1
|
Joffe R, Tosens T, Berthe A, Jolivet Y, Niinemets Ü, Gandin A. Reduced mesophyll conductance under chronic O 3 exposure in poplar reflects thicker cell walls and increased subcellular diffusion pathway lengths according to the anatomical model. PLANT, CELL & ENVIRONMENT 2024; 47:4815-4832. [PMID: 39101376 DOI: 10.1111/pce.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Ozone (O3) is one of the most harmful and widespread air pollutants, affecting crop yield and plant health worldwide. There is evidence that O3 reduces the major limiting factor of photosynthesis, namely CO2 mesophyll conductance (gm), but there is little quantitative information of O3-caused changes in key leaf anatomical traits and their impact on gm. We exposed two O3-responsive clones of the economically important tree species Populus × canadensis Moench to 120 ppb O3 for 21 days. An anatomical diffusion model within the leaf was used to analyse the entire CO2 diffusion pathway from substomatal cavities to carboxylation sites and determine the importance of each structural and subcellular component as a limiting factor. gm decreased substantially under O3 and was found to be the most important limitation of photosynthesis. This decrease was mostly driven by an increased cell wall thickness and length of subcellular diffusion pathway caused by altered interchloroplast spacing and chloroplast positioning. By contrast, the prominent leaf integrative trait leaf dry mass per area was neither affected nor related to gm under O3. The observed relationship between gm and anatomy, however, was clone-dependent, suggesting that mechanisms regulating gm may differ considerably between closely related plant lines. Our results confirm the need for further studies on factors constraining gm under stress conditions.
Collapse
Affiliation(s)
- Ricardo Joffe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Tiina Tosens
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Audrey Berthe
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Anthony Gandin
- Faculté des Sciences et Technologies, Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
2
|
Xie B, Zhao Z, Wang X, Wang Q, Yuan X, Guo C, Xu L. Exogenous protectants alleviate ozone stress in Trifolium repens: Impacts on plant growth and endophytic fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109059. [PMID: 39178802 DOI: 10.1016/j.plaphy.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Industrialization-driven surface ozone (O3) pollution significantly impairs plant growth. This study evaluates the effectiveness of exogenous protectants [3 mg L⁻1 abscisic acid (ABA), 400 mg L⁻1 ethylenediurea (EDU), and 80 mg L⁻1 spermidine (Spd)] on Trifolium repens subjected to O3 stress in open-top chambers, focusing on plant growth and dynamics of culturable endophytic fungal communities. Results indicate that O3 exposure adversely affects photosynthesis, reducing root biomass and altering root structure, which further impacts the ability of plant to absorb essential nutrients such as potassium (K), magnesium (Mg), and zinc (Zn). Conversely, the application of ABA, EDU, and Spd significantly enhanced total biomass and chlorophyll content in T. repens. Specifically, ABA and Spd significantly improved root length, root surface area, and root volume, while EDU effectively reduced leaves' malondialdehyde levels, indicating decreased oxidative stress. Moreover, ABA and Spd treatments significantly increased leaf endophytic fungal diversity, while root fungal abundance declined. The relative abundance of Alternaria in leaves was substantially reduced by these treatments, which correlated with enhanced chlorophyll content and photosynthesis. Concurrently, EDU and Spd treatments increased the abundance of Plectosphaerella, enhance the absorption of K, Ca, and Mg. In roots, ABA treatment increased the abundance of Paecilomyces, while Spd treatment enhanced the presence of Stemphylium, linked to improved nitrogen (N), phosphorus (P), and K uptake. These findings suggest that specific symbiotic fungi mitigate O3-induced stress by enhancing nutrient absorption, promoting growth. This study highlights the potential of exogenous protectants to enhance plant resilience against O3 pollution through modulating interactions with endophytic fungal communities.
Collapse
Affiliation(s)
- Bing Xie
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Zipeng Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaona Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Qi Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiangyang Yuan
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Chang Guo
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Lang Xu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
3
|
Hoshika Y, Cotrozzi L, Gavrichkova O, Nali C, Pellegrini E, Scartazza A, Paoletti E. Functional responses of two Mediterranean pine species in an ozone Free-Air Controlled Exposure (FACE) experiment. TREE PHYSIOLOGY 2023; 43:1548-1561. [PMID: 37209141 DOI: 10.1093/treephys/tpad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Effects of the phytotoxic and widespread ozone (O3) pollution may be species specific, but knowledge on Mediterranean conifer responses to long-term realistic exposure is still limited. We examined responses regarding to photosynthesis, needle biochemical stress markers and carbon and nitrogen (N) isotopes of two Mediterranean pine species (Pinus halepensis Mill. and Pinus pinea L.). Seedlings were grown in a Free-Air Controlled Exposure experiment with three levels of O3 (ambient air, AA [38.7 p.p.b. as daily average]; 1.5 × AA and 2.0 × AA) during the growing season (May-October 2019). In P. halepensis, O3 caused a significant decrease in the photosynthetic rate, which was mainly due to a reduction of both stomatal and mesophyll diffusion conductance to CO2. Isotopic analyses indicated a cumulative or memory effect of O3 exposure on this species, as the negative effects were highlighted only in the late growing season in association with a reduced biochemical defense capacity. On the other hand, there was no clear effect of O3 on photosynthesis in P. pinea. However, this species showed enhanced N allocation to leaves to compensate for reduced photosynthetic N- use efficiency. We conclude that functional responses to O3 are different between the two species determining that P. halepensis with thin needles was relatively sensitive to O3, while P. pinea with thicker needles was more resistant due to a potentially low O3 load per unit mass of mesophyll cells, which may affect species-specific resilience in O3-polluted Mediterranean pine forests.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Olga Gavrichkova
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Headquarters Porano, Via G. Marconi 2, Porano 05010, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa I-56124, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Andrea Scartazza
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa Unit, Via Moruzzi 1, Pisa 56124, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Firenze Unit, Via Madonna del Piano, Sesto Fiorentino I-50019, Italy
- Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, Potenza 85050, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
4
|
Wang H, Li M, Yang Y, Sun P, Zhou S, Kang Y, Xu Y, Yuan X, Feng Z, Jin W. Physiological and molecular responses of different rose ( Rosa hybrida L.) cultivars to elevated ozone levels. PLANT DIRECT 2023; 7:e513. [PMID: 37484545 PMCID: PMC10359767 DOI: 10.1002/pld3.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
The increasing ground-level ozone (O3) pollution resulting from rapid global urbanization and industrialization has negative effects on many plants. Nonetheless, many gaps remain in our knowledge of how ornamental plants respond to O3. Rose (Rosa hybrida L.) is a commercially important ornamental plant worldwide. In this study, we exposed four rose cultivars ("Schloss Mannheim," "Iceberg," "Lüye," and "Spectra") to either unfiltered ambient air (NF), unfiltered ambient air plus 40 ppb O3 (NF40), or unfiltered ambient air plus 80 ppb O3 (NF80). Only the cultivar "Schloss Mannheim" showed significant O3-related effects, including foliar injury, reduced chlorophyll content, reduced net photosynthetic rate, reduced stomatal conductance, and reduced stomatal apertures. In "Schloss Mannheim," several transcription factor genes-HSF, WRKY, and MYB genes-were upregulated by O3 exposure, and their expression was correlated with that of NCED1, PP2Cs, PYR/PYL, and UGTs, which are related to ABA biosynthesis and signaling. These results suggest that HSF, WRKY, and MYB transcription factors and ABA are important components of the plant response to O3 stress, suggesting a possible strategy for cultivating O3-tolerant rose varieties.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Maofu Li
