-1 STZ reduced the residual fraction of the herbicide by 4.8%, 12.5%, and 17.4%, respectively, compared with that in the non-rhizospheric soils. In conclusion, previous cultivation with C. juncea promoted increases in the soil bacterial activity and diversity indices, mitigated the deleterious effects of STZ on the bioindicator crop, and reduced the residual fraction of the herbicide in the soil.
Collapse
Affiliation(s)
| | - Esequiel Santos
- Federal University of Espírito Santo, Sao Mateus, Espírito Santo, Brazil
| | | | | | - Douglas Gomes Viana
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|
18
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
19
|
Fuentes MS, Álvarez A, Cuozzo SA, Benimeli CS. Combination of slurry-bioreactors and actinobacteria consortia as strategy to bioremediate chlordane-contaminated soils. CHEMOSPHERE 2023:139270. [PMID: 37343638 DOI: 10.1016/j.chemosphere.2023.139270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Soil contamination caused by pesticides poses a significant environmental challenge, and addressing it requires effective solutions. Bioremediation, combining the utilization of slurry-bioreactors and microbial consortia, emerges as an appropiated strategy to tackle this issue. Therefore, this research evaluated the chlordane (CLD) removal efficiency by a Streptomyces consortium through bioaugmentation of polluted soils, and slurry-bioreactors. For that, a Streptomyces defined consortium with CLD removal abilities was inoculated in soil microcosms and soil-slurry bioreactors (SB), with (SB-TSB) and without stimulation (SB-water). In soil, CLD presence has no negative effect on consortium growth. This was supported by comparing its duplication time (7.48 ± 0.14 h) with the obtained in the biotic control (7.45 ± 0.04 h). Furthermore, 17% of pesticide removal by microbial action was detected in the treated microcosms. In SB, the microbial development was not affected by the pesticide presence. In SB-TSB, the microbial growth was higher than in SB-water. This was supported by its lesser duplication time (7.27 ± 0.17 h) with respect to the non-stimulated systems (10.88 ± 0.29 h). However, SB-water showed the highest CLD removal ability (34.8%), with a concomitant increase in the chloride ion release. In the phytotoxicity test, the vigor index showed that the bioremediation in SB-water did not exert adverse effects greater than those generated by the CLD. Indeed, the root length increased after the treatment. These findings demonstrate the versatility of the Streptomyces consortium to remediate solid and semi-solid matrices impacted with pesticides, and the advantage of using bioaugmented SB to enhance the pollutants removal and accelerating the clean-up time required.
Collapse
Affiliation(s)
- María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina.
| | - Analía Álvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina
| | - Sergio A Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, Catamarca, 4700, Argentina.
| |
Collapse
|
20
|
Matúš P, Littera P, Farkas B, Urík M. Review on Performance of Aspergillus and Penicillium Species in Biodegradation of Organochlorine and Organophosphorus Pesticides. Microorganisms 2023; 11:1485. [PMID: 37374987 DOI: 10.3390/microorganisms11061485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The use of pesticides in agricultural practices raises concerns considering the toxic effects they generate in the environment; thus, their sustainable application in crop production remains a challenge. One of the frequently addressed issues regarding their application includes the development of a sustainable and ecofriendly approach for their degradation. Since the filamentous fungi can bioremediate various xenobiotics owing to their efficient and versatile enzymatic machinery, this review has addressed their performance in the biodegradation of organochlorine and organophosphorus pesticides. It is focused particularly on fungal strains belonging to the genera Aspergillus and Penicillium, since both are ubiquitous in the environment, and often abundant in soils contaminated with xenobiotics. Most of the recent reviews on microbial biodegradation of pesticides focus primarily on bacteria, and the soil filamentous fungi are mentioned only marginally there. Therefore, in this review, we have attempted to demonstrate and highlight the exceptional potential of aspergilli and penicillia in degrading the organochlorine and organophosphorus pesticides (e.g., endosulfan, lindane, chlorpyrifos, and methyl parathion). These biologically active xenobiotics have been degraded by fungi into various metabolites efficaciously, or these are completely mineralized within a few days. Since they have demonstrated high rates of degradation activity, as well as high tolerance to pesticides, most of the Aspergillus and Penicillium species strains listed in this review are excellent candidates for the remediation of pesticide-contaminated soils.
Collapse
Affiliation(s)
- Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pavol Littera
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
21
|
Tsiantas P, Bempelou E, Doula M, Karasali H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023; 28:molecules28114268. [PMID: 37298746 DOI: 10.3390/molecules28114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 μg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 μg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.
