1
|
Floeder A, Jones RM, Arnold SF. Risk assessment methods in occupational health and hygiene: a scoping review. Ann Work Expo Health 2025; 69:120-131. [PMID: 39705502 PMCID: PMC11858558 DOI: 10.1093/annweh/wxae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND There are a variety of risk assessment methods to evaluate occupational hazards in the field of industrial hygiene. With the development of emerging technologies in the workforce, the previously established risk assessment methods may need to be adapted or new methods developed to address the risk of new hazards. METHODS A scoping review was conducted consistent with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data was extracted and analyzed using a matrix method before undergoing a narrative synthesis. Risk assessment methods were classified as traditional and nontraditional. RESULTS Seventy-nine articles were included in this scoping review, with 81% using traditional risk assessment methods and 19% using nontraditional methods. DISCUSSION Among the nontraditional methods was control banding, with the most recent applications focused on nanomaterials. This approach, which was borne out of the need for a systematic approach for identifying potential health risks that required the use of engineering controls to be used safely, may have an important role in the area of emerging technologies, where the pace of technological innovation outstrips the rate at which health risks can be assessed and characterized. Risk assessment methods with the capacity to look at groups of similar chemicals and chemical mixtures are needed to address emerging hazards associated with emerging technologies.
Collapse
Affiliation(s)
- Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rachael M Jones
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, United States
| | - Susan F Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
2
|
Ou SP, Liao XL, Huang ZT, Hu YC, Cai Z, Chen ZF. Bioaccessibility and health risk assessment of hydrophobic organic pollutants in soils from four typical industrial contaminated sites in China. J Environ Sci (China) 2025; 147:282-293. [PMID: 39003047 DOI: 10.1016/j.jes.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.
Collapse
Affiliation(s)
- Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zi-Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan-Cong Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Singh S, Ashesh A, Devi NL. Distribution of carcinogenic polycyclic aromatic hydrocarbons in urban soil across major cities of Bihar, India: seasonal variation, source apportionment, and health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:39. [PMID: 39648259 DOI: 10.1007/s10661-024-13376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024]
Abstract
This study investigates the distribution of sixteen priority polycyclic aromatic hydrocarbons (PAHs), various sources of PAHs, and their probable cancer-causing risks in the soil samples collected from urban cities in Bihar, India. During the winter season, the ∑16 PAH concentration was dominant and ranged from 979.36 to 5149.37 ngg-1 with a mean value of 2684.79 ngg-1, while for the summer season, it ranged from 690.06 to 4539.55 ngg-1 with a mean value of 2194.31 ngg-1. The (4-ring) PAH compounds were the major contributors, accounting for 40% and 37% in the winter and summer seasons, respectively followed by (5- and 6-ring) PAHs at 30% and 32%, and (2- and 3-ring) PAHs at 29% and 30% in the respective seasons. Carcinogenic PAHs constituted ~ 50% of the ∑16 PAHs, with mean values of 1353.97 ngg-1 and 1098.09 ngg-1 for the winter and summer seasons, respectively. Positive matrix factorization (PMF) confirmed the dominance of fossil fuel burning and biomass burning as a primary source in the urban soil of Bihar. Total mean benzo(a)pyrene equivalent (BaPeq) values for the ∑16 PAHs were 312.04 ngg-1 for the winter season and 262.83 ngg-1 for the summer season. These values were higher in current study sites as compared with other studies. However, the concentration range fell within the limit set by the Canadian soil quality standard (700.00 ngg-1) and exceeded the limit of the Dutch target value (32.96 ngg-1). The Incremental Lifetime Cancer Risk (ILCRs) from dermal and ingestion pathways were approximately 104 to 105 times lower than the inhalation pathway, suggesting greater risk. The study revealed higher mean cancer risk values for children (1.16 × 10-5) and adults (1.03 × 10-5) in the winter season, falling within the unacceptable range (10-6 and 10-4) of carcinogenic risk that might lead to human health risk in the study sites.
Collapse
Affiliation(s)
- Shreya Singh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Akriti Ashesh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur, Post-Fatehpur, P.S-Tekari, District-Gaya, 824236, Bihar, India.
| |
Collapse
|
4
|
Bai L, Geng X, Liu X. Review of polycyclic aromatic hydrocarbons pollution characteristics and carcinogenic risk assessment in global cooking environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124816. [PMID: 39187058 DOI: 10.1016/j.envpol.2024.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In recent years, research on air pollution in cooking environments has gained increasing attention, particularly studies related to polycyclic aromatic hydrocarbons (PAHs) pollution. Hence, it is crucial and urgent to conduct a comprehensive review of research findings and further evaluate their carcinogenic risks. This study adopts a comprehensive literature review approach, systematically integrating and deeply analyzing the conclusions and data from 62 selected relevant studies. It focuses on the impact of different factors on PAHs concentrations, considers the indoor-outdoor PAHs concentration ratio, and conducts carcinogenic risk assessments for PAHs. The results show that Africa has the highest average PAHs pollution concentration globally at 14.74 μg/m³, exceeding that of other continents by 1.5-160.9 times. Among various influencing factors, fuel type has the most significant impact on PAHs concentrations. Existing research data indicate that cooking with charcoal as fuel produces the highest PAHs concentration at 223.52 μg/m³, with high molecular weight PAHs accounting for 58.16%, significantly higher than when using clean energy. Furthermore, efficient ventilation systems have been proven to substantially reduce PAHs concentrations, with a reduction rate of up to 88.1%. However, cooking methods and food types also have a small but non-negligible impact on PAHs production. Using mild cooking methods such as steaming and selecting low-fat foods can also reduce PAHs to some extent. Additionally, through the analysis of the Indoor/Outdoor ratio, it was found that cooking is the primary source of indoor pollution, and the average concentration of PAHs in cooking environments in Asia and Africa is much higher than in Europe and America. The Total Incremental Lifetime Cancer Risk (TILCR) exceeds 10⁻⁴, indicating a high level of carcinogenic risk.
Collapse
Affiliation(s)
- Li Bai
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; Key Laboratory of Songliao Aquatic of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Xinshuai Geng
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Xinru Liu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, Shenyang, China
| |
Collapse
|
5
|
Alghamdi MA, Hassan SK, Shetaya WH, Al Sharif MY, Nawab J, Khoder MI. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174331. [PMID: 38945247 DOI: 10.1016/j.scitotenv.2024.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Marwan Y Al Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Saad-Hussein A, Beshir S, Shaheen W, Saleh IA, Elhamshary M, Mohammed AMF. Integrated evaluation of workplace exposures and biomarkers of bladder cancer among textile dyeing workers. J Egypt Public Health Assoc 2024; 99:23. [PMID: 39285014 PMCID: PMC11405732 DOI: 10.1186/s42506-024-00167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The textile industry is the second risk factor for bladder cancer, after smoking. Previous studies focused on the impact of exposure to high concentrations of bladder carcinogenic chemicals in the textile dyeing industry on the elevation of bladder cancer biomarkers. This study aimed to evaluate bladder carcinogenic air pollutants in a textile dyeing factory and investigate its role and the role of serum 25-hydroxyvitamin D (25-OH vit. D) on cancer bladder biomarkers in exposed workers. METHODS A cross-sectional study was conducted. Particulate and vapor forms of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) were monitored in the printing, dyeing, and preparing sections of a textile factory. Bladder tumor antigen (BTA), nuclear matrix protein 22 (NMP-22), and 25-OH vit. D were estimated in all the exposed workers (147 exposed workers) and in workers not occupationally exposed to chemicals (130 unexposed workers). RESULTS Aromatic bladder carcinogenic compounds were either in low concentrations or not detected in the air samples of working areas. BTA and NMP-22 of exposed workers were not significantly different from the unexposed. However, 25-OH vit. D was significantly lower in the exposed than unexposed workers. There was a significant inverse correlation between 25-OH vit. D and duration of exposure in exposed workers. CONCLUSION The mean levels of PAHs and VOCs were within the safe standard levels in the working areas. The non-significant difference in BTA and NMP-22 between the exposed and unexposed groups suggests the presence of occupational exposures to safe levels of bladder carcinogenic aromatics, while the significantly lower 25-OH vit. D levels among the exposed than the unexposed groups could suggest the potential association of 25-OH vit. D with occupational exposures to low levels of PAHs and VOCs, and this association was found to be inversely correlated with the duration of exposures. Accordingly, more specific predictor tests must be applied for early diagnosis of bladder cancer among the exposed workers.
Collapse
Affiliation(s)
- Amal Saad-Hussein
- Environmental & Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt.
| | - Safia Beshir
- Environmental & Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Weam Shaheen
- Environmental & Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Inas A Saleh
- Air Pollution Department, Environment & Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed Elhamshary
- Environmental & Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Atef M F Mohammed
- Air Pollution Department, Environment & Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Zhou Y, Feng F, Sun J, Shan Y, Su W, Shang W, Li Y. Distribution and source analysis of soil toxic organic compounds of coal-electricity production base in arid and semi-arid region of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135317. [PMID: 39059298 DOI: 10.1016/j.jhazmat.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.
Collapse
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Feisheng Feng
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Jie Sun
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Wanli Su
- CHN ENERGY Investment Group Co Ltd, Yinchuan City, Ningxia Province, China.
| | - Wenqin Shang
- School of Physics and Optoelectronic Engineering, Anhui University, China.