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yuan Yang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | - Pei Sun
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Shuting Zhou
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yanhui Kang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yansen Xu
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Xiangyang Yuan
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Zhaozhong Feng
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Wanmei Jin
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| |
Collapse
|
5
|
Ping Q, Fang C, Yuan X, Agathokleous E, He H, Zheng H, Feng Z. Nitrogen addition changed the relationships of fine root respiration and biomass with key physiological traits in ozone-stressed poplars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162721. [PMID: 36898537 DOI: 10.1016/j.scitotenv.2023.162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Increasing ozone (O3) and nitrogen (N) addition may have contradictory effects on plant photosynthesis and growth. However, it remains unclear whether these effects on aboveground parts further change the root resource management strategy and the relationships of fine root respiration and biomass with other physiological traits. In this study, an open-top chamber experiment was conducted to investigate the effects of O3 alone and in combination with nitrogen (N) addition on root production and fine root respiration of poplar clone 107 (Populus × euramericana cv. '74/76'). Saplings were grown with (100 kg ha-1 year-1) or without (+0 kg ha-1 year-1) N addition under two O3 regimes (non-filtered ambient air or non-filtered ambient air + 60 ppb of O3). After about two to three months of treatment, elevated O3 significantly decreased fine root biomass and starch content but increased fine root respiration, which occurred in tandem with inhibited leaf light-saturated photosynthetic rate (Asat). Nitrogen addition did not change fine root respiration or biomass, neither did it alter the effect of elevated O3 on the fine root traits. However, N addition weakened the relationships of fine root respiration and biomass with Asat, fine root starch and N concentrations. No significant relationships of fine root biomass and respiration with soil mineralized N were observed under elevated O3 or N addition. These results imply that changed relationships of plant fine root traits under global changes should be considered into earth system process models to project more accurately future carbon cycle.
Collapse
Affiliation(s)
- Qin Ping
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Fang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xiangyang Yuan
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Hongxing He
- Department of Geography, McGill University, Montréal, Quebec H3A OB9, Canada
| | - Hua Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
6
|
Xu Y, Feng Z, Peng J, Uddling J. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. GLOBAL CHANGE BIOLOGY 2023; 29:2804-2823. [PMID: 36718962 DOI: 10.1111/gcb.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Yadav P, Mina U, Bhatia A, Singh B. Cultivar assortment index (CAI): a tool to evaluate the ozone tolerance of Indian Amaranth (Amaranthus hypochondriacus L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30819-30833. [PMID: 36441328 DOI: 10.1007/s11356-022-24327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The adverse impact of climate change on crop yield has accelerated the need for identification of crop cultivars resistant to abiotic stress. In the present study, a cultivar assortment index (CAI) was generated for the evaluation of forty Amaranthus hypochondriacus cultivars response to elevated ozone (EO) concentrations (AO + 30 ppb) in Free Air Ozone Enrichment (FAOE) facility using the parameters viz. foliar injury, gaseous exchange attributes, namely, net photosynthetic rate, stomatal conductance, transpiration rate, intercellular carbon dioxide, and water use efficiency along with above ground biomass and grain yield attributes. The dataset was used to identify key indicator parameters responsive to EO through principal component analysis (PCA) and further transformed to obtain linear score and weighted score. The CAI varied from 70.49 to 193.43. Cultivars having CAI value less than 151 were ozone tolerant (OT) whereas cultivars with CAI values between 150 and 170 were moderately tolerant (MOT). The cultivars exhibiting CAI values above 170 were ozone sensitive (OS). The cultivars exhibited differential sensitivity to EO with IC-5994 (CAI = 187.26) being the most affected cultivar whereas IC-5576 (CAI = 83.38) and IC-5916 (CAI = 70.49) being the least affected ones. The CAI, based on linear score and weighted score, offers easy identification of ozone sensitive (OS) and ozone tolerant (OT) cultivars. This index could help researchers to define a clear and strong basis for identification of OT cultivars which will reduce the time required for preliminary screening and further evaluation of crop cultivars for the development of climate smart crops.
Collapse
Affiliation(s)
- Prachi Yadav
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University (JNU), New Delhi, 110067, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), ICAR-IARI, New Delhi, 110012, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture (CESCRA), ICAR-IARI, New Delhi, 110012, India
| |
Collapse
|
8
|
Phylogenetic Conservation of Soil Microbial Responses to Elevated Tropospheric Ozone and Nitrogen Fertilization. mSystems 2023; 8:e0072122. [PMID: 36625584 PMCID: PMC9948724 DOI: 10.1128/msystems.00721-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plant primary productivity and crop yields have been reduced due to the doubled level of global tropospheric ozone. Little is known about how elevated ozone affects soil microbial communities in the cropland ecosystem and whether such effects are sensitive to the nitrogen (N) supply. Here, we examined the responses of bacterial and fungal communities in maize soils to elevated ozone (+60 ppb ozone) across different levels of N fertilization (+60, +120, and +240 kg N ha-1yr-1). The fungal alpha diversity was decreased (P < 0.05), whereas the bacterial alpha diversity displayed no significant change under elevated ozone. Significant (P < 0.05) effects of N fertilization and elevated ozone on both the bacterial and fungal communities were observed. However, no interactive effects between N fertilization and elevated ozone were observed for bacterial and fungal communities (P > 0.1). The bacterial responses to N fertilization as well as the bacterial and fungal responses to elevated ozone were all phylogenetically conserved, showing universal homogeneous selection (homogeneous environmental conditions leading to more similar community structures). In detail, bacterial Alphaproteobacteria, Actinobacteria, and Chloroflexi, as well as fungal Ascomycota, were increased by elevated ozone, whereas bacterial Gammaproteobacteria, Bacteroidetes, and Elusimicrobia, as well as fungal Glomeromycota, were decreased by elevated ozone (P < 0.05). These ozone-responsive phyla were generally correlated (P < 0.05) with plant biomass, plant carbon (C) uptake, and soil dissolved organic C, demonstrating that elevated ozone affects plant-microbe interactions. Our study highlighted that microbial responses to elevated ozone display a phylogenetic clustering pattern, suggesting that response strategies to elevated ozone stress may be phylogenetically conserved ecological traits. IMPORTANCE The interactions of plant and soil microbial communities support plant growth and health. The increasing tropospheric ozone decreases crop biomass and also alters soil microbial communities, but the ways in which crops and their associated soil microbial communities respond to elevated tropospheric ozone are not clear, and it is also obscure whether the interactions between ozone and the commonly applied N fertilization exist. We showed that the microbial responses to both elevated ozone and N fertilization were phylogenetically conserved. However, the microbial communities that responded to N fertilization and elevated ozone were different, and this was further verified by the lack of an interactive effect between N fertilization and elevated ozone. Given that the global tropospheric ozone concentration will continue to increase in the coming decades, the decrease of specific microbial populations caused by elevated ozone would result in the extinction of certain microbial taxa. This ozone-induced effect will further harm crop production, and awareness is urgently needed.
