1
|
Duan L, Li M, Liu J, Chen W. Soil colloids can significantly enhance spreading of polybromodiphenyl ethers in groundwater by serving as an effective carrier. J Environ Sci (China) 2025; 147:93-100. [PMID: 39003087 DOI: 10.1016/j.jes.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 07/15/2024]
Abstract
Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.
Collapse
Affiliation(s)
- Lin Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Min Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jiameng Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhou Y, Fu K, Li F, Zhang Y, Ren X, Li B, Wu S, Han J, Yang L, Zhou B. UV-aging process of titanium dioxide nanoparticles aggravates enterohepatic toxicity of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178074. [PMID: 39674164 DOI: 10.1016/j.scitotenv.2024.178074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The physicochemical characteristics of titanium dioxide nanoparticles (n-TiO2) may change during the aging process once discharged into aquatic environment. However, how the aging process affects their interactions with co-existing pollutants, as well as the joint toxicity has not been explored. This study investigated how UV-aging impacts n-TiO2 in aquatic environments and their interactions with bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), focusing on their joint toxicity in adult female zebrafish. UV-aging process significantly increased the specific area and hydrophobicity of n-TiO2, promoting the adsorption of TBPH. In vivo experiments revealed that aged n-TiO2 enhanced the bioaccumulation of TBPH in the liver and intestine, worsening hepatic steatosis and intestinal barrier damage. A combined analysis of hepatic lipidomic profiling and intestinal microbiota 16S rRNA sequencing revealed that co-exposure of aged n-TiO2 and TBPH altered gut microbial composition and abundances, facilitating the circulation of lipopolysaccharides (LPS) through the gut-liver axis. Subsequentially, the elevated LPS level in the liver activated the sphingolipid metabolic pathway, resulting in severer lipid metabolism disorders and hepatotoxicity. This study found that UV-aging increases the hydrophobicity and surface area of n-TiO2, enhancing their interaction with the TBPH, which leads to greater bioaccumulation and hepatoxicity through mechanisms involving changes in gut microbiomes and sphingolipid metabolism.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Wang L, Murtala NM, Hu K, Chen Y, Chen M, Sun H, Liu Y. Prediction of polybrominated diphenyl ethers (PBDEs) as potential substrates of various human CYP enzymes and laboratory test of BDE-99 for its metabolism-activated mutagenicity. Toxicology 2024; 509:153992. [PMID: 39515574 DOI: 10.1016/j.tox.2024.153992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants, of which BDE-47 could be activated by human cytochrome P450s (CYPs) for chromosome-damaging effects. However, the metabolic activation and mutagenicity of other PBDEs remain unknown. In this study, 14 representative PBDEs were analyzed by molecular docking as potential substrates for several human CYPs. The results showed negative free energies for each pair of binding, however, different CYPs demonstrated largely varied frequencies of binding conformations favoring a substrate potential: CYP2E1, 3A4, and 2B6 being suitable for all/most compounds. Using BDE-99 (5 ∼ 40 μM) as a model compound (exposing for 2 cell cycles), it did not induce micronucleus in a human hepatoma HepG2 cell line, however, positive result was observed in C3A cells (derived from HepG2 but with enhanced expression of CYPs). Pretreatment of HepG2 cells with each of bisphenol A (1 μM, inducer of CYPs) and CITCO (10 μM, inducer of CYP2B6) led to micronucleus formation by BDE-99, while the effect of BDE-99 in C3A cells was abolished by 1-aminobenzotriazole (60 μM, inhibitor of CYPs). In a V79-derived cell line genetically engineered for expressing human CYP2B6 BDE-99 induced micronucleus, while it was negative in V79-Mz and its derivatives expressing several other human CYPs. The micronuclei formed in HepG2 cells pretreated with BPA and CITCO were free of centromere protein B immunofluorescence staining. Finally, BDE-99 weakly induced PIG-A gene mutations in C3A, while negative in HepG2 cells. In conclusion, our study suggest that BDE-99 may be activated by human CYP2B6 for chromosome-breaking effects.