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| |
Collapse
|
8
|
Ali N. Dust dynamics: distribution patterns of semi-volatile organic chemicals across particle sizes in varied indoor microenvironments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35429-35441. [PMID: 38727973 DOI: 10.1007/s11356-024-33508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200 μm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3 µg/g and 43.2 µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985 µg/g and 846 µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Zhang X, Diao Z, Ma H, Xie X, Wang Y, Liu X, Yuan X, Zhu F. Multi-class organic pollutants in PM 2.5 in mixed area of Shanghai: Levels, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166352. [PMID: 37598962 DOI: 10.1016/j.scitotenv.2023.166352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 μg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zishan Diao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Hui Ma
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China; Environmental Monitoring Station of Pudong New District, Shanghai 200135, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ying Wang
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China
| | - Xinyu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
10
|
Hoang AQ, Takahashi S, Tuyen LH, Tue NM, Tu NM, Nguyen TTT, Tu MB. Polycyclic Aromatic Hydrocarbons in Air and Dust Samples from Vietnamese End-of-life Vehicle Processing Workshops: Contamination Status, Sources, and Exposure Risks. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:110. [PMID: 37306801 DOI: 10.1007/s00128-023-03757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Concentrations of 18 unsubstituted polycyclic aromatic hydrocarbons (PAHs) and 11 methylated derivatives (Me-PAHs) were measured in polyurethane foam-based passive air (PUF-PAS) and settled dust samples collected from end-of-life vehicle (ELV) processing workshops in northern Vietnam. Concentrations of total 29 PAHs ranged from 42 to 95 (median 57) ng/m3 and from 860 to 18,000 (median 5700) ng/g in air and dust samples, respectively. PAH levels in ELV air and dust samples were 1.5 ± 0.4 and 9.4 ± 7.9 times higher than levels found in a control house, suggesting ELV processing as potential PAH emission sources. Concentrations and proportions of Me-PAHs in total PAHs of the ELV air (26% ± 7%) and dust (41% ± 14%) were higher than those found in control house (18% in both air and dust). The occurrence of PAHs and Me-PAHs in the ELV workshops are attributed to not only pyrogenic but also petrogenic sources (i.e., improper treatment and management of fuels, lubricants, and vehicle oils).
Collapse
Affiliation(s)
- Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam.
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Nguyen Minh Tue
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nhat Minh Tu
- University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Thuy Thi Thu Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Thai Nguyen, 24000, Vietnam
| | - Minh Binh Tu
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| |
Collapse
|
11
|
Areguamen OI, Calvin NN, Gimba CE, Okunola OJ, Elebo A. Seasonal assessment of the distribution, source apportionment, and risk of water-contaminated polycyclic aromatic hydrocarbons (PAHs). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01542-7. [PMID: 36976374 DOI: 10.1007/s10653-023-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The research aims to evaluate the seasonal differences in the distribution, source, and risks of water-contaminated PAHs. The PAHs were extracted by the liquid-liquid method and analyzed with GC-MS, and a total of eight PAHs were detected. There was a percentage increase in the average concentration of the PAHs from the wet to the dry season in the range of 20 (Anthracene)-350 (Pyrene)%. Total PAHs (∑PAHs) range from 0.31 to 1.23 mg/l in the wet period and from 0.42 to 1.96 mg/l in the dry period. The distribution of the average PAHs in mg/l showed that Fluoranthene ≤ Pyrene < Acenaphthene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in wet period and while Fluoranthene < Acenaphthene < Pyrene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in the dry period. The children were exposed to non-carcinogenic risk through non-dietary ingestion due to the accumulative effect (HI) of the PAHs in the dry period. Furthermore, the naphthalene was responsible for ecological and carcinogenic risk in the wet period, while the fluorene, phenanthrene, and anthracene were responsible for ecological and carcinogenic risk in the dry period. However, while adults and children are both susceptible to carcinogenic risk through the oral channel during the dry period, only children are susceptible to non-carcinogenic risk through this pathway. The multivariate statistical analysis revealed the influence of physicochemical parameters on the detected PAHs and also showed the PAHs' sources to be mainly combustion, pyrolysis, and vehicular emission.
Collapse
Affiliation(s)
| | | | | | | | - Abuchi Elebo
- Chemistry Department, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
12
|
Iwegbue CMA, Ogbuta AA, Tesi GO, Ossai CJ, Olisah C, Nwajei GE, Martincigh BS. Spatial distribution of polycyclic aromatic hydrocarbons in dust and soils from informal trade sites in southern Nigeria: Implications for risk and source analysis. CHEMOSPHERE 2023; 315:137624. [PMID: 36566793 DOI: 10.1016/j.chemosphere.2022.137624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of semi-volatile and persistent organic compounds considered priority pollutants because of their pervasive nature and high toxicity to the ecosystem and humans. Therefore, this study aimed to evaluate the PAH concentrations in dust and soils around informal trade sites (ITS) in Nigeria to determine the level of risk, sources, and significance of these activities to the PAH load of the environment. The 16 US EPA PAHs in dust and soils from ITS were determined by gas chromatography-mass spectrometry (GC-MS). The PAH concentrations in dust from these informal trade sites varied from 120 to 8790, 56 to 4780, and 102-1090 μg kg-1 for automobile mechanic workshops (AMW), car dismantling (CDS), and material recovery sites (MRS), respectively, whereas those of soils ranged from 3000 to 95,500, 554 to 14,700, and 966-25,200 μg kg-1 for AMW, CDS, and MRS respectively. The PAH profiles indicated that 3- to 5-ring PAHs were prominent in dust and soils around the ITS. The concentrations of the US EPA 16 PAHs in dust and soils from these ITS showed no correlation with organic matter, while the concentrations of PAH homologues in soils of these ITS showed no correlation with those of dust. Incremental lifetime cancer risk (ILCR) values in the magnitude of 10-4 to 101 were obtained for adult and childhood exposure to PAHs in dust and soils from these ITS. Exposure to PAHs in dust from these ITS gives rise to less risk than for soils. The results indicated that automobile mechanic workshops contribute more PAHs to the environment than car dismantling and material recovery activities. The source analysis showed that the PAH contamination of these sites arises from burning of biomass, plastic materials, and oils, and emissions from vehicles.
Collapse
Affiliation(s)
| | - Anthony A Ogbuta
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
13
|
Choi S, Ekpe OD, Sim W, Choo G, Oh JE. Exposure and Risk Assessment of Korean Firefighters to PBDEs and PAHs via Fire Vehicle Dust and Personal Protective Equipment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:520-530. [PMID: 36539350 DOI: 10.1021/acs.est.2c06393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the levels of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) were characterized in firefighters' personal protective equipment (PPE) (i.e., jackets, pants, hoods, and gloves) and vehicle dust wipe samples to assess the exposure and potential risk of firefighters to these combustion-related toxic pollutants. The mean levels of ∑PBDEs in the fire vehicle dust samples (778 and 449 pg/cm2 for pump trucks and command cars, respectively) were significantly higher than those in the private vehicles (31.2 pg/cm2) (Kruskal-Wallis test, p < 0.05), which was similar to the ∑PAH levels (521, 185, and 46.8 pg/cm2 for pump trucks, command cars, and private vehicles, respectively). In the case of firefighters' PPE, the levels of ∑PBDEs and ∑PAHs in used jackets and pants were found to be, respectively, 70- to 2242-folds and 11- to 265-folds higher than those in their unused counterparts. Biomass/petroleum combustion was found to be the main source of PAH contamination in fire vehicle dust and used PPE in the present study. Both carcinogenic and noncarcinogenic risks via vehicle dust ingestion and dermal absorption from wearing of PPE were within permissible limits, although the relative risk evaluation showed that PAH/PBDE absorption via wearing of PPE could pose a higher likelihood of carcinogenic and noncarcinogenic risks than the ingestion of pollutants via fire vehicle dust, warranting the need for appropriate management of firefighters' personal protective ensembles.
Collapse
Affiliation(s)
- Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
14
|
Li C, Bai L, Wang H, Li G, Cui Y. Characteristics of indoor and outdoor Polycyclic Aromatic Hydrocarbons (PAHs) pollution in TSP in rural Northeast China: A case study of heating and non-heating periods. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:899-913. [PMID: 36406618 PMCID: PMC9672144 DOI: 10.1007/s40201-022-00830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Approximately 91% of the world's population lives in an air-polluted environment, and environmental pollution has become a widespread concern. Urban indoor and outdoor air pollution has been fully researched and effective control measures have been proposed. However, the issue of air pollution in rural areas has not been explored in depth. Compared to urban air pollution, the rural air pollution problem is more complex and urgent. Due to climatic factors and economic conditions in rural Northeast China, most households use solid fuels such as biomass straw and coal as domestic energy during the heating period, which will cause serious pollution problems of Total Suspended Particulate (TSP) and Polycyclic Aromatic Hydrocarbons (PAHs). To investigate the pollution characteristics of PAHs in indoor and outdoor TSP in rural Northeast China during the heating and non-heating periods, a medium-sized particulate matter collector 1108A was used to collect TSP for 7 days, and GC-MS was used to detect PAHs. The results showed that indoor TSP and PAHs pollution levels were the highest during the heating period. PAHs source analysis by Diagnostic Ratio (DR) and Principal Component Analysis (PCA) indicated that the main sources were biomass and coal combustion, vehicle emissions, and domestic waste incineration. According to the results of carcinogenic risk model calculations, there is a potential carcinogenic risk to the population in the Northeast rural living area. This study reflects the pollution characteristics and sources of indoor and outdoor TSP and PAHs in rural Northeast China during heating and non-heating periods, and provides a reference for further prevention and control of air pollution in rural areas, which is conducive to improving the living environment and improving human health.
