1
|
Ecke F, Golovko O, Hörnfeldt B, Ahrens L. Trophic fate and biomagnification of organic micropollutants from staple food to a specialized predator. ENVIRONMENTAL RESEARCH 2024; 261:119686. [PMID: 39067798 DOI: 10.1016/j.envres.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The environmental burden of organic micropollutants has been shown in aquatic ecosystems, while trophic fate of many compounds in terrestrial food chains remains highly elusive. We therefore studied concentrations of 108 organic micropollutants in a common European mammal, the bank vole (Clethrionomys glareolus), and 82 of the compounds in a specialized predator, Tengmalm's owl (Aegolius funereus) relying to >90 % on voles as its prey. We studied compounds in whole voles (n = 19), pools of 4-8 bank voles (npools = 4), owl blood (n = 10) and in owl eggs (n = 10) in two regions in Sweden. For comparison, we also included previously published data on 23 PFAS (per- and polyfluoroalkyl substances) in bank vole liver (npools = 4) from the same regions. In voles, concentrations of the organic micropollutants caffeine (maxIndividual 220 ng/g ww) and DEET (N,N-diethyl-m-toluamide) (maxPool 150 ng/g ww) were 2-200 times higher in voles relative to owl blood and eggs. Conversely, concentrations of nicotine, oxazepam, salicylic acid, and tributyl citrate acetate were 1.3-440 times higher in owls. Several PFAS showed biomagnification in owls as revealed by maximum biomagnification factors (BMFs); PFNA (perfluorononanoate) BMF = 5.6, PFTeDA (perfluorotetradecanoic acid) BMF = 5.9, and PFOS (perfluorooctane sulfonate) BMF = 6.1. Concentrations of organic micropollutants, alongside calculated BMFs, and Tengmalm's owl's heavy reliance on bank vole as staple food, suggest, despite small sample size and potential spatio-temporal mismatch, accumulation of PFAS (especially PFNA, PFTeDA, and PFOS) in owls and biomagnification along the food chain. Concentrations of PFAS in owl eggs (e.g., 21 ng/g ww PFOS) highlight the likely pivotal role of maternal transfer in contaminant exposure for avian embryos. These concentrations are also of concern considering that certain predators frequently consume owl eggs, potentially leading to additional biomagnification of PFAS with yet undetermined consequences for ecosystem health.
Collapse
Affiliation(s)
- Frauke Ecke
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, FIN-00014, University of Helsinki, Finland; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE- 750 07, Uppsala, Sweden
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE- 750 07, Uppsala, Sweden
| |
Collapse
|
2
|
Remili A, McKinney MA, Maldonado-Rodriguez A, Ferguson SH, Caputo M, Kiszka JJ. Legacy persistent organic pollutants among multiple cetacean species in the Northwest Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176746. [PMID: 39378935 DOI: 10.1016/j.scitotenv.2024.176746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
The historical contamination of eastern Canadian shelf waters remains an ongoing concern, predominantly stemming from anthropogenic discharges in the Great Lakes region. Although legacy persistent organic pollutants (POPs) were banned decades ago, it remains unclear whether their concentrations have sufficiently decreased to safer levels in cetaceans that feed in the continental shelf waters of the northwestern Atlantic. This study compares polychlorinated biphenyl (PCB) and organochlorine pesticide (OC) accumulation in six cetacean species sampled in the Northwest Atlantic from 2015 to 2022. We assessed the influence of relative trophic level and foraging habitat preferences on POP accumulations among species using stable isotopes and fatty acids as dietary tracers. We further identified the species most susceptible to the effects of these contaminants. Killer whales (Orcinus orca) exhibited the highest PCB (∼100 mg/kg lw) and OC concentrations, followed by other odontocetes, with lowest concentrations in mysticetes. Stable isotope analysis revealed an unexpected lack of correlation between δ15N values and contaminant levels. However, there was a positive correlation between δ13C values and POP concentrations. Cetaceans foraging on pelagic prey species, as indicated by elevated proportions of the FA markers 22:1n11 and 20:1n9, had lower contaminant loads compared to cetaceans with benthic/coastal FA signatures. PCB and DDT (dichlorodiphenyltrichloroethane) concentrations are lower now in most cetacean species than in the 1980s and 1990s, likely due to regulatory measures restricting their production and use. Although current PCB concentrations for most species are under the thresholds for high risks of immune and reproductive failure, concentrations in killer whales exceed all established toxicity thresholds, underscoring the need for further action to reduce sources of these contaminants to the continental shelf waters of the northwestern Atlantic.
Collapse
Affiliation(s)
- Anaïs Remili
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ambar Maldonado-Rodriguez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Michelle Caputo
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
3
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
4
|
Echeveste P, Galbán-Malagón C, Dachs J, Agustí S. Airborne organic pollutants impact microbial communities in temperate and Antarctic seawaters. CHEMOSPHERE 2024; 364:143085. [PMID: 39146985 DOI: 10.1016/j.chemosphere.2024.143085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Airborne Organic Pollutants (AOPs) reach remote oceanic regions after long range atmospheric transport and deposition, incorporating into natural microbial communities. This study investigated the effects of AOPs on natural microbial communities of the Mediterranean Sea, the Atlantic Ocean and the Bellingshausen Sea, by assessing the impact of both non-polar and polar AOPs on cell abundances, chlorophyll a concentrations and cell viabilities of different microbial groups. Our results indicate that almost all groups, except flagellates in the Bellingshausen Sea, were significantly affected by AOPs. While no significant differences in chlorophyll a concentrations were observed between non-polar and polar AOPs, significant variations in cell abundances were noted. Cell death occurred at AOP concentrations as low as five times the oceanic field levels, likely due to their high chemical activity. Cyanobacteria in temperate waters exhibited the highest sensitivity to AOPs, whereas medium and larger diatoms in the Bellingshausen Sea were more affected than smaller diatoms or flagellates, contrary to the expected size-related sensitivity trend. Additionally, microorganisms in temperate waters were more sensitive to the polar fraction of AOPs compared to the non-polar fraction, which showed an inverse sensitivity pattern. This differential sensitivity is attributed to variations in the ratio of polar to non-polar AOPs in the respective environments. Our findings underscore the varying impacts of AOPs on marine microbial communities across different oceanic regions.
Collapse
Affiliation(s)
- Pedro Echeveste
- Departamento de Biología, Facultad de Ciencias, Universidad de las Islas Baleares. Palma, Spain.
| | - Cristóbal Galbán-Malagón
- Centro de Genómica Ecología y Medio Ambiente, Universidad Mayor. Santiago, Chile; Institute of Environment, Florida International University, Miami, United States of America
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC. Barcelona, Spain
| | - Susana Agustí
- Red Sea Research Center, King Abdullah University of Science and Technology. Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Andvik C, Jourdain E, Borgen A, Lyche JL, Karoliussen R, Haug T, Borgå K. Intercorrelations of Chlorinated Paraffins, Dechloranes, and Legacy Persistent Organic Pollutants in 10 Species of Marine Mammals from Norway, in Light of Dietary Niche. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14797-14811. [PMID: 39120259 PMCID: PMC11339914 DOI: 10.1021/acs.est.4c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
Collapse
Affiliation(s)
- Clare Andvik
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
| | - Eve Jourdain
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
- Norwegian
Orca Survey, Breivikveien 10, Andenes NO-8480, Norway
| | - Anders Borgen
- Department
of Environmental Chemistry, NILU: The Climate
and Environmental Research Institute, Pb 100, Kjeller NO-2027, Norway
| | - Jan Ludvig Lyche
- Department
of Food Safety and Infection Biology, Norwegian
University of Life Sciences, Pb 5003, Ås NO-1432, Norway
| | | | - Tore Haug
- Institute
of Marine Research, Fram Centre, Pb 6606 Stakkevollan, Tromsø NO-9296, Norway
| | - Katrine Borgå
- Department
of Biosciences, University of Oslo, Pb 1066 Blindern, Oslo NO-0316, Norway
| |
Collapse
|
6
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Torget V, Bernhoft A, Hb Müller M, Polder A, Viljugrein H, Madslien K, Ludvig Lyche J. The red listed eagle owl (Bubo bubo) population in Norway is exposed to POP levels exceeding threshold values for adverse health effects. ENVIRONMENT INTERNATIONAL 2024; 186:108650. [PMID: 38613936 DOI: 10.1016/j.envint.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The eagle owl (Bubo bubo) population in Norway is today classified as critically endangered on the red list of endangered species. Because previous studies have detected high concentrations of Persistent Organic Pollutants (POPs) in birds of prey, concerns have been raised whether POPs exposure are a significant factor to the substantial decline of the eagle owl population. The aims of this study were to measure the levels of POPs in eagle owls and to assess whether POPs may represent a potential health risk. POPs were analysed in liver samples from 100 eagle owls collected between 1994 and 2014. The concentrations of POPs were generally very high and individual birds had levels among the highest measured worldwide. The contaminant groups analysed were highly correlated (p < 0.0001). The concentrations of sum of Polychlorinated Biphenyls (∑PCB) exceeded the threshold value from moderate to severe health risk in 90% of the birds. The birds with cachectic or lean body condition had significantly higher levels of contaminants than those with higher body condition scores. No significant temporal or spatial trends were noted. The lack of temporal trends, suggest that the downward trend of POPs, appear to be levelling off. The lack of differences between inland and coastal regions suggest that the risk of exposure may be comparable between predatory birds feeding in marine or terrestrial food webs. The significantly higher POPs levels detected in individuals with poor body condition may be due to reduced fat stores and thereby higher concentration in the remaining fat and/or the weight loss could be induced by toxic effects. The high proportion of birds exceeding the threshold values for severe and high risk of adverse effects, suggest that the high contamination load may reduce the eagle owl's fitness and survival and, thus, contribute to decline of the eagle owl population.
