1
|
Cheng H, Wang S, Shao J, Gao H, Wang Y, Deng F, Du H, Liu J, Du X, Zhang X. Associations of Ozone Exposure with Serum Biomarkers in Acute Myocardial Infarction Patients in Taiyuan, China: The Mediating Role of Metabolites. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:79-90. [PMID: 39839248 PMCID: PMC11744392 DOI: 10.1021/envhealth.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
Abstract
Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O3) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O3 on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients. Accurate biomarkers for AMI were identified by combining serum biomarkers with metabolomics. A total of 137 volunteers were recruited, including 79 AMI patients and 58 healthy participants, from March to April 2023 in Taiyuan, China. Linear regression models were applied to analyze the associations of serum biomarkers and metabolites with O3. Mediation analyses were also conducted to assess the impact of metabolites, acting as mediators, on the associations between O3 and biomarkers. We found that O3 at lag2 captured the most remarkable effects. Metabolomic analysis revealed a substantial association between O3 (lag2) and 43 metabolites. Pathway analysis revealed that these metabolites primarily participate in the tricarboxylic acid cycle, arginine biosynthesis, and histidine metabolism. These findings suggest that O3 is an important factor in examining the metabolic mechanisms of cardiovascular disease, highlighting the importance of mitigating O3 to further protect AMI patients.
Collapse
Affiliation(s)
- Hong Cheng
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengchun Wang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiyuan Shao
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Huiyu Gao
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ying Wang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Furong Deng
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Hui Du
- Department
of Cardiac Rehabilitation, Shanxi Cardiovascular
Hospital, The Affiliated Cardiovascular Hospital of Shanxi Medical
University, Taiyuan 030024, China
| | - Jingyi Liu
- Department
of Cardiology, Shanxi Cardiovascular Hospital,
The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan 030024, China
| | - Xia Du
- Department
of Cardiology, Shanxi Cardiovascular Hospital,
The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan 030024, China
| | - Xin Zhang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Wang Q, Song H, Dong H, Guo S, Yao M, Wan Y, Lu K. Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:1-13. [PMID: 39839244 PMCID: PMC11744397 DOI: 10.1021/envhealth.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/23/2025]
Abstract
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM2.5) and ozone (O3) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems. Extensive epidemiological and toxicological research highlights the pivotal role of ROS in air pollution-related diseases. It is crucial to comprehend the intricate chemical processes and accompanying physiological effects of ROS from air pollutants. This review aims to systematically summarize ROS generation mechanisms in the ELF and measurement techniques of oxidative potential (OP), taking the kinetic reactions of ROS cycling in the ELF as an example, and discusses the general health implications of ROS in respiratory, cardiovascular, and central nervous systems. Understanding these processes through interdisciplinary research is essential to develop effective and precise strategies as well as air quality standards to mitigate the public health impacts of air pollution globally.
Collapse
Affiliation(s)
- Qineng Wang
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huan Song
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huabin Dong
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Wan
- College
of Urban and Environmental Sciences, Peking
University, Beijing 100871, China
| | - Keding Lu
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Swan D, Turner R, Franchini M, Mannucci PM, Thachil J. Air pollution and venous thromboembolism: current knowledge and future perspectives. Lancet Haematol 2025; 12:e68-e82. [PMID: 39653046 DOI: 10.1016/s2352-3026(24)00291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 01/06/2025]
Abstract
Air pollution, comprising a variable mixture of gaseous and solid particulate material, represents a serious, unmet, global health issue. The Global Burden of Disease study reported that 12% of all deaths occurring in 2019 were related to ambient air pollution, with particulate matter often considered to be the leading cause of harm. As of 2024, over 90% of the world's population are exposed to excessive amounts of particulate matter, based on WHO maximum exposure level guidelines. A substantial body of evidence supports a link between air pollution and cardiovascular disease, with around half of ambient pollution-related deaths thought to be secondary to cardiovascular causes. A possible association between particulate matter and venous thromboembolism has been less clear, but in the past decade, several studies have added to the available literature. In this Review, we discuss the current epidemiological evidence linking air pollution to the development of venous thrombotic events. We consider mechanisms promoting a thromboinflammatory phenotype in these individuals, including platelet dysfunction, dysregulated fibrinolysis, and enhanced thrombin generation. Given the relevance to global health, we also discuss possible strategies required to mitigate the impact of air pollution on human health worldwide.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, Austin Health, Melbourne, VIC, Australia.
| | - Robert Turner
- Department of Intensive Care, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Pier Mannuccio Mannucci
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy
| | - Jecko Thachil
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
5
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
6
|
Abulikemu A, Zhang X, Su X, Meng T, Su W, Shi Q, Yu T, Niu Y, Yu H, Yuan H, Zhou C, Yang H, Zhang Y, Wang Y, Dai Y, Duan H. Particulate matter, polycyclic aromatic hydrocarbons and metals, platelet parameters and blood pressure alteration: Multi-pollutants study among population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173657. [PMID: 38838997 DOI: 10.1016/j.scitotenv.2024.173657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 μg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 μmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 μmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.
Collapse
Affiliation(s)
- Alimire Abulikemu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuewei Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xizi Su
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Wenge Su
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Qiwei Shi
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haitao Yu
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Huige Yuan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cailan Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoying Yang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yanhua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Hantrakool S, Sriwichai M, Shaengkhamnang B, Leetrakool N, Niprapan P, Kawichai S, Wannakul S, Panyasit N, Tuntivate P, Wongtagan O, Natesirinilkul R, Koonyosying P, Phinyo P, Punnachet T, Hantrakun N, Piriyakhuntorn P, Rattanathammethee T, Chai-Adisaksopha C, Rattarittamrong E, Tantiworawit A, Norasetthada L, Srichairatanakool S. The effects of ambient particulate matter air pollution on platelets and hemostasis. Front Public Health 2024; 12:1410406. [PMID: 39091522 PMCID: PMC11292950 DOI: 10.3389/fpubh.2024.1410406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Elevated ambient pollution exposure is potentially linked to thromboembolism. However, the mechanisms by which particulate matter (PM) interferes with the balance of hemostatic system remain unclear. This study investigates PM-mediated hemostatic changes in individuals across unique seasonal variations of ambient pollution. Methods This prospective study was conducted between February and July 2020 during alterations in ambient pollution in Chiang Mai, Thailand. Blood tests from 30 healthy subjects were assessed at four-week intervals, four times in total. Various coagulation tests, including prothrombin time (PT), activated partial thromboplastin time (aPTT), von Willebrand factor (vWF), platelet count, and platelet functions, were evaluated. A mixed-effects model was used to analyze the impact of high PM2.5 and PM10 on hemostatic parameters. Results Thirty male subjects with mean age of 38.9 ± 8.2 years, were included. High levels of PM2.5 and PM10 were significantly associated with PT shortening, with no such effect observed in aPTT. PM2.5 and PM10 values also positively correlated with vWF function, while vWF antigen levels remained unchanged. Soluble P-selectin showed a strong positive association with PM2.5 and PM10 levels. Platelet function analysis revealed no correlation with PM values. Conclusion Short-term exposure to elevated PM2.5 and PM10 concentrations was linked to shortened PT and enhanced vWF function in healthy individuals. Exploring the impact of these changes on clinically relevant thrombosis is crucial. Additional studies on the pathogenesis of pollution-related thrombosis are warranted for maintaining good health.