Collapse
Affiliation(s)
- Chunhui Li
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118 China
| | - Li Bai
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118 China
- Key Laboratory of Songliao Aquatic of Education, Jilin Jianzhu University, Changchun, 130118 China
| | - Han Wang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- Graduate school of Tangshan, Southwest Jiaotong University, Tangshan, 063000 China
| | - Guangming Li
- CRRC Changchun Railway Vehicles Co., Ltd., Changchun, 130062 China
| | - Yongbo Cui
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118 China
| |
Collapse
|
15
|
Sánchez-Piñero J, Novo-Quiza N, Moreda-Piñeiro J, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P. Multi-class organic pollutants in atmospheric particulate matter (PM 2.5) from a Southwestern Europe industrial area: Levels, sources and human health risk. ENVIRONMENTAL RESEARCH 2022; 214:114195. [PMID: 36030919 DOI: 10.1016/j.envres.2022.114195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of 50 multi-class pollutants comprising 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 12 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols was studied in atmospheric particulate matter (PM2.5) samples collected at an industrial area focused on automotive manufacturing located at the Southwestern Atlantic European region (Vigo city, Spain) during 1-year period. Among all quantitated pollutants in PM2.5 samples, bisphenol A (BPA) was the most predominant with an average concentration of 6180 pg m-3, followed by PAHs comprising benzo(b+j)fluoranthene (BbF + BjF) and benzo(g,h,i)perylene (BghiP), accounting for 546 pg m-3 and 413 pg m-3 respectively. In addition, two OPFRs concerning tris(chloropropyl) phosphate (TCPP) and triphenyl phosphine oxide (TPPO) were the next following the concentration order, accounting for 411 pg m-3 and 367 pg m-3 respectively; being butyl benzyl phthalate (BBP) the most profuse PAE (56.1 pg m-3 by average). High relative standard deviations (RSDs) were observed during the whole sampling period, while statistically significant differences were only observed for PAHs concentrations during cold and warm seasons. Furthermore, some water-soluble ions and metal(oid)s were analysed in PM2.5 samples to be used as PM source tracers, whose concentrations were quite below the target levels set in the current legislation. Data obtained from principal component analysis (PCA) and PAHs molecular indices suggested a pyrogenic and petrogenic origin for PAHs, whereas occurrence of the remaining compounds seems to be attributed to resources used in the automotive industrial activity settled in the sampling area. Moreover, although a substantial anthropogenic source to PM2.5 in the area was observed, marine and soil resuspension contributions were also accounted. Finally, carcinogenic and non-carcinogenic risks posed by PM2.5-bound pollutants inhalation were assessed, being both averages within the safe level considering the whole period.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Isabel Turnes-Carou
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
16
|
Dvoršćak M, Jakovljević I, Jagić K, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in dust from different indoor environments in Zagreb, Croatia: Levels and human exposure assessment. INDOOR AIR 2022; 32:e13145. [PMID: 36437674 DOI: 10.1111/ina.13145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The present study reports for the first time the levels of 7 polybrominated diphenyl ether (PBDE) congeners and 11 polycyclic aromatic hydrocarbons (PAH) measured in dust samples collected in 10 kindergartens, 11 workplaces, and 25 cars from Zagreb, Croatia. ΣPBDEs mass fractions were 3.11-14.42, <LOD-313.75, and 0.6-5666.98 ng g-1 dust, while ΣPAHs were 244.9-833.0, 230.5-5632.7, and 395.6-12114.8 ng g-1 dust in kindergartens, workplaces, and cars, respectively. In the central case scenario, dust from homes contributed to the intake of PBDEs and PAHs the most, while for PBDEs in the worst-case scenario, the intake through car dust prevailed. Carcinogenic and non-carcinogenic risks were assessed for PAHs and PBDEs, respectively, for two age groups (adults and toddlers) and for professional drivers as a specific group. The hazard index for adults, toddlers, and professional drivers for PBDEs was less than 1 indicating that there is no significant risk of non-carcinogenic effects due to exposure to these chemicals. Total carcinogenic risk for PAHs was negligible for all groups in the central case scenario, but the Incremental Lifetime Cancer Risk values >10-6 in the worst-case scenario indicated a potential risk, especially for professional drivers. Also, in the cases of elevated contaminant levels, toddlers are susceptible to a higher risk, despite the short time they spend in cars.
Collapse
Affiliation(s)
- Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Jakovljević
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
17
|
Zhang J, Feng L, Zhao Y, Hou C, Gu Q. Health risks of PM 2.5-bound polycyclic aromatic hydrocarbon (PAH) and heavy metals (PPAH&HM) during the replacement of central heating with urban natural gas in Tianjin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2495-2514. [PMID: 34291374 DOI: 10.1007/s10653-021-01040-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
To investigate the health effects of fine particulate matter (≤ 2.5 μm in aerodynamic diameter; PM2.5)-bound heavy metals and polycyclic aromatic hydrocarbons (PAHs) before and after the implementation of the Urban Natural Gas Heating Project (UNGHP), the lifetime cancer risks, hazard quotients (HQs) of heavy metals and PAHs were calculated. Seven kinds of heavy metals (Al, As, Cd, Cr, Mn, Ni and Se) and 12 kinds of PAHs including acenaphthylene (ANY), acenaphthene (ANA), fluoranthene (FLT), pyrene (PYR), chrysene (CHR), benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBA), benzo[ghi]perylene (BPE) and indeno[1,2,3-cd]pyrene (IPY) were analyzed and used for the health risk assessments. It was found that HQ of Mn fell from 1.09 in the coal-burning period to 0.72 in the gas-burning period in the suburban area. And lifetime cancer risks of PAHs fell from 35.7 × 10-6 in the coal-burning period to 17.22 × 10-6 in the gas-burning period in the urban area. It could be concluded that, during the gas-burning period, downward trends were observed for the lifetime cancer risks and HQs of most kinds of heavy metals and PAHs in all regions of Tianjin compared to those during the coal-burning period. The UNGHP was effective, and we should also take other measures to control the pollution.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lihong Feng
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Yan Zhao
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Changchun Hou
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Qing Gu
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China.
- School of Public Health, Tianjin Medical University, No.22 Qixiangtai Rd, Tianjin, China.
| |
Collapse
|
18
|
Jiang L, Li Y, Cai Y, Liu K, Liu C, Zhang J. Probabilistic health risk assessment and monetization based on benzene series exposure in newly renovated teaching buildings. ENVIRONMENT INTERNATIONAL 2022; 163:107194. [PMID: 35339921 DOI: 10.1016/j.envint.2022.107194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
To meet the needs of the rapid development of education, there have been growing investments in the issue of university infrastructures. However, few studies have paid attention to the assessment and monetization of health risks in newly renovated teaching buildings. In this study, concentrations of the benzene series (BTEX) group were measured in five areas of three newly renovated teaching buildings. A total of 135 BTEX samples were collected using passive diffusion monitors and analyzed by GC-FID. Human health risk assessments were conducted by using probabilistic methods for four types of population exposure to BTEX. The results showed that the cancer risk of benzene accounted for most of the total in each group. There was over 90% probability of excess cancer risks in the areas within the tested buildings; and the non-cancer risks were all within the acceptable level. The health risks of men were greater than those of women, and those of teachers were higher than those of students. The model calculation results of Disability-Adjusted Life Year (DALY) and Willingness to Pay (WTP) indicated that the average price that society was willing to pay to offset the health damage caused in these newly renovated teaching buildings was 381.35 yuan/year. For the first time, this study highlights the health risks of newly built teaching buildings in universities, points out the urgent need to improve the control of BTEX sources in this type of indoor environment; moreover, it provides theoretical support for the society and occupational protection departments to compensate for the health damage to professionals.
Collapse
Affiliation(s)
- Luping Jiang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanan Li
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Ying Cai
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Kangli Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Chaoyang Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430073, China.
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
19
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
20
|
Aslam R, Sharif F, Baqar M, Shahzad L. Source identification and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in air and dust samples of Lahore City. Sci Rep 2022; 12:2459. [PMID: 35165345 PMCID: PMC8844380 DOI: 10.1038/s41598-022-06437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/18/2022] [Indexed: 01/09/2023] Open
Abstract
During two consecutive summer and winter seasons in Lahore, the health risk of air and dust-borne polycyclic aromatic hydrocarbons (PAHs) was evaluated. Gas chromatography/mass spectrometry (GS/MS) was used to determine air and dust samples from various functional areas across the city. The mean ∑16PAHs were higher in air 1035.8 ± 310.7 (pg m-3) and dust 963.4 ± 289.0 (ng g-1 d.w.) during winter seasons as compared to summer seasons in air 1010.9 ± 303.3 (pg m-3) and dust matrices 945.2 ± 283.6 (ng g-1 d.w.), respectively. PAHs ring profile recognized 3 and 4 rings PAHs as most dominant in air and dust samples. Estimated results of incremental lifetime cancer risk (ILCR) highlighted high carcinogenic risk among the residents of Lahore via ingestion and dermal contact on exposure to atmospheric PAHs. The total ILCR values in air among children (summer: 9.61E - 02, winter: 2.09E - 02) and adults (summer: 1.45E - 01, winter: 3.14E - 02) and in dust, children (summer: 9.16E - 03, winter: 8.80E - 03) and adults (summer: 1.38E - 02, winter: 1.33E - 02) during the study period. The isomeric ratios in the study area revealed mixed PAH sources, including vehicular emission, petroleum, diesel and biomass combustion. As a result, it is advised that atmospheric PAHs should be monitored throughout the year and the ecologically friendly fuels be used to prevent PAHs pollution and health concerns in the city. The findings of this study are beneficial to the local regulating bodies in terms of controlling the exposure and promoting steps to reduce PAHs pollution and manage health in Lahore.