Collapse
Affiliation(s)
- Vidar Torget
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Aksel Bernhoft
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Mette Hb Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | | | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
8
|
Cai QL, Huang CY, Tong L, Zhong N, Dai XR, Li JR, Zheng J, He MM, Xiao H. Sampling efficiency of a polyurethane foam air sampler: Effect of temperature. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100327. [PMID: 37908224 PMCID: PMC10613919 DOI: 10.1016/j.ese.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants (POPs). This task, particularly challenging in polar regions due to low air concentrations and temperature fluctuations, requires robust sampling techniques. Furthermore, the influence of temperature on the sampling efficiency of polyurethane foam discs remains unclear. Here we employ a flow-through sampling (FTS) column coupled with an active pump to collect air samples at varying temperatures. We delved into breakthrough profiles of key pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), and organochlorine pesticides (OCPs), and examined the temperature-dependent behaviors of the theoretical plate number (N) and breakthrough volume (VB) using frontal chromatography theory. Our findings reveal a significant relationship between temperature dependence coefficients (KTN, KTV) and compound volatility, with decreasing values as volatility increases. While distinct trends are noted for PAHs, PCBs, and OCPs in KTN, KTV values exhibit similar patterns across all chemicals. Moreover, we establish a binary linear correlation between log (VB/m3), 1/(T/K), and N, simplifying breakthrough level estimation by enabling easy conversion between N and VB. Finally, an empirical linear solvation energy relationship incorporating a temperature term is developed, yielding satisfactory results for N at various temperatures. This approach holds the potential to rectify temperature-related effects and loss rates in historical data from long-term monitoring networks, benefiting polar and remote regions.
Collapse
Affiliation(s)
- Qiu-Liang Cai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Ecological Environment Analysis and Pollution Control in Western Guangxi Region, College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Cen-Yan Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Lei Tong
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ning Zhong
- Minnan Normal University, Zhangzhou, 363000, China
| | - Xiao-Rong Dai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jian-Rong Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Jie Zheng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Meng-Meng He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
9
|
Reiersen LO, Vorkamp K, Kallenborn R. The role of the Arctic Monitoring and Assessment Programme (AMAP) in reducing pollution of the Arctic and around the globe. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100302. [PMID: 37731838 PMCID: PMC10507581 DOI: 10.1016/j.ese.2023.100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023]
Abstract
This article presents the initiation and implementation of a systematic scientific and political cooperation in the Arctic related to environmental pollution and climate change, with a special focus on the role of the Arctic Monitoring and Assessment Programme (AMAP). The AMAP initiative has coordinated monitoring and assessments of environmental pollution across countries and parameters for the entire Arctic region. Starting from a first scientific assessment in 1998, AMAP's work has been fundamental in recognizing, understanding and addressing environmental and human health issues in the Arctic, including those of persistent organic pollutants (POPs), mercury, radioactivity, oil, acidification and climate change. These scientific results have contributed at local and international levels to define and take measures towards reducing the pollution not only in the Arctic, but of the whole globe, especially the contaminant exposure of indigenous and local communities with a traditional lifestyle. The results related to climate change have documented the rapid changes in the Arctic and the strong feedback between the Arctic and the rest of the world. The lessons learned from the work in the Arctic can be beneficial for other regions where contaminants may accumulate and affect local and indigenous peoples living in a traditional way, e.g. in the Himalayas. Global cooperation is indispensable in reducing the long-range transported pollution in the Arctic.
Collapse
Affiliation(s)
- Lars-Otto Reiersen
- Arctic Knowledge Ltd, Former Executive Secretary, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Roland Kallenborn
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy (PA), Harbin Institute of Technology, Harbin, PR China
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
- University of the Arctic (UArctic), Rovaniemi, Finland
| |
Collapse
|
10
|
Wang W, Zheng H, Huang P, Ye J, Liu M, Lin Y, Li Y, Chen M, Ke H, Cai M. Can water dating trace the transport history of HCHs in the ocean? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166227. [PMID: 37574073 DOI: 10.1016/j.scitotenv.2023.166227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Long-range atmospheric and oceanic transport play a crucial role in the accumulation of persistent organic pollutants (POPs), including hexachlorocyclohexanes (HCHs), in the Arctic Ocean. Herein, transient tracers, specifically chlorofluorocarbon-12 and sulfur hexafluoride, were used to determine the ventilation time of HCHs. Results revealed that dissolved HCHs can penetrate to a depth of ~500 m in the western Arctic Ocean, corresponding to water masses with a mean age of 45 ± 14 years. The average long-range transport time for α-HCH from initial atmospheric release to entering the western Arctic Ocean was estimated to be >30 ± 5 years, indicating continued moderate to high ecological risks from HCHs in the Arctic. This study demonstrates that transient tracers serve as effective water dating tools to elucidate the transport history of stable POPs in the ocean, contributing to a better understanding of their environmental characteristics and fate.
Collapse
Affiliation(s)
- Weimin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Ningbo 315000, China
| | - Haowen Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiandong Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifan Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mian Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Boldrocchi G, Villa B, Monticelli D, Spanu D, Magni G, Pachner J, Mastore M, Bettinetti R. Zooplankton as an indicator of the status of contamination of the Mediterranean Sea and temporal trends. MARINE POLLUTION BULLETIN 2023; 197:115732. [PMID: 37913563 DOI: 10.1016/j.marpolbul.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Zooplankton has been intensively used as bioindicators of water pollution at global level, however, only few comprehensive studies have been conducted from the Mediterranean Sea and manly dated back to the 1970s. To redress the urgent need for updated data, this study provides information on the presence and levels of contaminants in zooplankton from the Tyrrhenian Sea. Although banned, both PCBs (46.9 ± 37.2 ng g-1) and DDT (8.9 ± 10.7 ng g-1) are still present and widespread, but their contamination appears to be a local problem and to be declining over the past 50 years. Zooplankton accumulates high levels of certain TEs, including Zn (400 ± 388 ppm) and Pb (35.3 ± 45.5 ppm), but shows intermediate concentrations of other TEs, including Cd (1.6 ± 0.9 ppm) and Hg (0.1 ± 0.1 ppm), comparing with both strongly polluted and more pristine marine habitats, which may reflect a general improvement.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy.
| | - B Villa
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - D Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - G Magni
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - J Pachner
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - M Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| |
Collapse
|
12
|
Lee JD, Chiou TH, Zhang HJ, Chao HR, Chen KY, Gou YY, Huang CE, Lin SL, Wang LC. Persistent Halogenated Organic Pollutants in Deep-Water-Deposited Particulates from South China Sea. TOXICS 2023; 11:968. [PMID: 38133369 PMCID: PMC10748163 DOI: 10.3390/toxics11120968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
POP data are limited in the marine environment; thus, this study aimed to investigate background persistent organic pollutant (POP) levels in oceanic deep-water-deposited particulates in the South China Sea (SCS). Six POPs, including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs), polychlorinated diphenyl ethers (PCDEs), and polybrominated biphenyls (PBBs), were investigated in eight pooled samples from the SCS from 20 September 2013 to 23 March 2014 and 15 April 2014 to 24 October 2014 at depths of 2000 m and 3500 m. PBDEs were the most predominant compounds, with the highest mean Σ14PBDE of 125 ± 114 ng/g dry weight (d.w.), followed by Σ17PCDD/F, Σ12PBDD/F, and Σ12DL-PCB (275 ± 1930, 253 ± 216, and 116 ± 166 pg/g d.w., respectively). Most PBDD/F, PBB, and PCDE congeners were below the detection limits. PCDDs had the highest toxic equivalency (TEQ), followed by PBDDs and DL-PCBs. Among the six POPs, PBDEs were the major components of the marine-deposited particles, regarding both concentrations and mass fluxes. Compared to 3500 m, PBDE levels were higher at a depth of 2000 m. PBDE mass fluxes were 20.9 and 14.2 ng/m2/day or 68.2 and 75.9 ng/m2/year at deep-water 2000 and 3500 m, respectively. This study first investigated POP levels in oceanic deep-water-deposited particles from existing global data.
Collapse
Affiliation(s)
- Jia-De Lee
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hong-Jie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
- Center for Agricultural, Forestry, Fishery, Livestock and Aquaculture Carbon Emission Inventory and Emerging Compounds, General Research Service Center, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Safety and Health, Faculty of Public Health, Universitas Airlangga, Kampus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Kuang-Yu Chen
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung 852, Taiwan;
| | - Yan-You Gou
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan; (J.-D.L.); (Y.-Y.G.)