Collapse
Affiliation(s)
- Petros Tsiantas
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Eleftheria Bempelou
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Helen Karasali
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| |
Collapse
|
22
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
23
|
Elyamine AM, Wang H, Oummu-Kulthum MAH, Raissa S, Nahdhoit AR, Meng S, Tao P, Hu Z. Mangroves leaves phyllosphere bacteria community and its ability to survive under pyrene stress during the acclimation process. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105920. [PMID: 36931048 DOI: 10.1016/j.marenvres.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plants in general and mangroves in particular can harbor hyper-diverse microorganisms in their different compartments including the phyllosphere area. This study used the leaves of three mangrove species; black mangrove (Avicenia germinans), red mangrove (Rhizophora mangle) and mangrove apple (Sonneratia alba) in order to evaluate the phyllosphere epiphytic bacterial community on their leaves surface and assess the ability of some epiphytic bacteria to tolerate and survive under pyrene stress. Through the 16S rRNA genes sequencing, 380203, 405203 and 344863 OTUs were identified respectively in the leaves of mangroves apple, black and red mangroves. The identified OTUs was positively correlated with leaves-wax (p < 0.05, r2 = 0.904), nitrogen (r2 = 0.72), phosphorus content (r2 = 0.62) and the water factor (r2 = 0.93). It was however highly and negatively correlated with the canopy cover (r2 = 0.93). The pyrene degradation rate in the mineral salt medium (MSM) containing pyrene as external stress was different in each mangrove species and varied depending on various factors. Therefore, through the succession culture in MSM, several bacteria strain belonging to Rhizobiales and Enterobacteres were found to be abundant in red mangroves. Bacteria belonging to Bacilliales and Sphingobacteriales were more abundant in mangroves apples and bacteria from Xanthomonadales and Sphingomonadales were more presents in back mangroves. The important finding was to reveal that the black mangrove at the non-submerged substrate, recorded the highest number of OTU, coinciding with its highest leaf's nitrogen and phosphorus content and most importantly, its highest rate of pyrene degradation. The general result of this study join previous research results and get place in the mangrove agenda, as part of a better understanding insight into the role of plant identity in driving the phyllosphere epiphytic microbial community structures in mangrove ecosystems.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China; Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni, 269, Comoros
| | - Han Wang
- Huanhuai University, Zhumadian, 46000, China
| | | | - Sailine Raissa
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni, 269, Comoros
| | - Ahamada Rachid Nahdhoit
- Institute of Graduate Studies, Fundamental and Industrial Microbiology, Istanbul University, 34134, Vezneciler Faith, Istanbul, Turkey
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China.
| |
Collapse
|
24
|
Sanchez-Hernandez JC, Narváez C, Cares XA, Sabat P, Naidu R. Predicting the bioremediation potential of earthworms of different ecotypes through a multi-biomarker approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160547. [PMID: 36481136 DOI: 10.1016/j.scitotenv.2022.160547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Earthworms are attracting the attention of bioremediation research because of their short-term impact on pollutant fate. However, earthworm-assisted bioremediation largely depends on the earthworm sensitivity to target pollutants and its metabolic capacity to break down contaminants. The most studied species in soil bioremediation has been Eisenia fetida, which inhabits the soil surface feeding on decomposing organic residues. Therefore, its bioremediation potential may be limited to organic matter-rich topsoil. We compared the detoxification potential against organophosphate (OP) pesticides of three earthworm species representative of the main ecotypes: epigeic, anecic, and endogeic. Selected biomarkers of pesticide detoxification (esterases, cytochrome P450-dependent monooxygenase, and glutathione S-transferase) and oxidative homeostasis (total antioxidant capacity, glutathione levels, and glutathione reductase [GR] and catalase activities) were measured in the muscle wall and gastrointestinal tract of E. fetida (epigeic), Lumbricus terrestris (anecic) and Aporrectodea caliginosa (endogeic). Our results show that L. terrestris was the most suitable species to bioremediate OP-contaminated soil for the following reasons: 1) Gut carboxylesterase (CbE) activity of L. terrestris was higher than that of E. fetida, whereas muscle CbE activity was more sensitivity to OP inhibition than that of E. fetida, which means a high capacity to inactivate the toxic oxon metabolites of OPs. 2) Muscle and gut phosphotriesterase activities were significantly higher in L. terrestris than in the other species. 3) Enzymatic (catalase and GR) and molecular mechanisms of free radical inactivation (glutathione) were 3- to 4-fold higher in L. terrestris concerning E. fetida and A. caliginosa, which reveals a higher potential to keep the cellular oxidative homeostasis against reactive metabolites formed during OP metabolism. Together with biological and ecological traits, these toxicological traits suggest L. terrestris a better candidate for soil bioremediation than epigeic earthworms.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Cristóbal Narváez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Ximena Andrade Cares
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
25
|
Martínez-Escudero CM, Garrido I, Ros C, Flores P, Hellín P, Contreras F, Fenoll J. Remediation of pesticides in commercial farm soils by solarization and ozonation techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117062. [PMID: 36549052 DOI: 10.1016/j.jenvman.2022.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Soil contamination by pesticides is a growing environmental problem. Even though nowadays numerous soil remediation technologies are available, most of them have not been tested at field scale. This study attempts to demonstrate the efficiency of solarization-ozonation techniques for the removal of twelve pesticides at full scale. Initial solarization and ozonation trials were conducted in plots located in a greenhouse using freshly and aged contaminated soils under controlled pilot conditions. The combination of solarization and ozonation treatment was efficient for all the studied pesticides both in freshly and in aged contaminated soils, being the lower degradation values found for the second type. This low removal suggests that the increase of pesticides' adsorption on soil resulting from ageing decreases their availability. Once the essays were carried out at pilot scale, the solarization-ozonation applicability was evaluated in a commercial farm soil. This trial was carried out in a greenhouse whose soil had previously been contaminated with some of the pesticides studied. A significant degradation (53.8%) was observed after 40 days of treatment. Pesticides' main metabolites were identified during the different remediation experiments. In addition, the cost of the combined solarization and ozonation technology was evaluated. Finally, our results suggest that this combination of techniques could be considered a promising technology to degrade pesticides in soil.
