1
|
Araújo MJ, Vazquez M, Rodriguez-Lorenzo L, Moreda-Piñeiro A, Fonseca E, Mallo N, Pinheiro I, Quarato M, Bigorra-Ferré E, Matos A, Barreiro-Felpeto A, Turkina MV, Suárez-Oubiña C, Bermejo-Barrera P, Cabaleiro S, Vasconcelos V, Espiña B, Campos A. Diving into the metabolic interactions of titanium dioxide nanoparticles in "Sparus aurata" and "Ruditapes philippinarum". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124665. [PMID: 39116928 DOI: 10.1016/j.envpol.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.
Collapse
Affiliation(s)
- Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - María Vazquez
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Antonio Moreda-Piñeiro
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Natalia Mallo
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Elizabeth Bigorra-Ferré
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ana Matos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro-Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Cristian Suárez-Oubiña
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Centro Tecnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965, Ribeira, A Coruña, Spain
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
2
|
Marcellini F, Varrella S, Ghilardi M, Barucca G, Giorgetti A, Danovaro R, Corinaldesi C. Inorganic UV filter-based sunscreens labelled as eco-friendly threaten sea urchin populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124093. [PMID: 38703981 DOI: 10.1016/j.envpol.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.
Collapse
Affiliation(s)
- F Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - S Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - M Ghilardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Barucca
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - C Corinaldesi
- National Biodiversity Future Centre, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Lamine I, Mghili B, Chahouri A, Aqnouy M, Moukrim A, Ait Alla A. Growing coastal tourism: Can biomonitoring provide insights into the health of coastal ecosystems? MARINE POLLUTION BULLETIN 2024; 201:116253. [PMID: 38489908 DOI: 10.1016/j.marpolbul.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Coastal tourism's surge raises concerns for Morocco's Agadir marine environment, notably with Taghazout Bay's impact. Our study assesses Taghazout's health, employing a comprehensive approach. Our study evaluates Taghazout's health, adopting a comprehensive approach covering physicochemical, microbiological aspects, macrobenthic fauna, metal pollution, and biomarkers in D. trunculus mollusks. Seawater quality aligns with Moroccan standards, indicating good bathing water. The intertidal zone hosts ten species, dominated by D. trunculus. Biomarker responses in D. trunculus suggest chemical stress. Land-use maps expose significant changes driven by the Taghazout Bay project, impacting approximately 37.99 % of the landscape. Construction activities notably encroached upon the Arganeraie and the coastal zone, creating a stark contrast from 2003. These findings form a crucial database for future studies, contributing significantly to environmental management and sustainable development, aiding informed decision-making and effective coastal ecosystem preservation strategies.
Collapse
Affiliation(s)
- Imane Lamine
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco; Higher Institute of Nursing Professions and Technical Health, Errachidia, Morocco.
| | - Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Mourad Aqnouy
- Moulay Ismail University of Meknes, Faculty of Sciences and Techniques, Applied Geology Research Laboratory, AGRSRT, Errachidia, Morocco
| | | | - Aicha Ait Alla
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
4
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
5
|
Pastorino P. Sunscreens and micro(nano)plastics: Are we aware of these threats to the Egyptian coral reefs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168587. [PMID: 37984652 DOI: 10.1016/j.scitotenv.2023.168587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
During a snorkeling trip to Marsa Alam and Hamata (southern Red Sea Riviera, Egypt) I explored the coral reefs and the diverse marine habitats of fish and invertebrate species. The area invites recreational diving and snorkeling, but the beaches are littered with all sorts of solid waste (mainly fragmented plastics). Also, there are no local restrictions on sunscreen use. The development of tourism to the area raises questions about the environmental impact and how its further growth will have on coral reefs. Every year, 1.2 million tourists visit the Red Sea coast (about 3287 tourists per day) and release about 1.7 tons/month of sunscreen into the Red Sea. As an ecologist and editorial board member of Science of the Total Environment, I ask myself how we as scientists can increase public awareness and call for prompt actions to protect the coral reefs. The discussion underlines two major threats to the Egyptian coral reefs: sunscreen use and micro(nano)plastics waste. The discussion closes with possible solutions, future perspectives, and recommendations to protect the coral reefs ecosystem of the Egyptian Red Sea.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| |
Collapse
|
6
|
Menicagli V, Balestri E, Corti S, Arena B, Protano G, Corsi I, Lardicci C. Effects of TiO 2 ultraviolet filter and sunscreens on coastal dune plant performance and competitive interactions. CHEMOSPHERE 2023; 343:140236. [PMID: 37739133 DOI: 10.1016/j.chemosphere.2023.140236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Ultraviolet filters (UVFs) added to sunscreens (SS) are emerging contaminants in marine environments due to their adverse effects on organisms and ecosystems. UVFs have also been detected in beach-dune systems, but their influence on resident organisms has not been explored yet. Native plants are fundamental components of coastal dunes, and these ecologically/economically important systems are currently among the most threatened globally. Thus, understanding whether UVFs may act as threats to dune plants is crucial. This field study evaluated and compared the effects of titanium dioxide nanoparticles (nTiO2), one of the inorganic UVFs most commonly added to sunscreens, and those of a commercial sunscreen product containing it (SS-nTiO2) on the performance of adult dune plants of a native (Thinopyrum junceum) and a non-native invasive species (Carpobrotus sp. pl.) and their competitive interactions at environmentally realistic concentrations. The effects of nTiO2, SS-nTiO2 and of a sunscreen product containing just organic UVFs (SS-OF) on early life stages of T. junceum were also examined. Ti bulk content in sand and plants at the study site ranged from 970 to 1069 mg kg-1 and from 2 to 7.9 mg kg-1, respectively. Thinopyrum junceum adult plants periodically exposed during the summer season to seawater contaminated by SS-nTiO2 produced less biomass than un-exposed plants and nTiO2 exposed plants. nTiO2 and SS-nTiO2 reduced the capacity of T. junceum to control the spread of Carpobrotus. Both SS-nTiO2 and SS-OF reduced seedling emergence in T. junceum whereas nTiO2 did not. These results demonstrated that the periodical exposures of native dune plants to sunscreens could reduce their establishment success and growth and favor invasive plant spread potentially resulting in community structure changes. They also emphasize the need to assess the phytotoxicity not only of single UVFs but especially that of complete sunscreen products to design more eco-friendly formulations in the future.