Collapse
Affiliation(s)
- Lin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Nyame Mustapha Murtala
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China; Department of Science and Education, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingang Middle Road, Guangzhou 510317, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Manxin Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Haiting Sun
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
4
|
Ma Y, Chen M, Yi P, Guo R, Ji R, Chen J, Liu Y. Transformation and environmental fate of 6-OH-BDE-47 and 6-MeO-BDE-47 in oxic and anoxic sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136663. [PMID: 39608074 DOI: 10.1016/j.jhazmat.2024.136663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Pollutants often exhibit different environmental behaviors at varying redox potentials, and the fate and microbial response of 6-OH-BDE-47 and 6-MeO-BDE-47 under these conditions remain unclear. Herein, 14C-labeled 6-OH-BDE-47 and 6-MeO-BDE-47 were used to investigate their fate in water-sediment systems at different redox potentials. For 6-OH-BDE-47, aerobic microorganisms and nitrate electron acceptors promoted nonextractable residues (NERs) formation and anaerobic microorganisms facilitated their release and was highest formed in the O2-containing group. For 6-MeO-BDE-47, aerobic microorganisms, electron acceptors, and anaerobic microorganisms promoted NER formation, and was highest formed in the nitrate group. Microorganisms markedly promoted 6-OH/MeO-BDE-47 transformation. For 6-OH-BDE-47, the degradation followed the order nitrate group (29.6 %) > O2-containing group (6.5 %) > sulfate group (1.45 %) > anaerobic group (0 %), while for 6-MeO-BDE-47, the order was O2-containing group (8.8 %) > nitrate group = sulfate group = anaerobic group (0 %). The complexity of the 6-OH-BDE-47 and 6-MeO-BDE-47 microbial community network was consistent with the results of redox potentials, where microbial networks connectivity linking were more complex under O2-containing and nitrate conditions. Overall, our study comprehensively revealed the fate of 6-OH-BDE-47 and 6-MeO-BDE-47 under different redox conditions, showing that electron acceptors can alter microbial community structure and regulating interactions. It provided guidelines for selecting electron acceptors in the remediation of 6-OH-BDE-47 and 6-MeO-BDE-47.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Meilin Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Pan Yi
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Sun RX, Pan CG, Peng FJ, Yu ZL, Shao HY, Yang BZ, Chen ZB, Mai BX. Evidence of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) in wild fish species from the remote tropical marine environment, south China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124885. [PMID: 39233271 DOI: 10.1016/j.envpol.2024.124885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their alternatives (e.g., dechlorane plus (DPs) and decabromodiphenyl ethane (DBDPE)) are ubiquitous in various environmental media. However, limited data is available on these chemicals in edible fish species from the wide-open South China Sea (SCS). In the present study, ten legacy PBDEs and three substitutions (DBDPE and two DPs) were analyzed in 16 wild fish species sampled from the open SCS to investigate their spatial and species-specific variations. The results showed that the total concentrations of PBDEs, DBDPE, and DPs in fish samples were in the range of 1.69-47.6, not detected (nd) to 21.0, and nd to 3.80 ng/g lipid weight (lw), respectively. BDEs 47, 209 and 100 were the dominant target PBDE congeners, representing 49.2%, 17.2% and 9.93% of the total PBDE concentrations, respectively. Higher concentrations of PBDEs, DBDPE, and DPs were found in fish species from the Wanshan Archipelago compared to those from the Mischief Reef and the Yongxing Island, suggesting the significant influence of anthropogenic activities. Species-specific differences in levels of PBDEs were observed, with the order of bathydemersal > demersal > pelagic ≈ reef-associated > benthopelagic species. The average fanti value of all fish samples was 0.68, suggesting commercial DP products as a contamination source. The levels of PBDEs, DPs, and DBDPE in fish samples were relatively low compared with those from other locations around the globe. Finally, the health risks concerning the ingestion of BDEs 47, 99, 153 and 209 via fish consumption collected from the SCS are negligible.