Collapse
Affiliation(s)
- Rabia Aslam
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| |
Collapse
|
21
|
Investigation of Indoor Polycyclic Aromatic Hydrocarbons (PAHs) in Rural Northeast China: Pollution Characteristics, Source Analysis, and Health Assessment. BUILDINGS 2022. [DOI: 10.3390/buildings12020153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the low winter temperatures in rural areas of Northeast China, biomass fuels are widely used for heating and cooking, resulting in increased concentrations of PAHs in rural indoor areas during the heating period and threatening human health. Therefore, exploring the pollution characteristics, source localization, and risk assessment of indoor PAHs in rural Northeast China is of great significance for improving rural indoor air quality. In this study, PAHs were collected from a residential building in rural Northeast China for one consecutive year (January 2020–December 2020), and their concentrations were determined to explore the distribution patterns and sources of PAHs to further assess the carcinogenic risk of PAHs to humans. The results of the study showed that the average concentration of indoor PAHs in rural areas during the heating period (93.02 ng/m3) was about 1.81 times higher than that of the non-heating period (51.26 ng/m3). The main sources of PAHs were mixed combustion of biomass and coal, motor vehicle emissions, and domestic waste combustion. The level of indoor PAHs pollution has posed a carcinogenic risk to the health of the rural population in the Northeast.
Collapse
|
22
|
Ranjbaran S, Sobhanardakani S, Cheraghi M, Lorestani B, Sadr MK. Ecological and human health risks assessment of some polychlorinated biphenyls (PCBs) in surface soils of central and southern parts of city of Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1491-1503. [PMID: 34900283 PMCID: PMC8617235 DOI: 10.1007/s40201-021-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 07/12/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE The present study was conducted to evaluate the carcinogenic and non-carcinogenic hazards of polychlorinated biphenyls (PCBs) in topsoil across business districts, public green space, cultural and educational areas, and roadside and residential areas in city of Tehran, in 2019. METHOD A total of 30 surface urban soil specimens were collected and after preparing them in the laboratory, PCBs contents were determined using gas chromatography-mass spectrometry. RESULTS Based on the results of data analyses, the median concentrations of PCB18, PCB28, PCB 29, PCB 31, PCB 44, PCB 52, PCB 101, PCB 138, PCB 141, PCB 149, PCB 153, PCB 189 and PCB 194, were found to be 6.81, 0.759, 0.005, 1.75, 2.51, 0.059, 2.31, 3.76, 5.82, 0.599, 0.408, 0.008 and 0.008 µg/kg, respectively. Also, the overall daily PCBs intakes via soil ingestion, inhalation and skin contact were 5.48E-04, 1.19E + 00 and 1.62E-04 µg/kg, respectively. Thus it was decided that the inhalation of soil could be the main pathway of exposure to PCBs, and that, based on the carcinogenic risk outcomes, children would be more at risk of cancer than adults would. CONCLUSIONS In general, considering that among the studied urban spaces, the contents of PCBs in public green spaces were more than their rates in other areas, and considering that children normally play in the green areas are, it is recommended that special attention be paid to these areas in controlling and removing pollution caused by PCBs in urban areas.
Collapse
Affiliation(s)
- Samira Ranjbaran
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Maryam Kiani Sadr
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
23
|
Sánchez-Piñero J, Moreda-Piñeiro J, Moscoso-Pérez C, FernándezGonzález V, Prada-Rodríguez D, López-Mahía P. Development and validation of a multi-pollutant method for the analysis of polycyclic aromatic hydrocarbons, synthetic musk compounds and plasticizers in atmospheric particulate matter (PM2.5). TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
24
|
Duan X, Wang H, Yang Y, Wang P, Zhang H, Liu B, Wei W, Yao W, Zhou X, Zhao J, Wang W. Genetic variants in telomerase-associated protein 1 are associated with telomere damage in PAH-exposed workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112558. [PMID: 34333383 DOI: 10.1016/j.ecoenv.2021.112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Telomeres are functional complexes at the ends of linear chromosomes, and telomerase aids in their maintenance and replication. Additionally, accumulating evidence suggests that telomerase-associated protein 1 (TEP1) is a component of the telomerase ribonucleoprotein complex and is responsible for catalyzing the addition of new synthetic telomere sequences to chromosome ends. In our previous study, we found that genetic variants of the TERT gene participated in the regulation of telomere length. Exposure to particulate matter, environmental pollutants, oxidative stress, and pesticides is associated with shortening of telomere length. However, it is unknown whether genetic variants in the TEP1 gene may affect telomere length (TL) in polycyclic aromatic hydrocarbon (PAH)-exposed workers. Therefore, we measured the peripheral leukocyte TL and genotyped the polymorphism loci in the TEP1 gene among 544 PAH-exposed workers and 238 healthy controls. Covariance analysis showed that the individuals carrying TEP1 rs1760903 CC and TEP1 rs1760904 TT had longer TL in the control group (P < 0.05). In the generalized linear model, we found that rs1760903 CC was a protective factor against TL shortening, and PAH exposure could promote telomere shortening (P < 0.05). Thus, this study reinforces the roles of environmental factors and genetic variations in telomere damage, and provides a theoretical foundation for the early detection of susceptible populations and the establishment of occupational standards.
Collapse
Affiliation(s)
- Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongmei Wang
- Department of nursing, Zhengzhou Health Vocational College, Zhengzhou 450100, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
25
|
Liu B, Huang F, Yu Y, Dong W. Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dust Across China: Occurrence, Sources and Cancer Risk Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:482-491. [PMID: 34427723 DOI: 10.1007/s00244-021-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) was investigated in 31 household dusts that were sampled from 27 areas located in 10 provinces, China. The total concentrations of PAHs (∑ PAHs) were in the range of 613-10,111 ng·g-1 with a median of 2565 ng·g-1. The predominant PAHs were 2 to 3 ringed compounds, accounting for 85.3% of ∑ PAHs. The geographical location had little impact on the contents of PAHs. Higher concentrations of ∑ PAHs and individual homologues of PAHs except for naphthalene (NAP) were observed in rural areas, which is related to the higher usage of coal or biomass for cooking. Cooking method played a major role in contributing to the concentrations of PAHs. Both household cooking and petrogenic sources from outdoors were the primary sources of PAHs in household dust. Cancer risk assessment indicated that dermal contact and ingestion are the main exposure pathways to indoor residents. Furthermore, the average values of sum of incremental lifetime cancer risks (ILCRs) were 2.22 × 10-7 for adults and 2.51 × 10-7 for children, suggesting that there is a low health risk posed by PAHs in indoor dust. The contribution percentage of 4 to 6 rings PAHs to ILCRs was up to 96.3%, indicating that higher molecular weight PAHs in indoor dust, especially benzo[a]pyrene (BaP) and dibenzo[a,h]anthracene (DahA), are major factors contributing to cancer risk.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Fei Huang
- Technology Center Laboratory, Jilin Tobacco Industrial Co. Ltd, Changchun, 130031, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
26
|
Zhang W, Su P, Tomy GT, Sun D, Yin F, Chen L, Ding Y, Li Y, Feng D. Polycyclic aromatic hydrocarbon contamination along roads based on levels on vehicle window films. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116921. [PMID: 33751944 DOI: 10.1016/j.envpol.2021.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Vehicular emissions are known to be major contributors of airborne polycyclic aromatic hydrocarbons (PAHs) in cities. In order to assess the long-term contamination of PAHs along roads, we collected organic films from vehicle windows (26 private cars and 4 buses, in Shanghai, China) and used mathematical models to convert the film-bound PAH concentrations to the airborne PAH concentrations. The field measurements of airborne PAHs revealed that the partitioning and Level III fugacity model was suitable to estimate the airborne concentrations of high and low volatile PAHs (expect for naphthalene), respectively. The total airborne PAH concentrations along roads in Shanghai ranged from 0.83 to 3.37 μg m-3 and the incremental lifetime cancer risks (ILCRtotal) by exposure to PAHs along roads were greater than the USEPA lower guideline of 10-6, indicating non-negligible carcinogenic risks to drivers and passengers, especially via ingestion processes. This study provided a practicable method to investigate long-term air contamination of PAHs in vehicles and along roads based on film-bound PAH on vehicle windows. In addition, it was also possible to investigate the health risk in vehicles as a result of exposure to PAHs. Comparisons of PAHs between roads and shipping lanes also facilitated the delineation of vehicular and shipping PAH inventories. A capsule that summarizes the main finding of the work: Investigating film-bound PAH on vehicle windows is a practicable pathway to investigate the long-term contamination of PAHs in vehicles and along roads. This method can not only simplify the sampling processes, but the model calculations. The results also enabled investigations into ILCR in vehicles and specified source apportionment of traffic PAHs.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| | - Penghao Su
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China.
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dan Sun
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| | - Fang Yin
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| | - Lisu Chen
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| | - Yongsheng Ding
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| | - Yifan Li
- IJRC-PTS-NA, Toronto, Ontario, M2N 6X9, Canada
| | - Daolun Feng
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 200135, PR China
| |
Collapse
|
27
|
Wang YG, Jiang WJ, Shen J, Wang W, Niu YX, Zhao W, Wei XY. Detoxification modification of coal-tar pitch by ultraviolet & microwave radiation-enhanced chemical reaction and toxicity evaluation by chemical index and cytotoxicity assay in vitro. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124648. [PMID: 33257128 DOI: 10.1016/j.jhazmat.2020.124648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 05/13/2023]
Abstract
Although coal tar pitch (CTP) has a large yield in China, its large-scale and effective utilization is significantly hindered because of existing and possibly releasing polycyclic aromatic hydrocarbons (PAHs). Therefore, it is an imminent problem how to prepare an environmentally friendly CTP by detoxification modification. In the investigation, a typical CTP was subjected to structural characterization via solid-state 13C NMR and gas chromatograph/mass spectrometer, which confirmed the existence of dominant PAHs such as fluoranthene, pyrene, as well as benzo[a]pyrene, and few heterocyclic compounds. Subsequently, the CTP was modified using 10-undecenal via alkylation reaction enhanced by ultraviolet & microwave radiation. Compared with the original CTP, the total content of 16 toxic PAHs in the modified CTP decreased with a reduction efficiency of above 90%. According to different environmental standards, toxic equivalent quotient of CTP after modification was reduced by above 90%. In order to veritably and fully evaluate the toxicity of CTP, a living vascular smooth muscle cell (A-10 cell) in vitro was used in the cell counting kit-8 assay. The viability of A-10 cell was always higher when exposed to modified CTP than the original CTP. These results powerfully indicated that the enhanced modification was actually effective and efficient for reducing the toxicity of CTP.
