1
|
Latchere O, Métais I, Perrein-Ettajani H, Lemoing M, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Châtel A, Baudrimont M. Trophic transfer effects of PS nanoplastics and field-derived nanoplastics in the freshwater clam Corbicula fluminea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107160. [PMID: 39566259 DOI: 10.1016/j.aquatox.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Plastic pollution is of global concern. Many studies investigated the effect of micro and nanoplatics towards aquatic organisms. However, relatively few studies were assessed on freshwater organisms. Another aspect of this pollution is the impact of trophic transfer on plastic distribution and on food chain in order to evaluate its potential risk towards environmental and human health. In this context, the objective of this study was to assess the ecotoxicological impacts of different types of nanoplastics (NPs) on freshwater organisms exposed through trophic transfer. Freshwater microalgae Scenedesmus subspicatus were contaminated for 48 h with realistic concentrations of NPs (0.008, 10 and 100 µg/L). Two types of NPs were tested: commercial PS NPs and NPs generated from macro-sized plastics collected in the field (ENV NPs). Freshwater Corbicula fluminea bivalves were then fed with the contaminated algae every 48 h for 21 days. Results showed that trophic exposure led to the induction of oxidative stress (CAT activity). Overall, NPs trophic exposure caused downregulations of genes implicated in many cellular processes (immunity, oxidative stress, neurotoxicity, endocytosis, apoptosis). This present study allowed to demonstrate the relevance of investigating the trophic transfer effects of NPs on a freshwater trophic chain. Further studies should focus more on larger levels of the food chain.
Collapse
Affiliation(s)
- Oihana Latchere
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France.
| | - Isabelle Métais
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | | | - Magalie Lemoing
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Agnès Feurtet-Mazel
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Patrice Gonzalez
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux (Bordeaux,France) - F-33615, Pessac, France
| | - Julien Gigault
- Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec, G1V0A6, Canada; Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Magalie Baudrimont
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| |
Collapse
|
2
|
Li C, Liu Z, Xu Y, Pi J, Zhang Q, Chen X, Zhan C, Hu L, Xie J, Xie Z, Deng X, Wen L, Xiao T, Li D, Li J. Silver nanoparticles exhibit ecotoxicological effects via oxidative stress, inflammation, and reproductive toxicity in Asian clam (Corbicula fluminea). CHEMOSPHERE 2024; 366:143507. [PMID: 39393582 DOI: 10.1016/j.chemosphere.2024.143507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Silver nanoparticles (AgNPs) are pervasive environmental pollutants capable of inducing toxicological impacts on benthic organisms. In this study, the effects of AgNPs on the antioxidant enzyme activities, tissue damage, inflammatory responses, and reproductive toxicity of Corbicula fluminea were investigated. C. fluminea was exposed to four concentrations of AgNPs (0, 5 mg/L, 10 mg/L, and 125 mg/L) for 48 h. The results showed that the higher concentrations of AgNPs caused severe tissue damage in multiple organs of C. fluminea, induced oxidative stress and an imbalance of the antioxidant enzyme activities (such as SOD, CAT, MDA), and increased the inflammatory immune response involving NFκB, TLR2/4, HSP70/90, IL1β, and TNFα. Notably, further transmission electron microscopy and cytological analyses revealed that AgNPs exposure induced apoptosis in the gonad tissues, resulting in significant loss and damage in the oocytes and spermatids. The present study demonstrates the ecotoxicological impacts of AgNPs on freshwater bivalves, particularly highlighting their reproductive toxicity on germ cells, signifying the potential toxic effects of heavy metal pollution on aquatic ecosystems.
Collapse
Affiliation(s)
- Chun Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiming Liu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Xu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Pi
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Qiushi Zhang
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoying Chen
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Chengfeng Zhan
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Hu
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Jibang Xie
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Ziyu Xie
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Xinlan Deng
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China
| | - Deliang Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Li
- College of Fisheries, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Wei J, Hong Z, Li W, Yang X, Fu Z, Chen X, Hu J, Jin Z, Long B, Chang X, Qian Y. Norfloxacin affects inorganic nitrogen compound transformation in tailwater containing Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135116. [PMID: 39013323 DOI: 10.1016/j.jhazmat.2024.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The Asian clam, Corbicula fluminea, commonly used in engineered wetlands receiving tailwater, affects nitrogen compound transformation in water. This study investigates how a commonly observed antibiotic in tailwater, norfloxacin, impact nitrogen compound transformation in tailwater containing C. fluminea. The clam was exposed to artificial tailwater with norfloxacin (0, 0.2, 20, and 2000 μg/L) for 15 days. Water properties, C. fluminea ecotoxicity responses, microorganism composition and nitrification- or denitrification-related enzyme activities were measured. Results revealed norfloxacin-induced increases and reductions in tailwater NH4+ and NO2- concentrations, respectively, along with antioxidant system inhibition, organ histopathological damage and disruption of water filtering and digestion system. Microorganism composition, especially biodiversity indices, varied with medium (clam organs and exposure water) and norfloxacin concentrations. Norfloxacin reduced NO2- content by lowering the ratio between microbial nitrifying enzyme (decreased hydroxylamine oxidoreductase and nitrite oxidoreductase activity) and denitrifying enzyme (increased nitrate reductase and nitrite reductase activity) in tailwater. Elevated NH4+ content resulted from upregulated ammonification and inhibited nitrification of microorganisms in tailwater, as well as increased ammonia emission from C. fluminea due to organ damage and metabolic disruption of the digestion system. Overall, this study offers insights into using benthic organisms to treat tailwater with antibiotic residues, especially regarding nitrogen treatment.
Collapse
Affiliation(s)
- Junling Wei
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zijin Hong
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Wei Li
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xiufang Yang
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zihao Fu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xinyu Chen
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Junxiang Hu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zhangnan Jin
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Bojiang Long
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Yu Qian
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
4
|
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity of environmental and polystyrene plastic particles on the bivalve Corbicula fluminea: focus on the molecular responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:709-721. [PMID: 38990495 DOI: 10.1007/s10646-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 μg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 μg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 μg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 μg L-1 did not trigger the same effects as ENV MPs 10 and 100 μg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.
Collapse
Affiliation(s)
- Oïhana Latchere
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France.
| | - Coraline Roman
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Isabelle Métais
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | | | - Mohammed Mouloud
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Didier Georges
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Agnès Feurtet-Mazel
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Patrice Gonzalez
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux, Pessac, France
| | - Julien Gigault
- Département de Biologie, Pavillon Alexandre-Vachon, Université Laval, Québec, QC, Canada
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
- Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, France
| | - Magalie Baudrimont
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| |
Collapse
|
5
|
Yang H, Gu X, Chen H, Zeng Q, Mao Z, Ge Y, Yao Y. Harmful planktonic Microcystis and benthic Oscillatoria-induced toxicological effects on the Asian clam (Corbicula fluminea): A survey on histopathology, behavior, oxidative stress, apoptosis and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109961. [PMID: 38889875 DOI: 10.1016/j.cbpc.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Cyanobacterial blooms are worldwide distributed and threaten aquatic ecosystems and public health. The current studies mainly focus on the adverse impacts of planktonic cyanobacteria or pure cyanotoxins, while the benthic cyanobacteria-induced ecotoxic effects are relatively lacking. The cyanobacterial cell-induced toxic effects on aquatic organisms might be more serious and complex than the pure cyanotoxins and crude extracts of cyanobacteria. This study explored the chronic effects of toxin-producing planktonic Microcystis aeruginosa (producing microcystin) and benthic Oscillatoria sp. (producing cylindrospermopsin) on the behaviors, tissue structures, oxidative stress, apoptosis, and inflammation of the Asian clams (Corbicula fluminea) under 28-d exposure. The data showed that both M. aeruginosa and Oscillatoria sp. can decrease the behaviors associated with the feeding activity and induce tissue damage (i.e. gill and digestive gland) in clams. Furthermore, two kinds of cyanobacteria can alter the antioxidant enzyme activities and increase antioxidant, lipid oxidation product, and neurotransmitter degrading enzyme levels in clams. Moreover, two kinds of cyanobacteria can activate apoptosis-related enzyme activities and enhance the proinflammatory cytokine levels of clams. In addition, two kinds of cyanobacteria can disturb the transcript levels of genes linked with oxidative stress, apoptosis, and inflammation. These results suggested harmful cyanobacteria can threaten the survival and health of clams, while the benthic cyanobacteria-induced adverse effects deserve more attention. Our finding also indicated that it is necessary to focus on the entire algal cell-induced ecotoxicity when concerning the ecological impacts of cyanobacterial blooms.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhao W, Zheng X, Liu J, Sui Y, Wang Y, Luo P, Zhu X, Wu W, Gu W, Liu X. Ceratophyllum demersum alleviates microplastics uptake and physiological stress responses in aquatic organisms, an overlooked ability. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134573. [PMID: 38824779 DOI: 10.1016/j.jhazmat.2024.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
It has been demonstrated that microplastics (MPs) may be inadvertently ingested by aquatic animals, causing harm to their physiological functions and potentially entering the food chain, thereby posing risks to human food safety. To achieve an environmentally friendly and efficient reduction of MPs in freshwater environments, this experiment investigates the depuration effect of C. demersum on MPs using three common aquatic animals: Macrobrachium nipponense, Corbicula fluminea, and Bellamya aeruginosa as research subjects. The amounts of MPs, digestive enzyme activity, oxidative stress index, and energy metabolism enzyme activity in the digestive and non-digestive systems of three aquatic animals were measured on exposure days 1, 3, and 7 and on depuration days 1 and 3. The results indicated that the depuration effect of C. demersum and the species interaction were significant for the whole individual. Concerning digestive tissue, C. demersum was the most effective in purifying B. aeruginosa. When subjected to short-term exposure to MPs, C. demersum displayed a superior depuration effect. Among non-digestive tissues, C. demersum exhibited the earliest purifying effect on C. fluminea. Additionally, C. demersum alleviated physiological responses caused by MPs. In conclusion, this study underscores C. demersum as a promising new method for removing MPs from aquatic organisms.