Collapse
Affiliation(s)
- Sasinee Hantrakool
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Maitree Sriwichai
- Blood Bank Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nipapan Leetrakool
- Blood Bank Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piangrawee Niprapan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sawaeng Kawichai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sitapak Wannakul
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Noppamas Panyasit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pakinee Tuntivate
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ornkamon Wongtagan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rungrote Natesirinilkul
- Division of Hematology/Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teerachat Punnachet
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nonthakorn Hantrakun
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pokpong Piriyakhuntorn
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanawat Rattanathammethee
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatree Chai-Adisaksopha
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ekarat Rattarittamrong
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lalita Norasetthada
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
8
|
Fayyad R, Josey K, Gandhi P, Rua M, Visaria A, Bates B, Setoguchi S, Nethery RC. Air pollution and serious bleeding events in high-risk older adults. ENVIRONMENTAL RESEARCH 2024; 251:118628. [PMID: 38460663 PMCID: PMC11144089 DOI: 10.1016/j.envres.2024.118628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
IMPORTANCE Despite biological plausibility, very few epidemiologic studies have investigated the risks of clinically significant bleeding events due to particulate air pollution. OBJECTIVE To measure the independent and synergistic effects of PM2.5 exposure and anticoagulant use on serious bleeding events. DESIGN Retrospective cohort study (2008-2016). SETTING Nationwide Medicare population. PARTICIPANTS A 50% random sample of Medicare Part D-eligible Fee-for-Service beneficiaries at high risk for cardiovascular and thromboembolic events. EXPOSURES Fine particulate matter (PM2.5) and anticoagulant drugs (apixaban, dabigatran, edoxaban, rivaroxaban, or warfarin). MAIN OUTCOMES AND MEASURES The outcomes were acute hospitalizations for gastrointestinal bleeding, intracranial bleeding, or epistaxis. Hazard ratios and 95% CIs for PM2.5 exposure were estimated by fitting inverse probability weighted marginal structural Cox proportional hazards models. The relative excess risk due to interaction was used to assess additive-scale interaction between PM2.5 exposure and anticoagulant use. RESULTS The study cohort included 1.86 million high-risk older adults (mean age 77, 60% male, 87% White, 8% Black, 30% anticoagulant users, mean PM2.5 exposure 8.81 μg/m3). A 10 μg/m3 increase in PM2.5 was associated with a 48% (95% CI: 45%-52%), 58% (95% CI: 49%-68%) and 55% (95% CI: 37%-76%) increased risk of gastrointestinal bleeding, intracranial bleeding, and epistaxis, respectively. Significant additive interaction between PM2.5 exposure and anticoagulant use was observed for gastrointestinal and intracranial bleeding. CONCLUSIONS Among older adults at high risk for cardiovascular and thromboembolic events, increasing PM2.5 exposure was significantly associated with increased risk of gastrointestinal bleeding, intracranial bleeding, and epistaxis. In addition, PM2.5 exposure and anticoagulant use may act together to increase risks of severe gastrointestinal and intracranial bleeding. Thus, clinicians may recommend that high-risk individuals limit their outdoor air pollution exposure during periods of increased PM2.5 concentrations. Our findings may inform environmental policies to protect the health of vulnerable populations.
Collapse
Affiliation(s)
- Rindala Fayyad
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA
| | - Kevin Josey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA
| | - Poonam Gandhi
- Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Melanie Rua
- Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Aayush Visaria
- Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ, 08901, USA; Department of Medicine, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ, 08901, USA
| | - Benjamin Bates
- Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ, 08901, USA; Department of Medicine, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ, 08901, USA
| | - Soko Setoguchi
- Rutgers University Institute for Health, Healthcare Policy, and Aging Research, The State University of New Jersey, 112 Paterson Street, New Brunswick, NJ, 08901, USA; Department of Medicine, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ, 08901, USA.
| | - Rachel C Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Ma H, Liang W, Han A, Zhang Q, Gong S, Bai Y, Gao D, Xiang H, Wang X. Ambient particulate matter and renal function decline in people with HIV/AIDS. AIDS 2024; 38:713-721. [PMID: 38016165 DOI: 10.1097/qad.0000000000003802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
OBJECTIVE We aimed to explore the effect of particulate matter exposure on renal function in people with HIV/AIDS (PWHA). METHODS A total of 37 739 repeated measurements were conducted on eGFR levels, serum creatinine (Scr), and the triglyceride-glucose (TyG) index in 6958 PWHAs. The relationship between 1 and 28 day moving averages of particulate matter concentrations with Scr and eGFR was assessed using linear mixed-effects models. Modified Poisson regression models were employed to assess the associations of cumulative particulate matter exposure with the incidence of chronic kidney disease (CKD). Mediation analyses were used to examine the role of TyG index. RESULTS Short-term exposure to particulate matter was related to reduced renal function. The strongest associations between exposure to particulate matter (PM) 1 , PM 2.5 , and PM 10 and percentage changes in eGFR were observed at 7-day moving average exposure windows, with a respective decrease of 0.697% (-1.008%, -0.386%), 0.429% (-0.637%, -0.220%), and 0.373% (-0.581%, -0.164%) per IQR increment. Long-term exposure to PM 1 , PM 2.5 , and PM 10 was positively linked with the incidence of CKD, with each IQR increment corresponding to fully adjusted RRs (95% CIs) of 1.631 (1.446-1.839), 1.599 (1.431-1.787), and 1.903 (1.665-2.175), respectively. TyG index-mediated 8.87, 8.88, and 7.58% of the relationship between cumulative exposure to PM 1 , PM 2.5 , and PM 10 and increased risk of CKD, respectively. CONCLUSION Exposure to particulate matter among PWHAs is linked to reduced renal function, potentially contributing to increased CKD incidence, where the TyG index might serve as a partial mediator.
Collapse
Affiliation(s)
- Hongfei Ma
- Wuhan Center for Disease Control and Prevention
| | - Wei Liang
- School of Public Health, Wuhan University
| | - Aojing Han
- School of Public Health, Wuhan University
| | - Qian Zhang
- Qingshan District Center for Disease Control and Prevention
| | - Shun Gong
- Hongshan District Center for Disease Control and Prevention
| | - Yang Bai
- Jiangan District Center for Disease Control and Prevention
| | - Daiming Gao
- Xinzhou District Center for Disease Control and Prevention, Wuhan, China
| | - Hao Xiang
- School of Public Health, Wuhan University
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention
| |
Collapse
|
10
|
Liu S, Lv Y, Zhang Y, Suo H, Wang F, Gao S. Global trends and burden of stroke attributable to particulate matter pollution from 1990 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116205. [PMID: 38503105 DOI: 10.1016/j.ecoenv.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To investigate the association between particulate matter and the incidence, disability, and mortality of stroke, we reported the burden of stroke attributable to particulate matter (PM2.5) pollution, including ambient particulate matter pollution (APMP) and household air pollution from solid fuels (HAP), from 1990 to 2019. METHODS We retrieved the detailed data on the burden of stroke attributable to PM2.5 from the Global Burden of Disease (GBD) 2019. The number of disability-adjusted life-years (DALYs) and deaths, age-standardized death rates (ASMR), and age-standardized disability-adjusted life-years rates (ASDR) attributable to PM2.5 were estimated by age, sex, geographical location, socio-demographic index (SDI), and stroke subtypes (ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage). The estimated annual percentage change (EAPC) was calculated to assess the trends in ASDR and ASMR during the period 1990-2019. RESULTS Regarding stroke subtypes, the proportion of ischemic stroke burden is increasing, while intracerebral hemorrhage carries the heaviest burden. Both APMP and HAP contributed the most to stroke-related deaths and DALYs of stroke among the elderly populations and males. The highest ASDR and ASMR of stroke attributable to APMP were in the middle SDI regions, especially in East Asia. For HAP, the highest ASDR and ASMR were in the low SDI regions, mainly in Oceania. From 1990-2019, in terms of the EAPC results, APMP caused an increased burden of stroke, whereas the impact of HAP significantly fell. The most pronounced increase in ASDR and ASMR for strokes attributed to APMP were in the low-middle SDI and low SDI regions, particularly among the 25-35 age group. CONCLUSIONS Stroke attributed to PM2.5 is a global health problem, and the patterns and trends were heterogeneous across APMP and HAP. Targeted interventions should be formulated for APMP and HAP.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Yanming Lv
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Ya Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Huimin Suo
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Heilongjiang Province, China
| | - Shuying Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
11
|