Collapse
|
9
|
Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, Pärlist P, Drenkhan R, Niinemets Ü. Impacts of Dutch elm disease-causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. TREE PHYSIOLOGY 2023; 43:57-74. [PMID: 36106799 DOI: 10.1093/treephys/tpac108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.
Collapse
Affiliation(s)
- Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Liina Jürisoo
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Piret Pärlist
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
10
|
Tao S, Yin H, Fang Y, Zhang Y, Zhang N, Qu L. Elevated O 3 concentrations alter the compartment-specific microbial communities inhabiting rust-infected poplars. Environ Microbiol 2022; 25:990-1006. [PMID: 36582119 DOI: 10.1111/1462-2920.16332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Elevated ozone (O3 ) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O3 sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O3 -enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response. We found that hosts with higher O3 sensitivity had significantly lower rust severity than hosts with lower sensitivity. Furthermore, the effect of increased O3 on the diversity and composition of microbial communities was highly dependent on poplar compartments, with the microbial network complexity patterns being completely opposite between the two clones. Notably, microbial source analysis estimated that phyllosphere fungal communities predominately derived from root endosphere and vice versa, suggesting a potential transmission mechanism between plant above- and below-ground systems. These promising results suggest that further investigations are needed to better understand the interactions of abiotic and biotic stresses on plant performance and the role of the microbiome in driving these changes.
Collapse
Affiliation(s)
- Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China.,Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People's Republic of China
| | - Haiyue Yin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Yue Fang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China.,Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People's Republic of China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, China
| |
Collapse
|
11
|
Shang B, Li Z, Yuan X, Xu Y, Feng Z. Effects of elevated ozone on the uptake and allocation of macronutrients in poplar saplings above- and belowground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158044. [PMID: 35981595 DOI: 10.1016/j.scitotenv.2022.158044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Ground-level ozone (O3) is a secondary air pollutant and affects the roots and soil processes of trees. Therefore, O3 can affect the uptake and allocation of nutrients in trees, which merits further clarification. A fumigation experiment with five O3 levels was conducted in 15 open top chambers for two poplar clones, and the concentrations of six macronutrients (N, P, K, S, Ca, Mg) in different organs and leaf positions were determined. Under all O3 levels, the concentration of mobile nutrients (N and P) was higher in upper leaves than in lower leaves, while the non-mobile nutrients (Ca and S) concentration was the opposite. Relative to charcoal filtered ambient air (CF), high O3 treatment (NF60) significantly increased the concentration of mobile nutrients K and Mg in upper leaves by 38 % and 33 %, in lower leaves by 142 % and 65 %, respectively, which suggested the effect of O3 on their concentrations was greater at the lower leaf position than at the upper leaf position. Elevated O3 significantly increased the macronutrient concentrations in most organs. The effects of O3 on nutrient concentrations were attributed using graphical vector analysis, suggested that the increase of nutrient concentration in the shoots was attributed to excessive nutrient stocks, while their increase in root was attributed to the "concentration" effect. Compared to CF, NF60 also reduced the root-to-shoot ratio of N, P, S, K, Ca and Mg stocks by 34 %, 39 %, 37 %, 64 %, 46 % and 42 %, respectively, indicating the allocation of increased nutrients to shoots in response to O3 stress. Changes in the allocation pattern of nutrients in different leaf positions and organs of poplar were primarily in response to O3 stress since these nutrients play important roles in some physiological processes. These results will help improve the plantation nutrient utilization by optimizing fertilizer management regimes under O3 pollution.
Collapse
Affiliation(s)
- Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhengzhen Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiangyang Yuan
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
12
|
Xu Y, Feng Z, Peng J, Tarvainen L. Elevated ozone decreases the activity of Rubisco in poplar but not its activation under fluctuating light. TREE PHYSIOLOGY 2022; 42:1762-1775. [PMID: 35445727 DOI: 10.1093/treephys/tpac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Increasing tropospheric ozone (O3) is well-known to decrease leaf photosynthesis under steady-state light through reductions in biochemical capacity. However, the effects of O3 on photosynthetic induction and its biochemical limitations in response to fluctuating light remain unclear, despite the rapid fluctuations of light intensity occurring under field conditions. In this study, two hybrid poplar clones with different O3 sensitivities were exposed to elevated O3. Dynamic photosynthetic CO2 response measurements were conducted to quantify the impact of elevated O3 and exposure duration on biochemical limitations during photosynthetic induction. We found that elevated O3 significantly reduced the steady-state light-saturated photosynthetic rate, the maximum rate of carboxylation (Vcmax) and Rubisco content. In addition, elevated O3 significantly decreased the time constants for slow phases and weighting of the fast phase of the Vcmax induction in poplar clone '546' but not in clone '107'. However, elevated O3 did not affect the time, it took to reach a given percentage of full Vcmax activation or photosynthetic induction in either clone. Overall, photosynthetic induction was primarily limited by the activity of Rubisco rather than the regeneration of ribulose-1,5-biphosphate regardless of O3 concentration and exposure duration. The lack of O3-induced effects on the activation of Rubisco observed here would simplify the simulation of impacts of O3 on nonsteady-state photosynthesis in dynamic photosynthetic models.
Collapse
Affiliation(s)
- Yansen Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Pukou, Nanjing 210044, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Pukou, Nanjing 210044, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| |
Collapse
|
13
|
Joffe R, Berthe A, Jolivet Y, Gandin A. The response of mesophyll conductance to ozone-induced oxidative stress is genotype-dependent in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4850-4866. [PMID: 35429268 DOI: 10.1093/jxb/erac154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The CO2 diffusion conductance within the leaf mesophyll (gm) is considered a major limiting factor of photosynthesis. However, the effects of the major secondary air pollutant ozone (O3) on gm have been poorly investigated. Eight genotypes of the economically important tree species Populus × canadensis Moench were exposed to 120 ppb O3 for 21 d. gm showed a genotype-dependent response to O3-induced oxidative stress and was a major limiting factor of net assimilation rate (Anet), ahead of stomatal conductance to CO2 (gsc) and of the maximum carboxylation capacity of the Rubisco enzyme (Vcmax) in half of the tested genotypes. Increased leaf dry mass per area (LMA) and decreased chlorophyll content were linked to the observed gm decrease, but this relationship did not entirely explain the different genotypic gm responses. Moreover, the oxidative stress defence metabolites ascorbate and glutathione were not related to O3 tolerance of gm. However, malondialdehyde probably mitigated the observed gm decrease in some genotypes due to its oxidative stress signalling function. The large variation of gm suggests different regulation mechanisms amongst poplar genotypes under oxidative stress.