| | - Chien-Er Huang
- Department of Mechanical Engineering, Institute of Mechanical Engineering, Cheng Shiu University, Niaosong District, Kaohsiung 833, Taiwan;
- Super Micro Mass Research & Technology Center, Cheng Shiu University, Niaosong District, Kaohsiung 833, Taiwan
| | - Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Nanzih District, Kaohsiung 81157, Taiwan
| |
Collapse
|
13
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
14
|
Sonne C, Jenssen BM, Rinklebe J, Lam SS, Hansen M, Bossi R, Gustavson K, Dietz R. EU need to protect its environment from toxic per- and polyfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162770. [PMID: 36906028 DOI: 10.1016/j.scitotenv.2023.162770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The Environmental Protection Agencies (EPAs) of Denmark, Sweden, Norway, Germany and the Netherlands submitted a proposal to the European Chemical Agency (ECHA) in February 2023 calling for a ban in the use of toxic industrial chemicals per- and polyfluoroalkyl substances (PFAS). These chemicals are highly toxic causing elevated cholesterol, immune suppression, reproductive failure, cancer and neuro-endocrine disruption in humans and wildlife being a significant threat to biodiversity and human health. The main reason for the submitted proposal is recent findings of significant flaws in the transition to PFAS replacements that is leading to a widespread pollution. Denmark was the first country banning PFAS, and now other EU countries support the restrictions of these carcinogenic, endocrine disruptive and immunotoxic chemicals. The proposed plan is among the most extensive received by the ECHA for 50 years. Denmark is now the first EU country to initiate the establishment of groundwater parks to try and protect its drinking water. These parks are areas free of agricultural activities and nutritious sewage sludge to secure drinking water free of xenobiotic including PFAS. The PFAS pollution also reflects the lack of comprehensive spatial and temporal environmental monitoring programs in the EU. Such monitoring programs should include key indicator species across ecosystems of livestock, fish and wildlife, to facilitate detection of early ecological warning signals and sustain public health. Simultaneously with inferring a total PFAS ban, the EU should also push for more persistent, bioaccumulative and toxic (PBT) PFAS substances to be listed on the Stockholm Convention (SC) Annex A such as PFOS (perfluorooctane sulfonic acid) that is currently listed on the SCs Annex B. The combination of these regulative restrictions combined with groundwater parks and pan-European biomonitoring programs, would pave the way forward for a cleaner environment to sustain health across the EU.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Department of Ecoscience, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Bjørn M Jenssen
- Aarhus University, Department of Ecoscience, Roskilde, Denmark; Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Wuppertal, Germany
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Kim Gustavson
- Aarhus University, Department of Ecoscience, Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Roskilde, Denmark
| |
Collapse
|
15
|
Li K, Naviaux JC, Lingampelly SS, Wang L, Monk JM, Taylor CM, Ostle C, Batten S, Naviaux RK. Historical biomonitoring of pollution trends in the North Pacific using archived samples from the Continuous Plankton Recorder Survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161222. [PMID: 36584956 DOI: 10.1016/j.scitotenv.2022.161222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
First started in 1931, the Continuous Plankton Recorder (CPR) Survey is the longest-running and most geographically extensive marine plankton sampling program in the world. This pilot study investigates the feasibility of biomonitoring the spatiotemporal trends of marine pollution using archived CPR samples from the North Pacific. We selected specimens collected from three different locations (British Columbia Shelf, Northern Gulf of Alaska, and Aleutian Shelf) in the North Pacific between 2002 and 2020. Comprehensive profiling of the plankton chemical exposome was conducted using liquid and gas chromatography coupled with tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Our results show that phthalates, plasticizers, persistent organic pollutants (POPs), pesticides, pharmaceuticals, and personal care products were present in the plankton exposome, and that many of these pollutants have decreased in amount over the last two decades, which was most pronounced for tri-n-butyl phosphate. In addition, the plankton exposome differed significantly by regional human activities, with the most polluted samples coming from the nearshore area. Exposome-wide association analysis revealed that bioaccumulation of environmental pollutants was highly correlated with the biomass of different plankton taxa. Overall, this study demonstrates that exposomic analysis of archived samples from the CPR Survey is effective for long-term biomonitoring of the spatial and temporal trends of environmental pollutants in the marine environment.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Neurosciences, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Sai Sachin Lingampelly
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Claire M Taylor
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Clare Ostle
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), Sidney, BC V8L 4B2, Canada
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| |
Collapse
|
16
|
Andvik C, Haug T, Lyche JL, Borgå K. Emerging and legacy contaminants in common minke whale from the Barents sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121001. [PMID: 36610650 DOI: 10.1016/j.envpol.2023.121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Persistent organic pollutants (POPs), including brominated flame retardants (BFRs), perfluoroalkyl substances (PFAS) and metals, can accumulate in marine mammals and be transferred to offspring. In this study, we analyzed 64 lipophilic POPs, including four emerging BFRs, in the blubber, liver and muscle of 17 adult common minke whales (Balaenoptera acutorostrata) from the Barents Sea to investigate occurrence and tissue partitioning. In addition, the placental transfer concentration ratios of 14 PFAS and 17 metals were quantified in the muscle of nine female-fetus pairs to investigate placental transfer. Legacy lipophilic POPs were the dominating compound group in every tissue, and we observed generally lower levels compared to previous studies from 1992 to 2001. We detected the emerging BFRs hexabromobenzene (HBB) and pentabromotoluene (PBT), but in low levels compared to the legacy POPs. We detected nine PFAS, and levels of perfluorooctane sulfonate (PFOS) were higher than detected from the same population in 2011, whilst levels of Hg were comparable to 2011. Levels of lipophilic contaminants were higher in blubber compared to muscle and liver on both a wet weight and lipid adjusted basis, but tissue partitioning of the emerging BFRs could not be determined due to the high number of samples below the limit of detection. The highest muscle ΣPFAS levels were quantified in fetuses (23 ± 8.7 ng/g ww), followed by adult males (7.2 ± 2.0 ng/gg ww) and adult females (4.5 ± 1.1 ng/g ww), showing substantial placental transfer from mother to fetus. In contrast, Hg levels in the fetus were lower than the mother. Levels were under thresholds for risk of health effects in the whales. This study is the first to report occurrence and placental transfer of emerging contaminants in common minke whales from the Barents Sea, contributing valuable new data on pollutant levels in Arctic wildlife.
Collapse
Affiliation(s)
- Clare Andvik
- Department of Biosciences, University of Oslo, NO-0316, Oslo, Norway
| | - Tore Haug
- Institute of Marine Research, Fram Centre, PO Box 6606, Stakkevollan, NO-9296, Tromsø, Norway
| | - Jan L Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, NO-0316, Oslo, Norway.
| |
Collapse
|
17
|
Bianchini K, Mallory ML, Provencher JF. Trends in hepatic cadmium concentrations in marine bird species from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159959. [PMID: 36343822 DOI: 10.1016/j.scitotenv.2022.159959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a trace element of toxicological concern that has been monitored in marine birds inhabiting the Canadian Arctic since 1975. Despite nearly 50 years of monitoring, research to date has largely evaluated single species, locations, or time points, and there is as of yet no holistic overview that jointly considers all available Cd data. We addressed this information gap by combining and analyzing most of the existing data on hepatic Cd concentrations in marine birds from the Canadian Arctic. Using data collected between 1975 and 2018 from eight seabird species from 12 Arctic breeding colonies, we examined temporal, spatial, and interspecific variation in hepatic Cd levels, and we evaluated possible drivers of marine bird Cd loads. Hepatic Cd concentrations ranged from 1.6 to 124 μg/g dry weight across species, and were highest in thick-billed murres (Uria lomvia) and king eiders (Somateria spectabilis), and lowest in black guillemots (Cepphus grylle), black-legged kittiwakes (Rissa tridactyla), and long-tailed ducks (Clangula hyemalis). All sites with multiple years of data showed interannual fluctuations in Cd, which were correlated with the North Atlantic Oscillation (NAO) index and with the previous year's June sea ice coverage, where marine birds exhibited higher Cd concentrations in positive NAO years and following years with lower sea ice coverage. Climate change is likely to shift the NAO to being more negative and to reduce sea ice coverage, and our results thus identify various ways by which climate change could alter Cd concentrations in marine birds in the Canadian Arctic. Understanding variations in marine bird contaminant burdens, and how these may be alters by other stressors such as climate change, is important for long-term marine bird conservation efforts.
Collapse
Affiliation(s)
- Kristin Bianchini
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Jennifer F Provencher
- Canadian National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada.
| |
Collapse
|
18
|
Hayes KRR, Ylitalo GM, Anderson TA, Urbán
R. J, Jacobsen JK, Scordino JJ, Lang AR, Baugh KA, Bolton JL, Brüniche-Olsen A, Calambokidis J, Martínez-Aguilar S, Subbiah S, Gribble MO, Godard-Codding CAJ. Influence of Life-History Parameters on Persistent Organic Pollutant Concentrations in Blubber of Eastern North Pacific Gray Whales ( Eschrichtius robustus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17119-17130. [PMID: 36346717 PMCID: PMC9730851 DOI: 10.1021/acs.est.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Exposure to persistent organic pollutants (POPs) can significantly impact marine mammal health, reproduction, and fitness. This study addresses a significant 20-year gap in gray whale contaminant monitoring through analysis of POPs in 120 blubber biopsies. The scope of this substantial sample set is noteworthy in its range and diversity with collection between 2003 and 2017 along North America's west coast and across diverse sex, age, and reproductive parameters, including paired mothers and calves. Mean blubber concentrations of polychlorinated biphenyls (∑PCBs), dichlorodiphenyltrichloroethanes (∑DDTs), and chlordanes (∑CHLs) generally decreased since previous reports (1968-1999). This is the first report of polybrominated diphenyl ethers (PBDEs) and select hexachlorocyclohexanes (HCHs) in this species. Statistical modeling of the 19 most frequently detected compounds in this dataset revealed sex-, age-, and reproductive status-related patterns, predominantly attributed to maternal offloading. Mean POP concentrations differed significantly by sex in adults (17 compounds, up to 3-fold higher in males) but not in immatures (all 19 compounds). Mean POP concentrations were significantly greater in adults versus immatures in both males (17 compounds, up to 12-fold) and females (13 compounds, up to 3-fold). POP concentrations were detected with compound-specific patterns in nursing calves, confirming maternal offloading for the first time in this species.
Collapse
Affiliation(s)
- Kia R. R. Hayes
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
- Ocean
Associates, Inc., Arlington, Virginia 22207, United States
| | - Gina M. Ylitalo
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Todd A. Anderson
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jorge Urbán
R.
- Departamento
de Ciencias Marinas y Costeras, Universidad
Autónoma de Baja California Sur, La Paz, BCS 23085, Mexico
| | | | - Jonathan J. Scordino
- Marine Mammal
Program, Makah Fisheries Management, Makah Tribe, Neah Bay, Washington 98357, United States
| | - Aimee R. Lang
- Ocean
Associates, Inc., Arlington, Virginia 22207, United States
- Southwest
Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California 92037, United States
| | - Keri A. Baugh
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Jennie L. Bolton
- Environmental
and Fisheries Sciences Division, Northwest Fisheries Science Center,
National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Anna Brüniche-Olsen
- Department
of Forestry and Natural Resources, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John Calambokidis
- Cascadia
Research Collective, Olympia, Washington 98501, United States
| | - Sergio Martínez-Aguilar
- Departamento
de Ciencias Marinas y Costeras, Universidad
Autónoma de Baja California Sur, La Paz, BCS 23085, Mexico
| | - Seenivasan Subbiah
- The
Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79409, United States
| | - Matthew O. Gribble
- Department
of Epidemiology, University of Alabama at
Birmingham, Birmingham, Alabama 35294, United
States
| | | |
Collapse
|
19
|
Gao X, Wang Y, Chen D, Li J, Zhong Y, Zhao Y, Wu Y. On-line solid phase extraction–ultra high performance liquid chromatography–quadrupole/Orbitrap high resolution mass spectrometry determination of per- and polyfluoroalkyl substances in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123484. [DOI: 10.1016/j.jchromb.2022.123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
20
|
Byrne S, Seguinot-Medina S, Waghiyi V, Apatiki E, Immingan T, Miller P, von Hippel FA, Buck CL, Carpenter DO. PFAS and PBDEs in traditional subsistence foods from Sivuqaq, Alaska. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77145-77156. [PMID: 35672645 PMCID: PMC9588546 DOI: 10.1007/s11356-022-20757-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The Arctic is a hemispheric sink for both legacy and current use persistent organic pollutants (POPs). Once in the Arctic, POPs biomagnify in food webs, potentially reaching concentrations in high trophic level animals that pose a health concern for people who subsist on those animals. Indigenous Peoples of the Arctic may be highly exposed to POPs through their traditional diets. The objective of this study was to assess concentrations of polybrominated diphenyl ethers (PBDEs) and per- and polyfluoroalkyl substances (PFAS) in tissues of traditionally harvested foods from Sivuqaq (St. Lawrence Island), Alaska. Community health researchers identified volunteer households and local hunters to donate tissues from traditionally harvested animals. Target species included bowhead whale (Balaena mysticetus), Pacific walrus (Odobenus rosmarus), ringed seal (Pusa hispida), bearded seal (Erignathus barbatus), ribbon seal (Histriophoca fasciata), spotted seal (Phoca largha), and reindeer (Rangifer tarandus). PBDEs were frequently detected in all species and tissues. PBDE concentrations tended to be highest in lipid-rich tissues of seals. PFAS were infrequently detected and did not show obvious patterns among species or tissues. This and other studies demonstrate that POPs such as PBDEs are present in tissues of traditional food animals from Sivuqaq, as they are throughout the Arctic, and consumption of these animals likely contributes to exposure among Arctic Indigenous Peoples.