Jia W, Fu Y, Zhang N, Zhang N, Wang T, Wang Z, Zhang N, Xu J, Yang X, Zhang Q, Li C, Zhang X, Yang W, Han B, Zhang L, Tang N, Bai Z. Ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) associated with pro-thrombotic biomarkers among young healthy adults: A 16 times repeated measurements panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169433. [PMID: 38128672 DOI: 10.1016/j.scitotenv.2023.169433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Studies have shown that the cardio/cerebrovascular toxicity of ambient PM2.5 is related to its bound polycyclic aromatic hydrocarbons (PAHs). Currently, only a few studies have reported the relationship between PM2.5-bound PAHs and promoted blood coagulation and thrombosis, but there isn't a consistent conclusion. Therefore, we conducted a prospective panel study to investigate the association. Thirty-three young healthy adults participated in sixteen repeated visits from 2014 to 2018 in Tianjin, China. During each visit, three pro-thrombotic biomarkers: ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motif 13), D-dimer and Myeloperoxidase (MPO) were measured. Before each visit, ambient PM2.5 samples were daily collected for one week. Sixteen PAHs were determined using Gas Chromatography-Mass Spectrometer, and the positive matrix factorization (PMF) model was applied to identify the sources. Linear mixed-effects models were fitted to investigate the associations between PM2.5-bound PAHs exposure and the biomarkers. Thirteen time-metrics were defined to identify significant time points of PM2.5-bound PAHs' effects. We observed that the increase of PM2.5-bound PAHs exposure was significantly associated with reduced ADAMTS13, elevated D-dimer and MPO. At lag0, each 5.7 ng/m3 increase in Benzo[j]fluoranthene and per 3.4 ng/m3 increase Dibenz[a,h]anthracene could make a maximum change of -19.08 % in ADAMTS13 and 132.60 % in D-dimer. Additionally, per 16.43 ng/m3 increase in Chrysene could lead to a maximum elevation of 32.14 % in MPO at lag4. The PM2.5-bound PAHs often triggered more significant changes at lag 3,4 and 6. The ambient PM2.5-bound PAHs originated from six sources: coal combustion (43.10 %), biomass combustion (20.77 %), diesel emission (14.78 %), gasoline emission (10.95 %), industrial emission (7.58 %), and cooking emission (2.83 %). The greatest contributors to alterations in ADAMTS13, D-dimer and MPO are industrial emission (-48.43 %), biomass combustion (470.32 %) and diesel emission (13.14 %) at lag4. Our findings indicated that short-term exposure to ambient PM2.5-bound PAHs can induce alterations of pro-thrombotic biomarkers among healthy adults.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yucong Fu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Ningyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Li J, Li Z, Zhu Y, Peng H, Du Z, Ru S, Wang W. Bisphenol S remodels red blood cell membrane lipids by altering plasma lipid levels, causing the risk of venous thrombosis in SD rats and zebrafish embryos. ENVIRONMENT INTERNATIONAL 2023; 182:108331. [PMID: 37995390 DOI: 10.1016/j.envint.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol S (BPS) is a raw material that is used extensively in various manufacturing processes but possesses a high detection rate in human red blood cells (RBCs). Accordingly, BPS is a potential toxicant in disturbing the function of RBCs and causing RBC-related diseases. To date, the effects and mechanisms of BPS-induced RBC-related diseases have not been elucidated. Here, using different models, including rats, zebrafish embryos and RBCs, the underlying mechanism of RBC-related diseases induced by BPS was explored. The accumulation of BPS in tissue was colon > kidney > liver > plasma > testicle > heart > brain in SD rats orally administered BPS (10 and 50 mg/kg bw/day) for 32 days, which was similar in both 10 mg/kg bw/day and 50 mg/kg bw/day group. Rats given BPS orally developed hyperlipidemia and increased RBC membrane cholesterol, as well as changes in RBC morphology and function. Moreover, BPS at the concentrations measured in rats plasma caused oxidative stress and phosphatidylserine exposure in vitro RBCs. These combined factors led to RBC aggregation in blood and an increasing in the number of RBCs in the blood vessels of the liver in rats. The dynamic visual observation of RBCs in vein vessels of zebrafish embryos exposed to BPS at 0, 1, 10 and 100 μg/L further found that the flow of RBCs in the tail vein is slow or even immobile, posing the risk of venous thrombosis. The present study provides new insight into the links between environmental pollutants and venous thrombosis.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Huang JB, Huang KC, Hsieh TM, Tsai CM, Hsiao HY, Cheng CY, Cheng FJ. Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan. TOXICS 2023; 11:541. [PMID: 37368641 DOI: 10.3390/toxics11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
ST-segment elevation myocardial infarction (STEMI), one of the primary factors leading to global mortality, has been shown through epidemiological studies to have a relationship with short-term exposure to air pollutants; however, the association between air pollutants and the outcome of STEMI has not been well studied. The aim of this study was to estimate the impact of air pollutants on the outcomes of STEMI. Data on particulate matter <2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) at each of the 11 air monitoring stations in Kaohsiung City were collected between 1 January 2012 and 31 December 2017. Medical records of non-trauma patients aged > 20 years who had presented to the Emergency Department (ED) with a principal diagnosis of STEMI were extracted. The primary outcome measure was in-hospital mortality. After adjusting for potential confounders and meteorological variables, we found that an increase in the interquartile range (IQR) in NO2 was associated with an elevated risk of in-hospital mortality in patients with STEMI. Moreover, there was an observed higher risk of in-hospital mortality associated with an increase in the IQR of NO2 during the warm season, specifically in lag 3 (3 days prior to the onset, OR = 3.266; 95%CI: 1.203-8.864, p = 0.02). Conversely, an IQR increase in PM10 was associated with an increased risk of in-hospital mortality in patients with STEMI in lag 3 (OR = 2.792; 95%CI: 1.115-6.993, p = 0.028) during the cold season. Our study suggests that exposure to NO2 (during the warm season) and PM10 (during the cold season) may contribute to a higher risk of poor prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Municipal Feng Shan Hospital-Under The Management of Chang Gung Medical Foundation, Fengshan District, Kaohsiung 830, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Kuo-Chen Huang
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Ting-Min Hsieh
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Division of Trauma, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chih-Min Tsai
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niao-Sung District, Kaohsiung City 833, Taiwan
| | - Hao-Yi Hsiao
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chi-Yung Cheng
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Fu-Jen Cheng
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| |
Collapse
|
15
|
Bao H, Li B, You Q, Dun X, Zhang Z, Liang Y, Li Y, Jiang Q, Zhang R, Chen R, Chen W, Zheng Y, Li D, Cui L. Exposure to real-ambient particulate matter induced vascular hypertrophy through activation of PDGFRβ. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130985. [PMID: 36801716 DOI: 10.1016/j.jhazmat.2023.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor β (PDGFRβ) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRβ on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS To reveal the potential roles of PDGFRβ signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRβ overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS Vascular hypertrophy was observed following PM-induced PDGFRβ activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRβ expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRβ and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION Our study identified the PDGFRβ gene as a potential biomarker of PM-induced vascular toxicity. PDGFRβ induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.
Collapse
Affiliation(s)
- Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing You
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Gliga AR, Grahn K, Gustavsson P, Ljungman P P, Albin M, Selander J, Broberg K. Short and long-term associations between serum proteins linked to cardiovascular disease and particle exposure among constructions workers. Scand J Work Environ Health 2023; 49:145-154. [PMID: 36409488 PMCID: PMC10577013 DOI: 10.5271/sjweh.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Construction workers are exposed to respirable dust, including respirable crystalline silica (RCS), which is a potential risk factor for cardiovascular disease (CVD). The aim of this study was to evaluate whether exposure to particles among construction workers is associated with short- and long-term alterations in CVD-related serum proteins. METHODS Using proximity extension assay, we measured 92 serum proteins linked to CVD among active male construction workers (N=65, non-smokers) sampled on two occasions: during work and after vacation. First, we used linear models to identify short-term changes in proteins associated with particle exposure (assessed as respirable dust and RCS) during work. Secondly, we used linear mixed models to evaluate whether these associations were long-term, ie, persistent after vacation. RESULTS The median exposure to respirable dust and RCS during work were 0.25 mg/m3 and 0.01 mg/m3, respectively. Respirable dust was associated with short-term changes in six proteins (tissue factor, growth hormone, heme oxygenase-1, dickkopf-related protein-1, platelet-derived growth factor-B, stem cell factor); long-term associations were observed for the former three proteins. RCS was associated with short-term changes in five proteins (carcinoembryonic antigen-related cell adhesion molecule-8, hydroxyacid oxidase-1, tissue factor, carbonic anhydrase-5A, lectin-like oxidized LDL receptor-1); long-term associations were observed for the former four proteins. CONCLUSIONS Moderate exposure to particles in the construction industry is associated with both short- and long-term changes in circulating CVD-related proteins. Further studies are needed to evaluate if these changes are predictors of occupationally induced clinical CVD.
