1
|
Du L, Tang L, Zheng X, Li Y. A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition. FRONTIERS IN PLANT SCIENCE 2024; 15:1473493. [PMID: 39748818 PMCID: PMC11693671 DOI: 10.3389/fpls.2024.1473493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.e., herb, evergreen broad-leaf (EB), deciduous broad-leaf (DB), and conifer (CO), and utilized both linear mixed-effects models and structural equation models to describe the thresholds of their net primary productivity (NPP), and tested the relationships between their NPP and potential environmental drivers based on the N/P threshold hypothesis. We found that atmospheric N and P deposition non-linearly affected NPP and the effects were most pronounced for the EB, DB, and CO categories, with tipping points in the ranges of 8.32-9.33 kg N·ha-1·yr-1 and 0.20-0.30 kg P·ha-1·yr-1, respectively. Atmospheric N and P deposition negatively affected the NPP of approximately 53.68% and 43.88% of terrestrial ecosystem plants, respectively, suggesting increased P limitation and N saturation in most terrestrial ecosystems worldwide. We further determined that the N/P threshold hypothesis is applicable in assessing the effects of atmospheric N and P deposition on the growth of woody plants (EB, DB, and CO) through nutrient limitation. The results of this study will contribute to more effective landscape management in changing environments.
Collapse
Affiliation(s)
- Lan Du
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Iftikhar L, Ahmad I, Saleem M, Rasheed A, Waseem A. Exploring the chemistry of waste eggshells and its diverse applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:348-363. [PMID: 39236470 DOI: 10.1016/j.wasman.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
The large-scale production of chicken eggs results in a substantial amount of eggshell (ES) residue, often considered as waste. These discarded shells naturally decompose in soil approximately within a year. Eggshells (ES), comparatively contribute lesser towards environmental pollution, contain a remarkable amount of calcium, which can be converted into various valuable products that finds applications in industries, pharmaceuticals, and medicine. Among the diverse applications of ES, most effective and promising applications are removal of heavy metals (Cd, Cr, Pb, Zn, and Cu) ∼93-99 % metal adsorption capacity and capturing of flue gases (CO2 and SO2) from the environment. With ES having a maximum CO2 sorption capacity of 92 % as compared to other sources, and SO2 adsorption capacity of Calcined ES∼11.68 mg/g. The abundance, low cost and easy availability of CaO from ES makes them sustainable and eco-friendly. Additionally, its versatility extends beyond environmental prospects, as it is widely used in various industries as a catalyst, sorbent, fertilizer, and calcium supplement in food for individuals, plants and animals, among other diverse fields of study. Owing to its versatile applications, current review focuses on structure, chemical composition, treatment methods, and valorization pathways for diverse applications, aiming to reduce the eggshells waste and mitigate environmental pollution.
Collapse
Affiliation(s)
- Laiba Iftikhar
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan
| | - Iqbal Ahmad
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Chemistry Allama, Iqbal Open University, Islamabad 44000, Pakistan.
| | - Aamir Rasheed
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of Kotli, Kotli 11100, Azad Jammu and Kashmir, Pakistan
| | - Amir Waseem
- Analytical Lab, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
Shui B, Xu M, Luo X. Wheels of Change: The Environmental Paradox of Accelerating Vehicle Retirement Program. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20412-20423. [PMID: 39497608 DOI: 10.1021/acs.est.4c05009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Accelerated vehicle retirement is recognized as crucial for managing fleet emissions effectively. However, the emergence of new energy vehicles introduces complexities in assessing their environmental impacts. This study developed a dynamic fleet-based life cycle assessment model to analyze the effects of four distinct scrappage strategies in China from 2021 to 2060. The results underscore the importance of a meticulously chosen retirement strategy that harmonizes fleet characteristics with advancements in vehicle technology to promote sustainable mobility. Accelerated retirement strategies are demonstrated to enhance vehicle sales and expedite the incorporation of new energy vehicles into the fleet. Although these policies reduce greenhouse gas and carbon monoxide emissions, they may exacerbate other air pollutants, necessitating vigilant management. Additionally, the temporal distribution of environmental impacts reveals the critical need for long-term assessments. By evaluating six negative externalities of emissions, the research indicates that targeted scrappage policies, which advocate for the retirement of older vehicles, could potentially generate economic benefits of 6.81 to 7.29 billion dollars in reduced losses. However, an overly aggressive scrappage policy could increase negative externalities, leading to additional costs ranging from 0.84 to 3.31 billion dollars. This study reveals the intricate long-term environmental consequences of scrappage strategies accompanying the rise of new energy vehicles and lays a methodological groundwork for ongoing research into the most effective retirement scheme.
Collapse
Affiliation(s)
- Bin Shui
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ming Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaowei Luo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Jia L, Song Y, You F, Wang S, Rabiya UE, Liu X, Huang L, Wang L, Khan WUD. Ameliorating the detrimental effects of chromium in wheat by silicon nanoparticles and its enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175270. [PMID: 39111436 DOI: 10.1016/j.scitotenv.2024.175270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, China
| | - Yue Song
- College of Food and Drug, Luoyang Normal University, China
| | - Fangfang You
- College of Food and Drug, Luoyang Normal University, China
| | - Sujun Wang
- Luoyang Customs, National Republic of China, Luoyang, Henan 471000, China
| | - Umm E Rabiya
- Department of Agriculture, Government College University Lahore, Pakistan
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, China
| | - Waqas Ud Din Khan
- Department of Agriculture, Government College University Lahore, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Anas M, Khan IU, Alomrani SO, Nawaz M, Huang ZY, Alshehri MA, Al-Ghanim KA, Qi SS, Li J, Dai ZC, Ali S, Du DL. Evaluating Sorghum bicolor resistance to Solidago canadensis invasion under different nitrogen scenarios. FRONTIERS IN PLANT SCIENCE 2024; 15:1468816. [PMID: 39534106 PMCID: PMC11555567 DOI: 10.3389/fpls.2024.1468816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Ecosystem exposure to a biological invasion such as plant invasion could contribute to the extinction of native species and loss of productivity and ecosystem balance. Solidago canadensis (S. canadensis) is a highly invasive species that has formed monocultures in China, Europe, Asia, Australia, and New Zealand. It was designated as a notorious invasive species by the Chinese government. It has adversely affected the agroecosystem's ability to germinate various plant seeds, including wheat, lettuce, and pepper, which could lead to food insecurity. This study was conducted to control the invasive species S. canadensis by utilizing a competitive species, Sorghum bicolor (S. bicolor) as a cover plant. Sorghum bicolor exudes allelochemicals such as sorgoleone from its roots which suppress the photosystem II activity of nearby plants. The synthesis of sorgoleone depends on a supply of nitrogen. The present study involved the cultivation of S. bicolor alongside the invasive species S. canadensis, with three different invasion levels (high, medium, and low) and three different nitrogen forms (ammonical, nitrate, and combined ammonical and nitrate nitrogen) applied as a modified Hogland solution. S. bicolor expressed higher performance over the invasive species under ammonical and combined nitrogen forms under low and medium invasion levels. Furthermore, even at greater levels of invasion, S. bicolor was not suppressed by S. canadensis. However, the plant height and dry biomass of S. bicolor were significantly high across both nitrogen forms. Leaf area, CO2 uptake, and photosystem II activity of S. canadensis were unable to sustain its growth under the low invasion condition. The plant biomass of S. canadensis was suppressed by up to 80% and the relative dominance index of S. bicolor was 5.22 over S. canadensis. There was a strong correlation between CO2 uptake, leaf area, and plant biomass. Principal component analysis showed that the first four components had a total variance of 96.89%, with principal component 1 (PC1) having the highest eigenvalue at 18.65. These promising findings suggested that S. bicolor, whose high intensity might be employed to control the invasion process for environmental safety, might be able to recover the barren ground that S. canadensis had invaded.
Collapse
Affiliation(s)
- Muhammad Anas
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Yun Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | | | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Li
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Dao-Lin Du
- Jingjiang College, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Zhang Z, Wang C, Lv B. Comparative analysis of ecological sensitivity assessment using the coefficient of variation method and machine learning. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1000. [PMID: 39354280 DOI: 10.1007/s10661-024-13195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ecological sensitivity is an essential indicator for measuring the ecological environment's level, and its assessment results have significant reference value for regional ecological environment protection and resource development and utilization. Taking Xifeng County as the study area, we selected a total of 12 assessment factors in terms of ecological environment, geological environment, and human environment, including average annual rainfall, average annual temperature, average annual wind speed, river density, vegetation coverage, soil erodibility, elevation, slope, geological disaster susceptibility, road density, land use, and night light index, and explored the spatial distribution patterns of ecological sensitivities and the characteristics of the differences in the study area based on the coefficient of variation method and machine learning. The results show that the overall spatial distribution pattern of ecological sensitivity in Xifeng County shows a low sensitivity in the north and a high sensitivity in the south. 41.90% of the regional ecological sensitivity intensity is classified as very high and high sensitivity, mainly distributed in mountainous and hilly areas, while 35.51% is classified as very low and low sensitivity, mainly distributed in plains and low mountainous areas. The assessment results are consistent with the actual situation, enriching the ecological sensitivity assessment methods and models.