Collapse
Affiliation(s)
| | | | - Sara Corti
- Department of Biology, University of Pisa, Pisa, Italy
| | - Benito Arena
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Claudio Lardicci
- Department of Earth Sciences, University of Pisa, Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
de Oliveira-Lima J, Dias da Cunha RL, Souza de Jesus Santana A, de Brito-Gitirana L. Impact of benzophenone-3 on the integument and gills of zebrafish ( Danio rerio). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:603-615. [PMID: 37638879 DOI: 10.1080/03601234.2023.2247944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Benzophenone (BP-3) is an organic compound that is a common ingredient in lotions, conditioners, and other personal care products, which helps protect against ultraviolet radiation. This study investigated the effect of BP-3 on the structure of the integument and gills, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of Danio rerio. Fish were exposed to different concentrations (7, 70, and 700 µg L-1) of BP-3 for 7 and 14 d. For the histological analysis of the integument and gills, the fish were fixed in Bouin liquid and processed according to standard histologic procedures, and the tissue section slices were stained according to different histochemical methods. BP-3 caused tissue damage and morphological alterations in the gills; however, the integument showed no histological or morphological alterations. Furthermore, there was no observed correlation between the BP-3 concentration and exposure period and the gill alterations, as these did not occur in a linear manner. The gills were removed to evaluate the antioxidant defense; for this, CAT and SOD activities were measured, and a reduction of SOD activity was noted, whereas the CAT activity was not significantly affected.
Collapse
Affiliation(s)
- Jeffesson de Oliveira-Lima
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela Luiza Dias da Cunha
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Souza de Jesus Santana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lycia de Brito-Gitirana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
9
|
Varrella S, Danovaro R, Corinaldesi C. Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120212. [PMID: 36152716 DOI: 10.1016/j.envpol.2022.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the "new generation" organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the "old generation" organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on "new generation" UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
10
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
11
|
Rodríguez-Romero A, Ruiz-Gutiérrez G, Gaudron A, Corta BG, Tovar-Sánchez A, Viguri Fuente JR. Modelling the bioconcentration of Zn from commercial sunscreens in the marine bivalve Ruditapes philippinarum. CHEMOSPHERE 2022; 307:136043. [PMID: 35985387 DOI: 10.1016/j.chemosphere.2022.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L-1. Both the lowest value of uptake rate coefficient obtained when 5 mg L-1 of sunscreen is added (0.00688 L g-1 d-1) and the highest obtained at sunscreen addition of 100 mg L-1 (0.0670 L g-1 d-1), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d-1 with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias Del Mar y Ambientales, Instituto de Investigaciones Marinas (INMAR), Universidad de Cádiz, Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Gema Ruiz-Gutiérrez
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Amandine Gaudron
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Berta Galan Corta
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Antonio Tovar-Sánchez
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Javier R Viguri Fuente
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
12
|
Agawin NSR, Sunyer-Caldú A, Díaz-Cruz MS, Frank-Comas A, García-Márquez MG, Tovar-Sánchez A. Mediterranean seagrass Posidonia oceanica accumulates sunscreen UV filters. MARINE POLLUTION BULLETIN 2022; 176:113417. [PMID: 35152115 DOI: 10.1016/j.marpolbul.2022.113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Certain ultra-violet filter (UVF) components of solar creams have negative impacts on coral reefs and have been prohibited in international tourism destinations (i.e., Hawaii, Florida, and Palau) to protect coral reefs. In the Mediterranean coasts which are also hotspots of international tourism and where endemic seagrass Posidonia oceanica forms extensive meadows, the accumulation of UVF components have not been studied. We report for the first time, that the rhizomes of P. oceanica internally accumulated UVFs BP3, BP4, AVO, 4MBC and MeBZT and the paraben preservative MePB. The components BP4 and MePB occurred in higher concentrations reaching up to 129 ng g-1 dw and 512 ng g-1 dw, respectively. This work emphasizes the need for more experimental studies on the effects of UVFs on seagrasses and check if we should follow suit to prohibit certain UVFs to protect this species as what has been done in other regions to protect corals.
Collapse
Affiliation(s)
- Nona S R Agawin
- Marine Ecology and Systematics, Biology Department, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain.
| | - Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish Council for Scientific Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aida Frank-Comas
- Marine Ecology and Systematics, Biology Department, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain
| | | | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
13
|
Lozano C, Lebaron P, Matallana-Surget S. Shedding light on the bacterial resistance to toxic UV filters: a comparative genomic study. PeerJ 2021; 9:e12278. [PMID: 34760358 PMCID: PMC8567853 DOI: 10.7717/peerj.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
UV filters are toxic to marine bacteria that dominate the marine biomass. Ecotoxicology often studies the organism response but rarely integrates the toxicity mechanisms at the molecular level. In this study, in silico comparative genomics between UV filters sensitive and resistant bacteria were conducted in order to unravel the genes responsible for a resistance phenotype. The genomes of two environmentally relevant Bacteroidetes and three Firmicutes species were compared through pairwise comparison. Larger genomes were carried by bacteria exhibiting a resistant phenotype, favoring their ability to adapt to environmental stresses. While the antitoxin and CRISPR systems were the only distinctive features in resistant Bacteroidetes, Firmicutes displayed multiple unique genes that could support the difference between sensitive and resistant phenotypes. Several genes involved in ROS response, vitamin biosynthesis, xenobiotic degradation, multidrug resistance, and lipophilic compound permeability were shown to be exclusive to resistant species. Our investigation contributes to a better understanding of UV filters resistance phenotypes, by identifying pivotal genes involved in key pathways.