Collapse
Affiliation(s)
- Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Heterogeneity in the reported values and methodologies for detecting plasma D-Dimer in rat models: A systematic review. THROMBOSIS UPDATE 2023. [DOI: 10.1016/j.tru.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
18
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
19
|
Yuan CS, Lai CS, Chang-Chien GP, Tseng YL, Cheng FJ. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157528. [PMID: 35882344 DOI: 10.1016/j.scitotenv.2022.157528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM2.5 on mouse kidneys. METHODS We collected PM2.5 near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM2.5 constituents on mice kidneys. RESULTS PM2.5 was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM2.5 water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed. CONCLUSION We found that water-soluble extract and insoluble particles of PM2.5 could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM2.5 concentration of 44 μg/m3 for mice.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
20
|
Guo C, Chang LY, Wei X, Lin C, Zeng Y, Yu Z, Tam T, Lau AKH, Huang B, Lao XQ. Multi-pollutant air pollution and renal health in Asian children and adolescents: An 18-year longitudinal study. ENVIRONMENTAL RESEARCH 2022; 214:114144. [PMID: 35998701 DOI: 10.1016/j.envres.2022.114144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have examined the effects of multi-pollutant air pollution on renal health, especially in children and adolescents. This study investigated the association between long-term ambient air pollution exposure and renal health in Asian children and adolescents. METHODS This study included 10,942 children and adolescents from Taiwan and Hong Kong between 2000 and 2017. PM2.5, NO2 and O3 concentrations were estimated using satellite-based spatiotemporal regression models. Two-year average concentrations, those of the year of visit and the preceding year, were used. Linear mixed models were used to examine the association between air pollution and yearly changes in estimated glomerular filtration rate (eGFR). Cox regression models with time-dependent covariates were used to examine the association between air pollution and the development of chronic kidney disease (CKD). RESULTS Median age of the participants was 19 years (range: 2-25). The overall average concentration of PM2.5, NO2 and O3 was 26.7 μg/m3, 44.1 μg/m3 and 51.1 μg/m3, respectively. The mean yearly change in eGFR was 0.37 μL/min/1.73 m2 and the incidence rate of CKD was 6.8 per 1,000 person-years. In single-pollutant models, each 10 μg/m3 increase in PM2.5 was associated with a 0.45 μL/min/1.73 m2 [95% confidence interval (CI): 0.28-0.63] reduction in the yearly increase in eGFR and 53% [hazard ratio (HR): 1.53 (95%CI: 1.07-2.2)] greater risk of incident CKD. Each 10 μg/m3 increase in NO2 was associated with a 7% [HR (95%CI): 1.07 (1.00-1.15)] higher risk of incident CKD, while an equivalent increase in O3 was associated with a 19% [HR (95%CI): 0.81 (0.67-0.98)] lower risk. CONCLUSIONS Long-term exposure to ambient PM2.5 and NO2 was associated with a slower growth of eGFR and a higher risk of incident CKD in children and adolescents. Our findings suggest that air pollution control in early life is imperative to improve lifelong renal health and alleviate the CKD burden.
Collapse
Affiliation(s)
- Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yiqian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Henan, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bo Huang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
21
|
Li J, Lu A, Si S, Zhang K, Tang F, Yang F, Xue F. Exposure to various ambient air pollutants increases the risk of venous thromboembolism: A cohort study in UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157165. [PMID: 35839901 DOI: 10.1016/j.scitotenv.2022.157165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological evidence for the association between air pollutants exposure and venous thromboembolism (VTE) remains controversial. In this study, a total of 389,659 participants from the UK Biobank who were free of VTE in 2010 were included, and the annual mean concentrations of air pollutants near where participants lived were collected. During a median follow-up period of 8.25 years, 4986 VTEs were determined from the hospital admission records. The Cox proportional hazard model was used to examine the association between air pollutants and VTE. We firstly investigated the associations between air pollutants concentration and VTE and found only NO2 and NO increased VTE risk (P < 0.05). We further calculated the product of air pollutant concentrations and outdoor time to measure personal daily cumulative exposure and found that the hazard rates (HRs) of VTE for a 50-μg/m3∗day increase in daily cumulative exposure to PM10, PM2.5, PM2.5-10, NO, and NO2 were 1.08 (1.05-1.12), 1.16 (1.09-1.24), 1.23 (1.11-1.37), 1.04 (1.01-1.06), and 1.05 (1.03-1.08), respectively. To measure joint exposure to various air pollutants and its effect on VTE, we created a weighted air pollutants exposure score (APES) and found a dose-response relationship between APES and VTE risk (P < 0.001 for trend). Compared with participants in the lowest quintile of APES, the HRs of VTE were 1.19 (1.08-1.30) for those within the highest quintile groups. Furthermore, we also found the effect of air pollutants on VTE was statistically significant only in individuals with low-middle VTE genetic risk score (GRS) (P < 0.05), but not in the high VTE GRS groups (P > 0.05). Our findings suggest that exposure to various air pollutants including PM2.5, PM2.5-10, PM10, NO, and NO2, either individually or jointly, were associated with an increased risk of VTE in a dose-response pattern. Our study highlights the importance of a comprehensive assessment of various air pollutants in VTE prevention.
Collapse
Affiliation(s)
- Jiqing Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Aimei Lu
- Department of Pharmacy, Shandong Public Health Clinical Center, Jinan 250100, Shandong, China
| | - Shucheng Si
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Kai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fang Tang
- Center for Big Data Research in Health and Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China; Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
22
|
Bae HR, Chandy M, Aguilera J, Smith EM, Nadeau KC, Wu JC, Paik DT. Adverse effects of air pollution-derived fine particulate matter on cardiovascular homeostasis and disease. Trends Cardiovasc Med 2022; 32:487-498. [PMID: 34619335 PMCID: PMC9063923 DOI: 10.1016/j.tcm.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Air pollution is a rapidly growing major health concern around the world. Atmospheric particulate matter that has a diameter of less than 2.5 µm (PM2.5) refers to an air pollutant composed of particles and chemical compounds that originate from various sources. While epidemiological studies have established the association between PM2.5 exposure and cardiovascular diseases, the precise cellular and molecular mechanisms by which PM2.5 promotes cardiovascular complications are yet to be fully elucidated. In this review, we summarize the various sources of PM2.5, its components, and the concentrations of ambient PM2.5 in various settings. We discuss the experimental findings to date that evaluate the potential adverse effects of PM2.5 on cardiovascular homeostasis and function, and the possible therapeutic options that may alleviate PM2.5-driven cardiovascular damage.
Collapse
Affiliation(s)
- Hye Ryeong Bae
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eric M Smith
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Lin L, Tian L, Li T, Sun M, Duan J, Yu Y, Sun Z. Microarray analysis of mRNA expression profiles in liver of ob/ob mice with real-time atmospheric PM 2.5 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76816-76832. [PMID: 35672633 DOI: 10.1007/s11356-022-21088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have demonstrated the association between exposure to fine particulate matter (PM2.5) and the onset of non-alcoholic fatty liver disease (NAFLD). However, the potential biological mechanism is largely unknown. Our study was aimed to explore the impact of PM2.5 on the transcriptome level in the liver of ob/ob mice by atmosphere PM2.5 whole-body dynamic exposure system, and meanwhile preliminarily investigated the effects of metformin intervention in this process. More than three thousand differentially expressed genes (DEGs) was screened out by microarray analysis (p < 0.05, |FC|> 1.5). KEGG pathway enrichment analysis showed that these DEGs were mainly enriched in cancers, infectious diseases, and signal transduction, and the most significant pathways were thyroid hormone signaling pathway, chronic myeloid leukemia and metabolic pathways. Then, 12 hub genes were gained through weighted gene correlation network analysis (WGCNA) and verified by qRT-PCR. The expression of 5 genes in darkslateblue module (cd53, fcer1g, cd68, ctss, laptm5) increased after PM2.5 exposure and decreased after metformin intervention. They were related to insulin resistance, glucose and lipid metabolism and other liver metabolism, and also neurodegenerative diseases. This study provided valuable clues and possible protective measures to the liver damage in ob/ob mice caused by PM2.5 exposure, and further research is needed to explore the related mechanism in detail.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
24
|
Wang T, Chen X, Li H, Chen W, Xu Y, Yao Y, Zhang H, Han Y, Zhang L, Que C, Gong J, Qiu X, Zhu T. Pro-thrombotic changes associated with exposure to ambient ultrafine particles in patients with chronic obstructive pulmonary disease: roles of lipid peroxidation and systemic inflammation. Part Fibre Toxicol 2022; 19:65. [PMID: 36280873 PMCID: PMC9590143 DOI: 10.1186/s12989-022-00503-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1β, TNF-α, and IL-1β in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
25
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
26
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
27
|
Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148771. [PMID: 35886623 PMCID: PMC9317970 DOI: 10.3390/ijerph19148771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
Ambient air pollution has become a common problem worldwide. Exposure to pollutant particles causes many health conditions, having a particular impact on pulmonary and cardiovascular disease. Increased understanding of the pathological processes related to these conditions may facilitate the prevention of the adverse impact of air pollution on our physical health. Evidence from in vitro, in vivo, and clinical studies has consistently shown that exposure to particulate matter could induce the inflammatory responses such as IL-6, TNF-α, IL-1β, as well as enhancing the oxidative stress. These result in vascular injury, adhesion molecule release, platelet activation, and thrombin generation, ultimately leading to a prothrombotic state. In this review, evidence on the effects of particulate matter on inflammation, oxidative stress, adhesion molecules, and coagulation pathways in enhancing the risk of thrombosis is comprehensively summarized and discussed. The currently available outcomes of interventional studies at a cellular level and clinical reports are also presented and discussed.