Collapse
Affiliation(s)
- Run-Xia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zi-Ling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hai-Yang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Bing-Zhong Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhong-Biao Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
6
|
Wei D, Shi J, Xu H, Guo Y, Wu X, Chen Z, Chen T, Lou H, Han E, Han G, Yan Y, Liu X, Zeng X, Fan C, Hou J, Huo W, Li L, Jing T, Wang C, Mao Z. Prospective study on the joint effect of persistent organic pollutants and glucose metabolism on chronic kidney disease: Modifying effects of lifestyle interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175694. [PMID: 39173765 DOI: 10.1016/j.scitotenv.2024.175694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
There is no evidence on the associations between persistent organic pollutants (POPs) and the incidence of chronic kidney disease (CKD) in the Chinese rural population. We aimed to investigate the individual and mixed effects of 22 POPs on the prevalence and incidence of CKD, and the joint effects of POPs and abnormal glucose metabolism as well as the modification effects of healthy lifestyle on these associations. A total of 2775 subjects, including 925 subjects with normal plasma glucose (NPG) and 925 subjects with prediabetes (PDM) and type 2 diabetes mellitus (T2DM), were enrolled from the Henan Rural Cohort Study. Logistic regression and quantile g-computation were performed to assess the individual and mixed effects of POPs on the risk of CKD. Joint effects of POPs and abnormal glucose metabolism status, as well as the modification effects of lifestyle on CKD were assessed. After 3-year follow-up, an increment of ln-o,p'-DDT was related to an elevated risk of CKD prevalence. Positive associations of p,p'-DDE and β-BHC with CKD incidence were observed (P < 0.05). In addition, participants with high levels of ∑POPs were associated elevated incidence risk of CKD (OR: 1.217, 95%CI: 1.008-1.469). One quartile increase in POPs mixture was associated with the increased incidence of CKD among T2DM patients (P < 0.05). Further, a higher risk of CKD was observed among PDM and T2DM patients with high levels of o,p'-DDT, p,p'-DDE, β-BHC, and ∑POPs than NPG subjects with low levels of pollutants. In addition, interactive effects of ∑POPs and lifestyle score on CKD incidence were found. Individual and mixed exposure to POPs increased the prevalence and incidence of CKD, and glucose metabolic status exacerbated the risk of CKD resulting from such exposures. Further, the modifying effects of lifestyle were observed, highlighting the importance of precision prevention for high-risk CKD population and healthy lifestyle intervention measures.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Haoran Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Taimeng Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Huilin Lou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Erbao Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guozhen Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yumeng Yan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin Zeng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
7
|
Wang J, Lin J, Zhang X, Zeng Q, Zhu Z, Zhao S, Cao D, Zhu M. Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment. TOXICS 2024; 12:806. [PMID: 39590986 PMCID: PMC11598807 DOI: 10.3390/toxics12110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in vehicles is increasing. This study investigates occupational and nonoccupational population exposure to specific OPEs (TnBP, TBOEP, TEHP, TCEP, TCiPP, TDCiPP, TPhP, EHDPP) and PBDEs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209) in vehicle dust. METHODS Data on OPEs and PBDEs in vehicle dust were sourced from PubMed and Web of Science. We applied PCA and PMF to identify pollutant sources and assessed health risks using the hazard index (HI) and carcinogenic risk (CR) methods. Monte Carlo simulations were conducted for uncertainty analysis, evaluating variable contributions to the results. RESULTS The predominant OPE in dust samples was TDCiPP (mean value: 4.34 × 104 ng g-1), and the main PBDE was BDE-209 (mean value: 1.52 × 104 ng g-1). Potential sources of OPEs in vehicle dust include polyvinyl chloride (PVC) upholstery, polyurethane foam (PUF) seats, electronics, carpet wear, hydraulic oil, and plastic wear in the brake system. PBDE sources likely include automotive parts, PVC upholstery, seats, carpets, and electronics. The 90th percentile HI and CR values for occupational and nonoccupational populations exposed to OPEs and PBDEs indicate that the noncarcinogenic and carcinogenic risks are relatively low. A sensitivity analysis showed that the pollutant concentration, time in the vehicle, exposure frequency, and duration significantly influence health risks. CONCLUSIONS The health risks to both occupational and nonoccupational populations from exposure to OPEs and PBDEs in vehicle dust are relatively low.
Collapse
Affiliation(s)
- Junji Wang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jianzai Lin
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xi Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Qinghong Zeng
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Zhu Zhu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Siyuan Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Deyan Cao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Meilin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (J.W.); (J.L.); (Q.Z.); (Z.Z.); (S.Z.); (D.C.)