Collapse
Affiliation(s)
- Clément Lozano
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.,Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-mer, France
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
14
|
Choi J, Kim H, Byeon S. Layered Yttrium Hydroxide as a Host for Enhancing the UV‐Protective Capacity and Photostability of Benzophenone‐5. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juyeong Choi
- Department of Applied Chemistry College of Applied Science and Institute of Natural Sciences Kyung Hee University Gyeonggi 17104 Korea
| | - Hyunsub Kim
- Department of Applied Chemistry College of Applied Science and Institute of Natural Sciences Kyung Hee University Gyeonggi 17104 Korea
| | - Song‐Ho Byeon
- Department of Applied Chemistry College of Applied Science and Institute of Natural Sciences Kyung Hee University Gyeonggi 17104 Korea
| |
Collapse
|
15
|
Kwon B, Choi K. Occurrence of major organic UV filters in aquatic environments and their endocrine disruption potentials: A mini-review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:940-950. [PMID: 33991024 DOI: 10.1002/ieam.4449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 05/09/2023]
Abstract
Organic UV filters are frequently used in daily life, and hence are ubiquitously detected in the aquatic environment worldwide. Most monitoring efforts and toxicological studies are, however, limited to a few chemicals like benzophenone-3 (BP-3). In the present study, we chose other major organic UV filters, such as avobenzone (AVB), homosalate (HS), octisalate (OS), and octocrylene (OC), and reviewed information on their use, environmental occurrences, and endocrine disruption effects, available to date. Organic UV filters are used in high volume in many consumer applications, not only in sunscreen products but also in cosmetics, personal care products, home products, and food packaging. Environmental monitoring worldwide reveals that recreational coastal waters are among the hot spots of their contamination. An increasing number of experimental studies indicate that organic UV filters such as octinoxate (OMC), AVB, and HS may cause disruptions in sex hormones. Avobenzene and OMC can also influence thyroid function in experimental models. Observations in human population are rarely made, but OMC and OC have been associated with decreased androgenicity and increase of polycystic ovary syndrome, respectively. Further investigations are warranted to fill the knowledge gaps identified in the present study, to help develop relevant safety screening measures for organic UV filters. Integr Environ Assess Manag 2021;17:940-950. © 2021 SETAC.
Collapse
Affiliation(s)
- Bareum Kwon
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. DIVERSITY 2021. [DOI: 10.3390/d13080374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beachgoers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.
Collapse
|
17
|
Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145628. [PMID: 33940738 DOI: 10.1016/j.scitotenv.2021.145628] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the potential toxicological and environmental effects of organic ultraviolet filters (OUVF) have received growing attention. The number of studies in this area has increased; however, presently there is no scientometric perspective addressing this topic. The purpose of this study is to identify the intellectual base and research front using the visualization and analysis software, CiteSpace. We retrieved 453 articles, published in print or online as an early-access article between 2002 and 2020, from the Web of Science with a topic search related to OUVFs, environment, and toxicology. We then analysed synthesized networks of co-authorship (author, institution, country), co-citation (author, document, journal) and co-occurring keywords. The annual publication output has trended upwards since 2002. Authors based in China accounted for 29.4% of the total publications, followed by USA (17.4%); but overall publications from Switzerland and Spain were more influential. Major research themes identified included OUVF concentrations in aquatic environments, and hormonal effects. Emerging themes included improving the sensitivity of analytical detection methods for both OUVFs and their metabolites, consequences of OUVF transport to the marine environment, and concerns over prenatal exposure. Based on keyword analysis, benzophenone-3, 4-methylbenzylidene-camphor, 3-benzylidene camphor, and ethylhexyl-methoxycinnamate are the most studied OUVFs, and effects on estrogenic activity, gene expression, reproduction, and more recently, oxidative stress, have received most attention from a toxicological perspective. Other prominent topics were sources of environmental contamination and ecological risk assessments. This study maps the major research domains of OUVF environmental toxicology research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Megan Carve
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, 3078, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Cruz-Pérez N, Rodríguez-Martín J, García C, Ioras F, Christofides N, Vieira M, Bruccoleri M, Santamarta JC. Comparative study of the environmental footprints of marinas on European Islands. Sci Rep 2021; 11:9410. [PMID: 33931724 PMCID: PMC8087800 DOI: 10.1038/s41598-021-88896-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Ports have been key elements in Europe's economic development. This situation is even more relevant on islands, which are highly dependent on the maritime sector. Consequently, over the years, ports with diverse functionalities have been established both in mainland Europe and on its outlying islands. This article discusses the environmental impact of leisure marinas on European islands, especially as they are closely linked to economic development through tourism. The aim is to study the environmental impact of these infrastructures by determining the carbon and water footprints of marinas on European islands in the Atlantic and the Mediterranean. The results obtained enable the authors to make recommendations in order to reduce the overall environmental footprint of marinas on islands, considering that these territories are much more vulnerable to climate change than mainland locations in Europe.