Collapse
Affiliation(s)
- Weihong Zhao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xirui Zheng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jintao Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Yuning Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Anhui Agricultural University, Hefei 230000, China
| | - Pan Luo
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Dalian Ocean University, Dalian 116000, China
| | - Xi Zhu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wenjing Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wen Gu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xingyu Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| |
Collapse
|
7
|
Omotola EO, Supriyanto G. Occurrence, detection and ecotoxicity of microplastics in selected environments-a systematic appraisal. Heliyon 2024; 10:e32095. [PMID: 39114069 PMCID: PMC11305261 DOI: 10.1016/j.heliyon.2024.e32095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
Microplastics (MPs) are being released into the environment in large quantities, especially in less developed parts of the world. This group of pollutants is mostly leached into the environment through heavy plastic dumpsites, pharmaceutical and personal care product containers, hospital wastes, plastic package accessories, and litter from food packaging. Consequently, these compounds are found in different compartments of the ecosystem, such as soils, sediments, biota, and, surprisingly, drinking water. The present study systematically appraised recent studies on MP pollution in the Asian and African environments. It also summarized the trends in the methods for the environmental monitoring of MPs and the removal strategies that have been employed. From the data gathered, the two key instrumentations involved are the microscopes for visualization and the Fourier transform-infra-red (FT-IR) spectrometer to classify or characterize the MPs. Based on the surveyed works of literature, China and South Africa have relatively more information on MP contamination of diverse matrices within their countries. Meanwhile, studies on the status of MP contamination should be conducted across all countries. Hence, this study becomes an eye-opener regarding the commencement of research works on the MP contamination of the environment, especially in other Asian and African countries with little or no information. Furthermore, the literature on ecotoxicity studies of MPs was investigated to ascertain the toxic nature of these compounds. This aspect of research is vital because it serves as a prerequisite for the remediation of these compounds. Microplastics have been declared lethal to biotic components, so all hands must be on deck to continuously remove them from the environment.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode, PMB 2118, Nigeria
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| | - Ganden Supriyanto
- Department of Chemistry, Airlangga University Surabaya Indonesia, Indonesia
| |
Collapse
|
8
|
Zhang J, Wang N, Zhang Z, Gao Y, Dong J, Gao X, Yuan H, Li X. Combined effects of toxic Microcystis aeruginosa and high pH on antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116568. [PMID: 38850693 DOI: 10.1016/j.ecoenv.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Due to increasing anthropogenic perturbation and water eutrophication, cyanobacterial blooms (CYBs) have become a global ecological and environmental problem. Toxic CYBs and elevated pH are considered to be the two key stressors associated with eutrophication in natural waters, particularly in the event of CO2 depletion induced by dense blooms. However, previous research has been focused on investigating the impacts of toxic CYBs or pH changes in isolation, whereas the interactive effects of such stressors on edible bivalves that inhabit CYB waters still lack information. In this study, the combined effects of toxic Microcystis aeruginosa and pH shifts on the antioxidant responses, immune responses, and apoptosis of the edible freshwater bivalve Corbicula fluminea were explored. The results showed that the activity of antioxidant enzymes was significantly impacted by the interactive effects between toxic M. aeruginosa exposure and time course, yet pH shifts showed no significant effects on the activities of these antioxidant enzymes, implying that the antioxidant response in C. fluminea was mainly triggered by toxic M. aeruginosa exposure. Toxic M. aeruginosa also induced an increased production of reactive oxygen species and malondialdehyde in treated clams, particularly under high pH settings. The elevated lysosomal enzyme activity helped C. fluminea defend against toxic M. aeruginosa exposure under high pH conditions. The principal component analysis (PCA) and the integrated biomarker response (IBR) results suggested that the treated clams were subjected to the elevated toxicity of toxic M. aeruginosa in conditions of high pH. The heat shock proteins-related genes might be triggered to resist the oxidative damage in treated clams. Moreover, the upregulation of TNF and casp8 genes indicated the potential activation of the caspase8-mediated apoptotic pathway through TNF receptor interaction, potentially resulting in apoptosis. The TUNEL assay results further confirmed that apoptosis appeared in treated clams. These findings improve our understanding of the combined toxicological effects of harmful algae and pH shifts on bivalves, which will provide insights into a comprehensive ecological risk assessment of toxic CYBs to edible bivalve species.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| | - Ning Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaofei Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Huatao Yuan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 473000, China.
| |
Collapse
|
9
|
Koban LA, King T, Huff TB, Furst KE, Nelson TR, Pfluger AR, Kuppa MM, Fowler AE. Passive biomonitoring for per- and polyfluoroalkyl substances using invasive clams, C. fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134463. [PMID: 38723486 DOI: 10.1016/j.jhazmat.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.
Collapse
Affiliation(s)
- Lauren A Koban
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Tabitha King
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Thomas B Huff
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Kirin E Furst
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - T Reid Nelson
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Andrew R Pfluger
- Department of Geography & Environmental Engineering, United States Military Academy, 745 Brewerton Road, West Point, NY 10996, USA.
| | - Mrudula Meghana Kuppa
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
10
|
de Figueiredo Eufrasio Pauly G, Cruz ACF, Trevizani TH, Mi Kim BS, Perina FC, Yamamoto FY, Figueira RCL, de Souza Abessa DM. Spatial-temporal variations of metals and arsenic in sediments from the Doce River after the Fundão Dam rupture and their bioaccumulation in Corbicula fluminea. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:87-98. [PMID: 37026393 DOI: 10.1002/ieam.4773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
The rupture of the Fundão dam in Brazil released tons of mining tailings into the Doce River Basin (DRB). This investigation aimed to determine the bioaccumulation of metals in soft tissues of the bivalve Corbicula fluminea exposed to sediments collected in the DRB in four periods (just after, 1, 3, and 3.5 years after the dam rupture). In the exposure bioassays, the concentrations of Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in sediments and bivalve soft tissues were quantified. The concentration of some elements (As, Cd, Mn, and Al) in sediments exceeded the federal limits or regional backgrounds at some sampling sites, but their concentrations tended to decrease over time. However, higher concentrations of many elements were detected in the winter of 2019. Several elements were detected in C. fluminea soft tissues, but the bioaccumulation factors were generally low or not related to those elements associated with the ore tailings, evidencing that the bioavailability of metals to bivalves, in laboratory conditions, was limited. Integr Environ Assess Manag 2024;20:87-98. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Ana C F Cruz
- São Paulo State University-UNESP, São Vicente, São Paulo, Brazil
| | - Tailisi H Trevizani
- Oceanographic Institute, University of São Paulo-USP, São Paulo, São Paulo, Brazil
| | - Bianca S Mi Kim
- Oceanographic Institute, University of São Paulo-USP, São Paulo, São Paulo, Brazil
| | - Fernando C Perina
- São Paulo State University-UNESP, São Vicente, São Paulo, Brazil
- Centro de Estudos do Ambiente e do Mar-CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | - Rubens C L Figueira
- Oceanographic Institute, University of São Paulo-USP, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Lachaux N, Otero-Fariña A, Minguez L, Sohm B, Rétif J, Châtel A, Poirier L, Devin S, Pain-Devin S, Gross EM, Giamberini L. Fate, subcellular distribution and biological effects of rare earth elements in a freshwater bivalve under complex exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167302. [PMID: 37742965 DOI: 10.1016/j.scitotenv.2023.167302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.
Collapse
Affiliation(s)
- Nicolas Lachaux
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France.
| | - Alba Otero-Fariña
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Julie Rétif
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France; Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | - Laurence Poirier
- Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Elisabeth M Gross
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Laure Giamberini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| |
Collapse
|
12
|
Park K, Kwak IS. Growth retardation and suppression of ubiquitin-dependent catabolic processes in the brackish water clam Corbicula japonica in response to salinity changes and bioaccumulation of toxic heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122554. [PMID: 37717895 DOI: 10.1016/j.envpol.2023.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
13
|
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity assessment of environmental MPs and NPs and polystyrene NPs on the bivalve Corbicula fluminea using a multi-marker approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109714. [PMID: 37572933 DOI: 10.1016/j.cbpc.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Small plastic particles, microplastics (MPs) and nanoplastics (NPs) represent a major threat in aquatic environments. Freshwater organisms are exposed to MPs and NPs, particularly in industrial and urban areas. The present study aimed to compare the toxicity between polystyrene NPs (PS NPs) and environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized debris collected in the Garonne River on the freshwater bivalve C. fluminea. The organisms were exposed to the different plastic particles at three environmentally relevant concentrations: 0.008, 10, and 100 μg L-1 for 21 days. The biological responses of organisms were assessed using a multi-biomarker approach from the sub-individual to the individual level. The results demonstrated that: i) ENV NPs triggered more effects on detoxification processes and immune response, confirming that using manufactured NPs for laboratory exposure can lead to misleading conclusions on the risks posed by plastic particles; ii) effects of ENV MPs were less marked than ENV NPs, emphasizing the importance of testing a size continuum of plastic particles from NPs to MPs; iii) some effects were only observed for the low and/or intermediate concentrations tested, underlining the importance of using environmentally relevant concentrations. In light of these results, laboratory studies should be continued by exposing aquatic species to environmental MPs and NPs. The properties of these particles have to be characterized for a better risk assessment of environmental plastic particles.