Collapse
Affiliation(s)
- Yu-Gao Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wei-Jia Jiang
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan 030024, Shanxi, China; Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jun Shen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yan-Xia Niu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wei Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| | - Xian-Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
28
|
Feng S, Shen X, Hao X, Cao X, Li X, Yao X, Shi Y, Lv T, Yao Z. Polycyclic and nitro-polycyclic aromatic hydrocarbon pollution characteristics and carcinogenic risk assessment of indoor kitchen air during cooking periods in rural households in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11498-11508. [PMID: 33123888 DOI: 10.1007/s11356-020-11316-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Medium-flow atmospheric samplers were used to collect particulate (PM2.5) and gaseous samples from the indoor kitchen of each of 35 randomly selected rural houses in North China while a meal was being cooked. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) and 9 nitro-PAHs (NPAHs) in the samples were quantified by high-performance liquid chromatography (HPLC). This study provided the real PAH and NPAH pollution characteristics and carcinogenic risk produced by cooking in rural indoor kitchens in North China. The mean PAH and NPAH concentrations in air in the indoor kitchens during cooking periods were 4049.1 and 1741.6 ng/m3, respectively. The PAH and NPAH concentrations were lower in the particulate phase than the gaseous phase. The mean PAH and NPAH concentrations were much higher for cooking using coal than for cooking using liquefied petroleum gas (LPG) or electricity. The PAH and NPAH benzo[a]pyrene toxic equivalent (TEQBaP) concentrations for cooking using coal were 1823.3 and 2760.9 ng/m3, respectively. Lower PAH and NPAH concentrations were found in kitchens with than without range hoods. Range hoods decreased the PAH and NPAH TEQBaP concentrations by 68.8% and 61.9%, respectively. Appropriate fuel and ventilation choice will improve air pollution in indoor kitchens during cooking. The results provide important evidence for changing cooking habits and developing policies for cooking in rural China.
Collapse
Affiliation(s)
- Sijie Feng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuewei Hao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Tiantian Lv
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
29
|
Davoudi M, Esmaili-Sari A, Bahramifar N, Moeinaddini M. Spatio-temporal variation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface dust of Qom metropolis, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9276-9289. [PMID: 33140304 DOI: 10.1007/s11356-020-08863-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/13/2020] [Indexed: 05/22/2023]
Abstract
The objective of this research was to determine seasonal variation, distribution, potential health risk, and source identification of 16 polycyclic aromatic hydrocarbons (PAHs) in the surface dust of eight urban areas of Qom. The total levels of 16 PAHs ranged from 364.83 to 739.26 ng g-1, with an average of 478.27 ng g-1. Sites 1 and 8 showed the highest (491.33 ng g-1) and lowest (465.08 ng g-1) concentrations of PAHs, respectively. The PAHs demonstrated the highest and the lowest levels in autumn (553.41 ng g-1) and summer (402.30 ng g-1), respectively. Naphthalene (Nap) showed the highest amounts in all of the areas (75.57 ng g-1). Source apportionment indicated that vehicular emissions and combustion of fossil fuels (liquid fossil fuel, crude oil, and gas) are the main sources of the PAHs. Toxic equivalency quantities (TEQs) index exhibited a mean concentration of 47.41 ng g-1, and benzo[a]pyrene (BaP) and dibenzo[a,h]anthracene (DBA) together contributed more than 80% of TEQ, indicating high risk potential of these compounds. Total incremental lifetime cancer risk (ILCR) presented higher value (2.62 × 10-7) for children than for adults (2.53 × 10-7), one-fold lower than the threshold (10-6). The spatial ILCR for the study areas and seasons showed the highest cancer risk in site 2 and winter. Taken together, the carcinogenic risk of PAHs to children and adults, respectively, through direct ingestion and dermal contact pathways illustrated values close to the baseline, suggesting that more attention should be paid to the issue in the study area.
Collapse
Affiliation(s)
- Morteza Davoudi
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Abbas Esmaili-Sari
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - Nader Bahramifar
- Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - Mazaher Moeinaddini
- Department of Environment, Faculty of Natural Resources, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
30
|
Guo J, Tian P, Xu Z, Zhang H. Introduction to Environmental Harmful Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:3-19. [PMID: 33523427 DOI: 10.1007/978-981-33-4187-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this Chapter, we systematically and comprehensively described various environmental harmful factors. They were classified into four aspects: physical factors, chemical factors, biological factors, and physiological and psychological stress factors. Their classification, modes of presence, toxicity and carcinogenicity, routes of exposure to human and toxic effects on the female reproductive health were introduced. It is expected that the exposure routes could be controlled and eliminated, and the pathogenic mechanism of environmental harmful factors should be investigated and explained to protect female reproductive health.
Collapse
Affiliation(s)
- Jiarong Guo
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Peng Tian
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Liu S, Zhan C, Zhang J, Liu H, Xiao Y, Zhang L, Guo J, Liu X, Xing X, Cao J. Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111155. [PMID: 32846298 DOI: 10.1016/j.ecoenv.2020.111155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/27/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Twenty dust samples collected from Wuchang and Wuhan Railway Stations, the biggest transport stations in the mega traffic hub city in Central China, were analyzed for polycyclic aromatic hydrocarbons (PAHs) to investigate the concentration, sources apportionment, and relationship with black carbon (BC) and assess the health risk. The results suggested that the concentrations of PAHs, BC and TOC in Wuhan Railway Station (WHRS) (PAHs = 5940 ± 1920 ng g-1, BC = 53.2 ± 23.1 mg g-1 and TOC = 80.7 ± 44.4) were twice higher than those in Wuchang Railway Station (WCRS) (PAHs = 2580 ± 1630 ng g-1, BC = 20.4 ± 14.3 mg g-1 and TOC = 33.9 ± 20.1 mg g-1). Moreover, the 3 - and 4 - rings PAHs were major PAHs in railway station dust. The composition pattern of PAHs in these railway station dusts had a common characteristic with HMW-PAHs contribution. The results of source identification revealed that different local development features and energy consumption of trains would influence the sources of PAHs and BC. PAHs and BC were most likely related to industrial activities in WHRS. Coal and biomass combustion may influence the PAHs components and BC distribution in WCRS. Moreover, BC had played an important role in retaining PAHs in urban railway stations. Especially in WHRS, BC would more likely to absorb the high molecular weight PAHs, such as 4 -ring (p<0.05), 5 -ring (p<0.05) and 6 -ring (p<0.05) PAHs; while BC just played limited roles in the binding of volatile and semi-volatile organic pollutants, such as 2 -ring and 3 -ring PAHs. With the coexistence of BC and PAHs, passengers would face significant potential health risks by exposure to toxic dust in railway stations, especially for children. The cancer risk in WHRS was almost twice higher than that in WCRS, and it would tend to be stable by a semi-confined structure in the platform area.
Collapse
Affiliation(s)
- Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yulun Xiao
- Faculty of science, Monash University, Clayton, VIC, 3800, Australia
| | - Li Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jianlin Guo
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xianli Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
32
|
Sánchez-Piñero J, Bowerbank SL, Moreda-Piñeiro J, López-Mahía P, Dean JR. The occurrence and distribution of polycyclic aromatic hydrocarbons, bisphenol A and organophosphate flame retardants in indoor dust and soils from public open spaces: Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115372. [PMID: 32814266 DOI: 10.1016/j.envpol.2020.115372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Global concern exists regarding human exposure to organic pollutants derived from public open spaces and indoor dust. This study has evaluated the occurrence of 18 polycyclic aromatic hydrocarbons (PAHs), 11 organophosphorus flame retardants (OPFRs) and bisphenol A (BPA). To achieve this, a new simple, efficient and fast multi-residue analytical method based on a fully automated pressurised liquid extraction (PLE) and subsequent quantification by gas chromatography coupled to electron ionization-mass spectrometry (GC-EI-MS) in selected ion monitoring (SIM) mode was developed. The developed method was applied to indoor dust (12 sampling households) and soil derived from two public open spaces (POSs). Among all compounds studied, PAHs were the most ubiquitous contaminants detected in POS soils and indoor dust although some OPFRs and BPA were detected in lower concentrations. An assessment of the incremental lifetime cancer risk (ILCR) was done and indicated a high potential cancer risk from the POS sites and some of the indoor dust sampled sites. However, key variables, such as the actual exposure duration, frequency of contact and indoor cleaning protocols will significantly reduce the potential risk. Finally, the ingestion of soils and indoor dust contaminated with OPFRs and BPA was investigated and noted in almost all cases to be below the USEPA reference doses.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- Grupo de Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, University of A Coruña, Campus de A Coruña, S/n. 15071 A, Coruña, Spain
| | - Samantha L Bowerbank
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jorge Moreda-Piñeiro
- Grupo de Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, University of A Coruña, Campus de A Coruña, S/n. 15071 A, Coruña, Spain
| | - Purificación López-Mahía
- Grupo de Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigacións Científicas Avanzadas (CICA), Department of Chemistry, Faculty of Sciences, University of A Coruña, Campus de A Coruña, S/n. 15071 A, Coruña, Spain
| | - John R Dean
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
33
|
Rajana N, Ramana D, Moses Babu J, Basavaiah K, Rama Devi D. Quantitative method for determination of 3,3‐dimethylallyl bromide genotoxic impurity in Tazarotene drug substance by GC‐MS. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nagaraju Rajana
- Technology Development Center, Custom Pharmaceutical Services Dr. Reddy's Laboratories Ltd. Miyapur Hyderabad India
- Integrated Product Development Organization Dr. Reddy's Laboratories Bachupally Telangana India
| | - D.V Ramana
- Technology Development Center, Custom Pharmaceutical Services Dr. Reddy's Laboratories Ltd. Miyapur Hyderabad India
| | - J. Moses Babu
- Integrated Product Development Organization Dr. Reddy's Laboratories Bachupally Telangana India
| | - K. Basavaiah
- Department of Inorganic & Analytical Chemistry Andhra University Visakhapatnam Andhra Pradesh India
| | - Dharamasoth Rama Devi
- AU College of Pharmaceutical Sciences Andhra University Visakhapatnam Andhra Pradesh India
| |
Collapse
|
34
|
Su P, Zhang W, Hao Y, Tomy GT, Yin F, Chen L, Ding Y, Li Y, Feng D. Polycyclic aromatic hydrocarbon contaminations along shipping lanes and implications of seafarer exposure: Based on PAHs in ship surface films and a film-air-water fugacity model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138943. [PMID: 32388158 DOI: 10.1016/j.scitotenv.2020.138943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most toxic compounds in ship tailpipe exhausts. The long-term contamination of PAHs along shipping lanes and ports is difficult to assess using conventional methods such as AIS-EFs-data based (AIS, Automatic identification system; EFs, emission factors) or field sampling methods. To address this, we collected the organic films on ship surfaces and used a modified film-air-water fugacity model to convert the film-bound concentrations to the airborne (gaseous plus particulate) concentrations. Not surprisingly, concentrations of PAHs on organic films on ship surfaces were greater than those measured on films on residential buildings. The airborne total PAH concentrations along shipping lanes in Yangtze River Delta area ranged from 63.3-325 ng m-3, which were in the same order of magnitude to those in Beijing during haze days. The incremental lifetime cancer risks by exposure to PAHs in ship indoor air were higher than the US EPA lower guideline, indicating considerable carcinogenic risks to seafarers. Our study proposes an alternative method to estimate the long-term contaminations of PAHs along shipping lanes and highlights a notable health risk to seafarers.