Collapse
Affiliation(s)
- Zefang Zhang
- College of Construction Engineering, Jilin University, Changchun, 130012, China
| | - Changming Wang
- College of Construction Engineering, Jilin University, Changchun, 130012, China.
| | - Baohong Lv
- College of Construction Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Luo Z, Wu S, Shi W, Hu H, Lin T, Zhao K, Hou G, Fan C, Li X, Chen G. Combined effects of cadmium and simulated acid rain on soil microbial communities in the early cultivation of Populus beijingensis seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116583. [PMID: 38878333 DOI: 10.1016/j.ecoenv.2024.116583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/02/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024]
Abstract
The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.
Collapse
Affiliation(s)
- Zhili Luo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Siying Wu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijin Shi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Centre of Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650504, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Souza Filho EJ, Barros KK, Bezerra Neto E, Gavazza S, Florencio L, Kato MT. Effect of reclaimed water and dehydrated sludge on the morpho-physiology and yield of sorghum. ENVIRONMENTAL TECHNOLOGY 2024; 45:3479-3495. [PMID: 37231744 DOI: 10.1080/09593330.2023.2219011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The effect on the morpho-physiological parameters and yield of sorghum cultivated in a greenhouse with reclaimed water (RW) and (dehydrated sludge (DS) obtained in a sewage treatment plant, was evaluated. Six treatments (T), with five repetitions each, were carried out in entirely randomized blocks. Water (W) was used in T1 (W) (control), T2 (W + NPK), and T3 (W + DS); RW was used in T4 (RW), T5 (RW + P), and T6 (RW + DS). The results showed that irrigation with only RW (T4), or W + DS (T3) was very suitable for the cultivation since an adequate nutritional supply was provided. The positive effects on the morpho-physiological parameters, plant height, stem diameter and stem length (in cm), were: T3 - 148.8, 1.50, and 103, respectively; T4 - 154, 1.70, and 107, respectively; and on the grain production in weight of 1000 seeds (g), and productivity in grains per plant: T3 - 6.97 and 1453, respectively; T4 - 6.81 and 1636, respectively. Both treatments showed for most of the parameters, no significant differences compared with those of T2 or T5 with supplementary fertilizers. A high production of metabolites (mg g-1) like free amino acids was also shown: T3 - 6.45; T4 - 8.43 and proline: T3 - 1.86; T4 - 1.77, known to be a good indication of a plant natural defence against stress conditions, and in soluble protein: T3 - 11.20; T4 - 13.51. Therefore, since the production of such grains with RW or DS can be environmentally and economically beneficial, their use is recommended for small and medium farmers in semiarid regions.
Collapse
Affiliation(s)
- Edecio José Souza Filho
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation (LSA-UFPE), Federal University of Pernambuco, Recife, Brazil
| | - Kenia Kelly Barros
- Technology Center, Laboratory of Environmental Engineering (LEA-UFPE), Federal University of Pernambuco (UFPE), Agreste Academic Centre (CAA), Caruaru, Brazil
| | - Egidio Bezerra Neto
- Department of Chemistry, Rural Federal University of Pernambuco (UFRPE), Recife, Brazil
| | - Savia Gavazza
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation (LSA-UFPE), Federal University of Pernambuco, Recife, Brazil
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation (LSA-UFPE), Federal University of Pernambuco, Recife, Brazil
| | - Mario Takayuki Kato
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation (LSA-UFPE), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Bao X, Wang Z, Liu L, Wang D, Gu Y, Chen L, Chen X, Meng Z. The combined effects of azoxystrobin and different aged polyethylene microplastics on earthworms (Eisenia fetida): A systematic evaluation based on oxidative damage and intestinal function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171494. [PMID: 38453077 DOI: 10.1016/j.scitotenv.2024.171494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pesticides and microplastics are common pollutants in soil environments, adversely affecting soil organisms. However, the combined toxicological effects of aged microplastics and pesticides on soil organisms are still unclear. In this study, we systematically studied the toxicological effects of azoxystrobin and four different aged polyethylene (PE) microplastics on earthworms (Eisenia fetida). The purpose was to evaluate the effects of aging microplastics on the toxicity of microplastics-pesticides combinations on earthworms. The results showed that different-aged PE microplastics promoted azoxystrobin accumulation in earthworms. Meanwhile, combined exposure to azoxystrobin and aged PE microplastics decreased the body weight of earthworms. Besides, both single and combined exposure to azoxystrobin and aged PE microplastics could lead to oxidative damage in earthworms. Further studies revealed that azoxystrobin and aged PE microplastics damage the intestinal structure and function of earthworms. Additionally, the combination of different aged PE microplastics and azoxystrobin was more toxic on earthworms than single exposures. The PE microplastics subjected to mechanical wear, ultraviolet radiation, and acid aging exhibited the strongest toxicity enhancement effects on earthworms. This high toxicity may be related to the modification of PE microplastics caused by aging. In summary, these results demonstrated the enhancing effects of aged PE microplastics on the toxicity of pesticides to earthworms. More importantly, aged PE microplastics exhibited stronger toxicity-enhancing effects in the early exposure stages. This study provides important data supporting the impact of different aged PE microplastics on the environmental risks of pesticides.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dengwei Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
10
|
Shu P, Gong X, Du Y, Han Y, Jin S, Wang Z, Qian P, Li X. Effects of Simulated Acid Rain on Photosynthesis in Pinus massoniana and Cunninghamia lanceolata in Terms of Prompt Fluorescence, Delayed Fluorescence, and Modulated Reflection at 820 nm. PLANTS (BASEL, SWITZERLAND) 2024; 13:622. [PMID: 38475467 DOI: 10.3390/plants13050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The effects of simulated acid rain (SAR) on the photosynthetic performance of subtropical coniferous species have not been thoroughly investigated. In this study, we treated two coniferous species, Pinus massoniana (PM) and Cunninghamia lanceolata (CL), with four gradients of SAR and then analyzed their photosynthetic activities through measurements of gas exchange, prompt fluorescence (PF), delayed fluorescence (DF), and modulated reflection at 820 nm (MR820). Gas exchange analysis indicated that the decrease in the net photosynthetic rate (Pn) in PM and CL was unrelated to stomatal factors. For the PF transients, SAR induced positive K-band and L-band, a significant reduction in photosynthetic performance index (PIABS), the quantum yield of electron transfer per unit cross-section (ETO/CSm), and maximal photochemical efficiency of photosystem II (Fv/Fm). Analysis of the MR820 kinetics showed that the re-reduction kinetics of PSI reaction center (P700+) and plastocyanin (PC+) became slower and occurred at later times under SAR treatment. For the DF signals, a decrease in the amplitude of the DF induction curve reduced the maximum value of DF (I1). These results suggested that SAR obstructed photosystem II (PSII) donor-side and acceptor-side electron transfer capacity, impaired the connectivity between PSII and PSI, and destroyed the oxygen-evolving complex (OEC). However, PM was better able to withstand SAR stress than CL, likely because of the activation of a protective mechanism.