Collapse
Affiliation(s)
- Ricardo Joffe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Audrey Berthe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| |
Collapse
|
14
|
Study on Transpiration Water Consumption and Photosynthetic Characteristics of Landscape Tree Species under Ozone Stress. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Using Pinus bungeana, Platycladus orientalis, Koelreuteria paniculata and Ginkgo biloba as research objects, three open-top chambers with different ozone-concentration gradients were set up (NF, NF40 and NF80) based on trunk sap-flow technology to study the difference in ozone absorption by trees under different ozone concentrations. The results showed that the monthly and diurnal variations of sap-flow density of different tree species decreased with the increase in ozone concentration, and the increase in ozone concentration reduced the water consumption, ozone uptake rate (FO3), net photosynthetic rate (Pn) and water-use efficiency (WUE) of different tree species. The sap-flow density, water consumption, FO3 and WUE of Koelreuteria paniculata and Ginkgo biloba were higher than those of Pinus bungeana and Platycladus orientalis under different ozone concentrations. The sap-flow density, water consumption, FO3 and WUE of Koelreuteria paniculata and Ginkgo biloba decreased significantly at the ozone concentrations of NF40 and NF80; compared with the ozone concentration of NF, the sap flow density of Koelreuteria paniculata and Ginkgo biloba decreased by 1.04 and 1.03 times as much as that of Pinus bungeana and Platycladus orientalis, respectively; the water consumption of Koelreuteria paniculata and Ginkgo biloba decreased by 1.82 and 1.56 times that of Pinus bungeana and Platycladus orientalis, respectively; the decline rate of FO3 in Koelreuteria paniculata and Ginkgo biloba was 1.30 and 1.04 times that of Pinus bungeana and Platycladus orientalis, respectively; and the decline rate of WUE of Koelreuteria paniculata and Ginkgo biloba was 1.52 and 1.64 times that of Pinus bungeana and Platycladus orientalis, respectively. Pinus bungeana and Platycladus orientalis have stronger tolerance to ozone, while Koelreuteria paniculata and Ginkgo biloba were weak. A variety of conifers can be planted in areas with serious ozone pollution.
Collapse
|
15
|
Watanabe M, Li J, Matsumoto M, Aoki T, Ariura R, Fuse T, Zhang Y, Kinose Y, Yamaguchi M, Izuta T. Growth and photosynthetic responses to ozone of Siebold's beech seedlings grown under elevated CO 2 and soil nitrogen supply. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119233. [PMID: 35358628 DOI: 10.1016/j.envpol.2022.119233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/06/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Ozone (O3) is a phytotoxic air pollutant, the adverse effects of which on growth and photosynthesis are modified by other environmental factors. In this study, we examined the combined effects of O3, elevated CO2, and soil nitrogen supply on Siebold's beech seedlings. Seedlings were grown under combinations of two levels of O3 (low and two times ambient O3 concentration), two levels of CO2 (ambient and 700 ppm), and three levels of soil nitrogen supply (0, 50, and 100 kg N ha-1 year-1) during two growing seasons (2019 and 2020), with leaf photosynthetic traits being determined during the second season. We found that elevated CO2 ameliorated O3-induced reductions in photosynthetic activity, whereas the negative effects of O3 on photosynthetic traits were enhanced by soil nitrogen supply. We observed three-factor interactions in photosynthetic traits, with the ameliorative effects of elevated CO2 on O3-induced reductions in the maximum rate of carboxylation being more pronounced under high than under low soil nitrogen conditions in July. In contrast, elevated CO2-induced amelioration of the effects of O3 on stomatal function-related traits was more pronounced under low soil nitrogen conditions. Although we observed several two- or three-factor interactions of gas and soil treatments with respect to leaf photosynthetic traits, the shoot to root dry mass (S/R) ratio was the only parameter for which a significant interaction was detected among seedling growth parameters. O3 caused a significant increase in S/R under ambient CO2 conditions, whereas no similar effects were observed under elevated CO2 conditions. Collectively, our findings reveal the complex interactive effects of elevated CO2 and soil nitrogen supply on the detrimental effects of O3 on leaf photosynthetic traits, and highlight the importance of taking into consideration differences between the responses of CO2 uptake and growth to these three environmental factors.
Collapse
Affiliation(s)
- Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Jing Li
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Misako Matsumoto
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takuro Aoki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ryo Ariura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Fuse
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yazhuo Zhang
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yoshiyuki Kinose
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
16
|
Tao S, Zhang Y, Tian C, Duplessis S, Zhang N. Elevated Ozone Concentration and Nitrogen Addition Increase Poplar Rust Severity by Shifting the Phyllosphere Microbial Community. J Fungi (Basel) 2022; 8:jof8050523. [PMID: 35628778 PMCID: PMC9148057 DOI: 10.3390/jof8050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tropospheric ozone and nitrogen deposition are two major environmental pollutants. A great deal of research has focused on the negative impacts of elevated O3 and the complementary effect of soil N addition on the physiological properties of trees. However, it has been overlooked how elevated O3 and N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host–pathogen–environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust [Melampsora larici-populina] severity of two susceptible hybrid poplars [clone ‘107’: Populus euramericana cv. ‘74/76’; clone ‘546’: P. deltoides Í P. cathayana] in Free-Air-Controlled-Environment plots, in addition, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone ‘107’ significantly increased under elevated O3 or N addition only; however, the negative impact of elevated O3 could be significantly mitigated when accompanied by N addition, likewise, this trade-off was reflected in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, rust severity of clone ‘546’ did not differ significantly in the cases of elevated O3 and N addition. Mlp infection altered microbial community composition and increased its sensitivity to elevated O3, as determined by the markedly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings suggest that poplars require a changing phyllosphere microbial associations to optimize plant immunity in response to environmental changes.
Collapse
Affiliation(s)
- Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | | | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
- Correspondence:
| |
Collapse
|
17
|
Wang Y, Xu S, Li B, Chen W, Li Y, He X, Wang N. Responses of spring leaf phenological and functional traits of two urban tree species to air warming and/or elevated ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:158-167. [PMID: 35358866 DOI: 10.1016/j.plaphy.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Climate warming and surface ozone (O3) pollution are important global environmental issues today. However, the combined impacts of air warming and O3 on phenology and its functional traits of urban trees are still poorly understood. Here, an experiment was performed to explore the variations of the spring phenological and functional traits in leaves of Populus alba 'Berolinensis' and Forsythia suspensa under ambient air (15.8 °C, 35.7 ppb), increased air temperature (IT, ambient air temperature + 2 °C, 17.9 °C), elevated O3 (EO, ambient air O3 concentrations + 40 ppb, 77.4 ppb), and their combined treatments (17.7 °C, 74.5 ppb). Our results showed that: IT advanced the beginning of leaf bud expansion phase of P. alba 'Berolinensis' and F. suspensa for 6 d and 5 d, respectively, increased leaf unfolding rate, leaf area and dry weight, and enhanced photosynthesis and antioxidative enzyme activities. EO delayed the beginning of leaf bud expansion phase of P. alba 'Berolinensis' for 5 d, decreased leaf area and biomass, and inhibited photosynthesis and caused oxidative damage of plant leaves. Compared to EO, the combined treatment advanced the spring phenophase, increased growth and induced the higher level of photosynthetic rate and antioxidative enzymes activities in plant leaves, which indicated that the positive effects of increased temperature (17.7 °C) alleviated the inhibition of growth and photosynthesis induced by ozone. Our findings can provide a theoretical reference for predicting the adaptation of functional traits of the two trees blossomed early under warming and O3 pollution at spring phenological stage.