Collapse
Affiliation(s)
- Penghao Su
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China.
| | - Weiwei Zhang
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China
| | - Yuejiao Hao
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Fang Yin
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China
| | - Lisu Chen
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China
| | - Yongsheng Ding
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China
| | - Yifan Li
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Daolun Feng
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai 200135, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 200135, PR China.
| |
Collapse
|
35
|
Jee SC, Kim M, Kim KS, Kim HS, Sung JS. Protective Effects of Myricetin on Benzo[a]pyrene-Induced 8-Hydroxy-2'-Deoxyguanosine and BPDE-DNA Adduct. Antioxidants (Basel) 2020; 9:antiox9050446. [PMID: 32455619 PMCID: PMC7278665 DOI: 10.3390/antiox9050446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Benzo[a]pyrene (B[a]P), a group 1 carcinogen, induces mutagenic DNA adducts. Myricetin is present in many natural foods with diverse biological activities, such as anti-oxidative and anti-cancer activities. The aim of this study was to investigate the protective effects of myricetin against B[a]P-induced toxicity. Treatment of B[a]P induced cytotoxicity on HepG2 cells, whereas co-treatment of myricetin with B[a]P reduced the formation of the B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE)-DNA adduct, which recovered cell viability. Furthermore, we found a protective effect of myricetin against B[a]P-induced genotoxicity in rats, via myricetin-induced inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and BPDE-DNA adduct formation in the liver, kidney, colon, and stomach tissue. This inhibition was more prominent in the liver than in other tissues. Correspondingly, myricetin regulated the phase I and II enzymes that inhibit B[a]P metabolism and B[a]P metabolites conjugated with DNA by reducing and inducing CYP1A1 and glutathione S-transferase (GST) expression, respectively. Taken together, this showed that myricetin attenuated B[a]P-induced genotoxicity via regulation of phase I and II enzymes. Our results suggest that myricetin is anti-genotoxic, and prevents oxidative DNA damage and BPDE-DNA adduct formation via regulation of phase I and II enzymes.
Collapse
Affiliation(s)
- Seung-Cheol Jee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
| | - Kyeong Seok Kim
- Department of Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Gyeonggi-do 16419, Korea; (K.S.K.); (H.-S.K.)
| | - Hyung-Sik Kim
- Department of Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Gyeonggi-do 16419, Korea; (K.S.K.); (H.-S.K.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (S.-C.J.); (M.K.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
36
|
Pan Y, Zhang Y, Peng Z, Ba X, Zhao W, Li X, Guo Y, Ouyang G, Zhang S, Zhang B. Enrichment and determination of sixteen trace polycyclic aromatic hydrocarbons in barbecue smoke by using a continuous magnetic solid‐phase extraction and gas chromatography‐mass spectrometry. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Pan
- Chemistry CollegeZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of ChemistryHong Kong Baptist University Hong Kong 999077 P. R. China
| | - Zifang Peng
- Chemistry CollegeZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Xin Ba
- Chemistry CollegeZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Wuduo Zhao
- Center of Advanced Analysis and Computational ScienceKey Laboratory of Molecular Sensing and Harmful Substances Detection TechnologyZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Xinglin Li
- Chemistry CollegeZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Yun Guo
- Center of Advanced Analysis and Computational ScienceKey Laboratory of Molecular Sensing and Harmful Substances Detection TechnologyZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Computational ScienceKey Laboratory of Molecular Sensing and Harmful Substances Detection TechnologyZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Shusheng Zhang
- Center of Advanced Analysis and Computational ScienceKey Laboratory of Molecular Sensing and Harmful Substances Detection TechnologyZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| | - Bin Zhang
- Physics CollegeZhengzhou University Kexue Avenue 100 Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
37
|
Ali N. Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133995. [PMID: 31454600 DOI: 10.1016/j.scitotenv.2019.133995] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/18/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, the presence of polycyclic aromatic hydrocarbons (PAHs) was studied in indoor air (PM10) and settled dust collected from different indoor microenvironments of Saudi Arabia. Limited data is available on the indoor quality of Saudi Arabia and to the best of our knowledge, this is the first study reporting PAHs in indoor air from Saudi Arabia. The main objectives were to study the levels and profile of selected PAHs in indoor dust and PM10 samples from different microenvironments of Saudi Arabia and to estimate health risk assessment to the local population via inhalation, dust ingestion and dermal contact. To study PAHs, indoor dust and PM10 samples were collected from different households, offices and hotel roomsPM10.Pyrene, benz(a)anthracene, chrysene, and phenanthrene were the major PAHs in both settled dust and PM10 samples. Profile of PAHs in dust samples was dominated by 3 and 4 ring PAHs while in PM10 sample 5-6 aromatic ring PAHs also contributed significantly. PM10 collected from kitchens and AC filter dust samples were the most contaminated with PAHs. PM10Health risk assessment was made for adults and young based on benzo(a)pyrene equivalent carcinogenic power (BaPE) and incremental lifetime cancer risk (ILCR). BaPE revealed major toxicity threat associated with PAHs is all microenvironments samples (dust and PM10) is from 5 and 6 aromatic rings PAHs. ILRC calculated using ingestion, inhalation and dermal contact was within the limits set by USEPA and although using max concentration it was up to 8.0E-05, which can have significant impact long term if other exposure pathways such as food and outdoor exposure, etc. are considered.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Saudi Arabia.
| |
Collapse
|
38
|
Chang J, Shen J, Tao J, Li N, Xu C, Li Y, Liu Z, Wang Q. The impact of heating season factors on eight PM 2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1413-1421. [PMID: 31726569 DOI: 10.1016/j.scitotenv.2019.06.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
In 2015, 443 atmospheric PM2.5 samples were collected at five sampling sites in Beijing. The concentrations of PM2.5-bound PAH8 (Chr, BaA, BbF, BkF, B[a]P, DBA, BghiP, and IND) were determined via high performance liquid chromatography (HPLC). The annual concentration of PM2.5-bound PAH8, lifetime cancer risk, and the increasing value due to heating season factors (heating and meteorological conditions) were analyzed. The results showed that the sum concentration of PM2.5-bound PAH8 during heating season was 72.6 ng/m3 and higher than the non-heating season concentration of 4.77 ng/m3. The annual concentration was 10.6 ng/m3, which increased 5.83 ng/m3 due to heating season factors. The B[a]P annual concentration was 1.67 ng/m3 and higher than the limit of 1 ng/m3, which was 15.2 times that of non-heating season. Diesel vehicles and gasoline vehicles were the primary PAH8 sources during non-heating season, while the mixed sources of diesel vehicles, gasoline vehicles, and combustion were the dominant PAH8 sources during heating season. The most significant health hazard pollutant was B[a]P, which accounted for 72%, 74%, and 69% of the B[a]P equivalent concentration (B[a]Peq) of PAH8 during heating season, non-heating season, and throughout 2015, respectively. The lifetime cancer risk was 2.67 × 10-6, which increased 1.36 × 10-6 due to heating season factors. Therefore, heating season factors nearly doubled the annual concentration of PM2.5-bound ∑PAH8 and lifetime cancer risk. The results indicated that to protect human health, it is very important to control PM2.5-bound ∑PAH8 emissions during heating season, especially B[a]P emissions.