Collapse
Affiliation(s)
- Sam Byrne
- Department of Biology, Global Health Program, Middlebury College, Bicentennial Hall, Bicentennial Way, VT, 05753, Middlebury, USA.
| | | | - Vi Waghiyi
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | | | | | - Pamela Miller
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | - Frank A von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, AZ, USA
| | - Charles Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Albany, NY, USA
| |
Collapse
|
21
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
22
|
Vorkamp K, Carlsson P, Corsolini S, de Wit CA, Dietz R, Gribble MO, Houde M, Kalia V, Letcher RJ, Morris A, Rigét FF, Routti H, Muir DCG. Influences of climate change on long-term time series of persistent organic pollutants (POPs) in Arctic and Antarctic biota. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1643-1660. [PMID: 36196982 DOI: 10.1039/d2em00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Time series of contaminants in the Arctic are an important instrument to detect emerging issues and to monitor the effectiveness of chemicals regulation, based on the assumption of a direct reflection of changes in primary emissions. Climate change has the potential to influence these time trends, through direct physical and chemical processes and/or changes in ecosystems. This study was part of an assessment of the Arctic Monitoring and Assessment Programme (AMAP), analysing potential links between changes in climate-related physical and biological variables and time trends of persistent organic pollutants (POPs) in Arctic biota, with some additional information from the Antarctic. Several correlative relationships were identified between POP temporal trends in freshwater and marine biota and physical climate parameters such as oscillation indices, sea-ice coverage, temperature and precipitation, although the mechanisms behind these observations remain poorly understood. Biological data indicate changes in the diet and trophic level of some species, especially seabirds and polar bears, with consequences for their POP exposure. Studies from the Antarctic highlight increased POP availability after iceberg calving. Including physical and/or biological parameters in the POP time trend analysis has led to small deviations in some declining trends, but did generally not change the overall direction of the trend. In addition, regional and temporary perturbations occurred. Effects on POP time trends appear to have been more pronounced in recent years and to show time lags, suggesting that climate-related effects on the long time series might be gaining importance.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Pernilla Carlsson
- Norwegian Institute for Water Research (NIVA), Fram Centre, Tromsø, Norway
| | - Simonetta Corsolini
- University of Siena, Department of Physical, Earth and Environmental Sciences, Siena, Italy
| | - Cynthia A de Wit
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Roskilde, Denmark
| | - Matthew O Gribble
- University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA
| | - Magali Houde
- Environment and Climate Change Canada, Montréal, QC, Canada
| | - Vrinda Kalia
- Columbia University, Department of Environmental Health Sciences, New York, NY, USA
| | | | - Adam Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs, Gatineau, QC, Canada
| | - Frank F Rigét
- Aarhus University, Department of Ecoscience, Roskilde, Denmark
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Derek C G Muir
- Environment and Climate Change Canada, Burlington, ON, Canada
| |
Collapse
|
23
|
Borgå K, McKinney MA, Routti H, Fernie KJ, Giebichenstein J, Hallanger I, Muir DCG. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1544-1576. [PMID: 35179539 DOI: 10.1039/d1em00469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.
Collapse
Affiliation(s)
- Katrine Borgå
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | | | | | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
24
|
de Wit CA, Vorkamp K, Muir D. Influence of climate change on persistent organic pollutants and chemicals of emerging concern in the Arctic: state of knowledge and recommendations for future research. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1530-1543. [PMID: 35171167 DOI: 10.1039/d1em00531f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) have accumulated in polar environments as a result of long-range transport from urban/industrial and agricultural source regions in the mid-latitudes. Climate change has been recognized as a factor capable of influencing POP levels and trends in the Arctic, but little empirical data have been available previously. A growing number of recent studies have now addressed the consequences of climate change for the fate of Arctic contaminants, as reviewed and assessed by the Arctic Monitoring and Assessment Programme (AMAP). For example, correlations between POP temporal trends in air or biota and climate indices, such as the North Atlantic Oscillation Index, have been found. Besides the climate indices, temperature, precipitation and sea-ice were identified as important climate parameters influencing POP levels in the Arctic environment. However, the physical changes are interlinked with complex ecological changes, including new species habitats and predator/prey relationships, resulting in a vast diversity of processes directly or indirectly affecting levels and trends of POPs. The reviews in this themed issue illustrate that the complexity of physical, chemical, and biological processes, and the rapid developments with regard to both climate change and chemical contamination, require greater interdisciplinary scientific exchange and collaboration. While some climate and biological parameters have been linked to POP levels in the Arctic, mechanisms underlying these correlations are usually not understood and need more work. Going forward there is a need for a stronger collaborative approach to understanding these processes due to high uncertainties and the incremental process of increasing knowledge of these chemicals. There is also a need to support and encourage community-based studies and the co-production of knowledge, including the utilization of Indigenous Knowledge, for interpreting trends of POPs in light of climate change.
Collapse
Affiliation(s)
- Cynthia A de Wit
- Dept. of Environmental Science (ACES), Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Katrin Vorkamp
- Dept. of Environmental Science, Aarhus University, 400 Roskilde, Denmark.
| | - Derek Muir
- Environment & Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada.
| |
Collapse
|
25
|
Mahynski NA, Ragland JM, Schuur SS, Shen VK. Building Interpretable Machine Learning Models to Identify Chemometric Trends in Seabirds of the North Pacific Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14361-14374. [PMID: 36197753 DOI: 10.1021/acs.est.2c01894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Marine environmental monitoring efforts often rely on the bioaccumulation of persistent anthropogenic contaminants in organisms to create a spatiotemporal record of the ecosystem. Intercorrelation results from the origin, uptake, and transport of these contaminants throughout the ecosystem and may be affected by organism-specific processes such as biotransformation. Here, we explore trends that machine learning tools reveal about a large, recently released environmental chemistry data set of common anthropogenic pollutants measured in the eggs of five seabird species from the North Pacific Ocean. We modeled these data with a variety of machine learning approaches and found models that could accurately determine a range of taxonomic and spatiotemporal trends. We illustrate a general workflow and set of analysis tools that can be used to identify interpretable models which perform nearly as well as state-of-the-art "black boxes." For example, we found shallow decision trees that could resolve genus with greater than 96% accuracy using as few as two analytes and a k-nearest neighbor classifier that could resolve species differences with more than 94% accuracy using only five analytes. The benefits of interpretability outweighed the marginally improved accuracy of more complex models. This demonstrates how machine learning may be used to discover rational, quantitative trends in these systems.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899-8320, United States
| | - Jared M Ragland
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899-8320, United States
| | - Stacy S Schuur
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899-8320, United States
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899-8320, United States
| |
Collapse
|
26
|
Keilen EK, Borgå K, Thorstensen HS, Hylland K, Helberg M, Warner N, Bæk K, Reiertsen TK, Ruus A. Differences in Trophic Level, Contaminant Load, and DNA Damage in an Urban and a Remote Herring Gull (Larus argentatus) Breeding Colony in Coastal Norway. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2466-2478. [PMID: 35860956 PMCID: PMC9826413 DOI: 10.1002/etc.5441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony-the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13 C and d34 S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15 N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders. Environ Toxicol Chem 2022;41:2466-2478. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Katrine Borgå
- Department of BiosciencesUniversity of OsloOsloNorway
| | | | - Ketil Hylland
- Department of BiosciencesUniversity of OsloOsloNorway
| | | | | | - Kine Bæk
- The Norwegian Institute for Water ResearchOsloNorway
| | | | - Anders Ruus
- Department of BiosciencesUniversity of OsloOsloNorway
- The Norwegian Institute for Water ResearchOsloNorway
| |
Collapse
|
27
|
Esparza I, Elliott KH, Choy ES, Braune BM, Letcher RJ, Patterson A, Fernie KJ. Mercury, legacy and emerging POPs, and endocrine-behavioural linkages: Implications of Arctic change in a diving seabird. ENVIRONMENTAL RESEARCH 2022; 212:113190. [PMID: 35367428 DOI: 10.1016/j.envres.2022.113190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Arctic species encounter multiple stressors including climate change and environmental contaminants. Some contaminants may disrupt hormones that govern the behavioural responses of wildlife to climatic variation, and thus the capacity of species to respond to climate change. We investigated correlative interactions between legacy and emerging persistent organic pollutants (POPs), mercury (Hg), hormones and behaviours, in thick-billed murres (Uria lomvia) (N = 163) breeding in northern Hudson Bay (2016-2018). The blood profile of the murres was dominated by methylmercury (MeHg), followed by much lower levels of sum (∑) 35 polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and p,p'-dichlorodiphenyltrichloroethylene (DDE), polybrominated diphenyl ethers (PBDEs) BDE-47, -99 and BDE-100; all other measured organochlorine pesticides and replacement brominated flame retardants had low concentrations if detected. Inter-annual variations occurred in MeHg, circulating triiodothyronine (T3), thyroxine (T4), and the foraging behaviours of the murres, identified using GPS-accelerometers. Compared to the 50-year mean date (1971-2021) for 50% of sea-ice coverage in Hudson Bay, sea-ice breakup was 1-2 weeks earlier (2016, 2017) or comparable (2018). Indeed, 2017 was the earliest year on record. Consistent with relationships identified individually between MeHg and total T3, and T3 and foraging behaviour, a direct interaction between these three parameters was evident when all possible interactions among measured chemical pollutants, hormones, and behaviours of the murres were considered collectively (path analysis). When murres were likely already stressed due to early sea-ice breakup (2016, 2017), blood MeHg influenced circulating T3 that in turn reduced foraging time underwater. We conclude that when sea-ice breaks up early in the breeding season, Hg may interfere with the ability of murres to adjust their foraging behaviour via T3 in relation to variation in sea-ice.