Collapse
|
28
|
Miao H, Li X, Wang X, Nie S. Air pollution increases the risk of pulmonary embolism: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:259-266. [PMID: 34107570 DOI: 10.1515/reveh-2021-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Air pollution can lead to many cardiovascular and respiratory diseases, but the impact of air pollution on pulmonary embolism is still uncertain. We conducted a meta-analysis to assess the relationship between air pollution and pulmonary embolism. CONTENT We searched PubMed, EMBASE, Web of Science, and the Cochran Library for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone and particulate matter) and pulmonary embolism. A total of nine citations met the inclusion criteria. There is no evidence of bias. CO, SO2, PM10 and PM2.5 had no significant effect on the occurrence of pulmonary embolism. NO2 and O3 can increase the risk of pulmonary embolism to a small extent. SUMMARY This meta-analysis suggests that some air pollutants are associated with an increased risk of pulmonary embolism. OUTLOOK Reducing air pollution and improving air quality can effectively reduce the risk of pulmonary embolism.
Collapse
Affiliation(s)
- Huangtai Miao
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Xiaoying Li
- Beijing Jishuitan Hospital, Beijing, Beijing, China
| | - Xiao Wang
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Shaoping Nie
- Beijing An Zhen Hospital, 2 Anzhen Rd, Chaoyang District, 100029, Chaoyang-qu, Beijing, China
| |
Collapse
|
29
|
Ambient Air Pollution and Risk for Stroke Hospitalization: Impact on Susceptible Groups. TOXICS 2022; 10:toxics10070350. [PMID: 35878255 PMCID: PMC9324267 DOI: 10.3390/toxics10070350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Stroke is a leading cause of death, and air pollution is associated with stroke hospitalization. However, the susceptibility factors are unclear. Retrospective studies from 2014 to 2018 in Kaohsiung, Taiwan, were analyzed. Adult patients (>17 years) admitted to a medical center with stroke diagnosis were enrolled and patient characteristics and comorbidities were recorded. Air pollutant measurements, including those of particulate matter (PM) with aerodynamic diameters < 10 μm (PM10) and < 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3), were collected from air quality monitoring stations. During the study period, interquartile range (IQR) increments in PM2.5 on lag3 and lag4 were 12.3% (95% CI, 1.1−24.7%) and 11.5% (95% CI, 0.3−23.9%) concerning the risk of stroke hospitalization, respectively. Subgroup analysis revealed that the risk of stroke hospitalization after exposure to PM2.5 was greater for those with advanced age (≥80 years, interaction p = 0.045) and hypertension (interaction p = 0.034), after adjusting for temperature and humidity. A dose-dependent effect of PM2.5 on stroke hospitalization was evident. This is one of few studies focusing on the health effects of PM2.5 for patients with risk factors of stroke. We found that patients with risk factors, such as advanced age and hypertension, are more susceptible to PM2.5 impacts on stroke hospitalization.
Collapse
|
30
|
Liu G, Li Y, Zhou J, Xu J, Yang B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103832. [PMID: 35189342 DOI: 10.1016/j.etap.2022.103832] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 negatively affects human health, particularly lung injury. However, the role of PM2.5-regulated miRNAs in lung injury remains unknown. MiRNA array results showed mmu-miR-467c-5p regulated Prdx6 expression to adapt to lung injury condition, and deregulated miRNAs regulated macrophages to build a localized inflammatory microenvironment. In addition, miRNAs were transferred into adjacent alveolar epithelial cells, regulating the expressions of cell injury signaling pathway-targeted genes, and accelerating local lung tissue injury. NO and RAGE were increased in the coculture supernatant, and SPD was decreased. PM2.5 exposure induced local lung injury, promoted inflammation in local lung tissues, increased capillary permeability in the lung tissue, and rearranged the local lung tissue structure. We also confirmed in AECOPD patients TNF-α and IL-1β levels are obviously higher than healthy person. These findings provide new mechanistic insights regarding PM2.5 and targeted miRNAs in the inflammatory microenvironment, which increases our knowledge of PM2.5-lung injury interactions.
Collapse
Affiliation(s)
- Guangyan Liu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Yunxia Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, No. 5, Nanqi West Road, Shenyang, People's Republic of China.
| | - Jiaming Zhou
- Franklin and Marshall College, 415 Harrisburg Ave, Lancaster City, PA, USA.
| | - Jia Xu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Biao Yang
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| |
Collapse
|
31
|
Yang L, Zhang Y, Qi W, Zhao T, Zhang L, Zhou L, Ye L. Adverse effects of PM 2.5 on cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:71-80. [PMID: 33793141 DOI: 10.1515/reveh-2020-0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
As an air pollutant, fine particulate matter with a diameter ≤ 2.5 μm (PM2.5) can enter the body through the respiratory tract and cause adverse cardiovascular effects. Here, the effects of PM2.5 on atherosclerosis, hypertension, arrhythmia, myocardial infarction are summarized from the perspective researches of human epidemiology, animal, cell and molecule. The results of this review should be proved useful as a scientific basis for the prevention and treatment of cardiovascular disease caused by PM2.5.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lele Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
32
|
Lin HW, Shen TJ, Yang NC, Wang M, Hsieh WC, Chuang CJ, Lai CY, Chang YY. Luteolin Reduces Aqueous Extract PM2.5-induced Metastatic Activity in H460 Lung Cancer Cells. Int J Med Sci 2022; 19:1502-1509. [PMID: 36185331 PMCID: PMC9515691 DOI: 10.7150/ijms.73947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fine particulate matter (PM2.5) is the critical cause of lung cancer and can further promote tumor cell migration and invasion. This study investigated the effects of luteolin, an antiangiogenic flavonoid agent, on blocking aqueous extract PM2.5-prompted cancer progression. We observed that luteolin reduced cell migration and the expression of pro-metastatic factors pro-matrix metalloproteinase (MMP)-2 and intercellular adhesion molecule (ICAM)-1 in PM2.5-exposed H460 lung cancer cells. Luteolin treatment also reduced the transduction of PM2.5-induced epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) cascade signaling. Furthermore, the reduction of MMP-2 expression and ICAM-1 production by luteolin in PM2.5-stimulated H460 cells is EGFR-PI3K-AKT pathway dependent. These results suggest that luteolin exhibits antitumor progression by inhibiting EGFR-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Che Hsieh
- Chinese Medicine Department, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chen-Ju Chuang
- Emergency department, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Li P, Guo X, Jing J, Hu W, Wei WQ, Qi X, Zhuang G. The lag effect of exposure to PM 2.5 on esophageal cancer in urban-rural areas across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4390-4400. [PMID: 34406566 DOI: 10.1007/s11356-021-15942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Exposure to PM2.5 pollution is a significant health concern and increases risks for cancers in China. However, the studies regarding the effect of PM2.5 and esophageal cancer incidence (ECI) among urban-rural areas are limited. In this study, we examined the sex- and area-specific association between exposure to PM2.5 and ECI, as well as explored the corresponding lag effects on ECI using a geographical weighted Poisson regression. We found significantly positive effect on ECI for males and females in different models, with the greatest increase of 1.44% (95% CI: 1.30%, 1.59%) and 2.42% (95% CI: 2.17%, 2.66%) in per 10 ug/m3 increase of PM2.5 for males and females at single year lag7 and lag4 after all covariates controlled, respectively. We also found that the long-term effect of PM2.5 on ECI was relatively stable at all moving average year lags. Moreover, rural areas had higher ECI risks for males (0.17%) and females (0.64%) with longer lag period than urban areas. In addition, higher risks for both sexes appeared in north, northwestern, and east China. The findings indicated that long-term exposure to PM2.5 was significantly associated with increased risks for ECI, which reinforce a comprehensive understanding for ECI related to PM2.5.