Collapse
Affiliation(s)
- Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Nan Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Responses of photosynthesis and long-term water use efficiency to ambient air pollution in urban roadside trees. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Stangl ZR, Tarvainen L, Wallin G, Marshall JD. Limits to photosynthesis: seasonal shifts in supply and demand for CO 2 in Scots pine. THE NEW PHYTOLOGIST 2022; 233:1108-1120. [PMID: 34775610 DOI: 10.1111/nph.17856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet ) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm ) and its effect on the estimation of carboxylation capacity ( VCmax ). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet . The seasonality of Anet was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high VCmax . We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet , but not between gm and stomatal conductance.
Collapse
Affiliation(s)
- Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
20
|
Hoshika Y, Paoletti E, Centritto M, Gomes MTG, Puértolas J, Haworth M. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. PHYSIOLOGIA PLANTARUM 2022; 174:e13639. [PMID: 35092611 PMCID: PMC9303399 DOI: 10.1111/ppl.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Mesophyll conductance (gmCO2 ) is one of the most important components in plant photosynthesis. Tropospheric ozone (O3 ) and drought impair physiological processes, causing damage to photosynthetic systems. However, the combined effects of O3 and drought on gmCO2 are still largely unclear. We investigated leaf gas exchange during mid-summer in three Mediterranean oaks exposed to O3 (ambient [35.2 nmol mol-1 as daily mean]; 1.4 × ambient) and water treatments (WW [well-watered] and WD [water-deficit]). We also examined if leaf traits (leaf mass per area [LMA], foliar abscisic acid concentration [ABA]) could influence the diffusion of CO2 inside a leaf. The combination of O3 and WD significantly decreased net photosynthetic rate (PN ) regardless of the species. The reduction of photosynthesis was associated with a decrease in gmCO2 and stomatal conductance (gsCO2 ) in evergreen Quercus ilex, while the two deciduous oaks (Q. pubescens, Q. robur) also showed a reduction of the maximum rate of carboxylation (Vcmax ) and maximum electron transport rate (Jmax ) with decreased diffusive conductance parameters. The reduction of gmCO2 was correlated with increased [ABA] in the three oaks, whereas there was a negative correlation between gmCO2 with LMA in Q. pubescens. Interestingly, two deciduous oaks showed a weak or no significant correlation between gsCO2 and ABA under high O3 and WD due to impaired stomatal physiological behaviour, indicating that the reduction of PN was related to gmCO2 rather than gsCO2 . The results suggest that gmCO2 plays an important role in plant carbon gain under concurrent increases in the severity of drought and O3 pollution.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Mauro Centritto
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Marcos Thiago Gaudio Gomes
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Present address:
Department of Biological Sciences, Center for Human and Natural SciencesFederal University of Espírito SantoGoiabeiras, CEP 29075‐910, Vitória, Espírito SantoBrazil
| | - Jaime Puértolas
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Present address:
Department of Botany and Plant Ecology and PhysiologyUniversity of La LagunaSan Cristóbal de La LagunaSpain
| | - Matthew Haworth
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| |
Collapse
|
21
|
Yuan X, Feng Z, Hu C, Zhang K, Qu L, Paoletti E. Effects of elevated ozone on the emission of volatile isoprenoids from flowers and leaves of rose (Rosa sp.) varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118141. [PMID: 34517180 DOI: 10.1016/j.envpol.2021.118141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) affects isoprenoid emissions, and floral emissions in particular, which may result in potential impacts on the interactions of plants with other organisms. The effects of ozone (O3) on isoprenoid emissions have been investigated for many years, while knowledge on O3 effects on floral emissions is still scarce and the relevant mechanism has not been clarified so far. We investigated the effects of O3 on floral and foliar isoprenoid emissions (mainly isoprene, monoterpenes and sesquiterpenes) and their synthase substrates from three rose varieties (CH, Rosa chinensis Jacq. var. chinensis; SA, R. hybrida 'Saiun'; MO, R. hybrida 'Monica Bellucci') at different exposure durations. Results indicated that the O3-induced stimulation after short-term exposure (35 days after the beginning of O3 exposure) was significant only for sesquiterpene emissions from flowers, while long-term O3 exposure (90 days after the beginning of O3 exposure) significantly decreased both foliar and floral monoterpene and sesquiterpene emissions. In addition, the observed decline of emissions under long-term O3 exposure resulted from the limitation of synthase substrates, and the responses of emissions and substrates varied among varieties, with the greatest variation in the O3-sensitive variety. These findings provide important insights on plant isoprenoid emissions and species selection for landscaping, especially in areas with high O3 concentration.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chunfang Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Cernusak LA, Farha MN, Cheesman AW. Understanding how ozone impacts plant water-use efficiency. TREE PHYSIOLOGY 2021; 41:2229-2233. [PMID: 34569610 DOI: 10.1093/treephys/tpab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - Mst Nahid Farha
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
- Department of Chemistry, Rajshahi University of Engineering and Technology, Bangladesh 6204
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, Queensland 4878, Australia
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
| |
Collapse
|
23
|
Turc B, Vollenweider P, Le Thiec D, Gandin A, Schaub M, Cabané M, Jolivet Y. Dynamics of Foliar Responses to O 3 Stress as a Function of Phytotoxic O 3 Dose in Hybrid Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:679852. [PMID: 34262582 PMCID: PMC8273248 DOI: 10.3389/fpls.2021.679852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
With background concentrations having reached phytotoxic levels during the last century, tropospheric ozone (O3) has become a key climate change agent, counteracting carbon sequestration by forest ecosystems. One of the main knowledge gaps for implementing the recent O3 flux-based critical levels (CLs) concerns the assessment of effective O3 dose leading to adverse effects in plants. In this study, we investigate the dynamics of physiological, structural, and morphological responses induced by two levels of O3 exposure (80 and 100 ppb) in the foliage of hybrid poplar, as a function of phytotoxic O3 dose (POD0) and foliar developmental stage. After a latency period driven by foliar ontological development, the gas exchanges and chlorophyll content decreased with higher POD0 monotonically. Hypersensitive response-like lesions appeared early during exposure and showed sigmoidal-like dynamics, varying according to leaf age. At current POD1_SPEC CL, notwithstanding the aforementioned reactions and initial visible injury to foliage, the treated poplars had still not shown any growth or biomass reduction. Hence, this study demonstrates the development of a complex syndrome of early reactions below the flux-based CL, with response dynamics closely determined by the foliar ontological stage and environmental conditions. General agreement with patterns observed in the field appears indicative of early O3 impacts on processes relevant, e.g., biodiversity ecosystem services before those of economic significance - i.e., wood production, as targeted by flux-based CL.