Collapse
Affiliation(s)
- Ilse Esparza
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road Ste, Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road Ste, Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Emily S Choy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road Ste, Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Birgit M Braune
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Center, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Center, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road Ste, Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Kim J Fernie
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road Ste, Anne-de-Bellevue, QC H9X 3V9, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada.
| |
Collapse
|
28
|
Avila BS, Ramírez C, Tellez-Ávila E. Human Biomonitoring of Polychlorinated Biphenyls (PCBs) in the Breast Milk of Colombian Mothers. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:526-533. [PMID: 35867133 DOI: 10.1007/s00128-022-03577-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent in the environment, bioaccumulate and biomagnify throughout the food chain, and may have adverse effects on human health and wildlife. PCB indicator (PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, and PCB 180) were monitored in human milk using 68 samples from healthy and primiparous mothers from seven cities in Colombia, and the estimated daily intake (EDI) of infants was calculated. The PCB indicator with the highest concentration was PCB 153 with a value of 7.30 ng g-1 lipids. The maximum EDI was calculated as 0.257 μg kg-1 bw-1 day-1. In general, the PCB levels found in the 68 samples were low and did not represent a risk to breastfed infants. Additionally, these results could strengthen Colombia's efforts to increase the practice of breastfeeding. Finally, the results establish a general overview of population exposure and can be a scientific tool to improve environmental health policies in the country.
Collapse
Affiliation(s)
- Boris Santiago Avila
- Environmental and Laboral Health Group, National Institute of Health, 111321, Bogotá D.C., Colombia.
- Facultad de Ingeniería, Sede de Investigación Universitaria, Grupo Diagnostico y Control de la Contaminación, Universidad de Antioquia, Calle 62 No 52-59, 050010, Medellín, Colombia.
| | - Carolina Ramírez
- Environmental and Laboral Health Group, National Institute of Health, 111321, Bogotá D.C., Colombia
| | - Eliana Tellez-Ávila
- Environmental and Laboral Health Group, National Institute of Health, 111321, Bogotá D.C., Colombia
| |
Collapse
|
29
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
30
|
Skogsberg E, McGovern M, Poste A, Jonsson S, Arts MT, Varpe Ø, Borgå K. Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119361. [PMID: 35523379 DOI: 10.1016/j.envpol.2022.119361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/09/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May-July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Collapse
Affiliation(s)
- Emelie Skogsberg
- University of Oslo, Department of Biosciences, Oslo, Norway; The University Centre in Svalbard, Department of Arctic Biology, Longyearbyen, Norway
| | - Maeve McGovern
- Norwegian Institute for Water Research, Oslo, Norway; The Arctic University of Norway, Tromsø, Norway
| | - Amanda Poste
- Norwegian Institute for Water Research, Oslo, Norway; The Arctic University of Norway, Tromsø, Norway
| | - Sofi Jonsson
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Michael T Arts
- Ryerson University, Department of Chemistry and Biology, Toronto, M5B 2K3, Canada
| | - Øystein Varpe
- The University Centre in Svalbard, Department of Arctic Biology, Longyearbyen, Norway; Norwegian Institute for Nature Research, Bergen, Norway; University of Bergen, Department of Biological Sciences, Bergen, Norway
| | - Katrine Borgå
- University of Oslo, Department of Biosciences, Oslo, Norway.
| |
Collapse
|
31
|
Lloyd-Jones LR, Kuhnert PM, Lawrence E, Lewis SE, Waterhouse J, Gruber RK, Kroon FJ. Sampling re-design increases power to detect change in the Great Barrier Reef's inshore water quality. PLoS One 2022; 17:e0271930. [PMID: 35901047 PMCID: PMC9333274 DOI: 10.1371/journal.pone.0271930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Monitoring programs are fundamental to understanding the state and trend of aquatic ecosystems. Sampling designs are a crucial component of monitoring programs and ensure that measurements evaluate progress toward clearly stated management objectives, which provides a mechanism for adaptive management. Here, we use a well-established marine monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to investigate whether a sampling re-design has increased the program's capacity to meet its primary objectives. Specifically, we use bootstrap resampling to assess the change in statistical power to detect temporal water quality trends in a 15-year inshore marine water quality data set that includes data from both before and after the sampling re-design. We perform a comprehensive power analysis for six water quality analytes at four separate study areas in the GBR Marine Park and find that the sampling re-design (i) increased power to detect trends in 23 of the 24 analyte-study area combinations, and (ii) resulted in an average increase in power of 34% to detect increasing or decreasing trends in water quality analytes. This increase in power is attributed more to the addition of sampling locations than increasing the sampling rate. Therefore, the sampling re-design has substantially increased the capacity of the program to detect temporal trends in inshore marine water quality. Further improvements in sampling design need to focus on the program's capability to reliably detect trends within realistic timeframes where inshore improvements to water quality can be expected to occur.
Collapse
Affiliation(s)
- Luke R. Lloyd-Jones
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Petra M. Kuhnert
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Emma Lawrence
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Stephen E. Lewis
- Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland, Australia
| | - Jane Waterhouse
- Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland, Australia
| | - Renee K. Gruber
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
32
|
McGovern M, Borgå K, Heimstad E, Ruus A, Christensen G, Evenset A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119191. [PMID: 35364186 DOI: 10.1016/j.envpol.2022.119191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Decades of atmospheric and oceanic long-range transport from lower latitudes have resulted in deposition and storage of persistent organic pollutants (POPs) in Arctic regions. With increased temperatures, melting glaciers and thawing permafrost may serve as a secondary source of these stored POPs to freshwater and marine ecosystems. Here, we present concentrations and composition of legacy POPs in glacier- and permafrost-influenced rivers and coastal waters in the high Arctic Svalbard fjord Kongsfjorden. Targeted contaminants include polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and chlordane pesticides. Dissolved (defined as fraction filtered through 0.7 μm GF/F filter) and particulate samples were collected from rivers and near-shore fjord stations along a gradient from the heavily glaciated inner fjord to the tundra-dominated catchments at the outer fjord. There were no differences in contaminant concentration or pattern between glacier and tundra-dominated catchments, and the general contaminant pattern reflected snow melt with some evidence of pesticides released with glacial meltwater. Rivers were a small source of chlordane pesticides, DDTs and particulate HCB to the marine system and the particle-rich glacial meltwater contained higher concentrations of particle associated contaminants compared to the fjord. This study provides rare insight into the role of small Arctic rivers in transporting legacy contaminants from thawing catchments to coastal areas. Results indicate that the spring thaw is a source of contaminants to Kongsfjorden, and that expected increases in runoff on Svalbard and elsewhere in the Arctic could have implications for the contamination of Arctic coastal food-webs.
Collapse
Affiliation(s)
- Maeve McGovern
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Eldbjørg Heimstad
- NILU-Norwegian Institute for Air Research, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Guttorm Christensen
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anita Evenset
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway; Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway.
| |
Collapse
|
33
|
Wielsøe M, Long M, Bossi R, Vorkamp K, Bonefeld-Jørgensen EC. Persistent organic pollutant exposures among Greenlandic adults in relation to lifestyle and diet: New data from the ACCEPT cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154270. [PMID: 35245549 DOI: 10.1016/j.scitotenv.2022.154270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of persistent organic pollutants (POPs) in blood of the Greenlandic population are well known. The exposure is mainly through traditional food intake, including marine mammals and seabirds. The present study aimed to follow up on POP concentrations (organochlorine pesticides, polychlorinated biphenyls, per- and polyfluoroalkyl substances, and halogenated flame retardants (HFRs)) and relations to lifestyle and diet of the mothers included in the Greenlandic ACCEPT cohort (3-5 years after inclusion in 2013-15) and to include the children's fathers. This new data collection in 2019-20 included blood samples for measurement of POP concentrations and lifestyle and food frequency questionnaires from 101 mothers and 76 fathers aged 24-55 years living in Nuuk, Sisimiut, and Ilulissat, Greenland. The mothers' intra-individual median percentage decrease in POP concentrations from inclusion to this follow-up (3-5 years later) was 16-58%, except for mirex (0% change). Median concentrations of POPs were 1.4-4.6 times higher in fathers than in mothers. The POPs differed by residential town with generally higher concentrations in Ilulissat compared to Sisimiut and Nuuk. We report, for the first time, novel HFRs in human samples from Greenland. However, concentrations were low and only dechlorane plus (with its anti-isomer) was detected in >50% of the samples. Most POPs correlated positively with age and n-3/n-6 fatty acid ratio. The lipophilic POPs correlated positively with the percentage of life lived in Greenland, whereas few POPs correlated positively with BMI, income (personal and household), education, and alcohol intake. The POPs generally associated positively with the intake of marine mammals, seabirds, and dried fish, while few POPs associated positively with Greenlandic fish intake. In contrast, POPs generally associated negatively with imported meat products intake. The study findings may be of interest for future dietary recommendations in Greenland. We discuss the potential explanations for the findings and suggestions for future research.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark.
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland.
| |
Collapse
|
34
|
Nagar N, Bartrons M, Brucet S, Davidson TA, Jeppesen E, Grimalt JO. Seabird-mediated transport of organohalogen compounds to remote sites (North West Greenland polynya). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154219. [PMID: 35240191 DOI: 10.1016/j.scitotenv.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The role of sea birds as carriers of pollutants over long distances was evaluated by analyzing organochlorine and organobromine compounds in lake sediment cores from three remote sites around the North Water polynya (North West Greenland). One lake, NOW5, was in the vicinity of a little auk (Alle alle L.) bird colony, whereas the other two lakes, NOW14 and Q5, were undisturbed by seabirds. The former was strongly acidic (pH = 3.4) but the latter had a pH close to 8. Due to the guano loading, NOW5 exhibited higher chlorophyll concentrations (74 μg/L) than the other two lakes (1.6-3.4 μg/L), higher content of total phosphorous (0.34 mg/L vs. 0.007-0.01 mg/L) and total nitrogen (3.75 mg/L vs. 0.21-0.75 mg/L). The concentrations of all organohalogen compounds were substantially greater in NOW5 than in the other lakes, indicating the strong influence of these seabirds in the transport and deposition of these compounds to remote sites. However, not all compounds showed the same increases. Hexachlorocyclohexanes and endosulfans were more than 18 times higher in NOW5, the drin pesticides and hexachlorobenzene (HCB), between 9.5 and 18 times and DDTs, polybromodiphenyl ethers (PBDEs), polychlorobiphenyls (PCBs) and chlordanes about 2.7-6 times. These differences demonstrated that the bird-mediated deposition has preservation effects of the less stable and more volatile compounds, e.g. those with log Kaw < -2.4, log Koa < 9 and/or log Kow < 6.8. The sedimentary fluxes of PCBs, HCHs, drins, chlordanes, PBDEs, HCB and endosulfans were highest in the upper sediment layer of the polynya lake (year 2014). In contrast, the highest DDT fluxes were found in 1980. These trends indicate that despite restrictions and regulations, bird transport continues to introduce considerable amounts of organohalogen pollutants to the Arctic regions with the exception of DDTs, which show successful decline, even when mediated by bird metabolism.