Collapse
Affiliation(s)
- Peng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiya Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jing Jing
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Wen-Qiang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
34
|
Meng J, Yang J, Pan T, Qu X, Cui S. ZnO nanoparticles promote the malignant transformation of colorectal epithelial cells in APC min/+ mice. ENVIRONMENT INTERNATIONAL 2022; 158:106923. [PMID: 34634619 DOI: 10.1016/j.envint.2021.106923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
As the use of zinc oxide nanoparticles (ZnO NPs) in everyday products grows, so does concern about health risks. However, no findings on the gastrointestinal toxicity of ZnO NPs have been published. We investigated the possible malignant transformation of ZnO NPs in the mice's colonic tissues using the APCmin/+ mouse model with a premalignant lesion in intestinal epithelial cells. Higher doses and long-term oral exposure to ZnO NPs were found to mildly promote colonic inflammation in WT mice, while they moderately or strongly exacerbated the severity of chronic inflammation and tumorigenesis in APCmin/+ mice with intestinal adenomatous polyposis. The ZnO NPs-induced inflammation and tumorigenesis in colonic epithelial cells was linked to the activation of CXCR2/NF-κB/STAT3/ERK and AKT pathways. Analysis of the ZnO NPs-exacerbated intestinal adenomatous polyposis in APCmin/+ mice revealed that ZnO NPs could activate the APC-driven Wnt/β-catenin signaling pathway, exacerbating intestinal tumorigenesis. In fact, ZnO NPs have been shown to increase intestinal inflammation and tumorigenesis in APCmin/+ mice by releasing free Zn2+. In WT mice, a low dose of ZnO NPs (26 mg/kg/day) did not cause intestinal inflammation. In conclusion, higher doses and prolonged exposure to ZnO NPs promote the malignant transformation of precancerous epithelial cells.
Collapse
Affiliation(s)
- Jian Meng
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Institute of Eco-Chongming, East China Normal University, Shanghai 202162, China
| | - Juan Yang
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ting Pan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuxiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
35
|
Zou L, Xiong L, Wu T, Wei T, Liu N, Bai C, Huang X, Hu Y, Xue Y, Zhang T, Tang M. NADPH oxidases regulate endothelial inflammatory injury induced by PM 2.5 via AKT/eNOS/NO axis. J Appl Toxicol 2021; 42:738-749. [PMID: 34708887 DOI: 10.1002/jat.4254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/11/2022]
Abstract
Fine particulate matter (PM2.5 )-induced detrimental cardiovascular effects have been widely concerned, especially for endothelial cells, which is the first barrier of the cardiovascular system. Among potential mechanisms involved, reactive oxidative species take up a crucial part. However, source of oxidative stress and its relationship with inflammatory response have been rarely studied in PM2.5 -induced endothelial injury. Here, as a key oxidase that catalyzes redox reactions, NADPH oxidase (NOX) was investigated. Human umbilical vein endothelial cells (EA.hy926) were exposed to Standard Reference Material 1648a of urban PM2.5 for 24 h, which resulted in NOX-sourced oxidative stress, endothelial dysfunction, and inflammation induction. These are manifested by the up-regulation of NOX, increase of superoxide anion and hydrogen peroxide, elevated endothelin-1 (ET-1) and asymmetric dimethylarginine (ADMA) level, reduced nitric oxide (NO) production, and down-regulation of phosphorylation of endothelial NO synthase (eNOS) with increased levels of inducible NO synthase, as well as the imbalance between tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1), and changes in the levels of pro-inflammatory and anti-inflammatory factors. However, administration of NOX1/4 inhibitor GKT137831 alleviated PM2.5 -induced elevated endothelial dysfunction biomarkers (NO, ET-1, ADMA, iNOS, and tPA/PAI-1), inflammatory factors (IL-1β, IL-10, and IL-18), and adhesion molecules (ICAM-1, VCAM-1, and P-selectin) and also passivated NOX-dependent AKT and eNOS phosphorylation that involved in endothelial activation. In summary, PM2.5 -induced NOX up-regulation is the source of ROS in EA.hy926, which activated AKT/eNOS/NO signal response leading to endothelial dysfunction and inflammatory damage in EA.hy926 cells.
Collapse
Affiliation(s)
- Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lilin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Na Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Liang S, Zhao T, Xu Q, Duan J, Sun Z. Evaluation of fine particulate matter on vascular endothelial function in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112485. [PMID: 34246944 DOI: 10.1016/j.ecoenv.2021.112485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 05/09/2023]
Abstract
Ambient fine particulate matter (PM2.5) and high-fat diet (HFD) are linked to the development of atherosclerosis. However, there is still unknown about the PM2.5-induced atherosclerosis formation on vascular endothelial injury after co-exposed to PM2.5 and HFD. Thus, the aim of this study was to evaluate the effects of PM2.5 on atherogenesis in C57BL/6 mice and endothelial cells, as well as the co-exposure effect of PM2.5 and HFD. In vivo study, C57BL/6 mice exposed to PM2.5 and fed with standard chow diet (STD) or HFD for 1 month. PM2.5 could increase vascular stiffness accessed by Doppler ultrasound, and more serious in co-exposure group. PM2.5 impaired vascular endothelial layer integrity, exfoliated endothelial cells, and inflammatory cells infiltration through H&E staining. PM2.5 reduced the expression of platelet/endothelial cell adhesion molecule-1 (PECAM-1) in vessel. Moreover, PM2.5 could induce systemic inflammation detected by Mouse Inflammation Array. In vitro study, PM2.5 triggered markedly mitochondrial damage by transmission electron microscope (TEM) and flow cytometer. Inflammatory cytokines were significantly increased in PM2.5-exposed group. The cell viability and migration of endothelial cells were significantly suppressed. In addition, PM2.5 remarkably declined the expression of vascular endothelial growth factor receptor 2 (VEGFR2) and increased the expression of somatostatin (SST) and its receptor. In conclusion, co-exposure of PM2.5 and HFD might induce systemic inflammation and endothelial dysfunction in normal mice. Moreover, PM2.5 could reduce vascular endothelial repair capacity through inhibiting the proliferation and migration of endothelial cells.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qing Xu
- Core Facility Centre, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
37
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
38
|
Fongsodsri K, Chamnanchanunt S, Desakorn V, Thanachartwet V, Sahassananda D, Rojnuckarin P, Umemura T. Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Front Med (Lausanne) 2021; 8:692008. [PMID: 34336895 PMCID: PMC8316685 DOI: 10.3389/fmed.2021.692008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) in the air enters the human body by diffusion into the blood. Therefore, hematological abnormalities might occur because of these toxic particles, but few studies on this issue have been reported. According to Cochrane guidance, we performed a systematic review on the relationship between exposure to PM2.5 and the risk of hematological disorders. Ten articles were included in this review. Anemia was found among children and elderly populations with 2- to 5-year PM2.5 exposure. Young children from mothers exposed to air pollution during pregnancy had a higher incidence of leukemia similar to the elderly. Supporting these data, outdoor workers also showed abnormal epigenetic modifications after exposure to very high PM2.5 levels. Adults living in high PM2.5 areas for 2 years were more likely to develop thrombocytosis. Finally, elderly populations with 7- to 8-year PM2.5 exposure showed increased risks of venous thromboembolism. In conclusion, the associations between PM2.5 and hematological aberrations among high-risk people with long-term exposure were reported.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Varunee Desakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangjai Sahassananda
- Information Technology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan
| |
Collapse
|
39
|
Hu D, Jia X, Cui L, Liu J, Chen J, Wang Y, Niu W, Xu J, Miller MR, Loh M, Deng F, Guo X. Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125341. [PMID: 33596527 DOI: 10.1016/j.jhazmat.2021.125341] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Short-term exposure to fine particulate matter (PM2.5) increases thrombotic risk particularly in obese individuals, but the underlying mechanisms remain unclear. This study aims to compare the effects of PM2.5 on inflammation and platelet activation in obese versus normal-weight adults, and investigate potential causal pathways. We conducted a panel study measuring blood markers in 44 obese and 53 normal-weight adults on 3 separate occasions in 2017-2018. Associations between PM2.5/black carbon (BC) and biomarkers were estimated using mixed-effect models. An interaction analysis compared PM2.5/BC-related effects between subgroups. Biomarker combinations and mediation analysis were performed to elucidate the biological pathways. There was a significant "low-high-low" trend of PM2.5 levels across the 3 study periods. Increases in pro-inflammatory cytokines and changes of platelet activation and aggregation markers were associated with PM2.5/BC in obese subgroup only. Among obese subjects, the combination of pro-inflammatory cytokines and that of platelet markers increased 26.8% (95% CI: 16.0%, 37.9%) and 14.7% (95% CI: 1.9%, 27.0%) per IQR increase in PM2.5 over 5-day and 7-day averages. Inflammation mediated 24.5% of the pathways through which PM2.5 promoted platelet activation. This study suggested obese people are susceptible to pro-thrombotic impacts of PM2.5 exposures. PM2.5 may aggravate thrombosis through obesity-related inflammation.