Collapse
Affiliation(s)
- Oïhana Latchere
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France.
| | - Coraline Roman
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Isabelle Métais
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | | | - Mohammed Mouloud
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Didier Georges
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Agnès Feurtet-Mazel
- Université de Bordeaux, UMR EPOC 5805, Équipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Place Du Dr Peyneau, 33120 Arcachon, France
| | - Julien Gigault
- Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec G1V0A6, Canada; Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Magalie Baudrimont
- Université de Bordeaux, UMR EPOC 5805, Équipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Place Du Dr Peyneau, 33120 Arcachon, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire BIOSSE, 3 place André Leroy, Angers, France
| |
Collapse
|
14
|
Shiry N, Derakhshesh N, Alavinia SJ, Pouladi M, Falco F, Faggio C. Anodonta cygnea, a freshwater swan mussel, exposed to diazinon: toxicity thresholds in behaviour and physiology. Vet Res Commun 2023; 47:1303-1319. [PMID: 36763184 DOI: 10.1007/s11259-023-10078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Swan mussels (Anodonta cygnea) have been suggested as suitable bioindicators for the presence of pollutants in the environment. Application of the physiological and behavioral markers in these sessile species can be beneficial for environmental monitoring. The present study aimed to investigate the relationship between the behavioral disorders of movement and siphoning associated with the inhibition of tissue Acetylcholinesterase (AChE). For experiments, overally 120 bivalves of Anodonta cygnea (mean total length 80.33 ± 6.7 mm) were transported from the agricultural drains and canals in Sari county (Mazandaran Province, Iran) to our laboratory. First, the LC50-96 h of diazinon was estimated according to the Organization for Economic Co-operation and Development (OECD 1992) guideline with static water conditions. The sub-lethal toxicity pesticide experiments were conducted on the basis of the lowest observed effect concentration (LOEC) and the maximum acceptable toxicant concentration (MATC). The LC50-96 h, LOEC, and MATC values of diazinon were 85.2, 42.1, and 8.5 mg L- 1, respectively. Based on the observations of mussels' movement, the burrowing and displacement decreased with the concentration of toxicant in water. Moreover, the presence of diazinon in water and its exposure to experimental animals significantly reduces their siphoning rate. The RDA showed that the AChE activity had a higher correlation with the siphoning behavior than the movement behavior. The comparison of enzyme activity at different exposure and recovery times showed that there was a significant difference among the groups affected by the consumed pesticide (p = 0.001, between contrasts). The most remarkable morphometric characteristic was the siphon opening that was inversely correlated with the enzymatic activity. Studies in bioethics might benefit from paying attention to these traits that are directly related to the level of toxicity and behavioral adaptations required for animal survival.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Negin Derakhshesh
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Pouladi
- Iran Fisheries Organization, Administration of Bushehr Province, Bushehr, Iran
| | - Francesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Li Q, Wang P, Wang C, Hu B, Wang X, Li D. Benzotriazole UV stabilizer-induced genotoxicity in freshwater benthic clams: A survey on apoptosis, oxidative stress, histopathology and transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159055. [PMID: 36174688 DOI: 10.1016/j.scitotenv.2022.159055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Benzotriazole UV stabilizer-329 (UV-329) is frequently detected in various environmental and biological matrices. However, the toxicity effect on freshwater benthos induced by UV-329 has rarely been described. In this study, genotoxicity, apoptosis, oxidative stress, histopathological alterations, siphoning behavior, and bioaccumulation in the gill and digestive gland of Corbicula fluminea exposed to UV-329 at 10, 100, and 1000 μg/L for 21 days were investigated. Toxicity screening using transcriptomics confirmed that UV-329 preferentially stimulated cellular process-related pathways including gap junctions, apoptosis, phagosomes and necroptosis. The transcript levels of a large number of apoptosis genes were significantly upregulated. This apoptosis mechanism was further confirmed by the fact that UV-329 exposure significantly increased the percentage of apoptotic cells, activated caspase-3, -8, and -9, and affected the antioxidant enzyme activities. Following exposure to 1000 μg/L UV-329, significant histological alterations were reflected in the corrosion of cilia, cellular swelling of epithelial cells in the gills, degeneration of digestive tubules, and necrosis of epithelial cells in the digestive glands. These results may aid in elucidating the toxicity mechanism of UV329 in bivalves and evaluating the hazards of UV-329 in benthic ecosystems.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dandan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
16
|
Jesus F, Mesquita F, Virumbrales Aldama E, Marques A, Gonçalves AMM, Magalhães L, Nogueira AJA, Ré A, Campos I, Pereira JL, Gonçalves FJM, Abrantes N, Serpa D. Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1326. [PMID: 36674083 PMCID: PMC9859076 DOI: 10.3390/ijerph20021326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Wildfires constitute a source of contamination to both freshwater and marine ecosystems. This study aimed to compare the antioxidant defense response of the freshwater clam Corbicula fluminea and the marine cockle (Cerastoderma edule) to wildfire ash exposure and the concomitant metal body burden. Organisms were exposed to different concentrations (0%, 12.5%, 25%, 50%, and 100%) of aqueous extracts of Eucalypt ash (AEAs) from a moderate-to-high severity wildfire. The activity of various enzymes, as well as lipid peroxidation, protein content, and metal body burden, were determined after 96 h of exposure. A significant increase in the protein content of soft tissues was observed for C. edule at AEA concentrations ≥ 25%, unlike for C. fluminea. Similarly, significant effects on lipid peroxidation were observed for cockles, but not for clams. For both species, a significant effect in the total glutathione peroxidase activity was observed at AEA concentrations ≥ 25%. Relative to the control, AEAs-exposed clams showed higher Cd content, whereas AEAs-exposed cockles showed higher Cu content, thus exhibiting different responses to the exposure to wildfire ash. The susceptibility of bivalves to ashes, at environmentally relevant concentrations, raises concern about the effects of post-fire runoff to bivalve species.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Mesquita
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Virumbrales Aldama
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Calle Guillem de Castro 94, 46001 Valencia, Spain
| | - Ana Marques
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M. M. Gonçalves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Luísa Magalhães
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António J. A. Nogueira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ré
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J. M. Gonçalves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Qi R, Xiao G, Miao J, Zhou Y, Li Z, He Z, Zhang N, Song A, Pan L. Study on the toxic effects of sodium pentachlorophenol (PCP-Na) on razor clam (Sinonovacula constricta). MARINE ENVIRONMENTAL RESEARCH 2023; 183:105845. [PMID: 36525829 DOI: 10.1016/j.marenvres.2022.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Currently, research on toxic effects of PCP Na is greatly insufficient. The aim of this study is to explore the toxic effects of PCP-Na for better conducting future work on PCP-Na toxicology. For this purpose, S. constricta adults were exposed to PCP-Na for toxicity testing. The results showed that PCP-Na could easily bioaccumulate in S. constricta and significantly affected both phrase I and II metabolism enzymes. Meanwhile, PCP-Na strongly activated antioxidant system and caused PC, LPO and DNA damage. In addition, neurotoxicity and immunotoxicity of PCP-Na was demonstrated in this study. Interestingly, we observed that PCP-Na significantly affected the expression of genes of electron transport chain and induced key enzymes of glycolysis, indicating that PCP-Na may act as an uncoupler of oxidative phosphorylation, interfering with energy supply and causing energy compensation. This study is the first to fully analyze and provide a new perspective on the toxicity of PCP-Na.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, 325005, Wenzhou, PR China
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Zhiheng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Aimin Song
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, PR China.
| |
Collapse
|
18
|
Ma T, Ye C, Wang T, Li X, Luo Y. Toxicity of Per- and Polyfluoroalkyl Substances to Aquatic Invertebrates, Planktons, and Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416729. [PMID: 36554610 PMCID: PMC9779086 DOI: 10.3390/ijerph192416729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 05/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs), recognized worldwide as emerging pollutants, may pose a substantial threat to human health and our environment due to their stability, high concentrations, wide distribution, and easy accumulation. Ever since perfluorooctane sulfonate and perfluorooctanoic acid were recognized by the Stockholm Convention on Persistent Organic Pollutants, the public has become increasingly concerned about potential contamination and the environmental risks associated with PFASs. Ubiquitous PFAS contamination of drinking water, groundwater, surface water, and sediment has been detected, especially in areas with rapid industrial and economic development. Its accumulation in living organisms and foods has accentuated the importance of investigations into aquatic organisms at the bottom of the food chain, as the stability and integrity of the food web as well as the population quantity and structure of the aquatic ecosystem may be affected. This review provides a comprehensive summary of the toxic and toxicity-related effects of PFASs on aquatic plankton, aquatic invertebrates and microorganisms, the characteristics of different target aquatic organisms in toxicity investigations, and a feasibility evaluation of PFAS substitutes to provide valuable suggestions for further utilization and regulation of PFASs and their substitutes.
Collapse
Affiliation(s)
- Tingting Ma
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Chaoran Ye
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Tiantian Wang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence:
| | - Xiuhua Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
19
|
Liu S, Zhao H, Zheng M, Wang H, Jing C, Zhang W, Hu F. The physiological, biochemical and transcriptional responses to sulfamethoxazole in the Asian clam, Corbicula fluminea (O. F. Müller, 1774). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109406. [PMID: 35793736 DOI: 10.1016/j.cbpc.2022.109406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
Abstract
Sulfamethoxazole (SMX), a broad-spectrum antibiotic, has been widely used in the treatment and prevention of infection caused by bacteria in recent years. The present study was aimed to evaluate the response mechanisms to SMX stress in gills and digestive gland of Corbicula fluminea (O. F. Müller, 1774). To this end, clams were exposed to environmentally relevant concentrations of SMX (0, 1, 10 and 100 μg/L) for 7 and 28 days, and siphon behavior, tissue-specific enzymatic and transcriptional changes were assayed. Our results showed that exposure to SMX significantly suppressed filtration rate and acetylcholinesterase (AChE) activity, activated antioxidant defense system and elevated transcription of several genes related to cell apoptosis in gills and digestive gland of clams. In general, SMX at environmentally relevant concentrations exhibited a negative impact on siphon behavior and induced neurotoxicology, oxidative stress and cell apoptosis in C. fluminea. The current study will help broaden our understanding of the ecotoxicity of SMX on freshwater bivalves.