Collapse
Affiliation(s)
- Nupur Nagar
- Aquatic Ecology Research Group, University of Vic., de la Laura, 13, 08500-Vic, Catalonia, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034-Barcelona, Catalonia, Spain
| | - Mireia Bartrons
- Aquatic Ecology Research Group, University of Vic., de la Laura, 13, 08500-Vic, Catalonia, Spain
| | - Sandra Brucet
- Aquatic Ecology Research Group, University of Vic., de la Laura, 13, 08500-Vic, Catalonia, Spain; ICREA, Catalan Institution for Research and Additional Studies, Passeig Lluís Companys 23, 08010-Barcelona, Catalonia, Spain
| | - Thomas A Davidson
- Department of Ecoscience and Arctic Research Centre, Aarhus University, Vejlsøvej, 25, 8600 Silkeborg, Denmark
| | - Erik Jeppesen
- Department of Ecoscience and Arctic Research Centre, Aarhus University, Vejlsøvej, 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences (UCAS), Room N501, UCAS Teaching Building, Zhongguancun Campus, Zhongguancun South 1st Alley, Haidian District, Beijing 100190, People's Republic of China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, 06800-Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731-Mersin, Turkey
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034-Barcelona, Catalonia, Spain.
| |
Collapse
|
35
|
Huang J, Ye L, Fang M, Su G. Industrial Production of Organophosphate Flame Retardants (OPFRs): Big Knowledge Gaps Need to Be Filled? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:809-818. [PMID: 35080673 DOI: 10.1007/s00128-021-03454-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Since the phase-out of traditional halogenated flame retardants (HFRs), interests of research are gradually being shifted to organophosphate flame retardants (OPFRs), and this can be reflected by the increasing number of publications on OPFRs year by year. Here, an extensive survey is conducted in an attempt to generate a list of OPFRs that are being produced in factories, and to investigate the annual production volume (APV). This survey suggests that at least n = 56 OPFR monomers and n = 62 OPFR mixtures are being currently produced in 367 factories around the world, and 201 out of them are in Mainland China. APV of OPFRs was estimated as 598,422 metric tons, and this number could be underestimated due to the limitation of available information. We also notice that current researches are confined to a limited number of OPFRs, especially for OP esters (OPEs), and other OPFRs with different structures from OPEs has been rarely studied. Based on all the collected datasets, we provide five recommendations for how to proceed with future research to more comprehensively understand the currently-produced OPFRs in the environment.
Collapse
Affiliation(s)
- Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
36
|
Szabo D, Nuske MR, Lavers JL, Shimeta J, Green MP, Mulder RA, Clarke BO. A baseline study of per- and polyfluoroalkyl substances (PFASs) in waterfowl from a remote Australian environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152528. [PMID: 34954161 DOI: 10.1016/j.scitotenv.2021.152528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Elevated concentrations of PFASs in the liver may pose a toxicological risk to bird species and humans that consume them. This study aimed to determine concentrations of 43 per- and polyfluoroalkyl substances (PFASs) in livers (n = 80) of Australian Shelducks (Tadorna tadornoides), Pacific Black Ducks (Anas superciliosa), and Teals (Anas sp.), as well as water and sediment from a remote Australian environment. Maximum concentrations of PFBA (1.9 ng L-1), PFOA (1.7 ng L-1) and PFOS (0.99 ng L-1) in water were consistent with long-range atmospheric and oceanic transport. PFOS (30%) and PFNA (22%) were the most frequently detected PFASs in Australian Shelduck livers (0.31 ± 0.68 ng g-1 ww and 0.16 ± 0.15 ng g-1 ww respectively). Maximum concentrations of PFOS in Pacific Black Ducks (50%) and Teals (44%) was 2.4 ng g-1 ww and 5.3 ng g-1 ww respectively. While PFAS levels in birds from this remote environment were below current animal consumption guidelines, continued monitoring of this ecosystem is recommended to assess the human health risk of consumption of wild game.
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Madison R Nuske
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 7004, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Victoria 3000, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
37
|
Monclús L, Løseth ME, Dahlberg Persson MJ, Eulaers I, Kleven O, Covaci A, Benskin JP, Awad R, Zubrod JP, Schulz R, Wabakken P, Heggøy O, Øien IJ, Steinsvåg MJ, Jaspers VLB, Nygård T. Legacy and emerging organohalogenated compounds in feathers of Eurasian eagle-owls (Bubo bubo) in Norway: Spatiotemporal variations and associations with dietary proxies (δ 13C and δ 15N). ENVIRONMENTAL RESEARCH 2022; 204:112372. [PMID: 34774833 DOI: 10.1016/j.envres.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of organohalogenated compounds (OHCs) in wildlife has received considerable attention over the last decades. Among the matrices used for OHCs biomonitoring, feathers are particularly useful as they can be collected in a minimally or non-invasive manner. In this study, concentrations of various legacy OHCs -polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)-, as well as emerging OHCs -per- and polyfluoroalkyl substances (PFAS) and organophosphate ester flame retardants (OPEs)- were determined in feathers of 72 Eurasian eagle-owls (Bubo bubo) from Norway, with the goal of studying spatiotemporal variation using a non-invasive approach. Molted feathers were collected at nest sites from northern, central and southern Norway across four summers (2013-2016). Additionally, two museum-archived feathers from 1979 to 1989 were included. Stable carbon (δ13C) and nitrogen isotopes (δ15N) were used as dietary proxies. In total, 11 PFAS (sum range 8.25-215.90 ng g-1), 15 PCBs (4.19-430.01 ng g-1), 6 OCPs (1.48-220.94 ng g-1), 5 PBDEs (0.21-5.32 ng g-1) and 3 OPEs (4.49-222.21 ng g-1) were quantified. While we observed large variation in the values of both stable isotopes, suggesting a diverse diet of the eagle-owls, only δ13C seemed to explain variation in PFAS concentrations. Geographic area and year were influential factors for δ15N and δ13C. Considerable spatial variation was observed in PFAS levels, with the southern area showing higher levels compared to northern and central Norway. For the rest of OHCs, we observed between-year variations; sum concentrations of PCBs, OCPs, PBDEs and OPEs reached a maximum in 2015 and 2016. Concentrations from 1979 to 1989 were within the ranges observed between 2013 and 2016. Overall, our data indicate high levels of legacy and emerging OHCs in a top predator in Norway, further highlighting the risk posed by OHCs to wildlife.
Collapse
Affiliation(s)
- Laura Monclús
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway.
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), Sognsveien 72, 0855, Oslo, Norway
| | - Marie J Dahlberg Persson
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Igor Eulaers
- Norwegian Polar Institute, FRAM Centre, 9296, Tromsø, Norway
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jonathan P Benskin
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden
| | - Raed Awad
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden; IVL Swedish Environmental Research Institute, 10031, Stockholm, Sweden
| | - Jochen P Zubrod
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany; Zubrod Environmental Data Science, Friesenstrasse 20, 76829, Landau, Germany
| | - Ralf Schulz
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Petter Wabakken
- Faculty of Applied Ecology, Agricultural Sciences and Biochemistry, Inland Norway University of Applied Sciences, Evenstad, 2480, Koppang, Norway
| | - Oddvar Heggøy
- BirdLife Norway, Sandgata 30b, 7012, Trondheim, Norway; University Museum of Bergen, University of Bergen, 5020, Bergen, Norway
| | | | - Magnus Johan Steinsvåg
- Department of Environmental Affairs, County Governor of Vestland, 6863, Leikanger, Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| |
Collapse
|
38
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
39
|
Dau PT, Ishibashi H, Tuyen LH, Sakai H, Hirano M, Kim EY, Iwata H. Assessment of binding potencies of polychlorinated biphenyls and polybrominated diphenyl ethers with Baikal seal and mouse constitutive androstane receptors: Comparisons across species and congeners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150631. [PMID: 34592282 DOI: 10.1016/j.scitotenv.2021.150631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The present study evaluated the binding potencies (equilibrium dissociation constant: KD) of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) with the constitutive androstane receptor (CAR)_ligand binding domain (LBD) of the Baikal seal (bsCAR_LBD) and mouse (mCAR_LBD) using a surface plasmon resonance (SPR) biosensor. The binding affinities of individual congeners with mCAR_LBD tended to be higher than those with bsCAR_LBD but the differences were within the same order of magnitude. Notably, PBDE congeners showed higher binding affinities for both CAR_LBDs than PCB congeners. In silico docking simulations demonstrated that PBDEs had more non-covalent interactions with specific amino acid residues in both CAR_LBDs than PCBs, supporting the results of their binding affinities. Binding affinity comparisons among congeners revealed the structural requirements for higher binding; mono or di ortho-, tri meta-, and di para‑chlorine substitutions for PCBs, and di or tri ortho-, mono meta-, and di para‑bromine substitutions for PBDEs. The binding potencies of these congeners unlikely accounted for their previously reported CAR-mediated transactivation potencies, implying that their transactivation is regulated in a ligand-dependent, but a distinct manner from ligand binding. Risk assessment analysis showed that the KD values of individual PCB and PBDE congeners were 1-4 orders of magnitude higher than their respective hepatic concentrations in wild Baikal seal population.
Collapse
Affiliation(s)
- Pham Thi Dau
- Centre for Life Science Research, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam.