Collapse
Affiliation(s)
- Pengzhou Shu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xiaofei Gong
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China
| | - Yanlei Du
- Environmental Protection Monitoring Station of Changxing County, Huzhou 313000, China
| | - Yini Han
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Zhongxu Wang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Penghong Qian
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
11
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
12
|
Zhong J, Liu Y, Chen X, Ye Z, Li Y, Li W. The impact of acid rain on cadmium phytoremediation in sunflower (Helianthus annuus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122778. [PMID: 37863250 DOI: 10.1016/j.envpol.2023.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Sunflower is an ideal crop for phytoremediation of cadmium-contaminated farmland, as it brings economic benefits while conducting soil remediation. Due to industrial emissions and car exhaust, Cd contaminated areas are often accompanied by acid rain. However, the impact of acid rain on the Cd remediation capacity of sunflowers and its potential influencing factors are unclear. An experiment was manipulated to elucidate the effects of Cd concentration (0,10,50,100 μmol/L) and acid rain (pH 4.0) on the phytoremediation ability of sunflowers, in which the properties of them were explored. The results indicated that Cd stress is the main factor affecting the growth of sunflowers. Without AR, Cd treatment decreased sunflower biomass by 67.5-85.6%. Under AR, Cd treatment decreased sunflower biomass 53.9-86.4%. Compared without AR, the relative chlorophyll content with AR increased by 22.3-23.1%, while the YII with AR decreased by 6.5-20.0%. There was an interaction between acid rain and Cd stress on antioxidant enzyme activity. With AR, CAT activity at 0 μmol/L Cd treatment increased by 25.6%, compared without AR. Whether there is acid rain or not, the POD and SOD activities were increased at 10, 50 μmol/L Cd treatment, but they were decreased at 100 μmol/L Cd treatment. Among them, acid rain exacerbated the impact of POD activity (decreased by 31.4%) at 100 μmol/L Cd treatment and SOD activity (decreased by 15.1%) at 50 μmol/L Cd treatment, compared without AR. In this experiment, the phytoremediation capacity of sunflowers mainly depended on the concentration of Ca in the leaves and their antioxidant capacity. Acid rain enhanced 77.5% the total Cd accumulation at 10 μmol/L Cd treatment, compared without AR. Acid rain exacerbated the damage of Cd to the chloroplast structure of sunflowers, and reduced the accumulation of starch particles. The study findings may be useful for improving the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Jiawen Zhong
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yeqing Liu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Ye
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China
| | - Wenyan Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Arable Land Conservation (South China), MOA, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Ali HH, Ilyas M, Zaheer MS, Hameed A, Ikram K, Khan WUD, Iqbal R, Awan TH, Rizwan M, Mustafa AEZMA, Elshikh MS. Alleviation of chromium toxicity in mung bean (Vigna radiata L.) using salicylic acid and Azospirillum brasilense. BMC PLANT BIOLOGY 2023; 23:535. [PMID: 37919670 PMCID: PMC10623693 DOI: 10.1186/s12870-023-04528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Chromium (Cr) contamination in soil poses a serious hazard because it hinders plant growth, which eventually reduces crop yield and raises the possibility of a food shortage. Cr's harmful effects interfere with crucial plant functions like photosynthesis and respiration, reducing energy output, causing oxidative stress, and interfering with nutrient intake. In this study, the negative effects of Cr on mung beans are examined, as well as investigate the effectiveness of Azospirillum brasilense and salicylic acid in reducing Cr-induced stress. RESULTS We investigated how different Cr levels (200, 300, and 400 mg/kg soil) affected the growth of mung bean seedlings with the use of Azospirillum brasilense and salicylic acid. Experiment was conducted with randomized complete block design with 13 treatments having three replications. Significant growth retardation was caused by Cr, as were important factors like shoot and root length, plant height, dry weight, and chlorophyll content significantly reduced. 37.15% plant height, 71.85% root length, 57.09% chlorophyll contents, 82.34% crop growth rate was decreased when Cr toxicity was @ 50 µM but this decrease was remain 27.80%, 44.70%, 38.97% and 63.42%, respectively when applied A. brasilense and Salicylic acid in combine form. Use of Azospirillum brasilense and salicylic acid significantly increased mung bean seedling growth (49%) and contributed to reducing the toxic effect of Cr stress (34% and 14% in plant height, respectively) due to their beneficial properties in promoting plant growth. CONCLUSIONS Mung bean seedlings are severely damaged by Cr contamination, which limits their growth and physiological characteristics. Using Azospirillum brasilense and salicylic acid together appears to be a viable way to combat stress brought on by Cr and promote general plant growth. Greater nutrient intake, increased antioxidant enzyme activity, and greater root growth are examples of synergistic effects. This strategy has the ability to reduce oxidative stress brought on by chromium, enhancing plant resistance to adverse circumstances. The study offers new perspectives on sustainable practices that hold potential for increasing agricultural output and guaranteeing food security.
Collapse
Affiliation(s)
- Hafiz Haider Ali
- Department of Agriculture, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Maimoona Ilyas
- Sustainable Development Study Center (SDSC), Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Akhtar Hameed
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
| | - Kamran Ikram
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Waqas Ud Din Khan
- Department of Agriculture, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tahir Hussain Awan
- Department of Agronomy, Rice Research Institute, Kala Shah Kaku, Lahore, 54000, Pakistan
| | - Muhammad Rizwan
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Shi Z, Zhang J, Zhang H, Wei H, Lu T, Chen X, Li H, Yang J, Liu Z. Response and driving factors of soil enzyme activity related to acid rain: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105072-105083. [PMID: 37730980 DOI: 10.1007/s11356-023-29585-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
As a global pollution, acid rain can significantly alter soil physicochemical and biochemical processes, but our knowledge of how acid rain affects soil enzyme activity is still limited. To quantify the overall magnitude and direction of the response of soil enzyme activity to acid rain, we conducted a linear mixed model-based meta-analysis of 40 articles. Our analysis revealed that acid rain decreased enzyme activity by an average of 4.87%. Soil dehydrogenase and protease activities were particularly sensitive to acid rain, with significant inhibitions observed. The effect of acid rain was moderated by acid rain intensity (i.e., H+ addition rate, total H+ added, and acid rain pH) and soil fraction (i.e., rhizosphere and bulk soil). Structural equation modelling further revealed that acid rain suppressed soil microbial biomass by acidifying the soil and that the reduction in microbial biomass directly led to the inhibition of enzyme activity in bulk soil. However, the enzyme activity in the rhizosphere soil was not affected by acid rain due to the rhizosphere effect, which was also not impacted by the decreased soil pH induced by acid rain in rhizosphere. Our study gives an insight into how bulk soil enzyme activity is impacted by acid rain and highlights the need to incorporate rhizosphere processes into acid rain-terrestrial ecosystem models.
Collapse
Affiliation(s)
- Zhaoji Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China.
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Huicheng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Tiantian Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Xuan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Hongru Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Jiayue Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| |
Collapse
|
15
|
He T, Tang Y, Cao R, Xia N, Li B, Du E. Distinct urban-rural gradients of air NO 2 and SO 2 concentrations in response to emission reductions during 2015-2022 in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122021. [PMID: 37339730 DOI: 10.1016/j.envpol.2023.122021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are two major air pollutants in urban environment. Emission reduction policies have thus been implemented to improve urban air quality, especially in the metropolises. However, it remains unclear whether the air concentrations of NO2 and SO2 in and around large cities follow a same spatial pattern and how their characteristics change over time in response to the emission reductions. Using ground-based monitoring datasets of air NO2 and SO2 concentrations in Beijing, China, we tested the hypothesis of urban air pollutant islands and evaluated their seasonal and inter-annual variations during 2015-2022. The results showed that air NO2 concentrations increased significantly towards the urban core, being in line with the hypothesis of urban air pollutant island, while air SO2 concentrations showed no such spatial patterns. The urban air NO2 island varied seasonally, with larger radius and higher air NO2 concentrations in spring and winter. In response to the emission reduction, the annual mean radius of the urban air NO2 island showed a rapid decrease from 45.8 km to zero km during the study period. The annual mean air NO2 concentration at the urban core showed a linear decrease at a rate of 4.5 μg m-3 yr-1. In contrast, air SO2 concentration decreased nonlinearly over time and showed a legacy in comparison to the emission reduction. Our findings suggest different urban-rural gradients of air NO2 and SO2 concentrations and highlight their distinct responses to the regional reductions of anthropogenic emissions.
Collapse
Affiliation(s)
- Tao He
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yang Tang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Rui Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Nan Xia
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Binghe Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Zhang Y, Li J, Tan J, Li W, Singh BP, Yang X, Bolan N, Chen X, Xu S, Bao Y, Lv D, Peng A, Zhou Y, Wang H. An overview of the direct and indirect effects of acid rain on plants: Relationships among acid rain, soil, microorganisms, and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162388. [PMID: 36842576 DOI: 10.1016/j.scitotenv.2023.162388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Acid rain (AR) causes numerous environmental problems and complex negative effects on plants globally. Many studies have previously reported on direct effects of AR or its depositional substances on plant injury and performance. However, few studies have addressed the indirect effects of AR on plants as mediated by soil microorganisms and the abiotic environment of the soil rhizosphere. The indirect effects (e.g., AR → soil microorganisms→plants) need greater attention, because acidic deposition not only affects the distribution, composition, abundance, function, and activity of plant-associated microorganisms, but also influences the dynamics of some substances in the soil in a way that may be harmful to plants. Therefore, this review not only focused on the direct effects of AR on plant performance, growth, and biomass allocations from a whole-plant perspective, but also addressed the pathway of AR-soil chemical characteristics-plants, which explains how soil solute leaching and acidification by AR will reduce the availability of essential nutrients and increase the availability of heavy metals for plants, affecting carbon and nitrogen cycles. Mainly, we evaluated the AR-soil microorganisms-plants pathway by: 1) synthesizing the potential roles of soil microbes in alleviating soil acidic stress on plants and the adverse effects of AR on plant-associated soil microorganisms; 2) exploring how plant mycorrhizal types affect the detection of AR effect on plants. The meta-analysis showed that the effects of AR-induced pH on leaf chlorophyll content, plant height, and plant root biomass were dependent on plant mycorrhizal types. Some possible reasons for different synergy between mycorrhizal symbiotic types and plants were discussed. Future research relating to the effects of AR on plants should focus on the combined direct and indirect effects to evaluate how AR affects plant performance comprehensively.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jiahong Li
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Junyan Tan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Wenbin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Bhupinder Pal Singh
- University of New England, School of Environmental and Rural Science, Armidale, NSW 2351, Australia
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Song Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Daofei Lv
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yanbo Zhou
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
17
|
Amanullah F, Khan WUD. Trichoderma asperellum L. Coupled the Effects of Biochar to Enhance the Growth and Physiology of Contrasting Maize Cultivars under Copper and Nickel Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:958. [PMID: 36840307 PMCID: PMC9960312 DOI: 10.3390/plants12040958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Crop cultivation in heavy metal (HM)-polluted soils is a routine practice in developing countries that causes multiple human health consequences. Hence, two independent studies have been performed to investigate the efficiency of rice husk biochar (BC) and three fungal species, Trichoderma harzianum (F1), Trichoderma asperellum (F2) and Trichoderma viride (F3), to improve the growth and physiology of Zea mays L. plants grown on soil contaminated with Cu and Ni. Initially, a biosorption trial was conducted to test the HM removal efficiency of species F1, F2 and F3. Among them, F2 sp. showed the maximum Cu and Ni removal efficiency. Then, a pot study was conducted with two cultivars (spring corn and footer corn) having eleven treatments with three replicates. The results demonstrated a significant genotypic variation among both cultivars under applied HM stress. The maximum decreases in leaf Chl a. (53%), Chl b. (84%) and protein (63%) were reported in footer corn with applied Cu stress. The combined application of biochar and F2 increased leaf CAT (96%) in spring corn relative to Cu stress. Altogether, it was found that BC + F2 treatment showed the maximum efficiency in combatting Cu and Ni stress in spring corn.