Collapse
Affiliation(s)
- Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Zhou S, Fu M, Luo K, Qiao Z, Peng C, Zhang W, Lei J, Ling S, Zhou B. Fate and toxicity of legacy and novel brominated flame retardants in a sediment-water-clam system: Bioaccumulation, elimination, biotransformation and structural damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156634. [PMID: 35710012 DOI: 10.1016/j.scitotenv.2022.156634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Due to the characteristics of persistent organic pollutants (POPs), some legacy brominated flame retardants (LBFRs) were prohibited from use, and then gradually replaced by novel brominated flame retardants (NBFRs). However, till now little research focused on the effects of NBFRs on the benthos. In the present study, 0.5, 5, and 50 mg/kg dw of pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE209) were added into sediments to test freshwater clams (Corbicula fluminea). In the 35-day exposure experiment, C. fluminea had different enrichment behaviors in three treatment groups. It was conjectured that in the lower dose group, the clams ingested contaminants and tended to be stable over time. While in higher dose groups, the clams were induced by the chemicals, leading to the changes in physiological activities so that the concentrations showed a downward trend first and then went up. The half-lives of contaminants in freshwater clams were between 0.911 and 11.6 days. DBDPE showed stronger bioaccumulation ability than BDE209 in this study. Parabolic relationships were observed between log BSAF and log Kow values in clam tissues. Debromination, hydroxylation, and methoxylated products were detected. Additionally, the gill samples of C. fluminea exposed to 50 mg/kg dw of single substance were observed by scanning electron microscope (SEM), indicating that the adhesions, tissue hyperplasia, and messy cilia occurred on the surface. Our research potentially contributes to further evaluations of the environmental risks posed in sediments contaminated by PBT, HBB, BTBPE, DBDPE, and BDE209, particularly the benthic organisms.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
21
|
Sun G, Zhang H, Yao H, Dai W, Lin Z, Dong Y. Characteristics of glutathione peroxidase gene and its responses to ammonia-N stress in razor clam Sinonovacula constricta. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110752. [PMID: 35513263 DOI: 10.1016/j.cbpb.2022.110752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPX) is a crucial enzyme in the antioxidant defense system. However, the previous studies on the structure and functions of mollusk GPX genes are still very limited. Here, we investigated the GPX gene from Sinonovacula constricta (Sc-GPX), and its expression profiles, protein localization, gene function and association with ammonia tolerance. The full length of sequence of Sc-GPX was 1781 bp, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Quantitative expression of seven adult tissues showed that Sc-GPX was most abundant in hepatopancreas, followed by gills. Furthermore, the enzyme activity of Sc-GPX in hepatopancreas increased significantly under different ammonia concentrations (100, 140, and 180 mg/L) (P < 0.01). Further, we explored the mRNA expression level, histological structure and histo-cellular localization in gills and hepatopancreas of Sc-GPX under 140 mg/L ammonia stress. The mRNA expression level in gills and hepatopancreas of Sc-GPX increased significantly (P < 0.05) and immunohistochemistry results suggested that the columnar cells of gills filaments and the endothelial cells of hepatopancreas were the major sites for the action of Sc-GPX protein. In addition, we performed western blotting (WB), RNA interference (RNAi) and single nucleotide polymorphisms (SNPs) in the hepatopancreas of Sc-GPX under ammonia stress (140 mg/L). WB results indicated that the protein expression of Sc-GPX increased significantly (P < 0.01) after ammonia challenge. In addition, expression of Sc-GPX mRNA were significantly downregulated at 24 and 48 h after RNAi (P < 0.01). The association analysis between ammonia-tolerance group and control group identified six SNPs in coding sequence (CDS) of Sc-GPX from 449 individuals. Among them, c.162A > C was missense mutation, which lead to the amino acid change from Lys to Asn. These findings revealed that Sc-GPX may play a critical role in clam ammonia detoxification.
Collapse
Affiliation(s)
- Gaigai Sun
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huan Zhang
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| |
Collapse
|
22
|
Yang M, Wang WX. Differential cascading cellular and subcellular toxicity induced by two sizes of nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154593. [PMID: 35304139 DOI: 10.1016/j.scitotenv.2022.154593] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) can be potentially accumulated by living organisms, but how they interact with cells at the cellular or subcellular level in the physiological environment is still largely unknown. In this study, time-resolved flow cytometry coupled with confocal imaging as well as other biomolecular approaches were used to investigate the cellular and subcellular responses to amine-modified polystyrene NPs of two different sizes (100 nm and 1000 nm). We first demonstrated that the two sizes of NPs displayed contrasting cytotoxicity to embryonic zebrafish fibroblast cell lines ZF4. Using the fluorescent-labeled NPs, the differentially internalized patterns between the two-sized NPs in a time-resolved manner were observed. Confocal images showed that the two sizes of NPs were deposited in lysosomes but could escape through lysosomal rupture, as evidenced by the induction of lysosomal acidification (for 1000 nm) and alkalization (for 100 nm) as well as permeabilization. Subsequent deposition of 100-NPs in the cytosol induced loss of mitochondrial membrane potential and significant reactive oxygen species production, and finally stimulated the activation of caspases, disrupted the mitochondrial mitophagy, leading to irreversible cell death. In contrast, 1000-NPs toxicity in ZF4 cells did not involve lysosomal permeabilization and loss of mitochondrial membrane potential. Lysosomal deposition of such larger sized nanoplastics mainly induced lysosome acidification, activated the autophagy as well as disrupted the integrity of cell membrane, but at the same time provoked the activation of caspases and finally triggered the apoptosis. Our study demonstrated a complicated relationship among lysosome damage, autophagy activation, and apoptosis, leading to contrasting toxicity of NPs of different sizes.
Collapse
Affiliation(s)
- Meng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
23
|
Bi C, Junaid M, Liu Y, Guo W, Jiang X, Pan B, Li Z, Xu N. Graphene oxide chronic exposure enhanced perfluorooctane sulfonate mediated toxicity through oxidative stress generation in freshwater clam Corbicula fluminea. CHEMOSPHERE 2022; 297:134242. [PMID: 35259357 DOI: 10.1016/j.chemosphere.2022.134242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO), a frequently utilized graphene family nanomaterial, is inevitably released into the aquatic environment and interacts with organic pollutants, including perfluorooctane sulfonate (PFOS), a well-known persistent organic pollutant. To determine the adverse effects of GO chronic exposure on PFOS bioaccumulation and toxicity, adult freshwater bivalves, namely Asian clams (Corbicula fluminea) were treated for 28 days with PFOS (500 ng/L) and different concentrations of GO (0.2, 1, 5 mg/L) as PFOS single and GO single exposure groups, as well as PFOS-GO mixture exposure groups. Our results demonstrated that the bioaccumulation of PFOS was significantly enhanced by co-exposure in gills and visceral masses, which was 1.64-2.91 times higher in gills than in visceral masses. Both single, as well as co-exposure, caused a significant reduction in clams' siphoning behavior, compared to the controls. Further, the co-exposure significantly increased the production of reactive oxygen species (ROS), exacerbating malondialdehyde (MDA) content, enhancing superoxide dismutase (SOD) and catalase (CAT), while decreasing glutathione reductase (GR) and glutathione S-transferase (GST) enzymatic activities in clam tissues. And co-exposure significantly altered the expressions of se-gpx, sod, cyp30, hsp40, and hsp22 genes (associated with oxidative stress and xenobiotic metabolism) both in gills and visceral masses. Moreover, co-exposure caused significant histopathological changes such as cilia degradation in the gills, expansion of tubule lumens in digestive glands, and oocyte shrinkage in gonads. Finally, the enhanced integrated biomarker response (EIBR) index revealed that co-exposure to 500 ng/L PFOS + 1 mg/L/5 mg/L GO was the most stressful circumstance. Overall, our findings suggested that the presence of GO increased PFOS bioaccumulation in tissues, inducing multifaceted negative implications at molecular and behavioral levels through oxidative stress generation in Asian clams.
Collapse
Affiliation(s)
- Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Zhengguoshen Li
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Linking Micropollutants to Trait Syndromes across Freshwater Diatom, Macroinvertebrate, and Fish Assemblages. WATER 2022. [DOI: 10.3390/w14081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ecological quality of freshwater ecosystems is endangered by various micropollutants released into the environment by human activities. The cumulative effects of these micropollutants can affect the fitness of organisms and populations and the functional diversity of stream ecosystems. In this study, we investigated the relationships between the joint toxicity of micropollutants and trait syndromes. A trait syndrome corresponds to a combination of traits that could occur together in communities due to the trait selection driven by exposure to these micropollutants. Our objectives were to (i) identify trait syndromes specific to diatom, macroinvertebrate, and fish assemblages and their responses to exposure, taking into account four micropollutant types (mineral micropollutants, pesticides, PAHs, and other organic micropollutants) and nine modes of action (only for pesticides), (ii) explore how these syndromes vary within and among the three biological compartments, (iii) investigate the trait categories driving the responses of syndromes to micropollutant exposure, and (iv) identify specific taxa, so-called paragons, which are highly representative of these syndromes. To achieve these objectives, we analyzed a dataset including the biological and physico-chemical results of 2007 sampling events from a large-scale monitoring survey routinely performed in French wadeable streams. We have identified five (diatoms), eight (macroinvertebrates), and eight (fishes) trait syndromes, either positively or negatively related to an increasing toxicity gradient of different clusters of micropollutant types or modes of action. Our analyses identified several key trait categories and sets of paragons, exhibiting good potential for highlighting exposure by specific micropollutant types and modes of action. Overall, trait syndromes might represent a novel and integrative bioassessment tool, driven by the diversity of trait-based responses to increasing gradients of micropollutant toxic cocktails.
Collapse
|
25
|
Pei Y, Tong Y, Li H, You J. In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128143. [PMID: 34974402 DOI: 10.1016/j.jhazmat.2021.128143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activity-impacted aquatic environment contains a complex mixture of contaminants, and ecological risk assessment solely based on chemical analysis is insufficient and biological assessment is required. However, traditional assessment heavily relies on laboratory bioassays, which may cause uncertainty due to inevitable laboratory-related artifact. A self-designed in-situ bioassay system was successfully applied to simultaneously evaluate water and sediment toxicity by co-exposure of two native species, Chinese rare minnows (Gobiocypris rarus) and Asian clams (Corbicula fluminea) in Tai Lake Basin, China. In-situ exposure caused pronouncedly lethal and sublethal effects (i.e., metabolic and oxidative stress, neurotoxicity, reproductive toxicity) on both fish and clams. Meanwhile, multi-media distribution of organic contaminants in water-sediment-biota system was analyzed. Besides hydrophobicity, metabolism was recognized as an influential factor on phase distribution of contaminants in water-fish and sediment-clam systems. Traditional hazard quotient (HQ) method based on environmental concentrations of 98 contaminants showed bias in risk assessment. Instead, a weight of evidence method by integrating three lines of evidence, including in-situ survival, enhanced integrated biomarker response values and environmental concentrations, successfully differentiate high- and moderate-risk sites in the shallow lakes. The present study incorporated in-situ bioassays into risk assessment using a weight of evidence approach, which reduced uncertainty in decision-making.