Collapse
Affiliation(s)
- C M Martínez-Escudero
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain.
| | - I Garrido
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain
| | - C Ros
- Department of Crop Protection. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain
| | - P Flores
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain
| | - P Hellín
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain
| | - F Contreras
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain
| | - J Fenoll
- Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain.
| |
Collapse
|
26
|
Affholder MC, Cohen GJV, Gombert-Courvoisier S, Mench M. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: New perspectives for food safety and phytomanagement of contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160152. [PMID: 36395833 DOI: 10.1016/j.scitotenv.2022.160152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to past agricultural practices, it is common to identify arable soils contaminated with persistent and potentially toxic organochlorine pesticides (OCPs). Occurrence of OCPs, including dieldrin, in vegetables can lead to chronic exposure of the consumers. Some market vegetables, particularly the Cucurbitaceae, are known to accumulate high OCP concentrations. Dieldrin concentration in Cucurbita fruits can exceed the Maximal Residue Limit (MRL) resulting in cultivation and sale restrictions for market gardeners. To assess the intra- and interspecific variability of Cucurbitaceae species for low dieldrin concentration in fruits could be a solution. Here, 24 varieties from seven Cucurbitaceae species were cultivated outdoors in large pots, until fruiting, in soils historically contaminated with dieldrin. More than 330 fruits were harvested and analyzed for determining the inter and intraspecific variability of dieldrin accumulation. Significant interspecific differences occurred with mean fruit concentration ranging between 4.2 ± 7.0 and 85.0 ± 19.4 μg dieldrin kg-1 fresh weigh (FW) in watermelons (C. lanatus L.) and cucumbers (C. sativus L.), respectively. Intraspecific differences only occurred for Cucurbita pepo L. with mean concentration ranging between 4.9 ± 1.1 and 70.3 ± 3.6 μg dieldrin kg-1 FW for the varieties Noire maraîchère and Orélia, respectively. For this plant species, the influence of soil concentration, plant exposure time and biomass on fruit dieldrin concentration depended mainly on varieties.
Collapse
Affiliation(s)
- M-C Affholder
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France; Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France.
| | - G J V Cohen
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France
| | - S Gombert-Courvoisier
- Univ. Bordeaux-Montaigne, Univ. Bordeaux, Ecole Nationale Supérieure d'Architecture et de Paysage de Bordeaux, CNRS, PASSAGES UMR 5319, Pessac, France
| | - M Mench
- Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France
| |
Collapse
|
27
|
Dragone M, Shitaye G, D’Abrosca G, Russo L, Fattorusso R, Isernia C, Malgieri G, Iacovino R. Inclusions of Pesticides by β-Cyclodextrin in Solution and Solid State: Chlorpropham, Monuron, and Propanil. Molecules 2023; 28:molecules28031331. [PMID: 36771001 PMCID: PMC9920956 DOI: 10.3390/molecules28031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between β-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Getasew Shitaye
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Department of Biomedical Sciences, School of Medical Sciences, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Correspondence: ; Tel.: +39-0823-2746363
| |
Collapse
|
28
|
Biodegradation of Iprodione and Chlorpyrifos Using an Immobilized Bacterial Consortium in a Packed-Bed Bioreactor. Microorganisms 2023; 11:microorganisms11010220. [PMID: 36677512 PMCID: PMC9861835 DOI: 10.3390/microorganisms11010220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
This work provides the basis for implementing a continuous treatment system using a bacterial consortium for wastewater containing a pesticide mixture of iprodione (IPR) and chlorpyrifos (CHL). Two bacterial strains (Achromobacter spanius C1 and Pseudomonas rhodesiae C4) isolated from the biomixture of a biopurification system were able to efficiently remove pesticides IPR and CHL at different concentrations (10 to 100 mg L-1) from the liquid medium as individual strains and free consortium. The half-life time (T1/2) for IPR and CHL was determined for individual strains and a free bacterial consortium. However, when the free bacterial consortium was used, a lower T1/2 was obtained, especially for CHL. Based on these results, an immobilized bacterial consortium was formulated with each bacterial strain encapsulated individually in alginate beads. Then, different inoculum concentrations (5, 10, and 15% w/v) of the immobilized consortium were evaluated in batch experiments for IPR and CHL removal. The inoculum concentration of 15% w/v demonstrated the highest pesticide removal. Using this inoculum concentration, the packed-bed bioreactor with an immobilized bacterial consortium was operated in continuous mode at different flow rates (30, 60, and 90 mL h-1) at a pesticide concentration of 50 mg L-1 each. The performance in the bioreactor demonstrated that it is possible to efficiently remove a pesticide mixture of IPR and CHL in a continuous system. The metabolites 3,5-dichloroaniline (3,5-DCA) and 3,5,6-trichloro-2-pyridinol (TCP) were produced, and a slight accumulation of TCP was observed. The bioreactor was influenced by TCP accumulation but was able to recover performance quickly. Finally, after 60 days of operation, the removal efficiency was 96% for IPR and 82% for CHL. The findings of this study demonstrate that it is possible to remove IPR and CHL from pesticide-containing wastewater in a continuous system.
Collapse
|
29
|
Zhu X, Chen WJ, Bhatt K, Zhou Z, Huang Y, Zhang LH, Chen S, Wang J. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1063393. [PMID: 36714722 PMCID: PMC9878147 DOI: 10.3389/fpls.2022.1063393] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.