Collapse
Affiliation(s)
- Fatima Amanullah
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Waqas-ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
- Department of Agriculture, Government College University, Lahore 54000, Pakistan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
| |
Collapse
|
18
|
Sukiran NL, Karso MAHJ, Razemin QQM, Shamsudin NAA. The Effects of Submergence on Selected Malaysian Rice Varieties. MALAYSIAN APPLIED BIOLOGY 2022; 51:97-106. [DOI: 10.55230/mabjournal.v51i5.2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Various varieties have been developed in Malaysia, mainly to improve rice response to environmental changes, pests, and diseases, as well as to increase rice productivity under stressful conditions. Despite being semi-aquatic plants, rice is intolerant to complete submergence for a long period. This study was conducted to evaluate the response of seven Malaysian rice varieties at the vegetative stage under submergence stress. Two-week-old rice seedlings were submerged for 14 days, and the changes in plant height, chlorophyll content, and soluble sugar content were determined. The survival percentage of these varieties was observed after 14 days of de-submergence, where UKMRC2 and MR220CL possessed high survivability (90% & 60%, respectively). After submergence, all varieties showed height increment and reduced chlorophyll and soluble sugar contents. Based on our analyses, UKMRC2 performed better than other varieties, although slightly less than IR64-Sub1. It was confirmed that UKMRC2 is the submergence-tolerant variety, and its response to underwater germination was also determined. Our result showed that UKMRC2 might possess tolerance to anaerobic germination conditions, and more studies are needed to understand its molecular mechanism for submergence. In conclusion, many varieties used were susceptible to submergence, and the development of more submergence-tolerant varieties is crucial for Malaysia’s food security sustainability.
Collapse
|
19
|
Zhang Y, Cheng X, Sha Z, Lekammudiyanse MU, Ma W, Dayananda B, Li S, Lyu R. Environmental drivers of the leaf nitrogen and phosphorus stoichiometry characteristics of critically endangered Acer catalpifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:1052565. [PMID: 36589138 PMCID: PMC9803173 DOI: 10.3389/fpls.2022.1052565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Acer catalpifolium is a perennial deciduous broad-leaved woody plant, listed in the second-class protection program in China mainly distributed on the northwest edge of Chengdu plain. However, extensive anthropogenic disturbances and pollutants emissions (such as SO2, NH3 and NOX) in this area have created a heterogeneous habitat for this species and its impacts have not been systematically studied. In this study, we investigated the leaf nitrogen (N) and phosphorus (P) content of A. catalpifolium in the natural distribution areas, and a series of simulation experiments (e.g., various water and light supply regimes, different acid and N deposition levels, reintroduction management) were conducted to analyze responses of N and P stoichiometric characteristics to environmental changes. The results showed that leaf nitrogen content (LNC) was 14.49 ~ 25.44 mg g-1, leaf phosphorus content (LPC) was 1.29~3.81 mg g-1 and the N/P ratio of the leaf (L-N/P) was 4.87~13.93. As per the simulation experiments, LNC of A. catalpifolium is found to be relatively high at strong light conditions (80% of full light), high N deposition (100 and 150 kg N ha-1), low acidity rainwater, reintroduction to understory area or N fertilizer applications. A high level of LPC was found when applied with 80% of full light and moderate N deposition (100 kg N ha-1). L-N/P was high under severe shade (8% of full light), severe N deposition (200 kg N ha-1), and reintroduction to gap and undergrowth habitat; however, low L-N/P was observed at low acidity rainwater or P fertilizer application. The nutrient supply facilitates corresponding elements uptake, shade tends to induce P limitation and soil acidification shows N limitation. Our results provide theoretical guidance for field management and nutrient supply regimes for future protection, population rejuvenation of this species and provide guidelines for conservation and nutrient management strategies for the endangered species.
Collapse
Affiliation(s)
- Yuyang Zhang
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry Sciences, Tarim University, Alar, China
| | - Xiaoyu Cheng
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry Sciences, Tarim University, Alar, China
| | - Zhipeng Sha
- Faculty of Morden Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Manuja U. Lekammudiyanse
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, QLD, Australia
| | - Wenbao Ma
- Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane QLD, Australia
| | - Shuang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ruiheng Lyu
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry Sciences, Tarim University, Alar, China
| |
Collapse
|
20
|
Liu C, Song Q, Ao L, Zhang N, An H, Lin H, Dong Y. Highly promoted phytoremediation with endophyte inoculation in multi-contaminated soil: plant biochemical and rhizosphere soil ecological functioning behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89063-89080. [PMID: 35849233 DOI: 10.1007/s11356-022-21689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rhizosphere soil ecological functioning behavior is of critical importance for regulating phytoremediation efficiency during microbial-assisted phytoremediation for multi-heavy metal-polluted soils. In this study, Trifolium repens L. and its endophyte Pseudomonas putida were used to investigate the ecological responses of the microbe-plant-soil system in Cd, Cr, and Pb co-contaminated soil. The results showed that endophyte Pseudomonas putida significantly increased plant biomass by 22.26-22.78% and phytoremediation efficiency by 29.73-64.01%. The increased phytoremediation efficiency may be related to the improvement of photosynthetic pigment content and antioxidant enzyme activities in leaves and the enhancement of rhizosphere soil ecological functioning. With endophyte application, soil nutrient content was significantly increased and heavy metal bioavailability was enhanced that residual fraction was reduced by 3.79-12.87%. Besides, the relative abundance of ecologically beneficial rhizobacteria such as Bacteriovorax and Arthrobacter was increased by 3.04-8.53% and 0.80-1.64%, respectively. Endophyte inoculation also significantly increased all the functional genes involved in cellular processes, genetic information processing, environmental information processing, and metabolism. This study indicated that the application of endophytes has a positive effect on the biochemical responses of Trifolium repens L. and could significantly improve rhizosphere ecological functioning in multi-heavy metal contamination, which provided clear strategies for regulating phytoremediation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qian Song
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhuazhi Ao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haowen An
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
21
|
Prakash J, Agrawal SB, Agrawal M. Global Trends of Acidity in Rainfall and Its Impact on Plants and Soil. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2022; 23:398-419. [PMID: 36415481 PMCID: PMC9672585 DOI: 10.1007/s42729-022-01051-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/27/2022] [Indexed: 06/02/2023]
Abstract
Due to its deleterious and large-scale effects on the ecosystem and long-range transboundary nature, acid rain has attracted the attention of scientists and policymakers. Acid rain (AR) is a prominent environmental issue that has emerged in the last hundred years. AR refers to any form of precipitation leading to a reduction in pH to less than 5.6. The prime reasons for AR formation encompass the occurrence of sulfur dioxide (SO2), nitrogen oxides (NOx), ozone (O3), and organic acids in air produced by natural as well as anthropogenic activities. India, the top SO2 emitter, also shows a continuous increase in NO2 level responsible for AR formation. The plants being immobile unavoidably get exposed to AR which impacts the natural surrounding negatively. Plants get affected directly by AR due to reductions in growth, productivity, and yield by damaging photosynthetic mechanisms and reproductive organs or indirectly by affecting underground components such as soil and root system. Genes that play important role in plant defense under abiotic stress gets also modulated in response to acid rain. AR induces soil acidification, and disturbs the balance of carbon and nitrogen metabolism, litter properties, and microbial and enzymatic activities. This article overviews the factors contributing to AR, and outlines the past and present trends of rainwater pH across the world, and its effects on plants and soil systems.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
22
|
He M, Hua Z, Chen H, Liu Y, Li Y, Zhang Z. Effects of simulated acid rain on rhizosphere microorganisms of invasive Alternanthera philoxeroides and native Alternanthera sessilis. Front Microbiol 2022; 13:993147. [PMID: 36160265 PMCID: PMC9500542 DOI: 10.3389/fmicb.2022.993147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Acid rain not only has serious harm to the environment, but also has the same threat to plants, but the invasive plant Alternanthera philoxeroides still grows well compared to the native plant Alternanthera sessilis under acid rain stress. However, the underlying mechanism of resistance to the acid rain environment in invasive Alternanthera philoxeroides remains unclear. In the current study, we comparatively analyzed the plant physiological characteristics, soil physicochemical properties, and rhizosphere microbial communities of invasive A. philoxeroides and native A. sessilis under different pH condition. The simulated acid rain had a significant inhibitory effect on the morphological and physiological traits of A. philoxeroides and A. sessilis and reduced the soil nutrient content. However, A. philoxeroides was more tolerant of acid rain. Compared with CK, simulated acid rain treatment at pH 2.5 significantly increased the Chao1, ACE, and Shannon indexes of A. philoxeroides microorganisms. Under simulated acid rain treatment at pH 2.5, the fungal flora Chao1, ACE and Shannon index were significantly higher than those of CK by 14.5%, 12.4%, and 30.4%, respectively. The dominant bacterial phyla of soil bacteria were Proteobacteria, Actinobacteria, Bacteroidota, Actinobacteria, Firmicutes, Myxococcota, Chloroflexi, Patescibacteria, Gemmatimonadota, Verrucomicrobiota, and Armatimonadota. The dominant fungi were Ascomycota, Basidiomycota, Rozellomycota, and Olpidiomycota. The bacterial and fungal diversity and structure of A. philoxeroides and A. sessilis showed the greatest difference between the pH 2.5 treatment and CK. Redundancy analysis showed that electrical conductivity (EC) and total phosphorus (TP) were the main factors changing the bacterial communities, and available phosphorus (AP), organic matter (OM), EC, and pH were the main factors changing the fungal communities. This study contributes to the microbial community structure of the invasive plant A. philoxeroides and provides a theoretical basis for studying the invasion mechanism of invasive plants under acid rain.