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
8
|
Hua S, Hua M, Chen X, Ying J, Li H, Yi Q. Effects of organophosphorus flame retardant EHDPP on mouse retinal photoreceptor cells: Oxidative stress, apoptosis, and proinflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116640. [PMID: 38941656 DOI: 10.1016/j.ecoenv.2024.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a frequently utilized organophosphorus flame retardant (OPFR) and has been extensively detected in environmental media. Prolonged daily exposure to EHDPP has been linked to potential retinal damage, yet the adverse impacts on the retina are still generally underexplored. In this research, we explored oxidative stress, inflammation, and the activating mechanisms initiated by EHDPP in mouse retinal photoreceptor (661 W) cells following a 24 h exposure period. Our research demonstrated that EHDPP led to a decline in cell viability that was directly proportional to its concentration, with the median lethal concentration (LC50) being 88 µM. Furthermore, EHDPP was found to elevate intracellular and mitochondrial levels of reactive oxygen species (ROS), trigger apoptosis, induce cell cycle arrest at the G1 phase, and modulate the expression of both antioxidant enzymes (Nrf2, HO-1, and CAT) and pro-inflammatory mediators (TNF-α, IL-1β, and IL-6) within 661 W cells. These findings indicate that retinal damage triggered by EHDPP exposure could be mediated via the Nrf2/HO-1 signaling pathway in these cells. Collectively, our investigation revealed that oxidative stress induced by EHDPP is likely a critical factor in the cytotoxic response of 661 W cells, potentially leading to damage in retinal photoreceptor cells.
Collapse
Affiliation(s)
- Shanshan Hua
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mengxia Hua
- School of ophthalmology and optometry, Wenzhou Medical University, Zhejiang, China
| | - Xingjun Chen
- School of ophthalmology and optometry, Wenzhou Medical University, Zhejiang, China
| | - Jianing Ying
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Hu Li
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Quanyong Yi
- Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang, China.
| |
Collapse
|
9
|
Han Y, Ling S, Hu S, Shen G, Zhang H, Zhang W. Combined exposure to decabromodiphenyl ether and nano zero-valent iron aggravated oxidative stress and interfered with metabolism in earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172033. [PMID: 38547968 DOI: 10.1016/j.scitotenv.2024.172033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is a common brominated flame retardant in electronic waste, and nano zero-valent iron (nZVI) is a new material in the field of environmental remediation. Little is known about how BDE-209 and nZVI combined exposure influences soil organisms. During the 28 days study, we determined the effects of single and combined exposures to BDE-209 and nZVI on the oxidative stress and metabolic response of earthworms (Eisenia fetida). On day 7, compared to CK, malondialdehyde (MDA) content increased in most combined exposure groups. To remove MDA and reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were induced in most combined exposure groups. On day 28, compared to CK, the activities of SOD and CAT were inhibited, while POD activity was significantly induced, indicating that POD plays an important role in scavenging ROS. Combined exposure to BDE-209 and nZVI significantly affected amino acid biosynthesis and metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis pathways, interfered with energy metabolism, and aggravated oxidative stress in earthworms. These findings provide a basis for assessing the ecological impacts of using nZVI to remediate soils contaminated with BDE-209 from electronic waste.
Collapse
Affiliation(s)
- Ying Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongchang Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Su H, Li J, Ye L, Su G. Establishment of compound database of emerging antioxidants and high-resolution mass spectrometry screening in lake sediment from Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28341-28352. [PMID: 38532220 DOI: 10.1007/s11356-024-32855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Antioxidants are ubiquitous in various environmental samples, leading to increasing concern regarding their potential risk to environments or humans. However, there is dearth of information regarding the environmental fate of antioxidants and unknown/unexpected antioxidants in the environment. Here, we established a compound database (CDB) containing 320 current-used antioxidants by collecting the chemicals from EPA's functional use database and published documents. Physical-chemical characteristics of these antioxidants were estimated, and 19 ones were considered as persistent and bioaccumulative (P&B) substances. This CDB was further coupled with high resolution mass spectrometry (HRMS) technique, which was employed for suspect screening of antioxidants in extracts of sediments (n = 88) collected from Taihu Lake basin. We screened 119 HRMS features that can match 135 chemical formulas in the CDB, and 20 out of them exhibited the detection frequencies ≥ 90%. The total concentrations of suspect antioxidants in sediments ranged from 6.41 to 830 ng/g dw. Statistical analysis demonstrated that concentrations of suspect antioxidants in Taihu Lake were statistically significantly lower than those in Shihu and Jiulihu Lake, but greater than those from other small lakes. Collectively, this study provided a CDB that could be helpful for further monitoring studies of antioxidant in the environments, and also provided the first evidence regarding the ubiquity of antioxidants in aquatic environment of Taihu Lake basin.