Collapse
Affiliation(s)
- Noelia Cruz-Pérez
- Department of Agricultural, Nautical, Civil and Maritime Engineering, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Jesica Rodríguez-Martín
- Technical Department and Projects in Engineering and Architecture, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Celso García
- Departament of Geography, University of the Balearic Islands, Palma, Spain
| | - Florin Ioras
- Buckinghamshire New University, Queen Alexandra Road, Wycombe, UK
| | | | - Marco Vieira
- ACIF-CCIM - Associação Comercial e Industrial Do Funchal - Câmara de Comercio e Industria da Madeira PT, Funchal, Portugal
| | | | - Juan C Santamarta
- Department of Agricultural, Nautical, Civil and Maritime Engineering, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
19
|
Salhi A, Benabdelouahab S, Bouayad EO, Benabdelouahab T, Larifi I, El Mousaoui M, Acharrat N, Himi M, Casas Ponsati A. Impacts and social implications of landuse-environment conflicts in a typical Mediterranean watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142853. [PMID: 33077206 DOI: 10.1016/j.scitotenv.2020.142853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
In coastal watersheds, services and landuse favour coastal tourism and urbanization, depriving rural upstream of infrastructure and attention. This unbalanced management leads to an intensification of socioeconomic changes that generate a structural heterogeneity of the landscape and a reduction in the livelihoods of the rural population. The incessant dissociation between the objectives of the stakeholders triggers landuse-environment-economy conflicts which threaten to mutate large-scale development programs. Here, we used multi-assessment techniques in a Mediterranean watershed from Morocco to evaluate the effects of landuse change on water, vegetation, and perception of the rural population towards environmental issues. We combined complementary vegetation indexes (NDVI and EVI) to study long-term landuse change and phenological statistical pixel-based trends. We assessed the exposure of rural households to the risk of groundwater pollution through a water analysis supplemented by the calculation of an Integrated Water Quality Index. Later, we contrasted the findings with the results of a social survey with a representative sample of 401 households from 7 villages. We found that rapid coastal linear urbanization has resulted in a 12-fold increase in construction over the past 35 years, to the detriment of natural spaces and the lack of equipment and means in rural areas upstream. We show that the worst water qualities are linked to the negative impact of anthropogenic activities on immediately accessible water points. We observe that rural households are aware of the existence and gravity of environmental issues but act confusedly because of their low education level which generates a weak capacity to understand cause and effect relationships. We anticipate the pressing need to improve the well-being and education of the population and synergistically correct management plans to target the watershed as a consolidated system. Broadly, stakeholders should restore lost territorial harmony and reallocate landuse according to a sustainable environment-socioeconomic vision.
Collapse
Affiliation(s)
- Adil Salhi
- Geography and Development group, Abdelmalek Essaadi University, Martil, Morocco.
| | - Sara Benabdelouahab
- Economic and Environmental Geology and Hydrology Group, University of Barcelona, Barcelona, Spain.
| | - El Ouazna Bouayad
- Geography and Development group, Abdelmalek Essaadi University, Martil, Morocco
| | | | - Ihsan Larifi
- Geography and Development group, Abdelmalek Essaadi University, Martil, Morocco
| | - Mhamed El Mousaoui
- Geography and Development group, Abdelmalek Essaadi University, Martil, Morocco
| | - Noeman Acharrat
- Geography and Development group, Abdelmalek Essaadi University, Martil, Morocco
| | - Mahjoub Himi
- Economic and Environmental Geology and Hydrology Group, University of Barcelona, Barcelona, Spain.
| | - Albert Casas Ponsati
- Economic and Environmental Geology and Hydrology Group, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Dedman CJ, King AM, Christie-Oleza JA, Davies GL. Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. ENVIRONMENTAL SCIENCE. NANO 2021; 8:1236-1255. [PMID: 34046180 PMCID: PMC8136324 DOI: 10.1039/d0en00883d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/06/2021] [Indexed: 05/26/2023]
Abstract
Nano-sized titanium dioxide (nTiO2) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO2 upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO2 and nTiO2 extracted from consumer products upon the marine dominant cyanobacterium, Prochlorococcus, and natural marine communities at environmentally relevant and supra-environmental concentrations (i.e., 1 μg L-1 to 100 mg L-1). Cell declines observed in Prochlorococcus cultures were associated with the extensive aggregation behaviour of nTiO2 in saline media and the subsequent entrapment of microbial cells. Hence, higher concentrations of nTiO2 particles exerted a stronger decline of cyanobacterial populations. However, within natural oligotrophic seawater, cultures were able to recover over time as the nanoparticles aggregated out of solution after 72 h. Subsequent shotgun proteomic analysis of Prochlorococcus cultures exposed to environmentally relevant concentrations confirmed minimal molecular features of toxicity, suggesting that direct physical effects are responsible for short-term microbial population decline. In an additional experiment, the diversity and structure of natural marine microbial communities showed negligible variations when exposed to environmentally relevant nTiO2 concentrations (i.e., 25 μg L-1). As such, the environmental risk of nTiO2 towards marine microbial species appears low, however the potential for adverse effects in hotspots of contamination exists. In future, research must be extended to consider any effect of other components of nano-enabled product formulations upon nanomaterial fate and impact within the natural environment.