Collapse
Affiliation(s)
- Mengying He
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Zexun Hua
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Hanying Chen
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Yao Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Yue Li
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhen Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhen Zhang,
| |
Collapse
|
23
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
24
|
Rabiya UE, Ali M, Farooq MA, Siddiq Z, Alamri SA, Siddiqui MH, Khan WUD. Comparative efficiency of silica gel, biochar, and plant growth promoting bacteria on Cr and Pb availability to Solanum melongena L. in contaminated soil irrigated with wastewater. FRONTIERS IN PLANT SCIENCE 2022; 13:950362. [PMID: 35991387 PMCID: PMC9386531 DOI: 10.3389/fpls.2022.950362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Crop irrigation with untreated wastewater is a routine practice in developing countries that causes multiple human health consequences. A comparative study was performed to regulate total Cr and Pb stress in soil and Solanum melongena L. plant. For this purpose, 0.2% chitosan polymerized silica gel (CP-silica gel), 1.5% zinc-enriched biochar (ZnBc), and three bacterial species such as Trichococcus sp. (B1), Pseudomonas alcaligenes (B2), and Bacillus subtilis (B3) were selected. Initially, a biosorption trial was conducted to test the heavy metal removal efficiency of three bacterial species B1, B2, and B3 for 24 h. Hence, B3 showed maximum Cr and Pb removal efficiency among the studied bacterial isolates. Then, a pot study was conducted with 12 different treatments having three replicates. After harvesting, different growth and biochemical parameters such as chlorophyll concentration, proteins, phenolics, reactive oxygen species, and antioxidant enzymes were analyzed. The results demonstrated that wastewater application significantly (p ≤ 0.01) reduced the fresh and dry weights of the root, stem, and leaves due to high total Cr and Pb toxicity. However, CP-silica gel and ZnBc treatments performed best when applied in combination with B3. The concentration of leaf total Cr was significantly decreased (91 and 85%) with the application of ZnBc + B3 and CP-Silica gel + B3, respectively, as compared to control. There was a reduction in stem hydrogen peroxide (87%) and malondialdehyde (81%) recorded with CP-silica gel + B3 treatment due to enhanced activities of antioxidant enzymes viz. ascorbate peroxidase (6-folds) and catalase (7-folds) relative to control. Similarly, leaf total phenolics (3-folds) and protein (6-folds) contents were enhanced with CP silica gel+B3 application relative to control. Overall, CP-silica gel and ZnBc with B3 application proved to be the most appropriate treatments and can be used in developing countries to limit the deleterious effects of total Cr and Pb pollution.
Collapse
Affiliation(s)
- Umm e Rabiya
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zafar Siddiq
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waqas-ud-Din Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
25
|
Liu B, Chen C, Teng G, Tian G, Zhang G, Gao Y, Zhang L, Wu Z, Zhang J. Chitosan-based organic/inorganic composite engineered for UV light-controlled smart pH-responsive pesticide through in situ photo-induced generation of acid. PEST MANAGEMENT SCIENCE 2022; 78:2299-2308. [PMID: 35233948 DOI: 10.1002/ps.6854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Confined by the volatile property, pesticides are overused and lost significantly during and after spraying, weakening the ecological microbalance among different species of lives. Acid-responsive pesticide is a type of smartly engineered pesticides that contribute to the improvement of utilization efficiency of pesticidal active ingredients in acid-controlled manner, whilst the implementation of acidic solutions may disturb the balance of microenvironment surrounding targeted plants or cause secondary pollution, underscoring the input of acid in a more precise strategy. RESULTS Chitosan was chemically modified with a photoacid generator (2-nitrobenzaldehyde) serving as a light-maneuvered acid self-supplier, based on which a smart pesticide was formulated by the integration of attapulgite and organophosphate insecticide chlorpyrifos. Under the irradiation of UV light (365 nm), the modified chitosan would undergo a photolytic reaction to generate an acid and pristine chitosan, which seized the labile protons and facilitated the release of chlorpyrifos based on its inherent pH-responsive flexibility. According to the pesticide release performance, the release rate of chlorpyrifos under UV light (27.2 mW/cm2 ) reached 78%, significantly higher than those under sunlight (22%, 4.2 mW/cm2 ) and in the dark (20%) within the same time, consistent with the pH reduction to 5.3 under UV light and no obvious pH change for the two other situations, exhibiting an attractive UV light-controlled, acid-propelled release behavior. CONCLUSION Compared to direct acid spray approach, the proposed in situ photo-induced generation of acid locally on the spots of applied pesticide circumvents the problem of acid contamination to nontargets, demonstrating higher efficiency and biocompatibility for the controlled delivery of acid-responsive pesticides and pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Guopeng Teng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Geng Tian
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Guilong Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Yujie Gao
- Hefei Institute of Technology Innovation Engineering, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Lihong Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| |
Collapse
|
26
|
He X, Shao C, Wu A, Xia L, Li T, Pei J, Zhang N, Wang Y. Arbuscular mycorrhizal fungi enhance nutrient acquisition and reduce aluminum toxicity in Lespedeza formosa under acid rain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29904-29916. [PMID: 34994937 DOI: 10.1007/s11356-021-18248-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Lespedeza formosa is an economically important shrub in the agroecosystems of southern China, where acid rain (AR) is an increasingly serious environmental issue. However, the roles of arbuscular mycorrhizal fungi (AMF) in adapting the plants to AR stress are poorly understood. In this study, L. formosa seedlings were cultivated in a greenhouse, where the inoculated (colonization with Rhizophagus irregularis and Diversispora versiformis, alone and in combination) and non-inoculated plants were treated with three AR regimes (pH 5.6, 4.0, and 2.5) to evaluate the roles of AMF under acidic conditions. The results showed that AR individually suppressed plant growth by inhibiting photosynthetic parameters and induced Al phytotoxicity in non-mycorrhizal plants. However, mycorrhizal inoculation, especially in combination, significantly increased the total dry weight, photosynthetic capabilities, shoot nitrogen (N) concentration (average 15.8 and 16.7 mg g-1 for non-mycorrhizal and mycorrhizal plants, respectively) and plant phosphorus (P) concentration (average 1.6 and 2.3 mg g-1 for non-mycorrhizal and mycorrhizal plants, respectively) at pH 4.0, reduced N/P ratio (average 9.5 and 6.9 for non-mycorrhizal and mycorrhizal plants, respectively) at pH 4.0, and protected roots against Al phytotoxicity (average 2.0 and 1.4 mg g-1 for non-mycorrhizal and mycorrhizal roots, respectively), indicating that AMF could mitigate some of the detrimental effects of AR. Moreover, our findings suggest that AMF mainly benefited the plant through the combined effects of N concentrations and N/P ratios in shoots and Al3+ concentrations in roots under acidic conditions.