Collapse
Affiliation(s)
- Xixian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junxia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Gotelli MJ, Lo Balbo A, Caballero GM, Gotelli CA. Hexachlorocyclohexane chemical remediation of a contaminated site in Argentina. ENVIRONMENTAL TECHNOLOGY 2023; 44:562-569. [PMID: 34499586 DOI: 10.1080/09593330.2021.1979105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This work describes the complete decontamination of three parcels of a dump site located in Lomas de Zamora county, Buenos Aires province (Argentina) heavily polluted with hexachorocyclohexane (HCH), where phytoremediation, successful in the surrounding areas, was ineffective. HCH contained in contaminated soil (10 g/kg average) was oxidized with sodium persulfate activated with citric acid chelated Fe(II). This chemical remediation process required treatment in situ in each parcel of approximately 10900 tons total of soil that were mechanically removed and initially mixed with 1750 tons of sodium persulfate. The mixture was then transferred to the excavation site, and 105 tons of ferrous sulfate and 35 tons of citric acid were finally added. The process, started in January 2011 and completed in February 2016, was very effective since chemical remediation average efficiency in the three parcels was higher than 99.99%. To the best of our knowledge this work is the first demonstration that persulfate oxidation activated with citric acid chelated Fe(II) can be successfully applied for field remediation of a relatively large area.
Collapse
Affiliation(s)
- M J Gotelli
- Centro de Investigaciones Toxicológicas S.A. Buenos Aires, Argentina
| | - A Lo Balbo
- Centro de Investigaciones Toxicológicas S.A. Buenos Aires, Argentina
| | - G M Caballero
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes Bernal, Argentina
| | - C A Gotelli
- Centro de Investigaciones Toxicológicas S.A. Buenos Aires, Argentina
| |
Collapse
|
31
|
Monticelli Barizon RR, Kummrow F, Fernandes de Albuquerque A, Assalin MR, Rosa MA, Cassoli de Souza Dutra DR, Almeida Pazianotto RA. Surface water contamination from pesticide mixtures and risks to aquatic life in a high-input agricultural region of Brazil. CHEMOSPHERE 2022; 308:136400. [PMID: 36116631 DOI: 10.1016/j.chemosphere.2022.136400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The environmental risks of pesticides found in surface waters of an important agricultural basin in Brazil were estimated by adopting two approaches: individual pesticides risk quotients (RQ) and concentration addition model for pesticide mixtures (∑RQs) contained in each water sample. Monitoring was carried out in the Mogi Guaçu River basin, Brazil, from October 2017 to May 2018. Four sampling points were selected in the Mogi Guaçu River and seven in its tributaries A multiresidue method with solid-phase extraction and subsequent analysis by UPLC-ESI-QqQ-MS/MS was developed to quantify 19 pesticides. Herbicides, except for simazine, presented the highest detection frequencies with values above 70%. Tebuthiuron was found in all 55 analyzed samples, presenting the highest concentration (6437 ng L-1) over the monitoring period. Fungicides and insecticides showed similar detection frequency (DF) values, ranging from 1.8% to 21.8%. Tebuconazole and carbofuran were the fungicides and insecticides most frequently detected, respectively. January 2018 sampling showed the highest total concentration of pesticides, differing from March 2018 and May 2018 (p < 0.05). The MG2 > TMG8 > MG1 > TMG6 sites showed the highest concentration total of pesticides while MG4 > TMG4 > TMG3 (p < 0.05) sites showed the lowest values: MG4 > TMG4 > TMG3 (p < 0.05). Most pesticide occurrences presented no risks to aquatic organisms. Only 19 out of the 175 pesticide occurrences > LOQ presented individual risks to aquatic biota. Contrary to the results obtained by the individual risk assessment, most pesticide mixtures presented risks to aquatic biota. In 36 out of the 55 samples analyzed during monitoring, pesticide mixtures presented risks to aquatic life.
Collapse
Affiliation(s)
| | - Fábio Kummrow
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (Unifesp) - Campus Diadema, Rua São Nicolau, 210 - Centro, Diadema, SP, Brazil.
| | | | - Márcia Regina Assalin
- Brazilian Agricultural Research Corporation - Embrapa, SP 340 Road, Km 127.5, Jaguaríúna, SP, Brazil.
| | - Maria Aparecida Rosa
- Brazilian Agricultural Research Corporation - Embrapa, SP 340 Road, Km 127.5, Jaguaríúna, SP, Brazil.
| | | | | |
Collapse
|
32
|
McGinley J, Healy MG, Ryan PC, Mellander PE, Morrison L, O'Driscoll JH, Siggins A. Batch adsorption of herbicides from aqueous solution onto diverse reusable materials and granulated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116102. [PMID: 36103789 DOI: 10.1016/j.jenvman.2022.116102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study reports the kinetics and isotherms of the adsorption of five herbicides, MCPA, mecoprop-P, 2,4-D, fluroxypyr and triclopyr, from aqueous solutions onto a range of raw and pyrolysed waste materials originating from an industrial setting. The raw waste materials investigated demonstrated little capability for any herbicide adsorption. Granulated activated carbon (GAC) was capable of the best removal of the herbicides, with >95% removal observed. A first order kinetic model fitted the data best for GAC adsorption of 2,4-D, while a pseudo-first order model fitted the data best for GAC adsorption of fluroxypyr and triclopyr, indicating that adsorption was via physisorption. A pseudo-second order kinetic model fitted the GAC adsorption of MCPA and mecoprop-P, which is indicative of chemisorption. The adsorption of the herbicides in all cases was best described by the Freundlich model, indicating that adsorption occurred onto heterogeneous surfaces.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P-E Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - J Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - A Siggins
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland; Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|
33
|
Shang X, Liu X, Ren W, Huang J, Zhou Z, Lin C, He M, Ouyang W. Comparison of peroxodisulfate and peroxymonosulfate activated by microwave for degradation of chlorpyrifos in soil: Effects of microwaves, reaction mechanisms and degradation products. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
35
|
Singh Y, Saxena MK. Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Front Microbiol 2022; 13:982611. [PMID: 36338076 PMCID: PMC9626991 DOI: 10.3389/fmicb.2022.982611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 09/19/2023] Open
Abstract
In the present scenario, the uncontrolled and irrational use of pesticides is affecting the environment, agriculture and livelihood worldwide. The excessive application of pesticides for better production of crops and to maintain sufficient food production is leading to cause many serious environmental issues such as soil pollution, water pollution and also affecting the food chain. The efficient management of pesticide use and remediation of pesticide-contaminated soil is one of the most significant challenges to overcome. The efficiency of the current methods of biodegradation of pesticides using different microbes and enzymes depends on the various physical and chemical conditions of the soil and they have certain limitations. Hence, a novel strategy is the need of the hour to safeguard the ecosystem from the serious environmental hazard. In recent years, the application of nanomaterials has drawn attention in many areas due to their unique properties of small size and increased surface area. Nanotechnology is considered to be a promising and effective technology in various bioremediation processes and provides many significant benefits for improving the environmental technologies using nanomaterials with efficient performance. The present article focuses on and discusses the role, application and importance of nano-bioremediation of pesticides and toxic pollutants to explore the potential of nanomaterials in the bioremediation of hazardous compounds from the environment.