Collapse
Affiliation(s)
- Benjamin Turc
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pierre Vollenweider
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Didier Le Thiec
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Anthony Gandin
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Marcus Schaub
- Section Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mireille Cabané
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| | - Yves Jolivet
- University of Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
| |
Collapse
|
24
|
Dai L, Xu Y, Harmens H, Duan H, Feng Z, Hayes F, Sharps K, Radbourne A, Tarvainen L. Reduced photosynthetic thermal acclimation capacity under elevated ozone in poplar (Populus tremula) saplings. GLOBAL CHANGE BIOLOGY 2021; 27:2159-2173. [PMID: 33609321 DOI: 10.1111/gcb.15564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The sensitivity of photosynthesis to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial carbon cycle response to future climate change. Although thermal acclimation of photosynthesis under rising temperature has been reported in many tree species, whether tropospheric ozone (O3 ) affects the acclimation capacity remains unknown. In this study, temperature responses of photosynthesis (light-saturated rate of photosynthesis (Asat ), maximum rates of RuBP carboxylation (Vcmax ), and electron transport (Jmax ) and dark respiration (Rdark ) of Populus tremula exposed to ambient O3 (AO3 , maximum of 30 ppb) or elevated O3 (EO3 , maximum of 110 ppb) and ambient or elevated temperature (ambient +5°C) were investigated in solardomes. We found that the optimum temperature of Asat (ToptA ) significantly increased in response to warming. However, the thermal acclimation capacity was reduced by O3 exposure, as indicated by decreased ToptA , and temperature optima of Vcmax (ToptV ) and Jmax (ToptJ ) under EO3 . Changes in both stomatal conductance (gs ) and photosynthetic capacity (Vcmax and Jmax ) contributed to the shift of ToptA by warming and EO3 . Neither Rdark measured at 25°C ( R dark 25 ) nor the temperature response of Rdark was affected by warming, EO3 , or their combination. The responses of Asat , Vcmax , and Jmax to warming and EO3 were closely correlated with changes in leaf nitrogen (N) content and N use efficiency. Overall, warming stimulated growth (leaf biomass and tree height), whereas EO3 reduced growth (leaf and woody biomass). The findings indicate that thermal acclimation of Asat may be overestimated if the impact of O3 pollution is not taken into account.
Collapse
Affiliation(s)
- Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Alan Radbourne
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, UK
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Li S, Liu J, Liu H, Qiu R, Gao Y, Duan A. Role of Hydraulic Signal and ABA in Decrease of Leaf Stomatal and Mesophyll Conductance in Soil Drought-Stressed Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:653186. [PMID: 33995449 PMCID: PMC8118518 DOI: 10.3389/fpls.2021.653186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Drought reduces leaf stomatal conductance (gs) and mesophyll conductance (gm). Both hydraulic signals and chemical signals (mainly abscisic acid, ABA) are involved in regulating gs. However, it remains unclear what role the endogenous ABA plays in gm under decreasing soil moisture. In this study, the responses of gs and gm to ABA were investigated under progressive soil drying conditions and their impacts on net photosynthesis (An) and intrinsic water use efficiency (WUEi) were also analyzed. Experimental tomato plants were cultivated in pots in an environment-controlled greenhouse. Reductions of gs and gm induced a 68-78% decline of An under drought conditions. While soil water potential (Ψsoil) was over -1.01 MPa, gs reduced as leaf water potential (Ψleaf) decreased, but ABA and gm kept unchanged, which indicating gs was more sensitive to drought than gm. During Ψsoil reduction from -1.01 to -1.44 MPa, Ψleaf still kept decreasing, and both gs and gm decreased concurrently following to the sustained increases of ABA content in shoot sap. The gm was positively correlated to gs during a drying process. Compared to gs or gm, WUEi was strongly correlated with gm/gs. WUEi improved within Ψsoil range between -0.83 and -1.15 MPa. In summary, gs showed a higher sensitivity to drought than gm. Under moderate and severe drought at Ψsoil ≤ -1.01 MPa, furthermore from hydraulic signals, ABA was also involved in this co-ordination reductions of gs and gm and thereby regulated An and WUEi.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Liu
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Rangjian Qiu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
26
|
Peng J, Xu Y, Shang B, Agathokleous E, Feng Z. Effects of elevated ozone on maize under varying soil nitrogen levels: Biomass, nitrogen and carbon, and their allocation to kernel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144332. [PMID: 33385814 DOI: 10.1016/j.scitotenv.2020.144332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Effects of ozone (O3) on maize have been increasingly studied, but only few studies have focused on the combined impacts of O3 and nitrogen (N) on this important crop with C4 carbon (C) fixation. In this study, a maize cultivar with the largest acreage in China was exposed to two O3 treatments (NF: ambient air O3 concentration; NF60: NF plus 60 ppb O3) and four N levels (farmers' N practice: 240 kg N ha-1 yr-1; 150%, 50% and 25% of farmers' N practice). Generally, O3 and N significantly influenced biomass, N and C, but did not change their allocation to kernel. There were significant interactions between O3 and N in stem biomass, C concentration and uptake, and leaf biomass and C uptake, with significant O3 effects mainly occurring at N120 and N240. Based on the coefficient of determination (R2), root C:N ratio rather than the most commonly used leaf C:N ratio was the best trait to indicate maize productivity. Furthermore, O3 significantly increased the regression slopes between root C:N ratio and kernel N uptake, kernel C uptake and plant N uptake, strengthened the correlation of C:N ratio and kernel C uptake, and weakened the correlation of C:N ratio and hundred-kernels weight. These suggest that O3 pollution can change the relationship of C:N ratio and productivity in maize. The weak correlation between kernel harvest index (HI) and N harvest index (NHI) indicated that future breeding researches should consider how to improve the coupling between biomass and N-related nutrition allocations in crop edible parts. Our results not only are helpful to accurately estimate O3 impacts on maize with consideration of N but also provide a new insight into the relationship between plant traits and its productivity under O3 pollution.
Collapse
Affiliation(s)
- Jinlong Peng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
27
|
Ozone Response of Leaf Physiological and Stomatal Characteristics in Brassica juncea L. at Supraoptimal Temperatures. LAND 2021. [DOI: 10.3390/land10040357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.