Collapse
Affiliation(s)
- Junrui Chang
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| | - Jianing Shen
- College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Tao
- Institute of Environmental Health, Beijing Center for Diseases Prevention and Control, 100013 Beijing, China
| | - Na Li
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| | - Chunyu Xu
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| | - Yunpu Li
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| | - Zhe Liu
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| | - Qin Wang
- Department of Air Quality Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China.
| |
Collapse
|
39
|
Anh HQ, Tue NM, Tuyen LH, Minh TB, Viet PH, Takahashi S. Polycyclic aromatic hydrocarbons and their methylated derivatives in settled dusts from end-of-life vehicle processing, urban, and rural areas, northern Vietnam: Occurrence, source apportionment, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:468-478. [PMID: 30965261 DOI: 10.1016/j.scitotenv.2019.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 05/11/2023]
Abstract
The occurrence and profiles of 19 polycyclic aromatic hydrocarbons (PAHs) and 15 methylated derivatives (Me-PAHs) were examined in settled dust samples collected from workplaces and living areas of an informal end-of-life vehicle (ELV) processing village, and house dusts from urban and rural areas in northern Vietnam. Concentrations of total PAHs and Me-PAHs decreased in the order: ELV workplace (median 5700, range 900-18,000 ng g-1) > rural house (3700, 1800-6200 ng g-1) > urban house (1800, 620-3100 ng g-1) ≈ ELV living dusts (1000, 600-3900 ng g-1). PAHs with 4 rings or more dominated in almost all the samples, indicating the abundance of pyrogenic sources (e.g., vehicular emissions and domestic thermal processes). Levels of Me-PAHs were exceeded those of PAHs in several ELV samples, revealing specific petrogenic sources derived from vehicle processing activities. Results from source apportionment analysis have partially identified traffic emission, biomass and coal combustion, and mixed petrogenic-pyrogenic sources related to ELV waste as the major sources of PAHs and Me-PAHs in the urban, rural, and ELV areas, respectively. Daily intake doses and health risk related to PAHs and Me-PAHs in settled dusts were estimated for ELV workers and residents living in the study areas. The worst exposure scenario of dust-bound PAHs showed a potential cancer risk for the ELV workers, meanwhile, no significant non-cancer and cancer risk was expected for other exposed groups. A more comprehensive and accurate risk assessment of PAHs and related compounds should be conducted in Vietnam.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; The United Graduate School of Agricultural Sciences (UGAS-EU), Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
40
|
Liu Y, Wang S, Hu J, Wu B, Huang C, He C, Zheng Z, Gao P. Bioaccessibility of polycyclic aromatic hydrocarbons in central air conditioner filter dust and its occupational exposure to shopping mall employees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:896-903. [PMID: 31159139 DOI: 10.1016/j.envpol.2018.12.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The assessment of the human health risk of dust exposure to polycyclic aromatic hydrocarbons (PAHs) has been hampered by a lack of data on the bioaccessibility. The purpose of this study was to apply in vitro methods using simulated lungs with artificial lysosomal fluid (ALF) and Gamble's solution and digestive fluid to assess the bioaccessibility of 8 high molecular weight PAH (PAH8) in central air conditioner (AC) filter dust from a shopping mall in northeast China. Overall, the bioaccessible PAH8 concentration (μg/g) in AC filter dust samples after ALF and Gamble's solution extraction for 24 h were notable, with a mean of 1.71 ± 0.6 and 1.92 ± 0.5 in the sales areas, and a mean of 1.61 ± 0.2 and 1.85 ± 0.2 in the office areas. AC filter dust exposed to simulated digestive fluid had a mean bioaccessible PAH8 concentration (μg/g) of 1.60 ± 0.4 in the sales areas and 1.15 ± 0.2 in the office areas. Benzo[b]fluoranthene (BbF) made the most significant contribution to the total and bioaccessible PAH8 concentrations in all of the AC filter dust after simulated digestive fluid extraction, while the bioaccessibility was driven by chrysene (Chr, sales areas) and indeno[1,2,3-c,d]pyrene (Ind, office areas). Both the bioaccessibility and concentration of PAH8 in simulated lung fluid were mainly driven by benzo[a]pyrene (BaP). This study highlights the need to conduct bioaccessibility experiments for an adequate exposure assessment of health risk.
Collapse
Affiliation(s)
- Yan Liu
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Suhan Wang
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bing Wu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cunrui Huang
- Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuan He
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zelin Zheng
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Gao
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
41
|
Cao W, Yin L, Zhang D, Wang Y, Yuan J, Zhu Y, Dou J. Contamination, Sources, and Health Risks Associated with Soil PAHs in Rebuilt Land from a Coking Plant, Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040670. [PMID: 30823546 PMCID: PMC6407006 DOI: 10.3390/ijerph16040670] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
This study investigated the polycyclic aromatic hydrocarbon (PAH) pollution in the reconstructed land of an abandoned industrial site: a coking plant in Beijing. To meet the needs of urban development, many factories have had to be relocated from city centers, and abandoned industrial sites often need to be transformed into residential land or urban green space through a series of restoration measures. It is necessary to study the level of residual pollutants and potential risks associated with industrial reconstructed land. The concentration of 16 PAHs in the study area ranged from 314.7 to 1618.3 µg/kg, and the average concentration was still at a medium pollution level; the concentration of PAHs in the original coking workshop had the highest levels (1350.5 µg/kg). The PAHs in the soil were mainly low-ring aromatics, especially naphthalene and phenanthrene. The isomer method and principal component analysis indicated that PAHs in the topsoil were the result of coal and biomass combustion. The seven carcinogenic PAHs were the main contributors to the total toxicity equivalence. The genetic toxicity of benzo[a]pyrene was relatively low, and the results were related to the concentration level. There were potential carcinogenic risks for people of varying ages in this residential area. In total, gender differences were small, and the comprehensive lifetime cancer risk level was still acceptable. For the remaining plots at the study site, the daily intake of PAHs by construction workers was between 0.74⁻2.31 ng/kg bw/day, which requires further evaluation about ignored area occupational exposure to environmental pollutants.
Collapse
Affiliation(s)
- Wei Cao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Liqin Yin
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Dan Zhang
- Beijing Municipal Research Institute of Environmental Protection, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for risk modeling and remediation of contaminated sites, Beijing 100037, China.
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jing Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yi Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
42
|
Cao Z, Wang M, Chen Q, Zhu C, Jie J, Li X, Dong X, Miao Z, Shen M, Bu Q. Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:423-430. [PMID: 30412887 DOI: 10.1016/j.scitotenv.2018.10.413] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
To investigate the particle size distribution, spatial variation, and corresponding health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor environments, composite settled dust samples were collected from four types of microenvironments (offices, hotels, dormitories and kindergartens) in Beijing, and each pooled dust sample was homogenized and fractionated into 9 fractions (F1 (900-2000 μm), F2 (500-900 μm), F3 (400-500 μm), F4 (300-400 μm), F5 (200-300 μm), F6 (100-200 μm), F7 (74-100 μm), F8 (50-74 μm), and F9 (<50 μm)). The total concentrations of 15 PAHs varied from 388 ng g-1 (kindergarten dust, F1) to 8140 ng g-1 (hotel dust, F7) in the 31 size-segregated samples. Particle size distribution patterns of PAHs were found to vary for the different types of dust samples. The seasonality of PAH contamination in indoor dust was discussed within 36 samples collected weekly and biweekly from two offices of one building in Beijing. Generally, the seasonal trends of PAHs in dust from these two offices were consistent, showing that PAH levels in cold seasons were higher than those in warm seasons. Diagnostic ratios and principal component analysis (PCA) indicated the important contribution of fuel combustion to PAHs in the indoor dust samples. The estimated incremental lifetime cancer risk (ILCR) values ranged from 10-6 to 10-5 for all relevant populations corresponding to the four types of microenvironments.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Chunyou Zhu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Janye Jie
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaoxiao Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiayan Dong
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zheng Miao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Mohai Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China.
| |
Collapse
|
43
|
Shen Y, Li J, Gu R, Zhan X, Xing B. Proteomic analysis for phenanthrene-elicited wheat chloroplast deformation. ENVIRONMENT INTERNATIONAL 2019; 123:273-281. [PMID: 30553200 DOI: 10.1016/j.envint.2018.11.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The exposure of polycyclic aromatic hydrocarbons (PAHs) can cause wheat leaf chlorosis. Thus, we hypothesize that chloroplast inner structure damage is the reason for leaf chlorosis. This study was conducted with the wheat seedlings exposed to Hoagland nutrient solution containing 1.0 mg L-1 phenanthrene for 9 days. Subcellular observation showed that chloroplast turns round and loses its structural integrity. Herein, iTRAQ (isobaric tag for relative and absolute quantification) was applied to analyze the changes of protein profile in chloroplast exposed to phenanthrene. A total of 517 proteins are identified, 261 of which are up-regulated. Eight proteins related with thylakoid (the structural component of chloroplast) are down-regulated and the expression of related genes further confirms the proteomic results through real-time PCR under phenanthrene treatment, suggesting that the thylakoid destruction is the reason for chloroplast deformation. Four proteins related with envelope and stroma are up-regulated, and this is the reason why chloroplast remains round. This study is useful in discussing the carcinogenic and teratogenic effects of PAHs in plant cells in the environment, and provides necessary knowledge for improving crop resistance to PAH pollution.
Collapse
Affiliation(s)
- Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ruochen Gu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
44
|
Škrbić B, Đurišić-Mladenović N, Živančev J, Tadić Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:191-203. [PMID: 30077848 DOI: 10.1016/j.scitotenv.2018.07.442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
This is the first investigation that identified seasonal occurrence, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in 60 street dust samples collected within urban zone of Novi Sad, the second largest city in Serbia. The obtained results were further used for comprehensive assessment of carcinogenic risk of Serbian inhabitants exposed to PAHs present in street dust by the incremental lifetime cancer risk method. The total level of 16 PAHs ranged between 35 μg kg-1 and 2422 μg kg-1 in samples taken in summer and between 35 μg kg-1 and 587 μg kg-1 in samples taken in winter. In both seasons, 4-ring PAHs were the most dominant compounds and high molecular weight (HMW) PAHs had similar contribution (55% in summer and 65% in winter). The highest content was determined for fluoranthene (Fly) in both seasons (597 μg kg-1 in winter, 301 μg kg-1 in summer). The PAHs source apportionment was analyzed by principal component analysis (PCA) and diagnostic ratios, and combustion of petroleum seemed to be the main sources of the PAHs in street dust. The cancer risk level for children and adult were comparable for dermal contact and by ingestion, and ranged from 10-6 to 10-4 indicating a potential risk. Additionally, the total incremental life time cancer risk (ILCR) was assessed for children and adult population taking into account three possible exposure routs and the median total cancer risk was ˃10-5, with 7% of the samples having the risk ˃10-4 that should be considered of high concern with potential health problem. These results are the first of this kind for the whole Serbia and the Western Balkan region and can be considered as the base line for future research.