Collapse
Affiliation(s)
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
36
|
Lara-Moreno A, Morillo E, Merchán F, Madrid F, Villaverde J. Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156695. [PMID: 35709999 DOI: 10.1016/j.scitotenv.2022.156695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Trifluralin (TFL) is a highly persistent with a strong adsorption capacity on soil particles herbicide. This study was to isolate microbial consortia and bacterial strains from a soil with a historical application of pesticides to evaluate their potential to degrade TFL in soil. Different bioremediation techniques were considered for increasing the effectiveness of TFL degradation in soil. These techniques consisted of: i) biostimulation, using a nutrients solution (NS); ii) bioaugmentation, using a natural microbial consortium (NMC), seven individual bacterial strains isolated from NMC, and an artificial bacterial consortium formed by the seven TFL-degrading bacterial strains (ABC); iii) bioavailability enhancement, using a biodegradable compound, a randomly methylated cyclodextrin, RAMEB. Biostimulation using NS leads up to 34 % of soil TFL biodegraded after 100 d. When the contaminated soil was inoculated with NMC or ABC consortia, TFL loss increased up to 62 % and 74 %, respectively, with DT50 values (required time for the pollutant concentration to decline to half of its initial value) of 5.9 and 11 d. In the case of soil inoculation with the isolated individual bacterial strains, the extent of TFL biodegradation ranged widely from 2.3 % to 55 %. The most efficient bacterial strain was Arthrobacter aurescens CTFL7 which had not been previously described in the literature as a TFL-degrading bacterium. Bioaugmentation with CTFL7 bacterium was also tested in the presence of RAMEB, provoking a drastic increase in herbicide biodegradation up to 88 %, achieving a DT50 of only 19 d. Cyclodextrins had never been tested before for enhancement of TFL biodegradation. An ecotoxicity assay was performed to confirm that the proposed bioremediation techniques were also capable to reduce toxicity. A Microtox® test showed that after application A. aurescens CTF7 and A. aurescens CTF7 + RAMEB, the TFL-contaminated soil, which initially presented acute toxicity, became non-toxic at the end of the biodegradation experiments.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - F Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain.
| |
Collapse
|
37
|
Madrid F, Florido MC, Rubio-Bellido M, Villaverde J, Morillo E. Dissipation of a mix of priority PAHs in soils by using availability enhancers. Effect of aging and pollutant interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155744. [PMID: 35526632 DOI: 10.1016/j.scitotenv.2022.155744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
A remediation strategy using three non-toxic availability enhancers (two cyclodextrins and a rhamnolipid biosurfactant) was applied to various soils artificially contaminated with a mix of Polycyclic Aromatic Hydrocarbons (PAHs) considered priority pollutants at two levels of contamination: only with 7 low molecular weight PAHs (LMW PAHs, 5 with 3-ring and 2 with 4-ring - fluoranthene and pyrene) or with 14 PAHs (from 3 to 6 rings). Natural attenuation of PAHs in all soils showed degradation capacity for the LMW PAHs, with a final content of LMW PAHs <5% of their initial concentration. Conversely, the rest of PAHs (high molecular weight PAHs, HMW) remained in the soils (61% - 83.5%), indicating abiotic dissipation of HMW PAHs due to formation of non-extractable residues in soils. The influence of the presence of HMW PAHs on the degradation of the 7 LMW PAHs was also tested, showing a general decrease in the time to obtain 50% dissipation (DT50), statistically significant for acenaphthene, acenaphthylene and fluorene. Availability enhancers showed different effects on PAHs dissipation. 2-hydroxypropyl-β-cyclodextrin (HP) decreased DT50 of some of the lighter PAHs, whereas the rhamnolipid (RL) caused a slight DT50 increase due to its initial toxicity on native soil microorganisms, but showing later high degradation rate for LMW PAHs. On the contrary, randomly methylated-β-cyclodextrin (RAMEB) slowed down PAHs degradation due to its high adsorption onto soil surface, blocking the desorption of PAHs from the soils. The high number of experimental factors not studied simultaneously before (soil type, co-contamination, availability enhancers and incubation time) allowed to conduct a statistical analysis which supported the conclusions reached. Principal Component Analysis separated the studied PAHs in 3 groups, in relation with their molecular weight and Kow. The first principal component was related with LMW PAHs, and separate the inefficient RAMEB from the other availability enhancers.