Collapse
Affiliation(s)
- Yuanyuan Pei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China; Guangdong Provincial Development and Reform Institute, Guangzhou 510040, China
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| |
Collapse
|
26
|
Guo X, Feng C, Bi Z, Islam A, Cai Y. Toxicity effects of ciprofloxacin on biochemical parameters, histological characteristics, and behaviors of Corbicula fluminea in different substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23700-23711. [PMID: 34811616 DOI: 10.1007/s11356-021-17509-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic toxicity and antibiotic resistance have become significant challenges to human health. However, the potential ecotoxicity of sediment-associated antibiotics remains unknown. In this study, biochemical responses, histological changes, and behavioral responses of Corbicula fluminea exposed to sediment-associated ciprofloxacin (CIP) were systemically investigated. Special attention was paid to the influence of different substrate types. Biochemical analyses revealed that the balance of the antioxidant system was disrupted, eventually leading to oxidative damage to the gills and digestive gland with increasing CIP concentration. Severe histopathological changes appeared along with the oxidative damage. An enlargement of the tubule lumen and thinning of the epithelium in the digestive gland were observed under exposure to high CIP concentrations (0.5 and 2.5 μg/g CIP). In a behavioral assay, the filtration rate of C. fluminea in high concentration exposure groups was clearly inhibited. Moreover, from the integrated biomarker response (IBR) index, the toxicity response gradients of the digestive gland (no substrate--NOS > Sand > Sand and kaolinite clay-- SKC > Sand, kaolinite clay, and organic matter--SCO) and gills (NOS > SCO > SKC > Sand) were different among substrate exposure groups. The most serious histopathological damage and highest siphoning inhibition were observed in the NOS group. The changes in the morphological structure of digestive gland cells in C. fluminea were similar in the other three substrate groups. The inhibition of the filtration rate in the higher concentration groups decreased in the order Sand > SKC > SCO.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Guangdong Provincal Academic of Environmental Science, Guangzhou, 510045, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhe Bi
- National Institute of Metrology, Beijing, 100029, China
| | - Akhtar Islam
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
27
|
Fu L, Xi M, Nicholaus R, Wang Z, Wang X, Kong F, Yu Z. Behaviors and biochemical responses of macroinvertebrate Corbicula fluminea to polystyrene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152617. [PMID: 34963588 DOI: 10.1016/j.scitotenv.2021.152617] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Microplastic, a well-documented emerging contaminant, is widespread in aquatic environments resulting from the production and fragmentation of large plastics items. The knowledge about the chronic toxic effects and behavioral toxicity of microplastics, particularly on freshwater benthic macroinvertebrates, is limited. In this study, adult Asian clams (Corbicula fluminea) were exposed to gradient microplastic solutions for 42 days to evaluate behavioral toxicity and chronic biotoxicity. The results showed that microplastics caused behavior toxicity, oxidative stress, and tissue damage in high-concentration treatments. Siphoning, breathing, and excretion was significantly inhibited (p < 0.05) at high-concentration treatments, suggesting that high-concentration microplastics induced behavioral toxicity in C. fluminea. Malondialdehyde content, superoxide dismutase, catalase, and glutathione reductase activities were significantly enhanced (p < 0.05) and the acetylcholinesterase was significantly inhibited (p < 0.05) throughout the exposure period in high-concentration treatments. Enzymes associated with energy supply were significantly higher at high-concentration microplastics treatments on D7 and D21. However, they recovered to a normal level on D42. The instability of the enzymes indicated that high-concentration microplastics induced oxidative stress and disorder in neurotransmission and energy supply. The gills of C. fluminea in treatments underwent cilia degeneration, which indicated that microplastics caused tissue damage in the gills. The analysis of integrated biomarker response values revealed that high-concentration microplastics led to long-term effects on the health of C. fluminea. In conclusion, continuous exposure to microplastics (10 mg L-1) would damage physical behavior and the antioxidant system of C. fluminea.
Collapse
Affiliation(s)
- Lingtao Fu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Min Xi
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Zhen Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhengda Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
28
|
Wang Z, Shu J, Wang Z, Qin X, Wang S. Geochemical behavior and fractionation characteristics of rare earth elements (REEs) in riverine water profiles and sentinel Clam (Corbicula fluminea) across watershed scales: Insights for REEs monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150090. [PMID: 34525724 DOI: 10.1016/j.scitotenv.2021.150090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The increasing global demand for rare earth elements (REEs) has led to their recognition as emerging contaminants; however, the effect that biota have on the cycling of these elements at the watershed scale is not currently well understood. In this study, water samples and field freshwater clams Corbicula fluminea were concurrently collected along watershed gradients, and concentration profiles of 14 naturally occurring REEs were measured in operationally defined water fractions and soft tissues of the freshwater clams. Moreover, Post Archean Australian Shale (PAAS) normalized REE patterns, fractionation indices, and anomalous values were determined to further extract characteristic features. As a result, both the water and biological samples had variable REE compositions, with higher concentrations of light REEs (LREEs) than middle REEs (MREEs) and heavy REEs (HREEs), while decreasing concentrations were generally observed as filter pore size decreased, implying that large colloidal and particulate fractions were important carriers of REEs. The spatial distribution patterns of REEs revealed a clear site effect among profiles, with variability more pronounced among watersheds and with peaks in sites from a small watershed near the hotspots of the mining area, and then exhibited a decreasing trend with distance from there. Meanwhile, significant bioaccumulation of REEs was observed potentially reflecting different degrees of contamination gradients among the watersheds. The PAAS-normalized distribution patterns tended to be slightly enriched in MREEs, producing a peculiar "roof-shaped" feature and characteristic fractionation. Remarkably, bio-concentration factors (BCFs) highlighted the importance of large colloidal and particulate phases in assessing biologically available REEs for filter-feeding species. Collectively, our study strongly favored that accumulation patterns and fractionation characteristics of REEs in C. fluminea can serve as a reliable indicator of geochemical behavior, providing a promising biomonitoring tool to quantitatively denote different degrees of REE contamination and assess possible impacts in mining watersheds.
Collapse
Affiliation(s)
- Zaosheng Wang
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China; School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China.
| | - Junhui Shu
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China; School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China
| | - Zhaoru Wang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China
| | - Xiaohai Qin
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China
| | - Shufang Wang
- School of Resource and Environment Engineering, Jiangxi University of Science and Technology, 156 Kejia Boulevard, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
29
|
Frías-Espericueta MG, Soto-Jiménez MF, Abad-Rosales SM, López-Morales ML, Trujillo-Alvarez SY, Arellano-Sarabia JA, Quintero-Alvarez JM, Osuna-López JI, Bojórquez C, Aguilar-Juárez M. Physiological and histological effects of cadmium, lead, and combined on Artemia franciscana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7344-7351. [PMID: 34476687 DOI: 10.1007/s11356-021-16147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study analyzed the effects of cadmium (Cd) and lead (Pb) on growth, sexual couples, and histological structures of Artemia franciscana exposed to individual concentrations of these metals and combined. No histological effects were observed at tissue level in digestive, respiratory, nervous, and reproductive systems (i.e., necrosis, loss of regular structure) in individual and mixed applications on A. franciscana for 20 days of exposure. No significant differences (p > 0.05) were determined in final size and growth rate among the organisms exposed to Cd and those of control. For Pb, only the final size (3.59 ± 0.59 mm) of organisms exposed to the highest concentration was significantly lower (p < 0.05) than those of the control (4.53 ± 0.34 mm) group, whereas for the combined experiment, no significant differences (p > 0.05) were observed in final size and growth rate. At all Cd concentrations, mean sexual couples were significantly lower (p < 0.05) than those of the control, as well as for Pb. For the combined experiment (8 μg/L of Cd + 8 μg/L of Pb), sexual couples were not observed, indicating synergism and negative reproduction effects. The results showed that Cd and Pb aquatic environmental regulations (as the Criterion of Continuous Concentration) proposed by the US Environmental Protection Agency (EPA) should include their interactions with other metals.
Collapse
Affiliation(s)
| | - Martín Federico Soto-Jiménez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | - Selene María Abad-Rosales
- Unidad Mazatlán en Acuicultura y Manejo Ambiental, Centro de Investigación en Alimentación y Desarrollo, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Marely Lizet López-Morales
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Sandy Yumee Trujillo-Alvarez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | | | - Jesús Manuel Quintero-Alvarez
- Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | | | - Carolina Bojórquez
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km.3 Mazatlán-Higueras Colonia Genaro Estrada, CP 82199, Mazatlán, Sinaloa, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
30
|
de Siqueira WN, de França EJ, Pereira DR, Lima MDV, Silva HAMF, Sá JLF, de Araújo HDA, Melo AMMDA. Toxicity and genotoxicity of domestic sewage sludge in the freshwater snail Biomphalaria glabrata (Say, 1818). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69343-69353. [PMID: 34296413 DOI: 10.1007/s11356-021-15529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Waste produced in homes is one of the main sources of pollutants in freshwater ecosystems. Therefore, it is imperative to implement methodologies that aid in environmental monitoring procedures. The use of organisms as biomonitors has grown increasingly prevalent as they are models that provide data that can be adequately evaluated. In this work, we investigated the genotoxic and cytotoxic effects caused by domestic sewage sludge through an analysis of biomarkers in the mollusk Biomphalaria glabrata. For the tests, increasing concentrations of 50, 100, 150, and 500 mg L-1 of domestic sewage sludge were standardized, in addition to control groups. Assays were performed after the mollusks were exposed to the domestic sewage sludge in acute (48 h) and chronic (15 d) manner. Toxicity tests were performed with embryonic and adult snails. The cytoplasmic and nuclear changes were analyzed in the hemocyte cells. Lastly, genotoxic damage was analyzed using the comet assay. Adult snails and embryos of B. glabrata showed no significant morphological changes. Domestic sludge caused deleterious effects on mollusks as confirmed after cell genotoxicity tests. Therefore, based on the results obtained from the analysis of B. glabrata hemocytes, we can affirm that domestic sewage sludge causes genotoxic and cytotoxic effects on mollusk cells. Therefore, it is possible to conclude that the mollusk Biomphalaria glabrata can be used as a good low-cost alternative to assist in the biomonitoring of freshwater environments. Graphical Abstract.
Collapse
Affiliation(s)
- Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | - José Luís Ferreira Sá
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
31
|
André C, Bibeault JF, Gagné F. Identifying physiological traits of species resilience against environmental stress in freshwater mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1862-1871. [PMID: 34379242 DOI: 10.1007/s10646-021-02457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The advent of global warming events on already stressed organisms by pollution and loss of habitats raised concerns on the sustainability of local mussel populations. The purpose of this study was to study the physiology 6 commonly found species of freshwater mussels in the attempt to identify species at risk from global warming and pollution. The following species were examined for mass/length, energy metabolism, air survival and lipid peroxidation (LPO): Elliptio complanata (EC), Eurynia dilatata (ED), Pyganodon cataracta (PC), Pyganodon species (Psp), Lasmigona costata (LC) and Dreissena bugenis (DB). The data revealed that the estimated longevity of each species was associated with mussel mass, mitochondria electron transport (MET), temperature-dependent MET but negatively related with mitochondria levels in LPO and the colonization potential. The colonization potential was derived from the scaling of MET activity and mass, which confirmed that DB mussels are more invasive than the other species followed by Psp. Resistance to air emersion was significantly associated with longevity, mass and length and mitochondria LPO. Hence, organisms with low lifetimes, mass or length with high LPO are less able to survive for longer periods in air. In conclusion, longevity and air survival was positively associated with mass and energy metabolism but negatively with oxidative damage. This study proposes key markers in identifying species more at risk to contaminant stress, decreased water levels and global warming.