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Le Huu Tuyen
- Research Centre for Environmental Technology and Sustainable Development, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Hiroki Sakai
- Division of Pharmacology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan.
| |
Collapse
|
40
|
Ángel-Moreno Briones Á, Hernández-Guzmán FA, González-Armas R, Galván-Magaña F, Marmolejo-Rodríguez AJ, Sánchez-González A, Ramírez-Álvarez N. Organochlorine pesticides in immature scalloped hammerheads Sphyrna lewini from the western coast of the Gulf of California, Mexico: Bioaccumulation patterns and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151369. [PMID: 34740652 DOI: 10.1016/j.scitotenv.2021.151369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Despite the intensive use of organochlorine pesticides (OCPs) in the proximity of the Gulf of California, there is no information regarding their levels in predatory shark species, which could be exposed to relatively high concentrations. In this area, neonates and juveniles of the critically endangered scalloped hammerhead Sphyrna lewini are caught for consumption, so the examination of the accumulation of OCPs is necessary for future conservation, as well as to assess the exposure to humans. Levels and accumulation patterns of 29 OCPs were analyzed in the liver and muscle of 20 immature scalloped hammerheads. Twenty-three compounds were detected in liver and 17 OCPs were found in muscle. In the latter tissue, only p,p'-DDE presented concentrations above the detection limit in all samples (0.59 ± 0.21 ng/g w.w.), while in the liver, DDTs were also the main group of pesticides (215 ± 317 ng/g w.w.), followed by ∑Chlordanes > ∑Chlorobenzenes > Mirex > HCBD > Others. One of the two analyzed neonates presented high concentrations of OCPs in the liver (1830 ng/g w.w.), attributed to a bioamplification process. No differences in accumulation of OCPs were found between juveniles of both sexes, where an increase in the concentration of various compounds related with size and age was observed. Additionally, juveniles under 2 years of age may undergo a growth dilution process. Our results suggest that the consumption of this species does not imply risks to human health (chronic or carcinogenic effects) associated with OCPs. Likewise, we recommend further monitoring due to the possible recent inputs of some OCPs (e.g. dicofol, median of ratio o, p'-DDT/p, p'-DDT = 0.7) into the environment.
Collapse
Affiliation(s)
- Ángela Ángel-Moreno Briones
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Félix Augusto Hernández-Guzmán
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Alberto Sánchez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, La Paz, Baja California Sur C. P. 23096, Mexico
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, Baja California C. P. 22860, Mexico.
| |
Collapse
|
41
|
Yavuz O, Arslan HH, Tokur O, Nuhoglu Z, Marangoz O, Mushtaq S, Arslan A, Ozdil C. Environmental organic pollutants in hair samples from sport horses. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- O. Yavuz
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Ondokuz Mayis University Samsun Turkey
| | - H. H. Arslan
- Department of Internal Medicine Faculty of Veterinary Medicine Ondokuz Mayis University SamsunTurkey
| | - O. Tokur
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Ondokuz Mayis University Samsun Turkey
| | - Z. Nuhoglu
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Ondokuz Mayis University Samsun Turkey
| | - O. Marangoz
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Ondokuz Mayis University Samsun Turkey
| | - S. Mushtaq
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Ondokuz Mayis University Samsun Turkey
| | | | - C. Ozdil
- Jockey Club of Turkey Sanliurfa Turkey
| |
Collapse
|
42
|
Abstract
This study evaluated the efficiency of two biofilter systems, with and without biochar chambers installed, at degrading and removing HCH and its isomers in natural drainage water. The biochar biofilter proved to be 96% efficient at cleaning HCH and its transformation products from drainage water, a significant improvement over classic biofilter that remove, on average, 68% of HCH. Although iron- and sulfur-oxidizing bacteria, such as Gallionella and Sulfuricurvum, were dominant in the biochar bed outflows, they were absent in sediments, which were rich in Simplicispira, Rhodoluna, Rhodoferax, and Flavobacterium. The presence of functional genes involved in the biodegradation of HCH isomers and their byproducts was confirmed in both systems. The high effectiveness of the biochar biofilter displayed in this study should further encourage the use of biochar in water treatment solutions, e.g., for temporary water purification installations during the construction of other long-term wastewater treatment technologies, or even as final solutions at contaminated sites.
Collapse
|
43
|
Savoca D, Melfi R, Palumbo Piccionello A, Barreca S, Buscemi S, Arizza V, Arculeo M, Pace A. Presence and biodistribution of perfluorooctanoic acid (PFOA) in Paracentrotus lividus highlight its potential application for environmental biomonitoring. Sci Rep 2021; 11:18763. [PMID: 34548584 PMCID: PMC8455602 DOI: 10.1038/s41598-021-98284-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
The first determination of presence and biodistribution of PFOA in ninety specimens of sea urchin Paracentrotus lividus from two differently contaminated sites along Palermo's coastline (Sicily) is reported. Analyses were performed on the sea urchins' coelomic fluids, coelomocytes, gonads or mixed organs, as well as on seawater and Posidonia oceanica leaves samples from the collection sites. PFOA concentration ranged between 1 and 13 ng/L in seawater and between 0 and 794 ng/g in P. oceanica. The analyses carried out on individuals of P. lividus from the least polluted site (A) showed PFOA median values equal to 0 in all the matrices (coelomic fluid, coelomocytes and gonads). Conversely, individuals collected from the most polluted site (B) showed median PFOA concentrations of 21 ng/g in coelomic fluid, 153 ng/g in coelomocytes, and 195 ng/g in gonads. Calculated bioconcentration factors of log10BCF > 3.7 confirmed the very bioaccumulative nature of PFOA. Significant correlations were found between the PFOA concentration of the coelomic fluid versus the total PFOA concentration of the entire sea urchin. PERMANOVA (p = 0.001) end Welch's t-test (p < 0.001) analyses showed a difference between specimens collected from the two sites highlighting the potential application of P. lividus as sentinel species for PFOA biomonitoring.
Collapse
Affiliation(s)
- Dario Savoca
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Salvatore Barreca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20131, Milan, Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Marco Arculeo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100, Palermo, Italy.
| |
Collapse
|
44
|
Midthaug HK, Hitchcock DJ, Bustnes JO, Polder A, Descamps S, Tarroux A, Soininen EM, Borgå K. Within and between breeding-season changes in contaminant occurrence and body condition in the Antarctic breeding south polar skua. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117434. [PMID: 34062433 DOI: 10.1016/j.envpol.2021.117434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The Antarctic ecosystem represents a remote region far from point sources of pollution. Still, Antarctic marine predators, such as seabirds, are exposed to organohalogen contaminants (OHCs) which may induce adverse health effects. With increasing restrictions and regulations on OHCs, the levels and exposure are expected to decrease over time. We studied south polar skua (Catharacta maccormiciki), a top predator seabird, to compare OHC concentrations measured in whole blood from 2001/2002 and 2013/2014 in Dronning Maud Land. As a previous study found increasing organochlorine concentrations with sampling day during the 2001/2002 breeding season, suggesting dietary changes, we investigated if this increase was repeated in the 2013/2014 breeding season. In addition to organochlorines, we analyzed hydroxy-metabolites, brominated contaminants and per- and polyfluoroalkyl substances (PFAS) in 2013/2014, as well as dietary descriptors of stable isotopes of carbon and nitrogen, to assess potential changes in diet during breeding. Lipid normalized concentrations of individual OHCs were 63%, 87% and 105% higher for hexachlorobenzene (HCB), 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene (p,p'-DDE), and ∑Polychlorinated biphenyls (PCBs), respectively, in 2013/2014 compared to 2001/2002. South polar skuas males in 2013/2014 were in poorer body condition than in 2001/2002, and with higher pollutant levels. Poorer body condition may cause the remobilization of contaminants from stored body reserves, and continued exposure to legacy contaminants at overwintering areas may explain the unexpected higher OHC concentrations in 2013/2014 than 2001/2002. Concentrations of protein-associated PFAS increased with sampling day during the 2013/2014 breeding season, whereas the lipid-soluble chlorinated pesticides, PCBs and polybrominated diphenyl ether (PBDEs) showed no change. OHC occurrence was not correlated with stable isotopes. The PFAS biomagnification through the local food web at the colony should be investigated further.
Collapse
Affiliation(s)
- Hilde Karin Midthaug
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway
| | - Daniel J Hitchcock
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), Fram Centre, N-9296, Tromsø, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Sébastien Descamps
- Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research (NINA), Fram Centre, N-9296, Tromsø, Norway; Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway
| | - Eeva M Soininen
- Norwegian Polar Institute (NPI), Fram Centre, Pb. 6606 Langnes, N-9296, Tromsø, Norway; The Arctic University of Norway (UiT), Pb. 6050 Langnes, N-9037, Tromsø, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo (UiO), Pb. 1066 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
45
|
Johansen S, Poste A, Allan I, Evenset A, Carlsson P. Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116963. [PMID: 33823300 DOI: 10.1016/j.envpol.2021.116963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system. Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (<level of detection-28 pg/g dw ΣPCB14, 16-100 pg/g dw HCB) compared to outer marine sediments 630-880 pg/g dw ΣPCB14, 530-770 pg/g dw HCB). There was a strong spatial gradient in sediment PCB and HCB concentrations with lowest concentrations in river estuaries and in front of marine-terminating glaciers and increasing concentrations toward the outer fjord. This suggests that rather than leading to increased concentrations, inputs of SPM from land lead to a dilution of contaminant concentrations in nearshore sediments. Preliminary estimates of SPM:water activity ratios suggest that terrestrial particles (with low contaminant concentrations) may have the potential to act as sorbents of dissolved contaminants in the coastal water column, with implications for bioavailability of POPs to the marine food web. There is concern that ongoing increases in fluxes of freshwater, sediments and associated terrestrial material (including contaminants) from land to the Arctic Ocean will lead to increased mobilization and transport of POPs to coastal ecosystems. However, the results of this study indicate that on Svalbard, inputs from land may in fact have the opposite effect, leading to reduced concentrations in coastal sediments and waters.