Collapse
|
28
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
29
|
Shang B, Xu Y, Peng J, Agathokleous E, Feng Z. High nitrogen addition decreases the ozone flux by reducing the maximum stomatal conductance in poplar saplings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115979. [PMID: 33168377 DOI: 10.1016/j.envpol.2020.115979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Ground-level ozone (O3) and nitrogen (N) deposition are major environmental pollutants, often occurring concurrently. Ozone exposure- and flux-response relationships for tree biomass are used for regional O3 risk assessment. In order to investigate whether soil N addition affects stomatal O3 uptake of poplar, poplar saplings were exposed to treatment combinations of five O3 levels and four N addition levels. High N addition treatment reduced the accumulated stomatal O3 uptake in the leaf due to reduced maximum stomatal conductance (gs). Nitrogen addition also significantly reduced the steady-state light-saturated gs in August and September. Elevated O3 significantly reduced and N addition increased total plant biomass; however, there were no significant O3 × N interactions. The slopes of biomass-based O3 exposure- and flux-response relationships did not differ significantly among N treatments. The critical levels for a 5% biomass reduction were estimated at 15.4 ppm h and 17.1 mmol O3 m-2 projected leaf area (PLA) for Accumulated O3 exposure Over an hourly Threshold of 40 ppb (AOT40) and Phytotoxic Ozone Dose above a threshold 1 nmol O3 m-2 PLA s-1 (POD1). These results can facilitate the evaluations of O3 effect on the carbon-sink capacity and productivity of forest.
Collapse
Affiliation(s)
- Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
30
|
Xu Y, Shang B, Peng J, Feng Z, Tarvainen L. Stomatal response drives between-species difference in predicted leaf water-use efficiency under elevated ozone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116137. [PMID: 33272800 DOI: 10.1016/j.envpol.2020.116137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Ozone-induced changes in the relationship between photosynthesis (An) and stomatal conductance (gs) vary among species, leading to inconsistent water use efficiency (WUE) responses to elevated ozone (O3). Thus, few vegetation models can accurately simulate the effects of O3 on WUE. Here, we conducted an experiment exposing two differently O3-sensitive species (Cotinus coggygria and Magnolia denudata) to five O3 concentrations and investigated the impact of O3 exposure on predicted WUE using a coupled An-gs model. We found that increases in stomatal O3 uptake caused linear reductions in the maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) in both species. In addition, a negative linear correlation between O3-induced changes in the minimal gs of the stomatal model (g0) derived from the theory of optimal stomatal behavior and light-saturated photosynthesis was found in the O3-sensitive M. denudata. When the O3 dose-based responses of Vcmax and Jmax were included in a coupled An-gs model, simulated An under elevated O3 were in good agreement with observations in both species. For M. denudata, incorporating the O3 response of g0 into the coupled model further improved the accuracy of the simulated gs and WUE. In conclusion, the modified Vcmax, Jmax and g0 method presented here provides a foundation for improving the prediction for O3-induced changes in An, gs and WUE.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
31
|
Peng J, Xu Y, Shang B, Qu L, Feng Z. Impact of ozone pollution on nitrogen fertilization management during maize (Zea mays L.) production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115158. [PMID: 32650199 DOI: 10.1016/j.envpol.2020.115158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The impacts of ozone (O3) on crops have been extensively studied and are well understood. However, little information is available on the response of crops (especially maize) to the interactive effects of O3 and nitrogen (N) fertilizer. To this end, a maize cultivar (Zheng dan 958, ZD958) that is common in China was exposed to two O3 treatments and four N levels. We found that (1) the interactions between O3 and N were non-significant for grain yield, plant biomass, C and N, although N addition significantly increased all parameters except C concentrations in grain and plant; (2) compared to NF (non-filtered ambient air O3 concentration), NF60 (NF plus an extra 60 ppb O3) increased the optimum N application rates (Nopt) in grain yield and plant biomass, but not grain yield and plant biomass potentials, thus resulting in lower N use efficiencies (NUE) and a larger risk of N-related environmental pollution (e.g., increased N2O emission) under Nopt in NF60; (3) because of higher optimum plant N uptake (PNopt) in NF60, relative to NF, plant N-saturated conditions for grain yield potential can be gradually turned into N-limited conditions as O3 pollution increases. These findings manifest that O3 is a vital global change factor impacting the management of N fertilization. If current O3 pollution is substantially reduced, maize yield and biomass potentials can be increased under reductions in N input and N-related environmental pollution. In addition, these results can also contribute in developing and verifying Nopt model considering O3 pollution in the future.
Collapse
Affiliation(s)
- Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
32
|
Hoshika Y, Haworth M, Watanabe M, Koike T. Interactive effect of leaf age and ozone on mesophyll conductance in Siebold's beech. PHYSIOLOGIA PLANTARUM 2020; 170:172-186. [PMID: 32394437 DOI: 10.1111/ppl.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Mesophyll conductance (Gm ) is one of the most important factors determining photosynthesis. Tropospheric ozone (O3 ) is known to accelerate leaf senescence and causes a decline of photosynthetic activity in leaves. However, the effects of age-related variation of O3 on Gm have not been well investigated, and we, therefore, analysed leaf gas exchange data in a free-air O3 exposure experiment on Siebold's beech with two levels (ambient and elevated O3 : 28 and 62 nmol mol-1 as daylight average, respectively). In addition, we examined whether O3 -induced changes on leaf morphology (leaf mass per area, leaf density and leaf thickness) may affect CO2 diffusion inside leaves. We found that O3 damaged the photosynthetic biochemistry progressively during the growing season. The Gm was associated with a reduced photosynthesis in O3 -fumigated Siebold's beech in August. The O3 -induced reduction of Gm was negatively correlated with leaf density, which was increased by elevated O3 , suggesting that the reduction of Gm was accompanied by changes in the physical structure of mesophyll cells. On the other hand, in October, the O3 -induced decrease of Gm was diminished because Gm decreased due to leaf senescence regardless of O3 treatment. The reduction of photosynthesis in senescent leaves after O3 exposure was mainly due to a decrease of maximum carboxylation rate (Vcmax ) and/or maximum electron transport rate (Jmax ) rather than diffusive limitations to CO2 transport such as Gm . A leaf age×O3 interaction of photosynthetic response will be a key for modelling photosynthesis in O3 -polluted environments.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, Sesto Fiorentino, I-50019, Italy
| | - Matthew Haworth
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano, Sesto Fiorentino, I-50019, Italy
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8689, Japan
| |
Collapse
|
33
|
Gupta SK, Sharma M, Majumder B, Maurya VK, Deeba F, Zhang JL, Pandey V. Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:675-688. [PMID: 32738705 DOI: 10.1016/j.plaphy.2020.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone is a major threat to the crops in the present climate change scenario. To investigate the EDU induced changes in proteins, two varieties of maize, the SHM3031 and the PEHM5, (hereafter S and P respectively) were treated with three EDU applications (0= control, 50 and 200 ppm) (hereafter 0= A, 1 and 2 respectively) (SA, S1, S2, PA, P1, P2 cultivar X treatments). Data on the morpho-physiology, enzymatic activity, and protein expression (for the first time) were collected at the vegetative (V, 45 DAG) and flowering (F, 75 DAG) developmental stages. The tropospheric ozone was around 53 ppb enough to cause phytotoxic effects. Protective effects of EDU were recorded in morpho-physiologically and biochemically. SOD, CAT and APX together with GR performed better under EDU protection in SHM3031 variety than PEHM5. The protein expression patterns in SHM3031 at the vegetative stage (28% proteins were increased, 7% were decreased), and at the flowering stage (17% increased, 8% decreased) were found. In PEHM5, a 14% increase and an 18% decrease (vegetative stage) whereas a 16% increase and a 20% decrease (flowering stage) were recorded in protein expression. Some protein functional categories, for instance, photosynthesis, carbon metabolism, energy metabolism, and defense were influenced by EDU. Rubisco expression was increased in SHM3031 whereas differentially expressed in PEHM5. Germin like protein, APX, SOD, and harpin binding proteins have enhanced defense regulatory mechanisms under EDU treatment during prevailing high tropospheric O3. The present study showed EDU protective roles in C4 plants as proven in C3.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China.