Collapse
Affiliation(s)
- C André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada
| | - J F Bibeault
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada.
| |
Collapse
|
32
|
Guo X, Cai Y, Ma C, Han L, Yang Z. Combined toxicity of micro/nano scale polystyrene plastics and ciprofloxacin to Corbicula fluminea in freshwater sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147887. [PMID: 34051493 DOI: 10.1016/j.scitotenv.2021.147887] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Plastic pollution has become a global environmental threat, and its potential to affect the bioavailability and toxicity of pharmaceuticals to aquatic organism are of growing concern. However, little is known regarding the combined toxicity of micro/nano-plastics and pharmaceuticals to benthic organisms in sediments. Thus, we employed a freshwater benthic bivalve, Corbicula fluminea (C. fluminea), to investigate the individual and co-toxicity of model plastics, microscopic fluorescent polystyrene (PS) (PS nano-plastic (PS-NP) and PS micro-plastic (PS-MP), 80 nm and 6 μm, respectively) and the common antibiotic ciprofloxacin (CIP) in formulated sediments. Our results suggest that oxidative damage and neurotoxicity were confirmed to occur in C. fluminea in all the treatments. The oxidative damage in the digestive glands reduced the clam ability to scavenge free radicals, causing severe tissue damage to the digestive glands of C. fluminea. Filtration rates of C. fluminea were significantly decreased in a concentration-dependent manner across all the treatments, which might be due to the inhibition of acetylcholinesterase activities. Interactions between CIP and micro/nano-plastic were observed, whereby the presence of PS decreased the toxicity of CIP in the digestive glands but aggravated the C. fluminea siphoning inhibition rate in the nano-plastic co-treatments group; in addition, the CIP toxicity to C. fluminea decreased because that the concentration of free dissolved CIP was lowered by micro/nano-PS. Taken together, the current study could contribute greatly to evaluating the ecological risk of CIP and PS in aquatic environments and sheds light on potential issues of food safety caused by both emerging pollutants.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chuanxin Ma
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
33
|
Li Z, Feng C, Pang W, Tian C, Zhao Y. Nanoplastic-Induced Genotoxicity and Intestinal Damage in Freshwater Benthic Clams ( Corbicula fluminea): Comparison with Microplastics. ACS NANO 2021; 15:9469-9481. [PMID: 33988023 DOI: 10.1021/acsnano.1c02407] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Wen Pang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenhao Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Yue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
34
|
Álvarez-Ruiz R, Picó Y, Sadutto D, Campo J. Development of multi-residue extraction procedures using QuEChERS and liquid chromatography tandem mass spectrometry for the determination of different types of organic pollutants in mussel. Anal Bioanal Chem 2021; 413:4063-4076. [PMID: 33937920 DOI: 10.1007/s00216-021-03363-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to develop multi-residue methods for the extraction of organic pollutants in mussels (Mytilus galloprovincialis), including 11 pharmaceuticals, 5 pesticides, 5 perfluoroalkyl substances (PFASs) and 2 illicit drugs. The combination of 4 different QuEChERS methods and 12 clean-ups (a total of 44 combinations) was tested. QuEChERS included acidified (AQ), non-acidified (SQ) and their miniaturized versions. The clean-ups included 6 different conventional dispersive solid phase extraction (dSPE) plus 2 enhanced matrix removal (EMR-Lipid) and 4 SPE procedures (including sorbents focused on phospholipid removal and polymer-based). After sample analysis via HPLC-MS/MS, the three methods that provided the best results were validated in terms of linearity, accuracy, precision, sensitivity and matrix effect. The methods selected were the combination of (i) SQ and EMR-Lipid, (ii) AQ and Z-sep+ bulk-based dSPE and (iii) AQ and graphitized carbon black (GCB)-based dSPE. Recoveries at two concentration levels (50 and 500 ng/g) ranged 54-124%, 59-124% and 60-127%, respectively, and limits of quantification (LOQs) were < 30 ng/g for most analytes using any of the methods. The three methods were tested in non-spiked mussel samples purchased in local markets, but organic pollutants were not detected in any sample. However, the methods probed to successfully extract a wide range of organic pollutants families in mussel samples from the market and from bioaccumulation trials.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Ruiz
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain.
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| | - Daniele Sadutto
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| | - Julián Campo
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Naquera Road km 4.5, 46113, Moncada, Valencia, Spain
| |
Collapse
|
35
|
Multi-Biomarker Responses of Asian Clam Corbicula fluminea (Bivalvia, Corbiculidea) to Cadmium and Microplastics Pollutants. WATER 2021. [DOI: 10.3390/w13040394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most widespread aquatic organisms in the rivers and estuarine ecosystems, in the world, is Asian clam Corbiculafluminea. This clam, that can adapt to environmental changes, is an invasive species in several areas and it was adopted as a model for toxicity tests. This study evaluated the effects of the exposure to cadmium (Cd), to microplastics (MPs) and their mixtures on C. fluminea. The oxidative stress responses, lipid peroxidation (LPO), changes in the activity of energy-related enzymes and neurotoxicity were assessed on the gill, digestive gland and gonad. The results show that Cd, MPs and their mixtures cause oxidative stress, damage and neurotoxicity. The enzymes superoxide dismutase (SOD), glutathione S-transferase (GST), acetylcholinesterase (AChE) and the LPO levels could be chosen as biomarkers of Cd pollution. Exposure to MPs induced an increase in reduced/oxidized glutathione (GSH/GSSG) ratio and increased AChE activity. The combined exposure to Cd and MPs caused a synergetic effect in gill and gonad, while an antagonism response was recorded in the digestive gland. The results provide new insights for unveiling the biologic effects of heavy metal, microplastics and their mixtures on C. fluminea. Besides, we demonstrated that the Asian clam is a good bioindicator of microplastic pollution that can occur in aquatic environments.
Collapse
|
36
|
Reyna PB, Albá ML, Rodríguez FA, Gonzalez M, Pegoraro C, Hued AC, Tatián M, Ballesteros ML. What does the freshwater clam, Corbicula largillierti, have to tell us about chlorothalonil effects? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111603. [PMID: 33396123 DOI: 10.1016/j.ecoenv.2020.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CLT) is a broad spectrum, and non-systemic fungicide applied in foliar structures to prevent and treat pathogens. This compound reaches to aquatic environments and affects the biota. In this context, the main goal of this study was to assess the effects of CLT at biochemical, tissular, and individual levels of biological organization using the invasive bivalve Corbicula largillierti as a bioindicator species. Clams were exposed to different sublethal concentrations (0, 10, 20 and 50 µg. L-1 CLT) for 96 h. At biochemical level, the enzymatic activity (Glutathione-s-Transferase, Catalase, Acetyl-, Butiryl- and Carboxyl-esterases) and lipid peroxidation were measured in gills and the visceral mass. Also, the digestive gland morphometry through quantitative histological indexes was registered at the tissular level. Finally, filtering activity and burial behavior at the individual level were measured. At the highest CLT concentration, the most significant changes were observed in enzymatic activity (except for butyrylcholinesterase), lipid peroxidation and in digestive gland morphometry. It was also registered increases of the filtering activity and the latency time to burial. Most of the biomarkers assessed showed significant responses under CLT exposure. Therefore, taking into account that C. largillierti was affected by CLT, it can be expected that other species could be in a potential risk if this fungicide is present in freshwater systems.
Collapse
Affiliation(s)
- P B Reyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M L Albá
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - F A Rodríguez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - M Gonzalez
- Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, IIMyC, CONICET, (B7602AYL), Mar del Plata, Argentina
| | - C Pegoraro
- Estresores Múltiples en el Ambiente (EMA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, IIMyC, CONICET, (B7602AYL), Mar del Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CONICET, (B7602AYL), Mar del Plata, Argentina
| | - A C Hued
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina
| | - M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). Córdoba, Argentina.
| |
Collapse
|
37
|
Zhang H, Hong X, Yan S, Zha J, Qin J. Environmentally relevant concentrations of bifenthrin induce changes in behaviour, biomarkers, histological characteristics, and the transcriptome in Corbicula fluminea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138821. [PMID: 32361119 DOI: 10.1016/j.scitotenv.2020.138821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Bifenthrin (BF) is an insecticide that is commonly used to control agricultural and domestic pests and is widespread in aquatic environments. Although previous studies have found that BF is toxic to aquatic organisms, such a comprehensive study of the mechanism of toxic effects in bivalves is not common. In this study, to assess the toxic effects of BF on bivalves, adult Corbicula fluminea (C. fluminea) were exposed to 0, 1, 5, and 25 μg/L BF for 15 days. Transcriptome analysis revealed that BF exposure significantly altered the expression of genes involved in detoxification, antioxidation, and metabolism. Moreover, the ROS content and GST activity at 25 μg/L treatments were significantly increased (p < 0.05), and significant increases of MDA concentration and CAT activity were observed at 5 and 25 μg/L treatments (p < 0.05). However, AChE activity was markedly inhibited at 25 μg/L treatments (p < 0.05). In addition, vacuolation in the digestive tubules and the hemolytic infiltration of connective tissue were observed at all treatments, and the degeneration of the digestive tubule was observed at 5 and 25 μg/L treatments. In the behavioural assay, the siphoning behaviour of C. fluminea was significantly inhibited at 25 μg/L treatments (p < 0.05), whereas no significant change in burrowing behaviour was observed. Our findings suggested that BF exposure caused changes in detoxification, antioxidation, and metabolism pathways, biomarker activity or concentrations and histopathological characteristics, resulting in changes in behaviour. Therefore, our findings provide a basis for further evaluation of the toxicity of pyrethroid insecticides in bivalves.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
38
|
Li Z, Feng C, Wu Y, Guo X. Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122418. [PMID: 32193107 DOI: 10.1016/j.jhazmat.2020.122418] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
The outcomes of this research offer novel insights into the toxic effects of nanoparticles (i.e., nanoplastics or other nanomaterials) on the benthos. Herein, this study aimed to evaluate the accumulation pathway, distribution characteristics and potential biotoxicity of polystyrene nanoplastics in C. fluminea. The results revealed that nanoplastics could accumulate in the mantle through adherence, in the visceral mass through ingestion and in the gill through respiration. The gill, intestine and stomach were the main accumulation organs for nanoplastics. The aggregation of nanoplastics was observed in C. fluminea, which may exacerbate their biotoxicity. Moreover, oxidative stress was observed in the visceral mass, gill and mantle. Liver damage, neurotoxicity and intestinal inflammation were caused by imbalance in the antioxidation system. Analysis of IBR values showed that the visceral mass had a more effective response to oxidative stress than the gill and mantle after exposure to nanoplastics.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yuehan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoyu Guo
- Southern Marine Science and Engineering Guangdong Laboratory, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
39
|
Blinova I, Muna M, Heinlaan M, Lukjanova A, Kahru A. Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. NANOMATERIALS 2020; 10:nano10020328. [PMID: 32075069 PMCID: PMC7075196 DOI: 10.3390/nano10020328] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging high-tech and green energy industries due to their distinct physicochemical properties. The resulting anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric survey on existing scientific literature with the main aim of identifying the most important data gaps on Ln and Ln-based nanoparticles' toxicity to aquatic biota. We report that the most studied Ln for ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb. We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic biota and toxic effects of Ln to bottom-dwelling species).