Collapse
Affiliation(s)
- Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jiahui Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yazheng Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh EH14 4AP, UK
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
40
|
Hehua Z, Qing C, Yuhong Z. Association between ambient particulate matter exposure and platelet counts in adults: a retrospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31268-31275. [PMID: 33599925 DOI: 10.1007/s11356-021-12865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Associations between ambient particulate matter exposure and platelet counts are inconsistent in previous studies, and study on the effect of long-term exposure especially in Asian populations is limited. We explored the associations between long-term PM2.5 (particulate matter < 2.5 μm) exposure and platelet counts using a prospective cohort study in Northeast China. We used a logistic regression model to analyze the effects of different PM2.5 increments and platelet count elevation. Mixed linear models were used to analyze the association between PM2.5 concentration and platelet counts. Interaction and sub-group analyses were also conducted. Results showed that every 1 μg/m3 increment of PM2.5 exposure was associated with 0.29% (95%CI: 0.25-0.32%) increase in platelet counts and 10% (95%CI: 8-12%) higher risk of platelet elevation. Effects of long-term PM2.5 exposure on platelet elevation were stronger in male participants, of Han ethnicity, and without diabetes. Long-term PM2.5 exposure would increase platelet counts in adults in Northeast area of China, which might add more evidence to the potential biological mechanisms responsible for the effect of air pollution exposure on cardiovascular disease.
Collapse
Affiliation(s)
- Zhang Hehua
- Clinical Research Center, Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, Shenyang, China
| | - Chang Qing
- Clinical Research Center, Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, Shenyang, China
| | - Zhao Yuhong
- Clinical Research Center, Department of Clinical Epidemiology, Shenjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, Shenyang, China.
| |
Collapse
|
41
|
Li A, Mei Y, Zhao M, Xu J, Li R, Zhao J, Zhou Q, Ge X, Xu Q. Associations between air pollutant exposure and renal function: A prospective study of older adults without chronic kidney disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116750. [PMID: 33676338 DOI: 10.1016/j.envpol.2021.116750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We used real-world exposure scenarios to evaluate the effect of six ambient air pollutant (PM2.5, PM10, NO2, SO2, CO, and O3) exposure on renal function among older adults without chronic kidney disease (CKD). We recruited 169 older adults without CKD in Beijing, China, for a longitudinal study from 2016 to 2018. The Modification of Diet in Renal Disease (MDRD) and the Chronic Kidney Disease Epidemiology Collaboration (EPI) equations were employed to derive the estimated glomerular filtration rate (eGFR). A linear mixed-effects model with random intercepts for participants was employed to determine the effects of air pollutants on renal function evaluated on the basis of eGFR and urinary albumin/creatinine ratio at different exposure windows (1-, 2-, 3-, 5-, 7-, 14-, 28-, 45-, and 60-days moving averages). An interquartile range (IQR) increase in NO2 for was associated with significant decreases of in eGFR (MDRD equation) [percentage changes: -4.49 (95% confidence interval: -8.44, -0.37), -5.51 (-10.43, -0.33), -2.26 (-4.38, -0.08), -3.71 (-6.67, -0.65), -5.44 (-9.58, -1.11), -5.50 (-10.24, -0.51), -6.15 (-10.73, -1.33), and -6.34 (-11.17, -1.25) for 1-, 2-, 5-, 7-, 14-, 28-, 45-, and 60-days moving averages, respectively] and in eGFR (EPI equation) [percentage changes: -5.04 (-7.09, -2.94), -6.25 (-8.81, -3.62), -5.16 (-7.34, -2.92), -5.10 (-7.85, -2.28), -5.83 (-8.23, -3.36), -6.04 (-8.55, -3.47) for 1-, 2-, 14-, 28-, 45-, and 60-days moving averages, respectively]. In two-pollutant model, only the association of NO2 exposure with eGFR remained robust after adjustment for any other pollutant. This association was stronger for individuals with hypertension for the EPI equation or BMI <25 kg/m2 for the MDRD equation at lags 1 and 1-2. Our findings suggest that NO2 exposure is associated with eGFR reduction among older adults without CKD for short (1-, 2-days) and medium (14-, 28-, 45-, 60-days) term exposure periods; thus, NO2 exposure may contribute to renal impairment.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
42
|
Liang S, Ning R, Zhang J, Liu J, Zhang J, Shen H, Chen R, Duan J, Sun Z. MiR-939-5p suppresses PM 2.5-induced endothelial injury via targeting HIF-1α in HAECs. Nanotoxicology 2021; 15:706-720. [PMID: 33941019 DOI: 10.1080/17435390.2021.1917716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ambient air pollution is a leading cause of non-communicable disease in the world. PM2.5 has the potential to change the miRNAs profiles, which in turn causes cardiovascular effects. Hypoxia-inducible factor (HIF)-1 plays a critical role in the development of atherosclerosis. Yet, the possible role of miR-939-5p/HIF-1α in PM2.5-induced endothelial injury remains elusive. Therefore, the study aims to investigate the effects of miR-939-5p and HIF-1α on PM2.5-triggered endothelial injury. The results from immunofluorescence, qRT-PCR, LSCM, and western blot assays demonstrated that PM2.5 increased the levels of HIF-1α, inflammation and apoptosis in human aortic endothelial cells (HAECs). Yet, the inflammatory response and mitochondrial-mediated apoptosis pathway were effectively inhibited in HIF-1α knockdown HAECs lines. The expression of miR-939-5p was significantly down-regulated in HAECs after exposed to PM2.5. The luciferase reporter, qRT-PCR and western blot results demonstrated that miR-939-5p could directly targeted HIF-1α. And the miR-939-5p overexpression restricted PM2.5-triggered decreases in cell viability and increases in lactic dehydrogenase (LDH) activity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and inflammation. In addition, miR-939-5p overexpression remarkably suppressed PM2.5-triggered BcL-2/Bax ratio reduction and Cytochrome C, Cleaved Caspase-9 and Cleaved Caspase-3 expression increase, revealed that miR-939-5p hampered PM2.5-induced endothelial apoptosis through mitochondrial-mediated apoptosis pathway. Our results demonstrated that PM2.5 increased the expression of HIF-1α followed by a pro-inflammatory and apoptotic response in HAECs. The protective effect of miR-939-5p on PM2.5-triggered endothelial cell injury by negatively regulating HIF-1α. miR-939-5p might present a new therapeutic target for PM2.5 induced endothelial injury.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, PR China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, PR China.,Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|
43
|
Zhang Y, Liu D, Liu Z. Fine Particulate Matter (PM 2.5) and Chronic Kidney Disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:183-215. [PMID: 34529145 DOI: 10.1007/398_2020_62] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of ambient particulate matter (PM) on public health has become a great global concern, which is especially prominent in developing countries. For health purposes, PM is typically defined by size, with the smaller particles having more health impacts. Particles with a diameter <2.5 μm are called PM2.5. Initial research studies have focused on the impact of PM2.5 on respiratory and cardiovascular diseases; nevertheless, an increasing number of data suggested that PM2.5 may affect every organ system in the human body, and the kidney is of no exception. The kidney is vulnerable to particulate matter because most environmental toxins are concentrated by the kidney during filtration. According to the high morbidity and mortality related to chronic kidney disease, it is necessary to determine the effect of PM2.5 on kidney disease and its mechanism that needs to be identified. To understand the current status of PM2.5 in the atmosphere and their potential harmful kidney effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 1998. In this review, we focus on the worldwide epidemiological evidence linking PM2.5 with chronic kidney disease and the effect of PM2.5 on the chronic kidney disease (CKD) progression. At the same time, we also discuss the possible mechanisms of PM2.5 exposure leading to kidney damage, in order to emphasize the contribution of PM2.5 to kidney damage. A global database on PM2.5 and kidney disease should be developed to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| |
Collapse
|
44
|
Liang S, Zhang J, Ning R, Du Z, Liu J, Batibawa JW, Duan J, Sun Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 2020; 17:61. [PMID: 33276797 PMCID: PMC7716453 DOI: 10.1186/s12989-020-00391-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Joe Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
45
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
46
|