Collapse
Affiliation(s)
- F Madrid
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS), CSIC, Sevilla, Spain.
| | - M C Florido
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Sevilla, Spain
| | - M Rubio-Bellido
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS), CSIC, Sevilla, Spain
| | - J Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS), CSIC, Sevilla, Spain
| | - E Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS), CSIC, Sevilla, Spain
| |
Collapse
|
38
|
Wang N, Lu H, Xu X, Liu Y, Li Y, Yuan F, Yang Q. Enhanced oil removal from oily sand by injecting micro-macrobubbles in swirl elution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115175. [PMID: 35658268 DOI: 10.1016/j.jenvman.2022.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination by petroleum hydrocarbons was exacerbated by oil pipeline breaks, marine oil spills and discharges from industrial production. To further improve the removal performance of petroleum hydrocarbons in solid particles, the deoiling experiments of swirl elution with micro-macrobubbles on oily sands were carried out in this paper. Experiment results indicated that when particles fell from the center of the bubble, the collision efficiency was 99.3%. The instantaneous contact angle (ICA) between the macrobubbles and the oil layer was improved in the presence of microbubbles. Furthermore, the maximum ICA of bubbles attaching to the oil layer was found to occur at pH 9 in the system of oily sand mixtures ranging from pH 5 to pH 14. This finding indicated that the slightly alkaline solution was more advantageous for bubbles to attach to the oil layer than the highly alkaline solution. The optimum condition for the elution of oily sand in the mixture of pH 7-14 was pH 12, and the oil removal efficiency was 85.4% for 10 min. The oil removal efficiency of swirl elution (SE) with bubbles on oily sand at pH 12 for 10 min was superior to either SE without bubbles or air flotation (AF). The results show that the swirl elution with bubbles can effectively enhance the oil removal efficiency of oily sands and provide guidance for controlling the environmental petroleum hydrocarbon contamination and reducing the usage of surfactants.
Collapse
Affiliation(s)
- Ning Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hao Lu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiao Xu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yiqian Liu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yudong Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fang Yuan
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qiang Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
39
|
You Y, Chi Y, Chen X, Wang J, Wang R, Li R, Chu S, Yang X, Zhang D, Zhou P. A sustainable approach for bioremediation of secondary salinized soils: Studying remediation efficiency and soil nitrate transformation by bioaugmentation. CHEMOSPHERE 2022; 300:134580. [PMID: 35421442 DOI: 10.1016/j.chemosphere.2022.134580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is the main nitrogen source for plant growth, but it can also pollute the environment. A major cause of soil secondary salinization is the rising level of nitrates in the soil, which poses a threat to the sustainability and fertility of global greenhouse soils. Herein, Bacillus megaterium NCT-2 was used as a microbial agent to remove nitrate by bioaugmentation, and the remediation efficiency of secondary salinized soil in different degrees was evaluated. The findings showed that the highest nitrate removal rate of 62.76% was in a medium degree of secondary salinized soil. Moreover, the results of 16S rRNA high-throughput sequencing and quantitative real-time PCR (qPCR) demonstrated that NCT-2 agent reduced the microbial diversity, increased the microbial community stability, and changed the composition and function of the microbial community were changed by NCT-2 agent in all districts soil. Further analysis demonstrated that the NCT-2 bacterial agent significantly increased the key enzyme genes of the assimilation pathway (nitrite reductase gene NasD, 87-404 times, and glutamine reduction enzyme gene GlnA, 13-52 times) and dissimilatory reduction to ammonium (DNRA) (nitrate reductase gene NarG, 14-56 times) in different degrees of secondary salinized soils. This proved that NCT-2 agent could promote the nitrate assimilation and the dissimilation and reduction to ammonium in secondary salinized soil. Thus, the current findings suggested that the NCT-2 agent has a significant potential for reducing excessive nitrate levels in secondary salinized soil. The remediation efficiency was related to the microbial community composition and the degree of secondary salinization. This study could provide a theoretical basis for the remediation of secondary salinized soil in the future.
Collapse
Affiliation(s)
- Yimin You
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Ruotong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
40
|
Henrique JMM, Isidro J, Saez C, Lopez-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Combining Soil Vapor Extraction and Electrokinetics for the Removal of Hexachlorocyclohexanes from Soil. Chemistry 2022; 12:e202200022. [PMID: 35876395 PMCID: PMC10152886 DOI: 10.1002/open.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Indexed: 11/10/2022]
Abstract
This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation. The increase in the electric field led to an increase in the transport of pollutants, although 15 days was found to be a very short time for an efficient transportation of the pollutants to the nearness of the cathode. Loss of water content in the vicinity of the cathode warns about the necessity of using electrokinetic flushing technologies instead of simple direct electrokinetics. Thus, results point out that direct electrokinetic treatment without adding flushing fluids produced low current intensities and ohmic heating that contributes negatively to the performance of the SVE process. No relevant differences were found among the removal of the four isomers, neither in SVE nor in EK processes.