Collapse
Affiliation(s)
- Xiaobin He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Changliang Shao
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiping Wu
- Ecology Department, College of Resources and Environment, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lina Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Tiantian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jia Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Naili Zhang
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
27
|
Zhang Y, Yang X, Luo ZX, Lai JL, Li C, Luo XG. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150895. [PMID: 34655622 DOI: 10.1016/j.scitotenv.2021.150895] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The effects of polystyrene nanoplastics (PSNPs) on the physiological and molecular metabolism of corn seedlings were examined by treating corn (Zea mays L.) seedlings with 100, 300, and 500 nm diameter PSNPs and examining plant photosynthetic characteristics, antioxidant enzyme systems, and molecular metabolism. After 15 days of exposure to PSNPs with different particle sizes (50 mg·L-1), the photosynthetic characteristics of the plant remained stable, and the maximum photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) had no significant effects. The root microstructure was damaged and the antioxidant enzyme system was activated, and the content of malondialdehyde (MDA) was significantly increased by 2.25-4.50-fold. In addition, 100 nm and 300 nm PSNPs exposure caused root superoxide dismutase (SOD) activity to increase 1.28-fold and 1.53-fold, and glutathione-peroxidase (GSH-PX) activity increased 1.30-fold and 1.58-fold. Non-targeted metabolomics analysis identified a total of 304 metabolites. Exposure to 100, 300, and 500 nm PSNPs led to the production of 85 (upregulated: 85, downregulated: 0), 73 (upregulated: 73, downregulated: 0), and 86 (upregulated: 84, downregulated: 2) differentially expressed metabolites, respectively, in the plant roots. Co-expressed differential metabolites accounted for 38.2% of the metabolites and indicated a metabolic imbalance primarily in organic acids and derivatives in the root system. The most significant enrichment pathways were those of alanine, aspartate, and glutamate metabolism. Overall, exposure to PSNPs of different particle sizes activated the root antioxidant enzyme system and interfered with plant basic metabolism. The alanine, aspartate, and glutamate metabolic pathways appear to be closely related to plant mechanisms for tolerance/detoxification of PSNPs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhong-Xu Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
28
|
Shi Z, Zhang J, Xiao Z, Lu T, Ren X, Wei H. Effects of acid rain on plant growth: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113213. [PMID: 34329914 DOI: 10.1016/j.jenvman.2021.113213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic driven acid gases emission has caused acid rain in many regions globally. Although efforts have been made to assess the effects of acid rain on terrestrial ecosystems, a systematic assessment of growth-related traits across plant aboveground and belowground is lacking. Hence, we performed a phylogenetically controlled meta-analysis of 755 observations from 69 independent studies to quantify the effects of acid rain on six growth-related traits of plant. We estimated the inhibitory effects of acid rain on plant growth in general and found that aboveground and belowground plant parts responded differently. The acidity of acid rain and acid rain interval had direct modulation effects on plant growth. We also found that there were interactions between acid rain pH and other acid rain characteristics (i.e., acid rain interval, mole ratio of S:N, and acid rain rate) and experimental characteristics (i.e., initial soil pH and plant exposure part), indicating that there were pH-dependent interaction patterns. Thus, an effective approach to evaluate and predict the effects of acid rain on plant growth is to fully consider the direct effects of acid rain pH and the interactions between acid rain pH and other factors.
Collapse
Affiliation(s)
- Zhaoji Shi
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Zeheng Xiao
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Tiantian Lu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Xiaoqiao Ren
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
29
|
Differential effects of acid rain on photosynthetic performance and pigment composition of the critically endangered Acer amplum subsp. catalpifolium. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Zhang Y, Yu T, Ma W, Dayananda B, Iwasaki K, Li J. Morphological, Physiological and Photophysiological Responses of Critically Endangered Acer catalpifolium to Acid Stress. PLANTS 2021; 10:plants10091958. [PMID: 34579490 PMCID: PMC8470873 DOI: 10.3390/plants10091958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Acid rain deposition (AR) has long-lasting implications for the community stability and biodiversity conservation in southwest China. Acer catalpifolium is a critically endangered species in the rain zone of Western China where AR occurs frequently. To understand the effects of AR on the morphology and physiology of A. catalpifolium, we conducted an acid stress simulation experiment for 1.5 years. The morphological, physiological, and photosynthetic responses of A. catalpifolium to the acidity, composition, and deposition pattern of acid stress was observed. The results showed that simulated acid stress can promote the growth of A. catalpifolium via the soil application mode. The growth improvement of A. catalpifolium under nitric-balanced acid rain via the soil application mode was greater than that of sulfuric-dominated acid rain via the soil application mode. On the contrary, the growth of A. catalpifolium was significantly inhibited by acid stress and the inhibition increased with the acidity of acid stress applied via leaf spraying. The inhibitory impacts of nitric-balanced acid rain via the leaf spraying of A. catalpifolium were greater than that of sulfur-dominant acid rain via leaf spraying. The observations presented in this work can be utilized for considering potential population restoration plans for A. catalpifolium, as well as the forests in southwest China.
Collapse
Affiliation(s)
- Yuyang Zhang
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Plant Science, Tarim University, Alear 843300, China;
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing 100083, China;
| | - Tao Yu
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing 100083, China;
| | - Wenbao Ma
- Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China
- Correspondence: (W.M.); (J.L.)
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Kenji Iwasaki
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Junqing Li
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing 100083, China;
- Correspondence: (W.M.); (J.L.)
| |
Collapse
|
31
|
Zhao S, Zhang B, Sun X, Yang L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144168. [PMID: 33360457 DOI: 10.1016/j.scitotenv.2020.144168] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The Earth is experiencing excessive nitrogen (N) input to its various ecosystems due to human activities. How to effectively and efficiently remove N from ecosystems has been, is and will be at the center of attention in N research. Hyporheic and riparian zones are widely acknowledged for their buffering capacity to reduce contaminants (especially N) transport downstream. However, these zones are usually misunderstood that they can remove N at all spots and at any moments. Here pathways of N removal from hyporheic and riparian zones are reviewed and summarized with an emphasize on their hot spots and hot moments. N is biogeochemically removed by denitrification, anammox, nitrifier denitrification, denitrifying anaerobic methane oxidation, Feammox and Sulfammox. Hot moments of N removal are mainly triggered by precipitation, fire and snowmelt. Finally, some research needs are outlined and discussed, such as developing approaches for multiscale sampling and monitoring, quantifying the effects of hot spots and hot moments at hyporheic and riparian zones and evaluating the impacts of human activities on hot spots and hot moments, to inspire more research on hot spots and hot moments of N removal. By this review, we hope to bring awareness of the heterogeneity of hyporheic and riparian zones to catchment managers and policy makers when tackling N pollution problems.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China; College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Baoju Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| | - Xiaohui Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| | - Leimin Yang
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| |
Collapse
|
32
|
Valorization of Raw and Calcined Chicken Eggshell for Sulfur Dioxide and Hydrogen Sulfide Removal at Low Temperature. Catalysts 2021. [DOI: 10.3390/catal11020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chicken eggshell (ES) is a waste from the food industry with a high calcium content produced in substantial quantity with very limited recycling. In this study, eco-friendly sorbents from raw ES and calcined ES were tested for sulfur dioxide (SO2) and hydrogen sulfide (H2S) removal. The raw ES was tested for SO2 and H2S adsorption at different particle size, with and without the ES membrane layer. Raw ES was then subjected to calcination at different temperatures (800 °C to 1100 °C) to produce calcium oxide. The effect of relative humidity and reaction temperature of the gases was also tested for raw and calcined ES. Characterization of the raw, calcinated and spent sorbents confirmed that calcined eggshell CES (900 °C) showed the best adsorption capacity for both SO2 (3.53 mg/g) and H2S (2.62 mg/g) gas. Moreover, in the presence of 40% of relative humidity in the inlet gas, the adsorption capacity of SO2 and H2S gases improved greatly to about 11.68 mg/g and 7.96 mg/g respectively. Characterization of the raw and spent sorbents confirmed that chemisorption plays an important role in the adsorption process for both pollutants. The results indicated that CES can be used as an alternative sorbent for SO2 and H2S removal.
Collapse
|
33
|
Li J, Hou F, Ren J. Grazing Intensity Alters Leaf and Spike Photosynthesis, Transpiration, and Related Parameters of Three Grass Species on an Alpine Steppe in the Qilian Mountains. PLANTS 2021; 10:plants10020294. [PMID: 33557165 PMCID: PMC7913976 DOI: 10.3390/plants10020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
The effect of grazing on leaf photosynthesis has been extensively studied. However, the influence of grazing on photosynthesis in other green tissues, especially spike, has remained poorly understood. This study investigated the impact of different grazing intensities (light grazing (LG), medium grazing (MG), and heavy grazing (HG)) on leaf and spike photosynthesis parameters and photosynthetic pigments of three grass species (Stipa purpurea, Achnatherum inebrians, and Leymus secalinus) on an alpine steppe in the Qilian Mountains. Grazing promoted leaf photosynthesis rate in S. purpurea and L. secalinus but reduced it in A. inebrians. Conversely, spike photosynthesis rate decreased in S. purpurea and L. secalinus under intense grazing, while there was no significant difference in spike photosynthesis rate in A. inebrians. The leaf and spike net photosynthetic rate (Pn) and transpiration rate (Tr) in S. purpurea were the greatest among the three species, while their organ temperatures were the lowest. On the other hand, grazing stimulated leaf chlorophyll biosynthesis in S. purpurea and L. secalinus but accelerated leaf chlorophyll degradation in A. inebrians. Furthermore, spike chlorophyll biosynthesis was inhibited in the three species under grazing, and only L. secalinus had the ability to recover from the impairment. Grazing had a positive effect on leaf photosynthesis parameters of S. purpurea and L. secalinus but a negative effect on those of A. inebrians. However, spike photosynthesis parameters were negatively influenced by grazing. Among the three species investigated, S. purpurea displayed the greatest ability for leaf and spike photosynthesis to withstand and acclimate to grazing stress. This study suggests that moderate grazing enhanced leaf photosynthetic capacity of S. purpurea and L. secalinus but reduced it in A. inebrians. However, spike photosynthetic capacity of three grass species decreased in response to grazing intensities.