Duan S, Zhang M, Sun Y, Fang Z, Wang H, Li S, Peng Y, Li J, Li J, Tian J, Yin H, Yao S, Zhang L. Mechanism of PM 2.5-induced human bronchial epithelial cell toxicity in central China. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122747. [PMID: 32339879 DOI: 10.1016/j.jhazmat.2020.122747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Exposure to PM2.5 has been linked to respiratory disorders, yet knowledge of the molecular mechanism is limited. Here, PM2.5 was monitored and collected in central China, and its cytotoxicity mechanism on human bronchial epithelial cells (BEAS-2B) was investigated. With the average concentration of 109 ± 69 μg/m3, PM2.5 was rich in heavy metals and organic pollutants. After exposure to PM2.5, the viability of BEAS-2B cells decreased, where 510 dysregulated genes were predicted to induce necroptosis via inhibiting ATP synthesis through the oxidative phosphorylation signaling pathway. Cellular experiments demonstrated that the content of ATP was downregulated, while the expression of RIP3, a necroptosis indicator, was upregulated. Besides, four enzymes in charge of ATP synthesis were downregulated, including ATP5F, NDUF, COX7A, and UQCR, while two genes of RELA and CAPN1 responsible for necroptosis were upregulated. Furthermore, N-acetylcysteine was applied as an enhancer for ATP synthesis, which reversed the downregulation of ATP5F, NDUF, and COX7A, and consequently alleviated the elevation of RELA, CAPN1, and RIP3. In conclusion, PM2.5 exposure downregulates ATP5F, NDUF, COX7A, and UQCR, and that inhibits ATP synthesis via the oxidative phosphorylation signaling pathway, which subsequently upregulates RELA and CAPN1 and ultimately leads to necroptosis of BEAS-2B cells.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; Department of Occupational and Environmental Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Hefeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanze Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Junxia Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Jiaqi Tian
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
47
|
Jiang J, Li Y, Liang S, Sun B, Shi Y, Xu Q, Zhang J, Shen H, Duan J, Sun Z. Combined exposure of fine particulate matter and high-fat diet aggravate the cardiac fibrosis in C57BL/6J mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122203. [PMID: 32171159 DOI: 10.1016/j.jhazmat.2020.122203] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Cardiac fibrosis is associated with fine particulate matter (PM2.5) exposure. In addition, whether high-fat diet (HFD) could exacerbate the PM2.5-induced cardiac injury was unevaluated. Thus, this study was aimed to investigate the combined effects of PM2.5 and HFD on cardiac fibrosis. The echocardiography and histopathological analysis showed that co-exposure of PM2.5 and HFD had a significant deleterious effect on both cardiac systolic and diastolic function accompanied the myofibril disorder and myocardial fibrosis in C57BL/6 J mice than exposed to PM2.5 or HFD alone. The augmented oxidative damage and increased α-SMA area percentage were detected in heart tissue of mice exposed to PM2.5 and HFD together. PM2.5 upregulated the expressions of cardiac fibrosis-related special markers, including collagen-I, collagen-III, TGF-β1, p-Smad3 and total Smad3, which had more pronounced activations in co-exposure group. Meanwhile, the factorial analysis exhibited the synergistic interaction regarded to the combined exposure of PM2.5 and HFD. Simultaneously, PM2.5 and palmitic acid increased intracellular ROS generation and activated the TGF-β1/Smad3 signaling pathway in cardiomyocytes. While the ROS scavenger NAC had effectively attenuated the ROS level and suppressed the TGF-β1/Smad3 signaling pathway. Taken together, our results demonstrated combined exposure to PM2.5 and HFD could aggravate cardiac fibrosis via activating the ROS/TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
48
|
Wang S, Wang F, Yang L, Li Q, Huang Y, Cheng Z, Chu H, Song Y, Shang L, Hao W, Wei X. Effects of coal-fired PM 2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE -/- mice. BMC Pharmacol Toxicol 2020; 21:34. [PMID: 32384920 PMCID: PMC7206822 DOI: 10.1186/s40360-020-00411-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Air pollution increases the morbidity and mortality of cardiovascular disease (CVD). Atherosclerosis (AS) is the pathological basis of most CVD, and the progression of atherosclerosis and the increase of fragile plaque rupture are the mechanism basis of the relationship between atmospheric particulate pollution and CVD. The aim of the present study was to investigate the effects of coal-fired fine particulate matter (PM2.5) on the expression levels of atherosclerosis-related proteins (von Willebrand factor (vWF), Endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin, and to explore the role and mechanism of the progression of atherosclerosis induced by coal-fired PM2.5 via the mitogen-activated protein kinase (MAPK) signaling pathways. Methods Different concentrations of PM2.5 were given to apolipoprotein-E knockout (ApoE−/−) mice via intratracheal instillation for 8 weeks. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of vWF, ET-1 in serum of mice. Immunohistochemistry was used to observe the expression and distribution of ICAM-1 and E-selectin in the aorta of mice. Western blot was used to investigate the phosphoylation of proteins relevant to MAPK signaling pathways. Results Coal-fired PM2.5 exacerbated atherosclerosis induced by a high-fat diet. Fibrous cap formation, foam cells accumulation, and atherosclerotic lesions were observed in the aortas of PM2.5-treated mice. Coal-fired PM2.5 increased the protein levels of ET-1, ICAM-1, and E-selectin, but there was no significant difference in the vWF levels between the PM2.5-treatment mice and the HFD control mice. Coal-fired PM2.5 promoted the phosphorylation of p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) in aortic tissues of mice. Conclusion Coal-derived PM2.5 exacerbated the formation of atherosclerosis in mice, increased the expression levels of atherosclerosis-related proteins in mice serum, and promoted the phosphorylation of proteins relevant to MAPK signaling pathway. Thus, MAPK signaling pathway may play a role in the atherosclerosis pathogenesis induced by Coal-derived PM2.5.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Qin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yao Huang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China.,Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Yiming Song
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University Health Science Center, No.38 XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.
| |
Collapse
|
49
|
Sun B, Shi Y, Li Y, Jiang J, Liang S, Duan J, Sun Z. Short-term PM 2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121566. [PMID: 31761645 DOI: 10.1016/j.jhazmat.2019.121566] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/05/2023]
Abstract
Up to now, while some toxicological studies have identified pulmonary fibrosis immediately induced by long-term PM2.5 exposure, there has been no evidence indicating, whether short-term exposure can lead to post-exposure development of pulmonary fibrosis. Here, we treated rats with PM2.5 for 1 month (10 times), followed by normal feeding for 18 months. 18F-FDG intake, which is linked with the initiation and development of pulmonary fibrosis in living bodies, was found to gradually increase in lung following exposure through micro PET/CT imaging. Histolopathological examination revealed continuous deterioration of pulmonary injury post-exposure. Collagen deposition and hydroxyproline content continued to increase all along in the post-exposure duration, indicating pulmonary fibrosis development. Chronic and persistent induction of pulmonary inflammatory gene expression (Tnf, Il1b, Il6, Ccl2, and Icam1), epithelial mesenchymal transition (EMT, reduction of E-cadherin and elevation of fibronectin) and RelA/p65 upregulation, as well as serum inflammatory cytokine production, were also found in PM2.5-treated rats. Pulmonary oxidative stress, manifested by increase of MDA and decrease of GSH and SOD, was induced during exposure but disappeared in later post-exposure duration. These results suggested that short-term PM2.5 exposure could lead to sustained post-exposure pulmonary fibrosis development, which was mediated by oxidative-stress-initiated NF-κB/inflammation/EMT pathway.
Collapse
Affiliation(s)
- Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
50
|
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: A review of rodent model studies. CHEMOSPHERE 2020; 242:125204. [PMID: 31675579 DOI: 10.1016/j.chemosphere.2019.125204] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
In recent year, animal models have been growingly used to increase our knowledge about the toxicity of PM and underlying mechanisms leading to cardiovascular diseases. In this article, we review the current state of knowledge and findings of studies investigating the cardiovascular effects of PM in rats and mice. The six main areas covered in this review include: I) nature of particulate matter and toxicity mechanisms, II) systemic inflammation, III) heart rate and heart rate variability, IV) histopathological effects, V) atherosclerosis, VI) thrombosis, and VI) myocardial infarction. This review showed that animal model studies have been successful to bring new insights into the mechanisms underlying PM-induced cardiovascular diseases. However, there are some areas that the exact mechanisms are still unclear. In conclusion, investigating the cardiovascular effects of PM in vivo or interpreting the results should attempt to justify the role of different PM compositions, which may vastly affect the overall cytotoxicity of particles.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|