Collapse
Affiliation(s)
- João M M Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil.,Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Saez
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rúben Lopez-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil
| | - Manuel A Rodrigo
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
41
|
Imran I, Ansari A, Saleem S, Azhar A, Zehra S. Insights of OPs and PYR cytotoxic potential Invitro and genotoxic impact on PON1 genetic variant among exposed workers in Pakistan. Sci Rep 2022; 12:9498. [PMID: 35680920 PMCID: PMC9184543 DOI: 10.1038/s41598-022-13454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Different pesticide chemicals are used to enhance crop yield by protecting from pests. Organophosphate (OPs) and Pyrethroid (PYR) are used in fields of Sanghar, Sindh Pakistan. PON1 an antioxidant enzyme implicated in OPs detoxification may predispose by OPs chronic exposure. This study was conducted to evaluate the toxic potential of active pesticide chemicals at cellular and genetic levels. To examine toxic potential, locally consumed pesticide n = 2 and reference pesticide compounds organophosphate (OPs): Chloropyrifos, Malathion and Pyrethroid (PYR): Cyprmethrin, Cyhalothrin n = 4 were tested against NIH 3T3 cells using MTS assay. Local consumer pesticides demonstrated relevance for half-maximum inhibitory concentration (IC50) 0.00035 mg/mL with selected compound. Malathion IC50 exhibited the highest cytotoxicity among four compounds at 0.0005 mg/mL. On genotoxicity analysis in exposed subjects n = 100 genotypes and alleles n = 200 exhibited significant differences in genotypic and allelic frequencies of pesticide exposed subjects and controls n = 150 (X2 = 22.9, p = 0.001). Screening of genotypes were performed by PCR- RFLP. Statistical assessment carried out using online software and tools. Results suggested that higher heterozygous genotype A/G (74%) may confer low PON1 metabolic activity towards pesticides in exposed subjects. Findings could be helpful to establish health plans by avoiding toxic chemicals that harming exposed population.
Collapse
Affiliation(s)
- Iffat Imran
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.
| | - Asma Ansari
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Saima Saleem
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Abid Azhar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Sitwat Zehra
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
42
|
Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127018. [PMID: 35742265 PMCID: PMC9222590 DOI: 10.3390/ijerph19127018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.
Collapse
|
43
|
Martínez-Escudero CM, Garrido I, Flores P, Hellín P, Contreras-López F, Fenoll J. Remediation of triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides in polluted soil using ozonation and solarization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114781. [PMID: 35219209 DOI: 10.1016/j.jenvman.2022.114781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effectiveness of ozonation and solarization techniques for the removal of different types of pesticides from soil during the summer season. The effect of two experimental parameters (temperature and ozone application mode) on the pesticide degradation was evaluated. The results showed that solarization (S), solarization with surface ozonation (SOS), and solarization with deep ozonation (SOD) enhanced pesticide degradation rates in comparison with the control (untreated soil, C). The triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides showed similar behaviour under S and SOS conditions. The highest decrease was found in SOD, indicating the significant effect of temperature and ozone application mode on the efficiency of the ozonation treatment. Thus, a higher soil temperature and a longer accumulated time at high temperature in treatments S, SOS and SOD were observed due to solarization process. In addition, the removal efficiency was enhanced with exposure time. Finally, the main 15 transformation products were identified during SOD treatment. The results suggest that solarization combined with ozonation techniques allows decontamination of soil containing pesticide residues.
Collapse
Affiliation(s)
- C M Martínez-Escudero
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain.
| | - I Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain
| | - P Flores
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain
| | - P Hellín
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain
| | - F Contreras-López
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain
| | - J Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor S/n. La Alberca, 30150, Murcia, Spain.
| |
Collapse
|
44
|
McGinley J, Harmon O’Driscoll J, Healy MG, Ryan PC, Mellander PE, Morrison L, Callery O, Siggins A. An assessment of potential pesticide transmission, considering the combined impact of soil texture and pesticide properties: A meta-analysis. SOIL USE AND MANAGEMENT 2022; 38:1162-1171. [PMID: 35915848 PMCID: PMC9313564 DOI: 10.1111/sum.12794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are widely employed as a cost-effective means of reducing the impacts of undesirable plants and animals. The aim of this paper is to develop a risk ranking of transmission of key pesticides through soil to waterways, taking into account physico-chemical properties of the pesticides (soil half-life and water solubility), soil permeability, and the relationship between adsorption of pesticides and soil texture. This may be used as a screening tool for land managers, as it allows assessment of the potential transmission risks associated with the use of specified pesticides across a spectrum of soil textures. The twenty-eight pesticides examined were differentiated into three groups: herbicides, fungicides and insecticides. The highest risk of pesticide transmission through soils to waterways is associated with soils containing <20% clay or >45% sand. In a small number of cases, the resulting transmission risk is not influenced by soil texture alone. For example, for Phenmedipham, the transmission risk is higher for clay soils than for silt loam. The data generated in this paper may also be used in the identification of critical area sources, which have a high likelihood of pesticide transmission to waterways. Furthermore, they have the potential to be applied to GIS mapping, where the potential transmission risk values of the pesticides can be layered directly onto various soil textures.