Collapse
Affiliation(s)
- Craig J Dedman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Warwick Gibbet Hill Coventry CV4 7EQ UK
| | - Aaron M King
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Joseph A Christie-Oleza
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Biology, University of the Balearic Islands Ctra. Valldemossa, km 7.5 CP: 07122 Palma Spain
- IMEDEA (CSIC-UIB) CP: 07190 Esporles Spain
| | - Gemma-Louise Davies
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
21
|
Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Fate and distribution of benzotriazole UV filters and stabilizers in environmental compartments from Gran Canaria Island (Spain): A comparison study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144086. [PMID: 33280864 DOI: 10.1016/j.scitotenv.2020.144086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 05/25/2023]
Abstract
Tourism is an economic sector of great importance worldwide. In coastal areas, this activity is associated with the use of personal care products, such as ultraviolet (UV) filters and stabilizers. Therefore, assessing their presence and the exposure of living organisms to the impact of this kind of pollutant in such areas could be especially important. The Canary Islands (Spain) are considered an outermost region, and their main economic activity is based on tourism, both national and international. Thus, this area could be remarkably vulnerable to this kind of pollution, and its characterization could be useful to infer conclusions for other similar regions. With this aim, the occurrence of organic UV filters and stabilizers in different environmental matrices in Gran Canaria Island is presented in this work. Six benzotriazole compounds, UV-P, UV-326, UV-327, UV-328, UV-329 and UV-360, were found in wastewater, seawater, sludge, sediment, seaweed and fish samples. The numerous studies devoted to establishing the distribution of these target compounds in many different matrices on a touristic and particularly overcrowded island such as Gran Canaria can be used to understand the pollution situation in similar locations. The works in which determination procedures using different extraction techniques were optimized and validated for the analysis of liquid and solid samples are summarized. They are critically discussed regarding their characteristics and analytical parameters. This research is of interest to environmental managers specializing in the conservation of coastal areas where tourism is an important industry since the active components of UV filters and stabilizers can bioaccumulate and biomagnify in the trophic chain.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Slomberg DL, Catalano R, Bartolomei V, Labille J. Release and fate of nanoparticulate TiO 2 UV filters from sunscreen: Effects of particle coating and formulation type. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116263. [PMID: 33383421 DOI: 10.1016/j.envpol.2020.116263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticulate mineral UV filters, such as titanium dioxide (TiO2) nanocomposites, are being increasingly used in sunscreens as an alternative to organic UV filters. However, there is still a lack of understanding regarding their fate and behavior in aquatic environments and potential environmental impacts after being released from a bather's skin during recreational activities. In this work, we assessed the release, fate, and transformation of two commercial nanocomposite TiO2 UV filters, one hydrophobic and one hydrophilic, in ultrapure water and simulated fresh- and seawater. The hydrophobic TiO2 nanocomposite, T-SA, was coated with a primary Al2O3 photopassivation layer and a secondary stearic acid layer, while the hydrophilic TiO2 nanocomposite, T-SiO2, was coated with a single SiO2 photopassivation layer. The influence of the sunscreen formulation was examined by dispersing the TiO2 nanocomposites in their typical continuous phase (i.e., oil for T-SA and water for T-SiO2) before introduction into the aqueous system. After 48 h of aqueous aging and 48 h of settling, 88-99% of the hydrophobic T-SA remained floating on top of the water column in all aqueous systems. On the other hand, 100% of the hydrophilic T-SiO2 settled out of the water column in the fresh- and seawaters. With respect to the photopassivation coatings, no loss of the T-SA Al2O3 layer was detected after aqueous aging, but 99-100% dissolution of the SiO2 layer on the T-SiO2 nanocomposite was observed after 48 h in the fresh- and seawaters. This dissolution left behind T-SiO2 by-products exhibiting a photocatalytic activity similar to that of bare rutile TiO2. Overall, the results demonstrated that the TiO2 surface coating and sunscreen formulation type drive environmental behavior and fate and that loss of the passivation layer can result in potentially harmful, photoactive by-products. These insights will help guide regulations and assist manufacturers in developing more environmentally safe sunscreens.
Collapse
Affiliation(s)
- Danielle L Slomberg
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France.
| | - Riccardo Catalano
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Vincent Bartolomei
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Jérôme Labille
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| |
Collapse
|
23
|
Studziński W, Gackowska A, Kudlek E. Determination of environmental properties and toxicity of octyl-dimethyl-para-aminobenzoic acid and its degradation products. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123856. [PMID: 33264932 DOI: 10.1016/j.jhazmat.2020.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Octyl-dimethyl-para-aminobenzoic acid (ODPABA) is one of compounds of emerging concern. It undergoes transformations under the influence of oxidizing or chlorinating agents and UV radiation forming products with different properties. There is very little experimental data concerning the environmental fate of ODPABA and its transformation products. Therefore, the purpose of the studies was to determine environmental parameters: water solubility, soil - water partition coefficient, octanol - air partition coefficient, bioconcentration factor as well as half-life in air, water and soil. Based on the results obtained, the persistence and migration possibilities of ODPABA and its transformation products in the aquatic environment were estimated. Moreover, the ecological toxicity of oxidation and chlorination products was investigated. Microtox®, Daphtoxkit F® and Artoxkit M® tests were used to determine toxicity. LC50 for Fish and Daphnia magna was calculated by Ecosar module. Studies have shown that as a result of ODPABA transformations, chloroorganic products are formed, which are lipophilic, are bioconcentrated in organic matter, are characterized by significant environmental persistence, can spread over considerable distances and are toxic. Oxidation products have significantly smaller impact on the environment. They are characterized by higher water solubility, lower bioconcentration factor and are less toxic.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Edyta Kudlek
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques A, Guilherme S, Pereira P, Pacheco M, Mieiro C. Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone. Int J Mol Sci 2021; 22:1567. [PMID: 33557180 PMCID: PMC7913899 DOI: 10.3390/ijms22041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
UV filters are potentially harmful to marine organisms. Given their worldwide dissemination and the scarcity of studies on marine fish, we evaluated the toxicity of an organic (oxybenzone) and an inorganic (titanium dioxide nanoparticles) UV filter, individually and in a binary mixture, in the turbot (Scophthalmus maximus). Fish were intraperitoneally injected and a multi-level assessment was carried out 3 and 7 days later. Oxybenzone and titanium dioxide nanoparticles induced mild effects on turbot, both isolated and in mixture. Neither oxidative stress (intestine, liver and kidney) nor neurotoxicity (brain) was found. However, liver metabolic function was altered after 7 days, suggesting the impairment of the aerobic metabolism. An increased motility rate in oxybenzone treatment was the only behavioural alteration (day 7). The intestine and liver were preferentially targeted, while kidney and brain were unaffected. Both infra- and supra-additive interactions were perceived, with a toxicodynamic nature, resulting either in favourable or unfavourable toxicological outcomes, which were markedly dependent on the organ, parameter and post-injection time. The combined exposure to the UV filters did not show a consistent increment in toxicity in comparison with the isolated exposures, which is an ecologically relevant finding providing key information towards the formulation of environmentally safe sunscreen products.