Collapse
Affiliation(s)
- Sverre Johansen
- Norwegian Institute for Water Research, Tromsø, Norway; Norwegian University of Life Sciences, Ås, Norway; Norwegian Institute for Water Research, Oslo, Norway
| | - Amanda Poste
- Norwegian Institute for Water Research, Tromsø, Norway
| | - Ian Allan
- Norwegian Institute for Water Research, Oslo, Norway
| | - Anita Evenset
- Akvaplan-niva, Tromsø, Norway; UiT, The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
46
|
Bennett KA, Robinson KJ, Armstrong HC, Moss SEW, Scholl G, Tranganida A, Eppe G, Thomé JP, Debier C, Hall AJ. Predicting consequences of POP-induced disruption of blubber glucose uptake, mass gain rate and thyroid hormone levels for weaning mass in grey seal pups. ENVIRONMENT INTERNATIONAL 2021; 152:106506. [PMID: 33770584 DOI: 10.1016/j.envint.2021.106506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) are endocrine disruptors that alter adipose tissue development, regulation and function. Top marine predators are particularly vulnerable because they possess large fat stores that accumulate POPs. However, links between endocrine or adipose tissue function disruption and whole animal energetics have rarely been investigated. We predicted the impact of alterations to blubber metabolic characteristics and circulating thyroid hormone (TH) levels associated with polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) on suckling mass gain and weaning mass in wild grey seal pups. Glucose uptake by inner blubber was a strong predictor of whole animal mass gain rate, which in turn, resulted in heavier weaning mass. Weaning mass was predicted to increase by 3.7 ± 1.59 (sem) %, through increased mass gain rate, in the absence of the previously reported suppressive effect of dioxin-like PCB (DL-PCBs) on blubber glucose uptake. PBDEs were, conversely, associated with faster mass gain. Alleviation of this effect was predicted to reduce weaning mass by 6.02 ± 1.86% (sem). To better predict POPs effects on energy balance, it is crucial to determine if and how PBDEs promote mass gain in grey seal pups. Weaning mass was negatively related to total T3 (TT3) levels. A 20% (range = 9.3-31.7%) reduction in TT3 by DL-PCBs partially overcame the effect of DL-PCB -mediated reduction in blubber glucose uptake. Overall, DL-PCBs were thus predicted to reduce weaning mass by 1.86 ± 1.60%. Organohalogen impacts on whole-animal energy balance in grey seal pups appear to partially offset each other through opposing effects on different mechanisms. POP effects were generally minor, but the largest POP-induced reductions in weaning mass were predicted to occur in pups that were already small. Since weaning mass is positively related to first-year survival, POPs may disproportionately affect smaller individuals, and could continue to have population-level impacts even when levels are relatively low compared to historical values. Our findings show how in vitro experiments combined with measurements in vivo can help elucidate mechanisms that underpin energy balance regulation and help to quantify the magnitude of disruptive effects by contaminants and other stressors in wildlife.
Collapse
Affiliation(s)
- Kimberley A Bennett
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Kelly J Robinson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK; Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Greenside Place, St Andrews, Fife KY16 9TF, UK.
| | - Holly C Armstrong
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK.
| | - Georges Scholl
- Center for Analytical Research and Technology (CART), Research Unit MolSys, B6c, Department of Chemistry, Université de Liège, 4000 Liege, Belgium.
| | - Alexandra Tranganida
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Gauthier Eppe
- Center for Analytical Research and Technology (CART), Research Unit MolSys, B6c, Department of Chemistry, Université de Liège, 4000 Liege, Belgium.
| | - Jean-Pierre Thomé
- Center for Analytical Research and Technology (CART), Laboratory of Animal Ecology and Ecotoxicology (LEAE), Université de Liège, 4000 Liege, Belgium.
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK.
| |
Collapse
|
47
|
Power A, White P, McHugh B, Berrow S, Schlingermann M, McKeown A, Cabot D, Tannian M, Newton S, McGovern E, Murphy S, Crowley D, O'Hea L, Boyle B, O'Connor I. Persistent pollutants in fresh and abandoned eggs of Common Tern (Sterna hirundo) and Arctic Tern (Sterna paradisaea) in Ireland. MARINE POLLUTION BULLETIN 2021; 168:112400. [PMID: 33957494 DOI: 10.1016/j.marpolbul.2021.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Higher levels of persistent pollutants (Σ16PCB, Σ6PBDE, ΣHCH, ΣDDT, ΣCHL) were detected in fresh eggs of Common Terns Sterna hirundo from Rockabill Island near Dublin (Ireland's industrialised capital city) compared to Common and Arctic Terns S. paradisaea from Ireland's west coast. Intra-clutch variation of pollutant levels in Common Terns was shown to be low, providing further evidence that random sampling of one egg may be an appropriate sampling strategy. Significant differences in pollutant concentrations were detected between fresh and abandoned eggs on Rockabill. However, abandoned eggs can still provide a useful approximation of pollutants in bird eggs if non-destructive sampling is preferred. Levels of p,p' -DDE in tern eggs have decreased over time according to this study, in concurrence with worldwide trends. Results in this study fall below toxicological thresholds for birds and OSPARs EcoQO thresholds set for Common Tern eggs, except for mercury and HCH in the west coast.
Collapse
Affiliation(s)
- Andrew Power
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland; Marine Institute, Rinville, Oranmore, Co. Galway, Ireland.
| | - Philip White
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Simon Berrow
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Moira Schlingermann
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Aaron McKeown
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - David Cabot
- School of Biological Earth and Environmental Sciences, University College Cork, Ireland
| | | | | | - Evin McGovern
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Sinéad Murphy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Denis Crowley
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Linda O'Hea
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Brian Boyle
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| |
Collapse
|
48
|
Haarr A, Mwakalapa EB, Mmochi AJ, Lyche JL, Ruus A, Othman H, Larsen MM, Borgå K. Seasonal rainfall affects occurrence of organohalogen contaminants in tropical marine fishes and prawns from Zanzibar, Tanzania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145652. [PMID: 33609827 DOI: 10.1016/j.scitotenv.2021.145652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Seasonal differences in precipitation may affect contaminant dynamics in tropical coastal regions due to terrestrial runoff of contaminants to the marine environment after the rainy seasons. To assess the effect of seasonal rainfall on occurrence of organohalogen contaminants in a coastal ecosystem, marine fishes and prawns were collected off the coast of Zanzibar, Tanzania in January and August 2018, representing pre- and post-rainy season, respectively. Samples were analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and emerging BFRs, as well as the dietary descriptors stable isotopes of carbon (δ13C) and nitrogen (δ15N). Across all species and seasons, mean contaminant concentrations ranged from below limit of detection (LOD) to 129 ng/g lipid weight (lw) ΣPCBs; 5.6-336 ng/g lw ΣOCPs; and < LOD -22.1 ng/g lw ΣPBDEs. Most of the emerging BFRs were below LOD. Contaminant concentrations generally increased with higher pelagic carbon signal (δ13C) and higher relative trophic position (δ15N). The ratio of DDE/ΣDDTs in fishes and prawns was lower in August than in January, suggesting runoff of non-degraded DDT into the marine system during or after the seasonal rainfall. Contaminant patterns of OCPs and PCBs, and concentrations of BFRs, differed between seasons in all species. A higher relative concentration-increase in lower halogenated, more mobile PCB and PBDE congeners, compared to higher halogenated congeners with lower mobility, between January and August aligns with a signal and effect of terrestrial runoff following the rainy season.
Collapse
Affiliation(s)
- Ane Haarr
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Eliezer B Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | - Aviti J Mmochi
- Institute of Marine Science, University of Dar es Salaam, P.O. Box 668, Zanzibar, Tanzania.
| | - Jan L Lyche
- Norwegian University of Life Sciences, Ullevålsveien 72, 0474 Oslo, Norway.
| | - Anders Ruus
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway; Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway.
| | - Halima Othman
- State University of Zanzibar, P.O.BOX 146, Tunguu, Zanzibar, Tanzania.
| | - Martin M Larsen
- University of Aarhus, Institute of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, P.O.Box 1066, 0316 Oslo, Norway; Center for Biogeochemistry in the Anthropocene, University of Oslo, PB 1066, 0316 Oslo, Norway.
| |
Collapse
|
49
|
Sonne C, Dietz R, Jenssen BM, Lam SS, Letcher RJ. Emerging contaminants and biological effects in Arctic wildlife. Trends Ecol Evol 2021; 36:421-429. [DOI: 10.1016/j.tree.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
|
50
|
Maurice C, Dalvai M, Lambrot R, Deschênes A, Scott-Boyer MP, McGraw S, Chan D, Côté N, Ziv-Gal A, Flaws JA, Droit A, Trasler J, Kimmins S, Bailey JL. Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage. EPIGENOMES 2021; 5:epigenomes5020010. [PMID: 34968297 PMCID: PMC8594730 DOI: 10.3390/epigenomes5020010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved.
Collapse
Affiliation(s)
- Clotilde Maurice
- Research Centre on Reproduction and Intergenerational Health, Department of Animal Sciences, Université Laval, Quebec City, QC G1V 0A6, Canada; (C.M.); (M.D.)
| | - Mathieu Dalvai
- Research Centre on Reproduction and Intergenerational Health, Department of Animal Sciences, Université Laval, Quebec City, QC G1V 0A6, Canada; (C.M.); (M.D.)
| | - Romain Lambrot
- Department of Animal Sciences, McGill University, Ste. Anne de Bellevue, Quebec, QC H9X 3V9, Canada; (R.L.); (S.K.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Astrid Deschênes
- Department of Molecular Medicine, Research Center of CHU of Quebec City, Université Laval, Quebec City, QC G1V 4G, Canada; (A.D.); (M.-P.S.-B.); (A.D.)
| | - Marie-Pier Scott-Boyer
- Department of Molecular Medicine, Research Center of CHU of Quebec City, Université Laval, Quebec City, QC G1V 4G, Canada; (A.D.); (M.-P.S.-B.); (A.D.)
| | - Serge McGraw
- Research Center of CHU Sainte-Justine, Department of Biochemistry and Molecular Medicine, Université de Montral, Montreal, QC H3T 1C5, Canada;
| | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC H3Z 2Z3, Canada; (D.C.); (J.T.)
- Departments of Pediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University, Montreal, QC H3Z 2Z3, Canada
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 4G5, Canada;
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA; (A.Z.-G.); (J.A.F.)
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, USA; (A.Z.-G.); (J.A.F.)
| | - Arnaud Droit
- Department of Molecular Medicine, Research Center of CHU of Quebec City, Université Laval, Quebec City, QC G1V 4G, Canada; (A.D.); (M.-P.S.-B.); (A.D.)
| | - Jacquetta Trasler
- Research Institute of the McGill University Health Centre, Montreal, QC H3Z 2Z3, Canada; (D.C.); (J.T.)
- Departments of Pediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University, Montreal, QC H3Z 2Z3, Canada
| | - Sarah Kimmins
- Department of Animal Sciences, McGill University, Ste. Anne de Bellevue, Quebec, QC H9X 3V9, Canada; (R.L.); (S.K.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Janice L. Bailey
- Research Centre on Reproduction and Intergenerational Health, Department of Animal Sciences, Université Laval, Quebec City, QC G1V 0A6, Canada; (C.M.); (M.D.)
- Correspondence: ; Tel.: +1-418-643-3230
| |
Collapse
|