Collapse
|
34
|
Sun W, Huang C. A hybrid air pollutant concentration prediction model combining secondary decomposition and sequence reconstruction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115216. [PMID: 32763723 DOI: 10.1016/j.envpol.2020.115216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Acid rain is a serious threat to terrestrial ecosystems. To provide more accurate early warning information for acid rain prevention, urban planning, and travel planning, a novel air pollutant prediction model was proposed in this paper to predict NO2 and SO2. First, the data were decomposed into several sub-sequences by a complete ensemble empirical mode decomposition with adaptive noise. Second, the subsequences are reconstructed by variational mode decomposition and sample entropy. Then, the new subsequences are predicted by the extreme learning machine combined with the whale optimization algorithm. The empirical analysis was carried out through 8 data sets. According to the experimental results, three main conclusions can be drawn. First, the proposed model in this paper has excellent prediction performance and robustness. In all the comparison experiments, the R2 and RMSE of the proposed model are the best among all the models. Second, data preprocessing is very necessary. After adding the decomposition algorithm, the average improvement levels of R2 and RMSE were 897.57% and 50.78%, respectively. Third, the re-decomposition of IMF1 is an effective method to improve prediction accuracy. After the re-decomposition of IMF1, R2 can be improved by 13.64% on average on the original basis, and RMSE can be reduced by 31.99% on average. The results of this study can provide a valuable reference for the research of air pollutant prediction. In future work, the application of the proposed model in other air pollutants or other regions can be explored.
Collapse
Affiliation(s)
- Wei Sun
- Department of Economic Management, North China Electric Power University, Baoding 071000, PR China
| | - Chenchen Huang
- Department of Economic Management, North China Electric Power University, Baoding 071000, PR China.
| |
Collapse
|
35
|
Rodríguez-Sánchez VM, Rosas U, Calva-Vásquez G, Sandoval-Zapotitla E. Does Acid Rain Alter the Leaf Anatomy and Photosynthetic Pigments in Urban Trees? PLANTS (BASEL, SWITZERLAND) 2020; 9:E862. [PMID: 32650420 PMCID: PMC7411892 DOI: 10.3390/plants9070862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Megapolis such as Mexico City, have atmospheric pollutants that interact with the humidity and solar radiation. The topography of this city promotes air stagnation, generating atmospheric pollutants and episodes of acid rain, a phenomenon well recorded since the end of the 1980s. However, little we know about how urban trees respond to acid rain in the city. Here we present how simulated acid rain causes anatomical and changes in photosynthetic pigments in two of the most abundant urban trees in Mexico City: Liquidambar styraciflua L. and Fraxinus uhdei (Wenz.) Lingelsh. We first described the leaf anatomy of both species. Then, we used one-year-old trees sprayed with sulfuric acid solutions at pH 2.5 and 3.8, and evaluated visible leaf damage, anatomical alterations, and chlorophyll contents. In both species, the pH 2.5 caused cuticle alterations and areas of total tissue destruction. L. styraciflua showed greater sensitivity, but we discuss some of the tolerance mechanisms. Finally, acid rain also reduced the chlorophyll contents. These results contribute toward a catalogue of urban tree species to describe pollution-induced damages, and the identification of tolerant species useful for short- and mid-term detection of environmental crisis, in cities with similar environmental conditions and urban tree composition.
Collapse
Affiliation(s)
- Verónica M. Rodríguez-Sánchez
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (V.M.R.-S.); (U.R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (V.M.R.-S.); (U.R.)
| | - Germán Calva-Vásquez
- Laboratorio de Contaminación Atmosférica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico;
| | - Estela Sandoval-Zapotitla
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (V.M.R.-S.); (U.R.)
| |
Collapse
|
36
|
Low-Temperature Selective Catalytic Reduction of NOx on MnO2 Octahedral Molecular Sieves (OMS-2) Doped with Co. Catalysts 2020. [DOI: 10.3390/catal10040396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To improve NO conversion and sulfur resistance of low-temperature NO-CO selective catalytic reduction (SCR), it is urgent to seek new catalyst materials. Herein, using the pre-doping method, Cox-OMS-2 with different ratios of cobalt (Co) was obtained during hydrothermal synthesis of OMS-2 molecular sieves (where x represents the doping ratio of Co, i.e., x = 0.1, 0.2, 0.3, 0.4). Co was found to very efficiently intercalate into the crystal structure of OMS-2. Co and Mn work together to promote the selective reduction reaction of NOx;; the NO conversion of Co0.3-OMS-2 was the highest among all samples. Specifically, NO conversion at 50 °C increased from 72% for undoped OMS-2 to 90% for Co0.3-OMS-2. Moreover, due to the incorporation of Co, the latter also showed better sulfur resistance.
Collapse
|
37
|
Zhang C, Yi X, Gao X, Wang M, Shao C, Lv Z, Chen J, Liu Z, Shen C. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110315. [PMID: 32058162 DOI: 10.1016/j.ecoenv.2020.110315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Tea (Camellia sinensis), widely planted in the south of China, and often exposed to acid rain. However, research concerning the impacts of acid rain on physiology and biochemistry of tea plants is still scarce. In this study, we investigated the influence of simulated acid rain (SAR) on plant height, root length, photosynthetic pigment, Fv/Fm, proline, malondialdehyde, antioxidant enzyme activity, total nitrogen, caffeine, catechins, and free amino acids. Our results showed that SAR at pH 4.5 did not hinder plant development because growth characteristics, photosynthesis, and ascorbate peroxidase and catalase activities did not decrease at this pH compared to those at the other investigated pH values. However, at pH 3.5 and pH 2.5, the activities of antioxidase and concentrations of malondialdehyde and proline increased significantly in response to the decrease of photosynthetic pigments and Fv/Fm. In addition, the increase in acidity increased total nitrogen, certain amino acid content (theanine, cysteine), and decreased catechin and caffeine contents, resulting in an imbalance of the carbon and nitrogen metabolisms. Our results indicated that SAR at pH 3.5 and pH 2.5 could restrict photosynthesis and the antioxidant defense system, causing metabolic disorders and ultimately affecting plant development and growth, but SAR at pH 4.5 had no toxic effects on tea seedlings when no other stress factors are involved.
Collapse
Affiliation(s)
- Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Xiaoqin Yi
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minhan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
38
|
Shu X, Zhang K, Zhang Q, Wang W. Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109705. [PMID: 31561080 DOI: 10.1016/j.ecoenv.2019.109705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Acid rain is a global environmental problem. Acid rain can affect plants directly by damaging the leaves and indirectly by soil acidifying. Many studies have been conducted to investigate the impacts of acid rain on plant under a single soil type. However, there is little information on the effect of acid rain on plant under different soil types. Jatropha curcas L. is an energy plant widely distributed in acid rain pollution area with various soil types. In this study, we investigated the effects of acid rain (pH2.5, pH3.5, pH4.5, pH5.6) on the growth, physiology, nutrient elements and bacterial community of J. curcas seedlings under different soil types [Red soils (RS), Yellow soils (YS), Yellow-brown soils (YBS), and Purplish soils (PS)]. Acid rain and soil types significantly influence the growth of J. curcas seedlings, and there was a significant interaction between acid rain and soil types. Acid rain (pH 4.5) was beneficial to the growth of J. curcas seedlings, whereas acid rain (pH 2.5 or 3.5) inhibited growth of J. curcas seedlings. The growth of J. curcas seedlings could resist the stress of acid rain by scavenging and detoxification of active oxygen species in leaves. Combined with the increase in relative growth rate of seedlings treated with simulated acid rain at pH 4.5, we inferred that K can stimulate the growth of seedlings. The lower soil pH, cation exchange capacity and base saturation had stronger inhibitory effects on growth of J. curcas seedlings. YBS and PS were beneficial for growth of J. curcas seedlings by higher buffering capacity under acid rain treatments. The phylum Proteobacteria was found to predominate in rhizosphere soils. YBS was favorable to support Proteobacteria growth and reproduction. The redundancy analysis showed that the Cyanobacteria were favorable to growth of J. curcas seedlings.
Collapse
Affiliation(s)
- Xiao Shu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - KeRong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - QuanFa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - WeiBo Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
39
|
The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China. SUSTAINABILITY 2019. [DOI: 10.3390/su11215979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe haze events have many adverse effects on agricultural production and human activity. Haze events are often associated with specific patterns of atmospheric circulation. Therefore, studying the relationship between atmospheric circulation and haze is particularly important for early warning and forecasting of urban haze events. In order to study the relationship between multi-scale atmospheric circulation and severe haze events in autumn and winter in Shanghai, China, we used a T-mode objective classification method to classify autumn and winter atmospheric circulation patterns into six types based on sea level pressure data from 2007 to 2016 in the Shanghai area. For the period between September 2016 and February 2017, we used the Allwine–Whiteman method to classify the local wind in Shanghai into three categories: stagnation, recirculation, and ventilation. By further studying the PM2.5 concentration distribution, visibility distribution, and other meteorological characteristics of each circulation type (CT) and local wind field type, we found that the Shanghai area is most prone to severe haze when exposed to certain circulation patterns (CT1, CT2, and CT4), mainly associated to the cold air activity and the displacement of the high pressure system relative to Shanghai. We also found that the local wind fields in the Shanghai area are dominated by recirculation and stagnation events. These conclusions were further verified by studying a typical pollution process in Shanghai in November 2016 and the pollutant diffusion path using the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory model) simulation model.