Collapse
Affiliation(s)
- Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Marge Muna
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Aljona Lukjanova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn 12618, Estonia; (I.B.); (M.M.); (M.H.); (A.L.)
- Estonian Academy of Sciences, Tallinn 10130, Kohtu 6, Estonia
- Correspondence: ; Tel.: +372-6398373
| |
Collapse
|
40
|
Miserazzi A, Sow M, Gelber C, Charifi M, Ciret P, Dalens JM, Weber C, Le Floch S, Lacroix C, Blanc P, Massabuau JC. Asiatic clam Corbicula fluminea exhibits distinguishable behavioural responses to crude oil under semi-natural multiple stress conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105381. [PMID: 31869578 DOI: 10.1016/j.aquatox.2019.105381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems are subject to many anthropogenic disturbances, and understanding their possible impacts is a real challenge. Developing approaches based on the behaviour of bivalve mollusks, an integrating marker of the state of the organisms, and therefore of their environment, is relevant, whether within a natural ecosystem or an ecosystem subject to industrial activities. The main objective of this study was to identify by HFNI Valvometry a reliable and reproducible clam behavioural response in the presence of crude oil in a multistress context. To closely replicate actual field conditions, Corbicula fluminea was exposed in outdoor artificial streams that were subject to natural variations and were continuously fed by fresh water from the Gave de Pau (S.W. France). After a period of 26 days in these artificial streams, the clams (n = 14-16 per condition) were separately exposed for 10 days to crude oil alone, crude oil and barium, crude oil and noise pollution, crude oil and turbidity pulses, barium alone, noise pollution alone, turbidity pulses alone or natural changes alone. The secondary objective was to characterize the accumulation of polycyclic aromatic hydrocarbons (PAH) in 3 tissues (gills, adductor muscles and foot) in clams exposed for 10 days to crude oil alone or under multistress conditions (n = 5 clams per condition) and then to compare the accumulation and behaviour of clams under these conditions. The response of clams to crude oil alone or under multistress conditions was visually and statistically significant and not confounded by the other disturbances tested, despite large variations in water temperature. In the presence of crude oil, the behaviour of clams was characterized by an increase in valve-closure duration, a decrease in valve-opening amplitude and an increase in valve agitation index. In the presence of crude oil, the clam behaviour showed no direct relationship with PAH accumulation in the gills, adductor muscles or foot, although hypothetical mechanisms are discussed. This work supports the growing interest in studying the behaviour of bivalve mollusks in the context of biomonitoring of the aquatic environment surrounding oil facilities.
Collapse
Affiliation(s)
- A Miserazzi
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Sow
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - C Gelber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - M Charifi
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - P Ciret
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - J M Dalens
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - C Weber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | - P Blanc
- CSTJF, TOTAL SA, Pau, France
| | - J C Massabuau
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France.
| |
Collapse
|
41
|
Lécrivain N, Duparc A, Clément B, Naffrechoux E, Frossard V. Tracking sources and transfer of contamination according to pollutants variety at the sediment-biota interface using a clam as bioindicator in peri-alpine lakes. CHEMOSPHERE 2020; 238:124569. [PMID: 31442777 DOI: 10.1016/j.chemosphere.2019.124569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Point pollution sources may differently impact lakes littoral, possibly leading to local ecological risks. The concomitant chemical analysis of littoral-benthic organisms and sediment can provide insights into the bioavailability and thus the ecological risk of contaminants. In this study, the autochthonous Corbicula fluminea was used to assess the sources and transfer of six trace metals (TMs) and fourteen Polycyclic Aromatic Hydrocarbons (PAHs) to the littoral-benthic biota of a large lake. The contaminant concentrations spatially varied with a value scale from 1 to 280 000 times along the lake littoral in both the sediment and clams. Multiple linear regressions were performed to explain the spatial variability of Corbicula fluminea contamination by considering both watershed and in-lake sources. The concentration of the sum of PAHs in clams was significantly correlated with sediment contamination, suggesting that PAHs contamination of the benthic biota mainly occur from the sediment. Most of the internal TM concentrations of clams were significantly correlated with stormwater drainage areas in the lake watershed, highlighting the importance of stormwater runoffs in the littoral biota contamination. The transfer of TMs and PAHs was assessed through the bioconcentration factor defined as the ratio of internal and sediment concentrations. As, Cd, Cu, Zn and light molecular weight PAHs were more bioconcentrated in C. fluminea than Pb, Sn and heavy molecular weight PAHs, suggesting differences in their bioavailability. This study underlines the relevance of using autochthonous organisms as bioindicators of lake littoral biota contamination concomitantly with sediment matrices, and illustrates the challenge of tracking pollution sources in lakes.
Collapse
Affiliation(s)
- Nathalie Lécrivain
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France.
| | - Antoine Duparc
- UMR 5553 LECA, Université Savoie Mont-Blanc, 73376, Le Bourget du Lac, France
| | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | | | - Victor Frossard
- UMR 42 CARRTEL, Université Savoie Mont-Blanc, 73376, Le Bourget du Lac, France
| |
Collapse
|
42
|
Delgado-Alvarez C, Ruelas-Inzunza J, Escobar-Sánchez O, Covantes-Rosales R, Pineda-Pérez IB, Osuna-Martínez CC, Aguilar-Júarez M, Osuna-López JI, Voltolina D, Frías-Espericueta MG. Metal Concentrations in Age-Groups of the Clam, Megapitaria squalida, from a Coastal Lagoon in Mexico: A Human Health Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:822-827. [PMID: 31583423 DOI: 10.1007/s00128-019-02723-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
The present study shows the human health risk of Cd, Cu, Hg and Zn by consumption of clams Megapitaria squalida from Northwest Mexico, collected in 2013. The mean concentration for each metal in the soft tissue was: Zn > Cu > Cd > Hg; and mean values of 68.89 ± 37.59-30.36 ± 27.19, 8.77 ± 1.35-6.80 ± 0.36, 4.47 ± 0.21-3.18 ± 0.63 and 0.99 ± 0.81-0.52 ± 0.16 µg/g, respectively. Clam age was significantly negatively correlated (p < 0.05) with soft tissue Zn concentrations. For all metals there is a low level of human health risk associated with the consumption of M. squalida, but it is necessary to determine the specific characteristics of the human population of the study site.
Collapse
Affiliation(s)
- Carolina Delgado-Alvarez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras Km 3, 82199, Mazatlán, Sinaloa, Mexico
| | | | - Ofelia Escobar-Sánchez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Col Crédito Constructor, Del. Benito Juárez, 03940, Mexico City, Mexico
| | - Rodolfo Covantes-Rosales
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - Irving B Pineda-Pérez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - C Cristina Osuna-Martínez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - Marisela Aguilar-Júarez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | - J Isidro Osuna-López
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico
| | | | - Martín G Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, 82000, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
43
|
Reyna PB, Ballesteros ML, Albá ML, Bertrand L, González M, Miglioranza KSB, Tatián M, Hued AC. A multilevel response approach reveals the Asian clam Corbicula largillierti as a mirror of aquatic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:175-187. [PMID: 31344570 DOI: 10.1016/j.scitotenv.2019.07.194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The endobenthic bivalves are widely used as a bioindicators since they inhabit the sediment-water interface and are able to accumulate a different kind of contaminants. In the present work, we evaluated wild Corbicula largillierti (Phillippi, 1844) as a bioindicator of water quality in the central region of Argentina. The responses at different levels of the biological organization were used. We measured organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) levels in water and clams tissues. The biomarkers selected were enzymatic activities (Glutathione S-Transferase, Catalase, Acetyl-, Butyryl-cholinesterase, and Carboxylesterase) morphometry of the digestive gland, condition index and morphology of valves. In order to integrate all the responses a multivariate analysis and integrated stress index were applied. Our results showed the presence of contaminants along the studied river and the ability of C. largillierti to bioaccumulate them. All the biomarkers selected varied according to the water quality gradient, although there was no specific correlation with OCPs and PCBs levels. At the most polluted sites, the detoxification and oxidative stress enzymes, the morphometric analysis of the digestive gland and the variation in the morphology of the valves indicated the water quality degradation. The multivariate analyses allowed to discriminate the sites according to the different biomarker responses. The IBR index also showed a variation pattern according to the environmental quality gradient along the basin. According to the responses shown by C. largillierti we suggest this species as an useful bioindicator of aquatic pollution.