Collapse
Affiliation(s)
- Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Bárbara Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mariangela Sabato
- Department of Biological and Environmental Sciences, Università degli Studi di Messina, 98166 Messina, Italy;
| | - Rafaela Seixas
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Marina Dolbeth
- CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal; or
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Patrícia Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| |
Collapse
|
25
|
Bédry R, de Haro L, Bentur Y, Senechal N, Galil BS. Toxicological risks on the human health of populations living around the Mediterranean Sea linked to the invasion of non-indigenous marine species from the Red Sea: A review. Toxicon 2021; 191:69-82. [PMID: 33359388 DOI: 10.1016/j.toxicon.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
The Mediterranean region is, by far, a prime travel destination, having hosted more than 330 million tourists in 2016, mostly for seaside holidays. A greatly increased influx of thermophilic Red Sea species, introduced through the Suez Canal in a process referred to as Lessepsian invasion (in honor of Ferdinand de Lesseps who instigated the building of the Suez Canal), have raised awareness among scientists, medical personnel, and the public, of health risks caused by some venomous and poisonous marine species. The main species of concern are the poisonous Lagocephalus sceleratus, and the venomous Plotosus lineatus, Siganus luridus, Siganus rivulatus, Pterois miles, Synancea verrucosa, Rhopilema nomadica, Macrorhynchia philippina and Diadema setosum. Recognizing that the main factors that drive the introduction and dispersal of Red Sea biota in the Mediterranean, i.e., Suez Canal enlargements and warming seawater, are set to increase, and international tourist arrivals are forecasted to increase as well, to 500 million in 2030, an increase in intoxications and envenomations by alien marine species is to be expected and prepared for.
Collapse
Affiliation(s)
- R Bédry
- UHSI, Pellegrin University Hospital, 33000, Bordeaux, France.
| | - L de Haro
- Centre Antipoison de Marseille, Hôpital Sainte Marguerite, 13009, Marseille, France
| | - Y Bentur
- Israel Poison Information Center, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Senechal
- Bordeaux University, UMR EPOC, 5805, Pessac, France
| | - B S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
27
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Aucamp PJ, Banaszak AT, Bornman JF, Bruckman LS, Byrne SN, Foereid B, Häder DP, Hollestein LM, Hou WC, Hylander S, Jansen MAK, Klekociuk AR, Liley JB, Longstreth J, Lucas RM, Martinez-Abaigar J, McNeill K, Olsen CM, Pandey KK, Rhodes LE, Robinson SA, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Ukpebor JE, Wang QW, Wängberg SÅ, White CC, Yazar S, Young AR, Young PJ, Zhu L, Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 2021; 20:1-67. [PMID: 33721243 PMCID: PMC7816068 DOI: 10.1007/s43630-020-00001-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/31/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Collapse
Affiliation(s)
- R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Maryland, USA
| | - C E Williamson
- Department of Biology, Miami University, Oxford, OH, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - A F Bais
- Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, México
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - L S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - S N Byrne
- The University of Sydney, School of Medical Sciences, Discipline of Applied Medical Science, Sydney, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - S Hylander
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water and Atmospheric Research, Lauder, New Zealand
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA
| | - R M Lucas
- National Centre of Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño, Spain
| | | | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K K Pandey
- Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Institute of Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C C White
- Bee America, 5409 Mohican Rd, Bethesda, MD, USA
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - L Zhu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
28
|
Occurrence and Distribution of UV Filters in Beach Sediments of the Southern Baltic Sea Coast. WATER 2020. [DOI: 10.3390/w12113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interest in UV filters’ occurrence in the environment has increased since they were recognized as “emerging contaminants” having potentially adverse impacts on many ecosystems and organisms. Increased worldwide demand for sunscreens is associated with temperature anomalies, high irradiance, and changes in the tourist market. Recently, it has been demonstrated that personal care products, including sunscreens, appear in various ecosystems and geographic locations causing an ecotoxicological threat. Our goal was to determine for the first time the presence of selected organic UV filters at four beaches in the central Pomeranian region in northern Poland and to assess their horizontal and vertical distribution as well as temporal variation at different locations according to the touristic pressure. In this pioneering study, the concentration of five UV filters was measured in core sediments dredged from four exposed beaches (Darłowo, Ustka, Rowy, and Czołpino). UV filters were detected in 89.6% of collected cores at detection frequencies of 0–22.2%, 75–100%, 0–16.7%, and 2.8–25% for benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), and enzacamene (4-MBC), respectively. In terms of seasonality, the concentration of UV filters generally increased in the following order: summer > autumn > spring. No detectable levels of 3-BC (also known as 3-benzylidene camphor) were recorded. No differences were found in the concentration of UV filters according to the depth of the sediment core. During the summer and autumn seasons, all UV filters were detected in higher concentrations in the bathing area or close to the waterline than halfway or further up the beach. Results presented in this study demonstrate that the Baltic Sea coast is not free from UV filters. Even if actual concentrations can be quantified as ng·kg−1 causing limited environmental threat, much higher future levels are expected due to the Earth’s principal climatic zones shifting northward.
Collapse
|
29
|
Araújo CVM, Rodríguez-Romero A, Fernández M, Sparaventi E, Medina MM, Tovar-Sánchez A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. CHEMOSPHERE 2020; 257:127190. [PMID: 32480091 DOI: 10.1016/j.chemosphere.2020.127190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 05/20/2023]
Abstract
Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain; Faculty of Marine and Environmental Sciences, University of Cádiz, Av. República Saharaui, Puerto Real, 11510 Cádiz, Spain
| | - Marco Fernández
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Marina Márquez Medina
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
30
|
Montesdeoca-Esponda S, Torres-Padrón ME, Novák M, Krchová L, Sosa-Ferrera Z, Santana-Rodríguez JJ. Occurrence of benzotriazole UV stabilizers in coastal fishes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110805. [PMID: 32561012 DOI: 10.1016/j.jenvman.2020.110805] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Chemicals added in personal care products are of emerging concern because their fate and their effect on the environment is not completely known. Benzotriazole UV stabilizers (BUVSs) are compounds used in different cosmetic products, which may reach the marine environment through marine discharge from treated waters or directly from bathing areas. Once released into the aquatic ecosystem, BUVSs can be bioaccumulated by aquatic organisms. To identify the human exposure risk, it is important to have suitable analytical methods to determine the presence of BUVSs in these organisms. Because of the complexity of such a biological matrix, selective extraction and detection techniques are required to isolate and quantify these kinds of pollutants at trace levels. In the present work, we optimized a method based on microwave-assisted extraction combined with ultra-high performance liquid chromatography and mass spectrometry detection to determine six benzotriazole compounds in fish samples. The absolute extraction yields provided by the proposed method were higher than 40% for most compounds, with intra-day and inter-day relative standard deviations ranging from 0.27 to 6.06 and 1.12-21.3%, respectively. The limits of quantification were in the range of 1.13-9.66 ng g-1 (dry weight). The method was applied to the study of three species of fish (Boops boops, Sphyraena viridensis, Sphoeroides marmoratus) that were collected close to three marine outfalls of treated waters on the Gran Canaria Island (Spain) for two years. Four of the six studied compounds, UV-326, UV-328, UV-329 and UV-360, were found with concentrations ranging from 1.34 ng g-1 to 45.6 ng g-1 (dry weight).