Collapse
Affiliation(s)
- John McGinley
- Civil Engineering and Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | | | - Mark G. Healy
- Civil Engineering and Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Paraic C. Ryan
- Civil and Environmental EngineeringUniversity College CorkCorkIreland
| | | | - Liam Morrison
- Earth and Ocean SciencesSchool of Natural Science/s and Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Oisin Callery
- Earth and Ocean SciencesSchool of Natural Science/s and Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Alma Siggins
- Civil Engineering and Ryan InstituteNational University of Ireland GalwayGalwayIreland
- Teagasc Environmental Research CentreJohnstown CastleCo. WexfordIreland
| |
Collapse
|
45
|
Lartey-Young G, Ma L. Optimization, equilibrium, adsorption behaviour of Cu/Zn/Fe LDH and LDHBC composites towards atrazine reclamation in an aqueous environment. CHEMOSPHERE 2022; 293:133526. [PMID: 34998847 DOI: 10.1016/j.chemosphere.2022.133526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Cu-Zn-Fe Layered double hydroxides (LDH) and LDH dispersed on bamboo biochar (LDHBC) was used to study the adsorption of Atrazine by characterizing the adsorption kinetics, isotherms and response surface methodology (RSM) to reveal interactive effects of pH, adsorbent dosage and adsorbate initial concentration towards LDH optimum performance. The estimate of parameters determined for Langmuir isotherm quantities were in the range (21.84-37.91 mg/g) for LDH and (63.64-87.04 mg/g) for LDHBC. Regeneration and reusability after five cycles detected that the adsorption efficiencies of the adsorbents were reduced to 36% for LDH and 66% for LDHBC. Box Behnken design analysis could further reveal optimized conditions for higher Atrazine removal by LDH up to 74.8%. The adsorption mechanisms could be determined by π-π interactions occurring at the interfaces by hydrogen bonding and pore filling effects.
Collapse
Affiliation(s)
- George Lartey-Young
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
46
|
Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Efficient adsorption removal of organic nitrogen pesticides: Insight into a new hollow NiO/Co@C magnetic nanocomposites derived from metal-organic framework. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Pesticides Xenobiotics in Soil Ecosystem and Their Remediation Approaches. SUSTAINABILITY 2022. [DOI: 10.3390/su14063353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Globally, the rapid rise in the human population has increased the crop production, resulting in increased pesticide xenobiotics. Despite the fact that pesticide xenobiotics toxify the soil environment and ecosystem, synthetic pesticides have increased agricultural yields and reduced disease vectors. Pesticide use has increased, resulting in an increase in environmental pollution. Various methods of controlling and eliminating these contaminants have been proposed to address this issue. Pesticide impurity in the climate presents a genuine danger to individuals and other oceanic and earthly life. If not controlled, the pollution can prompt difficult issues for the climate. Some viable and cost-effective alternative approaches are needed to maintain this emission level at a low level. Phytoremediation and microbial remediation are effective methods for removing acaricide scrapings from the atmosphere using plants and organisms. This review gives an overview of different types of xenobiotics, how they get into the environment, and how the remediation of pesticides has progressed. It focuses on simple procedures that can be used in many countries. In addition, we have talked about the benefits and drawbacks of natural remediation methods.
Collapse
|
49
|
Luo S, Ren L, Wu W, Chen Y, Li G, Zhang W, Wei T, Liang YQ, Zhang D, Wang X, Zhen Z, Lin Z. Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127778. [PMID: 34823960 DOI: 10.1016/j.jhazmat.2021.127778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Atrazine accumulation in agricultural soil is prone to cause serious environmental problems and pose risks to human health. Vermicomposting is an eco-friendly approach to accelerating atrazine biodegradation, but the roles of earthworm cast in the accelerated atrazine removal remains unclear. This work aimed to investigate the roles of earthworm cast in promoting atrazine degradation performance by comprehensively exploring the change in atrazine metabolites and bacterial communities. Our results showed that earthworm cast amendment significantly increased soil pH, organic matters, humic acid, fulvic acid and humin, and achieved a significantly higher atrazine removal efficiency. Earthworm cast addition also remarkably changed soil microbial communities by enriching potential soil atrazine degraders (Pseudomonadaceae, Streptomycetaceae, and Thermomonosporaceae) and introducing cast microbial degraders (Saccharimonadaceae). Particularly, earthworm casts increased the production of metabolites deethylatrazine and deisopropylatrazine, but not hydroxyatrazine. Some bacterial taxa (Gaiellaceaea and Micromonosporaceae) and humus (humic acid, fulvic acid and humin) were strongly correlated with atrazine metabolism into deisopropylatrazine and deethylatrazine, whereas hydroxyatrazine production was benefited by higher pH. Our findings verified the accelerated atrazine degradation with earthworm cast supplement, providing new insights into the influential factors on atrazine bioremediation in vermicomposting.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
50
|
Loffredo E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. MATERIALS 2022; 15:ma15051894. [PMID: 35269122 PMCID: PMC8911978 DOI: 10.3390/ma15051894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
New technologies have been developed around the world to tackle current emergencies such as biowaste recycling, renewable energy production and reduction of environmental pollution. The thermochemical and biological conversions of waste biomass for bioenergy production release solid coproducts and byproducts, namely biochar (BC), hydrochar (HC) and digestate (DG), which can have important environmental and agricultural applications. Due to their physicochemical properties, these carbon-rich materials can behave as biosorbents of contaminants and be used for both wastewater treatment and soil remediation, representing a valid alternative to more expensive products and sophisticated strategies. The alkylphenols bisphenol A, octylphenol and nonylphenol possess estrogenic activity comparable to that of the human steroid hormones estrone, 17β-estradiol (and synthetic analog 17α-ethinyl estradiol) and estriol. Their ubiquitous presence in ecosystems poses a serious threat to wildlife and humans. Conventional wastewater treatment plants often fail to remove environmental estrogens (EEs). This review aims to focus attention on the urgent need to limit the presence of EEs in the environment through a modern and sustainable approach based on the use of recycled biowaste. Materials such as BC, HC and DG, the last being examined here for the first time as a biosorbent, appear appropriate for the removal of EEs both for their negligible cost and continuously improving performance and because their production contributes to solving other emergencies, such as virtuous management of organic waste, carbon sequestration, bioenergy production and implementation of the circular economy. Characterization of biosorbents, qualitative and quantitative aspects of the adsorption/desorption process and data modeling are examined.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|