Collapse
|
40
|
Shen Z, Pan S, Hou D, O'Connor D, Jin F, Mo L, Xu D, Zhang Z, Alessi DS. Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. ENVIRONMENT INTERNATIONAL 2019; 131:104990. [PMID: 31302485 DOI: 10.1016/j.envint.2019.104990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Elevated soil lead (Pb) concentrations are a global concern owing to the toxic effects of this heavy metal. Solidification/stabilization (S/S) of soils using reagents like Portland cement (PC) is a common approach for the remediation of Pb contaminated sites. However, it has been reported that under long-term field conditions, the performance of PC treatments can diminish significantly. Therefore, novel reagents that provide longer-term stabilization performance are needed. In this study, four magnesium oxide (MgO) products of different reactivity values were applied (5 wt%) to a Pb contaminated clayey soil. The short-term (1-49 days) and long-term (25-100 years) temporal stabilization effects were investigated by laboratory incubation and accelerated ageing methods, respectively. The concentration of Pb in Toxicity Characterization Leaching Procure (TCLP) leachate was ~14 mg/L for the untreated soil; ~1.8 times higher than the TCLP regulatory level (5 mg/L). Only one day after treatment with MgO, the leachate concentration was reduced to below the regulatory level (a reduction of 69.4%-83.2%), regardless of the MgO type applied. However, in the long-term accelerated ageing experiments, only treatments using the most reactive MgO type could provide leachate concentrations that were consistently below the TCLP threshold throughout the 100 years of simulated ageing. The soil treated with the MgO of lowest reactivity was the first to exceed the regulatory level, at simulated year 75. It is thus demonstrated that MgO reactivity has a significant effect on its long-term effectiveness for contaminated soil stabilization. This is attributed to differences in their specific surface area and readiness to carbonate, which may facilitate the immobilization of Pb in the long term. It is also noteworthy that compared to PC, reactive MgO is more environmentally friendly owing to lower energy consumption and reduced CO2 emissions during its manufacture.
Collapse
Affiliation(s)
- Zhengtao Shen
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Shizhen Pan
- School of Environment, Tsinghua University, Beijing 100084, China; School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Fei Jin
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Liwu Mo
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China; Key State Laboratory of Materials-oriented Chemical Engineering, Nanjing 211800, China
| | - Dongyao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Zhuorong Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| |
Collapse
|
41
|
A Critical Review of Recent Progress and Perspective in Practical Denitration Application. Catalysts 2019. [DOI: 10.3390/catal9090771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitrogen oxides (NOx) represent one of the main sources of haze and pollution of the atmosphere as well as the causes of photochemical smog and acid rain. Furthermore, it poses a serious threat to human health. With the increasing emission of NOx, it is urgent to control NOx. According to the different mechanisms of NOx removal methods, this paper elaborated on the adsorption method represented by activated carbon adsorption, analyzed the oxidation method represented by Fenton oxidation, discussed the reduction method represented by selective catalytic reduction, and summarized the plasma method represented by plasma-modified catalyst to remove NOx. At the same time, the current research status and existing problems of different NOx removal technologies were revealed and the future development prospects were forecasted.
Collapse
|
42
|
Shen Z, Hou D, Xu W, Zhang J, Jin F, Zhao B, Pan S, Peng T, Alessi DS. Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1571-1578. [PMID: 30189573 DOI: 10.1016/j.scitotenv.2018.06.321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
A soil washing residue (SWR) (containing 90% clay, cadmium (Cd2+) of 132 mg/kg, lead (Pb2+) of 3410 mg/kg) was stabilized with MgO (M) and MgO + bioapatite (MB) respectively at a dosage of 5% in w/w. The stability of the metals in original and amended SWRs was assessed after immediate treatment and using a laboratory accelerated ageing method simulating 26, 52, 78 and 104 years in field conditions. The dissolved Cd2+ and Pb2+ from the SWR in Toxicity Characteristic Leaching Procedure (TCLP) leachates significantly reduced (by 96.84-99.06%) by both amendments after immediate treatment. The stabilization remained effective within simulated 26 years as the TCLP leached Cd2+ and Pb2+ kept below regulatory levels. This immobilization was mainly due to the increased non-bioavailable Cd2+ and Pb2+ from sequential extraction tests in SWR by the amendments. At simulated 52 years, the TCLP leached Cd2+ from M and MB exceeded regulatory level by 106% and 1% respectively. Large amounts of Cd2+ and Pb2+ were leached out by 36.74-48.18% regardless of the treatments at simulated 104 years. Although bioapatite can significantly aid the stabilization of metals by MgO, the stabilization effectiveness for both treatments diminished at simulated 52 years and from 52 to 104 years.
Collapse
Affiliation(s)
- Zhengtao Shen
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wendi Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingzhuo Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fei Jin
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bin Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shizhen Pan
- School of Environment, Tsinghua University, Beijing 100084, China; School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianyue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| |
Collapse
|
43
|
Liu X, Fu Z, Zhang B, Zhai L, Meng M, Lin J, Zhuang J, Wang GG, Zhang J. Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:154-161. [PMID: 29803190 DOI: 10.1016/j.ecoenv.2018.04.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The influence of acid rain on plant growth includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in root growth. In addition, the concentration of NO3- in acid rain increases along with the rapid growth of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO42-/NO3- (S/N) ratios, which were 1:0, 5:1, 1:1, 1:5 and 0:1, on Chinese fir sapling growth from March 2015 to April 2016. Results showed that Chinese fir sapling height growth rate (HGR) and basal diameter growth rate (DGR) decreased as acid rain pH decreased, and also decreased as the percentage of NO3- increased in acid rain. Acid rain pH significantly decreased the Chlorophyll a (Chla) and Chlorophyll b (Chlb) content, and Chla and Chlb contents with acid rain S/N 1:5 were significantly lower than those with S/N 1:0 at pH 2.5. The chlorophyll fluorescence parameters, maximal efficiency of Photosystem II photochemistry (Fv/Fm) and non-photochemical quenching coefficient (NPQ), with most acid rain treatments were significantly lower than those with CK treatments. Root activities first increased and then decreased as acid rain pH decreased, when acid rain S/N ratios were 1:1, 1:5 and 0:1. Redundancy discriminant analysis (RDA) showed that the Chinese fir DGR and HGR had positive correlations with Chla, Chlb, Fv/Fm ratio, root activity, catalase and superoxide dismutase activities in roots under the stress of acid rain with different pH and S/N ratios. The structural equation modelling (SEM) results showed that acid rain NO3- concentration and pH had stronger direct effects on Chinese fir sapling HGR and DGR, and the direct effects of acid rain NO3- concentration and pH on HGR were lower than those on DGR. Our results suggest that the ratio of SO42- to NO3- in acid rain is an important factor which could affect the sustainable development of monoculture Chinese fir plantations in southern China.
Collapse
Affiliation(s)
- Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Bo Zhang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Lu Zhai
- Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
| | - Miaojing Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Jie Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Jiayao Zhuang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - G Geoff Wang
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina 29634, USA
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
44
|
Qiao F, Zhang XM, Liu X, Chen J, Hu WJ, Liu TW, Liu JY, Zhu CQ, Ghoto K, Zhu XY, Zheng HL. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:238-247. [PMID: 29621720 DOI: 10.1016/j.plaphy.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 05/16/2023]
Abstract
Acid rain (AR) can induce great damages to plants and could be classified into different types according to the different SO42-/NO3- ratio. However, the mechanism of plants' responding to different types of AR has not been elucidated clearly. Here, we found that nitric-rich simulated AR (N-SiAR) induced less leaves injury as lower necrosis percentage, better physiological parameters and reduced oxidative damage in the leaves of N-SiAR treated Arabidopsis thaliana compared with sulfate and nitrate mixed (SN-SiAR) or sulfuric-rich (S-SiAR) simulated AR treated ones. Of these three types of SiAR, N-SiAR treated Arabidopsis maintained the highest of nitrogen (N) content, nitrate reductase (NR) and nitrite reductase (NiR) activity as well as N metabolism related genes expression level. Nitric oxide (NO) content showed that N-SiAR treated seedlings had a higher NO level compared to SN-SiAR or S-SiAR treated ones. A series of NO production and elimination related reagents and three NO production-related mutants were used to further confirm the role of NO in regulating acid rain resistance in N-SiAR treated Arabidopsis seedlings. Taken together, we concluded that an elevated N metabolism and enhanced NO production are involved in the tolerance to different types of AR in Arabidopsis.
Collapse
Affiliation(s)
- Fang Qiao
- School of Life Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xi-Min Zhang
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou 550001, PR China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Jun Hu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ji-Yun Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chun-Quan Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Kabir Ghoto
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
45
|
Dong D, Du E, Sun Z, Zeng X, de Vries W. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1442-1445. [PMID: 28916280 DOI: 10.1016/j.envpol.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect.
Collapse
Affiliation(s)
- Dan Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Zhengzhong Sun
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xuetong Zeng
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wim de Vries
- Wageningen University and Research, Environmental Research (Alterra), PO Box 47, 6700 AA Wageningen, The Netherlands; Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|