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Martin Novák
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic; Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Lucie Krchová
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
31
|
Abstract
Cadmium is a highly-toxic metal, and, its environmental occurrence and human exposure consequently deserve close attention. The insight into the relationships between cadmium and tourism relations has deepened during the past three decades and the research into this relationship is reviewed. For this purpose, 83 relevant publications (mainly articles in international journals) were analyzed. It was found that investigation of Cd in the tourism environment took place in all continents (except Antarctica) and has intensified since the mid-2000s; Chinese researchers are the most active contributors. The Cd occurrence in air, living organisms, sediments, soil, suspended particular matter, water, and of the human environment has been studied. It has become clear that tourism contributes to Cd pollution (particularly, by hotel wastewater and increased traffic), and, vice versa, Cd pollution of beaches, coastal waters, food, urban parks, etc. creates risks for tourists and increases human exposure to this toxic metal. Both mechanisms have received equal attention. Examples concern many places worldwide, with the Mediterranean and Central and Eastern Europe as apparently critical regions. Our significantly incomplete knowledge of the relationships between cadmium and tourism must be ascribed to the common oversimplification of these relationships and to the scarcity or even absence of information supplied by the most important tourist destinations. The present review demonstrates that more studies of heavy metals and, particularly, Cd in the tourism environment are needed.
Collapse
|
32
|
Labille J, Slomberg D, Catalano R, Robert S, Apers-Tremelo ML, Boudenne JL, Manasfi T, Radakovitch O. Assessing UV filter inputs into beach waters during recreational activity: A field study of three French Mediterranean beaches from consumer survey to water analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136010. [PMID: 31855634 DOI: 10.1016/j.scitotenv.2019.136010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 05/21/2023]
Abstract
In order to assess the release of UV filters from the sunscreen used by beachgoers into seawater within the bathing zone, a field campaign was carried out during the summer of 2017 at three beaches in Marseille, along the French Mediterranean coast. A social survey analyzed beachgoer attendance, the quantities and types of suncare products used and the bathing frequencies, while the bathing water was analyzed spatially and temporally so as to quantify both mineral and organic UV filters directly released and recovered. During the peak recreational time at the three beaches, both mineral and organic UV filters were detected in higher concentrations in the bathing area than offshore. In general, higher concentrations were recovered in the water top surface layer than in the water column, giving respectively 100-900 and 20-50 μg/L for TiO2, 10-15 and 1-3 μg/L for ZnO, 40-420 and 30-150 ng/L for octocrylene, and 10-15 and 10-350 ng/L for avobenzone. More than 75% of the 471 interviewees reported bathing every time they go to the beach, with 68% using a suncare product 2.6 times on average. From these data we estimated that an average mass of 52 kg/day or 1.4 t/month of suncare products are possibly released into bathing water for a beach attended by 3000 people daily. The mass ratio of UV filters in such products typically ranges from 0.03 to 0.1, allowing us to propose theoretical maximum concentrations in the beach water. Our recovery of measured UV filter concentrations in seawater compared to the theoretical concentrations revealed two distinct scenarios for the mineral and organic filters. While up to 49% of the mineral filters used by beachgoers may be released into the seawater, the organic filters were minimally recovered in the environment, most likely due to internalization through the skin barrier or partial photodegradation.
Collapse
Affiliation(s)
- Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France
| | - Riccardo Catalano
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France
| | - Samuel Robert
- Aix-Marseille Univ, Avignon Univ, Univ Côte d'Azur, CNRS, ESPACE, Avignon, France
| | | | | | - Tarek Manasfi
- Aix Marseille Univ, CNRS, LCE UMR7376, Marseille, France
| | - Olivier Radakovitch
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP 13, 13115 Saint Paul les durance, France
| |
Collapse
|
33
|
Peng X, Zhu Z, Xiong S, Fan Y, Chen G, Tang C. Tissue Distribution, Growth Dilution, and Species-Specific Bioaccumulation of Organic Ultraviolet Absorbents in Wildlife Freshwater Fish in the Pearl River Catchment, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:343-351. [PMID: 31610611 DOI: 10.1002/etc.4616] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 05/14/2023]
Abstract
Tissue distributions and body-size dependent and species-specific bioaccumulation of 12 organic ultraviolet absorbents (UVAs) were investigated in 9 species of wildlife freshwater fish from the Pearl River catchment, South China. The concentrations of the 12 UVAs were from 109 to 2320 ng/g lipid weight in the fish tissue samples. The UVAs 2-hydroxy-4-methoxybenzophenone (BP-3), octocrylene (OCR), UV531, and 5 benzotriazole UV stabilizers (UVP, UV329, UV234, UV328, and UV327) were detected in more than half of the fish tissue samples. The UVA UV531 showed an obvious potential for bioaccumulation in the wild freshwater fish, with an estimated bioaccumulation factor (log BAF) and a biota-sediment accumulation factor (BSAF) of 4.54 ± 0.55 and 4.88 ± 6.78, respectively. Generally, liver (989 ± 464 ng/g lipid wt) contained the highest level of UVAs, followed in decreasing order by belly fat (599 ± 318 ng/g lipid wt), swimming bladder (494 ± 282 ng/g lipid wt), dorsal muscle (470 ± 240 ng/g lipid wt), and egg (442 ± 238 ng/g lipid wt). The bioaccumulation of UVAs in the freshwater wild fish was species specific and compound dependent. Bottom-dwelling detritus-ingesting omnivorous fish contained obviously higher UVA concentrations, suggesting that detritus/sediment ingestion is a significant pathway for exposure of the wild freshwater fish to the UVAs. The UVAs UV531 and BP-3 demonstrated a potential for growth dilution. Metabolism might play a significant role in elimination of the UVAs in the fish tissues, with the highest rate of metabolism in the liver. The UVAs did not demonstrate obvious trophic magnification in the freshwater ecosystem of the Pearl River catchment. More research is warranted to elucidate maternal transfer of the UVAs. Environ Toxicol Chem 2020;39:343-351. © 2019 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songsong Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