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vivek K Maurya
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
34
|
Xu Y, Shang B, Feng Z, Tarvainen L. Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. TREE PHYSIOLOGY 2020; 40:484-497. [PMID: 32031641 DOI: 10.1093/treephys/tpaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Although ozone (O3) concentration and nitrogen (N) availability are well known to affect plant physiology, their impacts on the photosynthetic temperature response are poorly understood. We addressed this knowledge gap by exposing seedlings of hybrid poplar clone '107' (Populous euramericana cv. '74/76') to elevated O3 (E-O3) and N availability variation in a factorial experiment. E-O3 decreased light-saturated net photosynthesis (Asat), mesophyll conductance (gm) and apparent maximum rate of carboxylation (Vcmax, based on intercellular CO2 concentration) but not actual Vcmax (based on chloroplast CO2 concentration) and increased respiration in light (Rd) at 25 °C. Nitrogen fertilization increased Asat, gm, Vcmax and the maximum rate of electron transport (Jmax) and reduced Rd at 25 °C and the activation energy of actual Vcmax. No E-O3 or E-O3 x N interaction effects on the temperature response parameters were detected, simplifying the inclusion of O3 impacts on photosynthesis in vegetation models. gm peaked at 30 °C, apparent Vcmax and Jmax at 32-33 °C, while the optimum temperatures of actual Vcmax and Jmax exceeded the measured temperature range (15-35 °C). Ignoring gm would, thus, have resulted in mistakenly attributing the decrease in Asat at high temperatures to reduced biochemical capacity rather than to greater diffusion limitation.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
35
|
Paoletti E, Feng Z, De Marco A, Hoshika Y, Harmens H, Agathokleous E, Domingos M, Mills G, Sicard P, Zhang L, Carrari E. Challenges, gaps and opportunities in investigating the interactions of ozone pollution and plant ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136188. [PMID: 31887502 DOI: 10.1016/j.scitotenv.2019.136188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | - Zhaozhong Feng
- Nanjing University of Information Science and Technology, China
| | - Alessandra De Marco
- National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
| | | | | | | | | | | | | | - Lu Zhang
- Northeast Agricultural University, China
| | | |
Collapse
|
36
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
37
|
Shang B, Feng Z, Gao F, Calatayud V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134402. [PMID: 31683210 DOI: 10.1016/j.scitotenv.2019.134402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) is an important phytotoxic air pollutant in China. In order to compare the sensitivity of common poplar clones to O3 in China and explore the possible mechanism, five poplar clones, clone DQ (Populus cathayana), clone 84 K (P. alba × P. glandulosa), clone WQ156 (P. deltoids × P. cathayana), clone 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and clone 107 (P. euramericana cv. '74/76') were exposed to four O3 treatments. According to the date of the initial visible O3 symptom and the slopes of O3 exposure-response relationships with the relative light-saturated rate of CO2 assimilation, we found that clone DQ and clone 546 were the most sensitive to O3, clone 84 K and clone WQ156 were the less sensitive, and clone 107 was the most tolerant, which could provide a basis to select O3 tolerant clones for poplar planting at areas with serious O3 pollution. Elevated O3 significantly reduced photosynthetic parameters, total phenols content, potential antioxidant capacity, leaf mass per area and biomass of five poplar clones, and there were significant interactions between O3 and clones for most photosynthetic parameters. Elevated O3 also significantly increased malondialdehyde content and total ascorbate content. The responses of total antioxidant capacity for poplar clones to elevated O3 were different, as indicated by the increase for clone 107 and reduction for other clones under elevated O3 treatment. Our results on the sensitivity of different poplar clones to O3 are not related to leaf stomatal conductance, leaf constitutive antioxidant levels or leaf morphology of plant grown in clean air. The possible reason is little difference in leaf traits among clones within close species, suggesting that more properties of plants should be considered for exploring the sensitivity mechanism of close species, such as mesophyll conductance, antioxidant enzyme activity and apoplastic antioxidants.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhaoZhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Agriculture Planning Science, China Agriculture University, Beijing 100193, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna 46980, Valencia, Spain
| |
Collapse
|
38
|
Peng J, Shang B, Xu Y, Feng Z, Calatayud V. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113466. [PMID: 31679879 DOI: 10.1016/j.envpol.2019.113466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m-2 s-1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
Collapse
Affiliation(s)
- Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| |
Collapse
|
39
|
Dolker T, Agrawal M. Negative impacts of elevated ozone on dominant species of semi-natural grassland vegetation in Indo-Gangetic plain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109404. [PMID: 31310902 DOI: 10.1016/j.ecoenv.2019.109404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Increasing tropospheric ozone (O3) concentrations in most regions of the world have led to significant phytotoxicity to all types of vegetation. Indo-Gangetic Plains of India is one of the hot spot areas with high O3 concentrations throughout the year although O3 phytotoxicity on grassland species in this region is not explored. Therefore the present study was conducted to assess the responses of a dominant species, Ischaemum rugosum Salisb, a C4 grass and a co-dominant species Malvastrum coromandelianum (L.) Garcke, a C3 forb under future elevated O3 (non filtered ambient + 20 nl l-1; NFA+) concentration compared to non filtered ambient (NFA; 48.7 nl l-1, 8 h mean) for 9 weeks from 15th May to 15th July 2016 in mix-culture using open-top chambers (OTCs). Plants were assessed for physiological, biochemical and growth parameters including biomass accumulation during vegetative and reproductive stages to assess the O3 induced responses. Under NFA+, higher reductions were observed in physiological parameters, growth and total biomass accumulation in M. coromandelianum compared to I. rugosum while both the species suffered membrane damage. Enhancement in contents of ascorbic acid and tannin in I. rugosum while proline and total phenolics in M. coromandelianum led to more protection of former species compared to later from oxidative damage. No significant change in stomatal conductance in I. rugosum while significant increase in M. coromandelianum might have led to more accumulation of O3 inside the plant, thus more negatively affecting the performance of later species. The present study concludes that M. coromandelianum (C3 photosynthetic pathway) will be relatively more negatively affected compared to I. rugosum (C4 photosynthetic pathway) under future O3 concentrations.
Collapse
Affiliation(s)
- Tsetan Dolker
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|