Collapse
Affiliation(s)
- Biljana Škrbić
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Đorđe Tadić
- Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
45
|
Hassan SK, Mohammed AMF, Khoder MI. Characterization and Health Risk Assessment of Human Exposure to PAHs in Dust Deposited on Leaves of Street Trees in Egypt. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2018.1517810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Salwa K. Hassan
- Air Pollution Research Department, National Research Centre, Giza, Egypt
| | | | - Mamdouh I. Khoder
- Air Pollution Research Department, National Research Centre, Giza, Egypt
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Hao X, Zhang X, Cao X, Shen X, Shi J, Yao Z. Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:347-355. [PMID: 30025240 DOI: 10.1016/j.scitotenv.2018.07.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 04/15/2023]
Abstract
The polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 16 gasoline passenger cars, encompassing five emission standards and two driving conditions, were tested using a portable emission measurement system (PEMS) in Beijing under on-road conditions. In total, 16 PAHs and 9 NPAHs were quantified in both the gaseous and particulate phases by high-performance liquid chromatography (HPLC). The results indicated that lower PAH and NPAH emissions were observed with improved emission standards, especially for China 3 to China 5 vehicles (P < 0.05). Higher emission factors (EFs) were detected on nonhighway roads than on highway roads due to incomplete combustion. Although most PAHs and NPAHs were in the gas-phase, the TEQBaP of the particulate-phase PAHs was 4.2 times higher than that of the gas-phase PAHs, whereas the opposite pattern was observed for NPAHs. The TEQBaP EFs on nonhighway roads were 1.0-2.3 times higher than those on highway roads. The results of this study will be valuable for estimating the emissions and performing carcinogenic risk assessment of PAHs and NPAHs from urban gasoline passenger cars on roads. Formulating more stringent regulations and emission control technologies for PAHs and NPAHs is important.
Collapse
Affiliation(s)
- Xuewei Hao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyue Cao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jiacheng Shi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
47
|
Cave MR, Wragg J, Beriro DJ, Vane C, Thomas R, Riding M, Taylor C. An overview of research and development themes in the measurement and occurrences of polyaromatic hydrocarbons in dusts and particulates. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:373-390. [PMID: 30130696 DOI: 10.1016/j.jhazmat.2018.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds consisting of two or more fused aromatic rings and are probably one of the most studied groups of organic chemicals in environmental research. PAHs originate mainly from anthropogenic processes, particularly from incomplete combustion of organic fuels. PAHs are distributed widely in particulate matter. Due to widespread sources and persistent characteristics, PAHs disperse through atmospheric transport and exist almost everywhere. Human beings are exposed to PAH mixtures in gaseous or particulate phases in ambient air. Long-term exposure to high concentrations of PAHs is associated with adverse health problems. This review identifies the main research and development themes in the measurement and occurrences of PAHs in dusts and particulates using a new approach to carrying out a literature review where many peer-review publications have been produced. The review extracts the most important research themes from a literature search using a combination of text mining and a more detailed review of selected papers from within the identified themes.
Collapse
Affiliation(s)
- Mark R Cave
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.
| | - Joanna Wragg
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Darren J Beriro
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Chistopher Vane
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | | | | | - Christopher Taylor
- National Grid Property Holdings Ltd, National Grid House, Warwick Technology Park, Gallows Hill, Warwick, CV34 6DA, UK
| |
Collapse
|
48
|
Chen Y, Zhang J, Zhang F, Liu X, Zhou M. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:383-390. [PMID: 29579669 DOI: 10.1016/j.ecoenv.2018.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 05/27/2023]
Abstract
The concentration, composition, sources and incremental lifetime cancer risk of farmland soil polycyclic aromatic hydrocarbons (PAHs) of the Yinma River Basin were analyzed. In 2016, the total concentration of 16 PAHs ranged from 491.65 to 1007.73 ng/g in May, from 427.31 to 781.38 ng/g in August and from 580.40 to 999.40 ng/g in November, respectively. Levels of seven potentially carcinogenic PAHs generally accounted for 33-36.7% of total 16 PAHs in three seasons, and the PAHs contained two to six rings, mainly Fla, Pyr, and Chr. The correlation analysis suggested that the soil organic matter (SOM) was no correlation with PAHs except for August, and there were no significant relationship between the pH and total PAHs. Isomer ratios indicated that the soil PAHs in the farmland of the Yinma River Basin was determined to be the combustion of coal, biomass, and petroleum. The toxic equivalent (BaPeq) concentrations ranged from 15.2 to 133 ng BaPeq g-1 in three seasons. The 95th percentiles of incremental lifetime cancer risk (ILCR) due to human exposure to farmland soil PAHs of the Yinma River Basin was (1.36 × 10-6) in May, (1.00 × 10-6) in August, and (1.18 × 10-6) in November for children, (1.10 × 10-6) in May, (8.15 × 10-7) in August, and (9.58 × 10-7) in November for adolescence and (1.61 × 10-6) in May, (4.22 × 10-6) in August and (1.40 × 10-6) in November for adulthood. The result indicated a moderate carcinogenic risk and the risk of exposure to farmland soil PAHs was pervasive for residents. This investigation might provide useful information on human exposure to PAHs in soil of the Yinma River Basin, and is valuable for policy makers and scientists.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China.
| | - Feng Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Xingpeng Liu
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Mo Zhou
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
49
|
Kadi MW, Ali N, Albar HMSA. Phthalates and polycyclic aromatic hydrocarbons (PAHs) in the indoor settled carpet dust of mosques, health risk assessment for public. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:134-140. [PMID: 29426135 DOI: 10.1016/j.scitotenv.2018.01.146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
A number of studies have reported the occurrence of phthalates and polycyclic aromatic hydrocarbons (PAHs) in indoor settled dust from different occupational and residential settings around the world but limited studies are available from public and religious places. In recent decades Kingdom of Saudi Arabia (KSA) has experienced tremendous industrial growth especially in the petroleum industries, and as result environmental issues related with such industries have also increased but scientific data is still scarce to understand the impact on public health. Therefore, the main objective of this study was to report the phthalates and PAHs profile in the settled dust collected from various mosques of Jeddah, an important part of people living in the region, and to evaluate the health risk associated with these chemicals via dust ingestion, inhalation and dermal contact for the general public who attend mosques for prayers. Phenanthrene (500-3000 ng/g), pyrene (40-1220 ng/g), and chrysene (95-4590 ng/g) were the major PAHs and ∑12PAHs concentrations ranged from 2550 to 9150 ng/g. Whereas, DEHP (<LOQ-292900 ng/g) and BzBP (<LOQ-292900 ng/g) were the major phthalates in the mosque dust. Health risk assessment for the public was calculated by incremental lifetime cancer risk (ILCR), and daily exposure to via dust ingestion, inhalation, and dermal contact for both PAHs and phthalates. At the same time, benzo[a]pyrene equivalent carcinogenic power (BaPE) (median 145 ng/g) was calculated for PAHs. The ILCR for PAHs was in line with the reference values of USEPA. At the same time, exposure via dust ingestion on daily basis reached up to 82 ng/kg bw/day for DEHP for young children. The study showed general public is exposed to these chemicals in the studied area and major exposure routes are dermal and ingestion.
Collapse
Affiliation(s)
- Mohammad W Kadi
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Ali
- Center of Excellence in Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|
50
|
Ali N, Ibrahim Ismail IM, Kadi MW, Salem Ali Albar HM. Currently used organophosphate flame retardants determined in the settled dust of masjids and hotels of Saudi Arabia, a new insight into human health implications of dust exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:798-805. [PMID: 29629467 DOI: 10.1039/c8em00014j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Indoor settled dust particles are considered as an important source of human exposure to chemicals such as organophosphate flame retardants (PFRs). In recent decades the Kingdom of Saudi Arabia (KSA) has experienced tremendous growth in population, as a result the number of masjids has also increased significantly to provide sufficient space for the public to offer prayers. The hospitality industry in KSA is also expanding to cater for the ever-increasing number of pilgrims visiting the two holy cities of the kingdom. However, limited data are available on the indoor pollution of masjids and hotels. In this study, PFRs were analyzed in the settled dust collected from various hotels and masjids of Jeddah, KSA. Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloro-2-propyl) phosphate (TCPP) were the major PFRs in masjid (median = 2490 and 2055 ngg-1) and hotel (median = 2360 and 3315 ngg-1) dust, respectively. A public health risk assessment was carried out by determining the incremental lifetime cancer risk (ILCR), and daily exposure via dust ingestion, inhalation, and dermal contact of PFRs. The calculated daily exposure via dust ingestion was well below the reference dose (RfD) values, and also the calculated hazardous quotient (HQ) and carcinogenic risk were well below the risk mark. However, the ILCR for PFRs was below the reference values of USEPA, which suggested that long-term exposure to these chemicals has a limited cause for concern. The study showed that the general public is exposed to PFRs in the studied microenvironments and the major exposure routes are dermal contact and ingestion.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Sciences, King Abdulaziz University, PO Box: 80216, Jeddah21589, Saudi Arabia.
| | | | | | | |
Collapse
|