34
|
Pacheco-Juárez J, Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Analysis and occurrence of benzotriazole ultraviolet stabilisers in different species of seaweed. CHEMOSPHERE 2019; 236:124344. [PMID: 31310969 DOI: 10.1016/j.chemosphere.2019.124344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole ultraviolet stabilisers (BUVSs) are emerging compounds used in personal care products and in other products, such as plastics, to absorb UV light. BUVSs have been described as bioaccumulative, persistent and toxic, so it is of great interest to understand their presence in the environment. Some marine organisms, such as seaweeds, have been used as bioindicators of contamination in the environment because they are able to accumulate metals and organic compounds. We have selected seaweeds to develop a novel method to extract, identify and determine six BUVSs (UV P, UV 326, UV 327, UV 328, UV 329, UV 360) based on microwave assisted extraction (MAE) and ultra-high-performance liquid chromatography with diode array (UHPLC-DAD) and mass spectrometry confirmation (UHPLC-MS/MS). Under optimum conditions, recoveries ranging from 49.8 to 92.3% were obtained, while intra-day and inter-day precision values were lower than 10% for most of the compounds. Limits of detection in the ranges 1.79-4.58 and 0.89-1.76 ng g-1 dry weight (dw) were obtained for UHPLC-DAD and UHPLC-MS/MS, respectively. The optimised method was applied for the analysis of twelve species of seaweed sampled during four months in 2018 from Las Canteras beach (Gran Canaria, Spain), with the results confirmed by UHPLC-MS/MS. UV 360 was found in concentrations between 42.5 and 115 ng g-1 (dw) in five of the twelve species. Although the highest concentrations were found in Asparagopsis taxiformis, the presence of UV 360 in other species could suggest that seaweeds can act as potential bioindicators of the occurrence of these compounds in the coastal environment.
Collapse
Affiliation(s)
- Javier Pacheco-Juárez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
35
|
Investigating Sustainable Practices in Hotel Industry-from Employees’ Perspective: Evidence from a Mediterranean Island. SUSTAINABILITY 2019. [DOI: 10.3390/su11236556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although several studies have researched the hotel employees’ environmental behavior, none has addressed the hotel employees’ perception of their respective hotels’ sustainability practices. This study aims to investigate the sustainable practices in four and five star hotels in a Mediterranean island by employing Global Sustainable Tourism Council (GSTC) hotel criteria indicators, indicators of sustainable development for tourism destinations (WTO), and the European Union’s (EU) sustainability framework for the Mediterranean hotels− “Nearly Zero-Energy Hotels” (NEZEH), and global sustainable development goals (SDG) in the context of three dimensions: social, economic and environment. The sampled hotels claim that their operation system is conformed to sustainability principles with the aim of furthering their green agenda. In this study, we aim to investigate the validity and extent of this claim. About 290 (N = 290) employees in the specified hotels were surveyed. The measurement instruments were compiled based on sustainability indicators that encompassed addressing social, economic, and environmental dimensions. The research questions contextualized around four main themes: effective sustainability planning, maximizing social and economic benefits for the local community, enhancing cultural heritage, and reducing negative environmental impacts. For the statistical and data analysis, SEM (structural equation modeling) is used. Study revealed that employees are a legitimate and credible source of information about sustainability practices. It is also revealed that as going green is becoming a means toward branding, hotels are making efforts to implement a genuine sustainability practice. Study also indicated that the majority of employees validated the sustainability practices as genuine.
Collapse
|
36
|
Rodríguez-Romero A, Ruiz-Gutiérrez G, Viguri JR, Tovar-Sánchez A. Sunscreens as a New Source of Metals and Nutrients to Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10177-10187. [PMID: 31411031 DOI: 10.1021/acs.est.9b02739] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies detailing the environmental impact of sunscreen products on coastal ecosystems are considered a high priority. In the present study, we have determined the release rate of dissolved trace metals (Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and inorganic nutrients (SiO2, P-PO43-, and N-NO3-) from a commercial sunscreen in seawater, and the role of UV radiation in the mobilization of these compounds. Our results indicate that release rates are higher under UV light conditions for all compounds and trace metals except Pb. We have developed a kinetic model to establish the release pattern and the contribution to marine coastal waters of dissolved trace metals and inorganic nutrients from sunscreen products. We conservatively estimate that sunscreen from bathers is responsible for an increase of dissolved metals and nutrients ranging from 7.54 × 10-4 % for Ni up to 19.8% for Ti. Our results demonstrate that sunscreen products are a significant source of metals and inorganic nutrients to coastal waters. The normally low environmental concentrations of some elements (e.g., P) and the toxicity of others (e.g., Pb) could be having a serious adverse effect on marine ecology in the Mediterranean Sea. This risk must not be ignored.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Gema Ruiz-Gutiérrez
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Javier R Viguri
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management , Institute of Marine Sciences of Andalusia, ICMAN (CSIC) , Campus Río San Pedro , 11510 Puerto Real, Cádiz , Spain
| |
Collapse
|