Collapse
Affiliation(s)
- P B Reyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Albá
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - L Bertrand
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica e Inmunología, CONICET, Córdoba, Argentina
| | - M González
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - K S B Miglioranza
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - M Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - A C Hued
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
44
|
do Amaral QDF, Da Rosa E, Wronski JG, Zuravski L, Querol MVM, Dos Anjos B, de Andrade CFF, Machado MM, de Oliveira LFS. Golden mussel (Limnoperna fortunei) as a bioindicator in aquatic environments contaminated with mercury: Cytotoxic and genotoxic aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:343-353. [PMID: 31030141 DOI: 10.1016/j.scitotenv.2019.04.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the Limnoperna fortunei (golden mussel) as a bioindicator of cytotoxicity and genotoxicity in aquatic environments contaminated by heavy metals. Five groups of 50 subjects each were exposed to different concentration of mercuric chloride (HgCl2) (0.001 mg/L, group I; 0.005 mg/L, group II; 0.01 mg/L, group II; 0.02 mg/L, group IV; and 0.1 mg/L, group V). The control group for both chronic and acute treatment did not receive HgCl2. For chronic exposure, the respective groups were placed in aquaria with water contaminated with the above concentrations of HgCl2. For acute exposure, the different concentrations of HgCl2 were injected into the posterior adductor muscle of the individuals belonging to the aforementioned groups. The biological matrix used in the tests was the whole body muscle. Tests (cell viability assay, alkaline comet test; enumeration of micronuclei and necrotic cells, quantification of Hg content in tissues and water, and histopathological analysis of tissues), were carried out on the 7th, 15th, and 30th treatment days or 2 h after injection. Our results demonstrated that L. fortunei showed cell damage in both chronic and acute exposure groups. Significant DNA damage was observed at both the 15th (0.1 mg/L) and 30th (0.01-0.1 mg/L) days of chronic exposure. However, in acute treatment all concentrations induced DNA breaks. The presence of necrosis increased at all concentrations tested for both acute and chronic exposure. Tissue mercury retention on the 15th day was higher than on the 30th day of exposure, while in the same period, there was a decrease in the mercury content of aquarium water. Taking the data together, it is concluded that L. fortunei as a possible bioindicator of the quality of aquatic environments.
Collapse
Affiliation(s)
| | - Emanoeli Da Rosa
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Júlia Gabriela Wronski
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | - Luísa Zuravski
- Graduate Program in Biochemistry, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Bruno Dos Anjos
- Veterinary Pathology Laboratory, HUVET, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | | - Michel Mansur Machado
- Graduate Program in Pharmaceutical Sciences, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Brazil
| | | |
Collapse
|
45
|
Fernando A, Mako TL, Levenson AM, Cesana PT, Mendieta AM, Racicot JM, DeBoef B, Levine M. A polycationic pillar[5]arene for the binding and removal of organic toxicants from aqueous media. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1632457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ashvin Fernando
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Teresa L. Mako
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Paul T. Cesana
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
46
|
Li D, Wang J, Pi J, Yu J, Zhang T. Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14951-14961. [PMID: 30919194 DOI: 10.1007/s11356-019-04931-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, we analyzed the concentrations of metals in sediments and Corbicula fluminea in China's Dongting Lake to assess the suitability of C. fluminea as an effective biomonitor of metal contamination in sediments and food safety. We analyzed the biota-accumulation capacity by calculating the biota-sediment accumulation factor (BSAF) and assessed the potential human health risk of metals exposure via consumption of C. fluminea using the target hazard quotient (THQ) and total target hazard quotient (TTHQ). The results showed that the average concentrations of As (31.93 mg kg-1), Cd (5.54 mg kg-1), Cr (105.50 mg kg-1), Cu (32.53 mg kg-1), and Zn (207.89 mg kg-1) in sediments were higher than their respective standard set by the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. The sediment metals, which were mainly anthropogenic in origin, were at high levels and pose a relatively high ecological risk. Cadium (Cd) showed very high potential ecological risk levels and should be included in the prior pollutants list in the studied area. The mean levels of As (0.81 mg kg-1) in C. fluminea were 1.62-times higher than that set by the National Health Commission of the People's Republic of China. BSAF values of the soft tissues of C. fluminea were between 0.05 and 2.14, with higher values for Cu (2.14), Cd (1.77), Zn (1.60), and Ni (1.27). Soft tissues of C. fluminea were able to reflect spatial differences in Sr within sediments around Dongting Lake. The results indicated that C. fluminea could be an potential biomonitor for sediment metals assessment in biomonitoring programs, especially for Cu, Cd, Zn, Ni, and Sr. The mean values for THQ and TTHQ of all the analyzed metals were below 1.0, indicating that the intake of metals via comsumption of C. fluminea does not result in an appreciable risk to human health.
Collapse
Affiliation(s)
- Deliang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jian Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jie Pi
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jianbo Yu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
47
|
Bonnail E, Macías F, Osta V. Ecological improvement assessment of a passive remediation technology for acid mine drainage: Water quality biomonitoring using bivalves. CHEMOSPHERE 2019; 219:695-703. [PMID: 30557726 DOI: 10.1016/j.chemosphere.2018.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
A passive treatment plant, located in the Iberian Pyrite Belt (Huelva, Southwest Spain), was designed for acid mine drainage remediation. Since its installation, the improvement of water quality in terms of hydrochemical composition has been demonstrated successfully. However, according to the Water Framework Directive, the treated effluent must have ecological values for potential living. The freshwater clam Corbicula fluminea was chosen to carry out bioassessments (survival, biomarker responses, and metal bioaccumulation in soft tissue) with effluents from the mining site, as well as, products from the passive treatment plant in order to determine the level of quality of that water from the biological point of view in toxicity tests. Results discarded mortality as endpoint for biomonitoring purposes. Only the lipid peroxidation of the cell membrane evidenced significant responses, even in correlation with the pollution degree of each effluent. Regarding bioaccumulation, some elements displayed a strong relationship (Fe, Cu, Co, and Zn) between concentrations in the environment and in the tissue. As final conclusion, the usage of the Asian clam was validated as biomonitor tool in short term exposure to acid mine drainage, and, as early warning responses (72 h), the chosen parameters would be lipid peroxidation and bioaccumulation of a specific set of elements (Fe, Cu, Co, Zn). Ecological water quality levels reached by the passive treatment plant were in agreement with the efficiency of hydrochemical improvements.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), University of Atacama, Chile.
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Campus "El Carmen", 21071, Huelva, Spain.
| | - Victoria Osta
- UNESCO UNITWIN/WiCop Department of Physical-Chemistry, University of Cádiz, Campus Río de San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
48
|
Medas D, Carlomagno I, Meneghini C, Aquilanti G, Araki T, Bedolla DE, Buosi C, Casu MA, Gianoncelli A, Kuncser AC, Adrian Maraloiu V, De Giudici G. Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments: a case study in the Malfidano mining area (SW Sardinia, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36645-36660. [PMID: 30377963 DOI: 10.1007/s11356-018-3504-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0-80 mg/kg of Zn, 5.4-60 mg/kg of Fe and 0.5-4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.
Collapse
Affiliation(s)
- Daniela Medas
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy.
| | - Ilaria Carlomagno
- Department of Sciences, University of Roma Tre, Rome, Italy
- Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy
| | | | | | - Tohru Araki
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Oxfordshire, Didcot, UK
| | | | - Carla Buosi
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta Casu
- UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia POLARIS, Institute of Translational Pharmacology, Pula, Italy
| | | | - Andrei C Kuncser
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele, Romania
| | - V Adrian Maraloiu
- Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele, Romania
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
49
|
Bonnail E, Cunha Lima R, Bautista-Chamizo E, Salamanca MJ, Cruz-Hernández P. Biomarker responses of the freshwater clam Corbicula fluminea in acid mine drainage polluted systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1659-1668. [PMID: 30064871 DOI: 10.1016/j.envpol.2018.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The environmental quality of an acid mine drainage polluted river (Odiel River) in the Iberian Pyrite Belt (SW Spain) was assessed by combining analyses of biomarkers (DNA strand breaks, LPO, EROD, GST, GR, GPx) in freshwater clams (Corbicula fluminea) exposed during 14 days and correlated with metal(loid) environmental concentrations. Results pointed that enzymatic systems are activated to combat oxidative stress in just 24 h. Along exposure, there were homeostatic regulations with the glutathione activity that influenced in lipid peroxidation oscillations, provoking significant DNA strand damage after 14 exposure days. EROD activity showed no changes throughout the exposure period. The Asian clam displayed balance biomarkers of exposure-antioxidant activity under non-stressfully environments; meanwhile, when was introduced into acid polymetallic environments, such as the acid mine drainage, its enzymatic activity was displaced towards biomarkers of effect and the corresponding antioxidant activity.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile.
| | - Ricardo Cunha Lima
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile
| | | | - María José Salamanca
- Departamento de Química-Física, Universidad de Cádiz, CP 11510, Puerto Real, Cádiz, Spain
| | - Pablo Cruz-Hernández
- Department of Earth Sciences, University of Huelva, Campus 'El Carmen', Huelva, E-21071, Spain; Department of Mining Egineering, University of Chile, FCFM, Santiago, Chile
| |
Collapse
|
50
|
Ke Y, Wang WX. Metal accumulation, growth and reproduction of razor clam Sinonovacula constricta transplanted in a multi-metal contaminated estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:829-837. [PMID: 29727849 DOI: 10.1016/j.scitotenv.2018.04.338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
In recent years, elevated metal discharges have seriously affected the health of many estuarine ecosystems in China. This study examined the influences of metal pollution on the growth and reproduction of razor clam, Sinonovacula constricta. An eight-month field experiment was conducted at two sites with different contamination levels in Jiulong River Estuary of Southern China. Concentrations of Ag, As, Cd, Cr, Cu, Ni, Pb and Zn in seawater, suspended particles, surface sediments, and clams, as well as the clam growth and gonad condition were simultaneously determined on a monthly basis. Over the 8-month period, Ag, Cu and Ni concentrations in the clams were significantly higher at the more polluted site, whereas the concentrations of other metals were rather comparable between the two sites. Comparison of the 8-month pattern of metal concentrations among different compartments suggested that Ag, As, Cd, Cu and Zn bioaccumulation in the clams was mainly derived from ingestion of suspended particles, whereas Cr and Ni accumulation was mainly from the waterborne uptake. The growth of clams in the more polluted site was depressed and there was no significant growth after 4 months of transplantation, which was mainly caused by Cu and Ag accumulation in the clam tissues. Correspondingly, the gonad somatic index was also lower at the more polluted site. Our study demonstrated a significant impact of multi-metal pollution on the growth and reproduction of clams in an estuary. Simultaneous measurements of metal bioaccumulation were important for the interpretation of metal toxicity observed in the field.
Collapse
Affiliation(s)
- Yizhou Ke
- College of Ocean and Earth Sciences and Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Xiong Wang
- College of Ocean and Earth Sciences and Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China; Marine Environmental Laboratory (MEL), HKUST Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|