Collapse
Affiliation(s)
- Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
11
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
12
|
Sun Y, Teng Y, Li R, Wang X, Zhao L. Microbiome resistance mediates stimulation of reduced graphene oxide to simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether and 3,4-dichloroaniline in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133121. [PMID: 38056279 DOI: 10.1016/j.jhazmat.2023.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Paddy soils near electrical and electronic waste recycling sites generally suffer from co-pollution of polybrominated diphenyl ethers and 3,4-dichloroaniline (3,4-DCA). This study tested the feasibility of reduced graphene oxide (rGO) to stimulate the simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) and 3,4-DCA in percogenic paddy soil (PPS) and hydromorphic paddy soil (HPS). rGO improved the debromination extent of BDE99 and the transformation rate of 3,4-DCA in PPS, but did not affect their abatement in HPS. The inhibition of specific fermenters, acetogens, and methanogens after rGO addition contributed to BDE99 debromination by obligate organohalide-respiring bacteria (OHRB) in PPS, but relevant soil microbiomes (e.g., fermenters, acetogens, methanogens, and obligate OHRB) responded little to rGO in HPS. For 3,4-DCA, the enhanced activities of nitrogen-metabolic chloroaniline degraders by rGO increased its transformation rate in PPS, but was compensated by the decreased biotransformation from 3,4-DCA to 3,4-dichloroacetanilide after the addition of rGO to HPS. The discrepant stimulation of rGO between PPS and HPS was mediated by soil microbiome resistance. rGO has the application potential to stimulate the simultaneous abatement of polybrominated diphenyl ethers and chloroanilines in paddy soils with relatively low microbiome resistance.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ran Li
- State Key Laboratory of Nutrient Use and Management, Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ma J, Li Y, Zhang X, Li J, Lin Q, Zhu Y, Ruan Z, Ni Z, Qiu R. Modified nano zero-valent iron coupling microorganisms to degrade BDE-209: Degradation pathways and microbial responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133378. [PMID: 38160554 DOI: 10.1016/j.jhazmat.2023.133378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) in soil and groundwater have garnered considerable attention owing to the significant bioaccumulation potential and toxicity. Currently, the coupling treatment method of nano zero-valent iron (nZVI) with dehalogenation microorganisms is a research hotspot in the field of PBDE degradation. In this study, various systems were established within anaerobic environments, including the nZVI-only system, microorganism-only system, and the nZVI + microorganisms system. The aim was to investigate the degradation pathway of BDE-209 and elucidate the degradation mechanism within the coupled system. The results indicated that the degradation efficiency of the coupled system was better than that of the nZVI-only or microorganism-only system. Two modified nZVI (carboxymethyl cellulose and polyacrylamide) were prepared to improve the coupling degradation efficiency. CMC-nZVI showed the highest stability, and the coupled system consisting of microorganisms and CMC-nZVI showed the best degradation effect among all of the systems in this study, reaching 89.53% within 30 days. Furthermore, 22 intermediate products were detected in the coupling systems. Notably, changing the inoculation time did not significantly improve the degradation effect. The expression changes of the two reductive dehalogenase genes, e.g. TceA and Vcr, reflected the stress response and self-recovery ability of the dehalogenating bacteria, indicating such genes can be used as biomarker for evaluating the degradation performance of the coupling system. These findings provide a better understanding about the mechanism of coupling debromination process and the direction for the optimization and on-site repair of coupled systems.
Collapse
Affiliation(s)
- Jing Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingping Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Liu Y, Lin Q, Zheng J, Fan X, Xu K, Ma Y, He J. Magnetic Fe-doped silicon carbide induced microwave activated persulfate for decabromodiphenyl ether removal: Mechanism and unique degradation pathway. CHEMOSPHERE 2024; 349:140841. [PMID: 38040250 DOI: 10.1016/j.chemosphere.2023.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
In this work, the magnetic nanocomposite Fe@SiC was prepared by a hydrothermal method and determined by SEM, XRD, XPS, FTIR and VNA. Fe3O4 particles were loaded onto SiC with great success, and the synthesized composites had favorable microwave absorption properties. Fe@SiC was used to activate persulfate in a microwave field for the degradation of BDE209 in soil. Specifically, the synergistic interaction between microwaves and Fe@SiC showed excellent catalytic performance in activating PS to degrade BDE209 (90.1% BDE209 degradation in 15 min). The presence of •OH, O2•- and 1O2 was demonstrated based on quench trapping and EPR experiments. LC‒MS was applied to determine the intermediates and propose the possible degradation pathway for BDE209 in the MW/Fe@SiC/PS system, and it was found that BDE209 produced almost no lower brominated diphenyl ethers. Therefore, the toxicity of BDE209 was found to be reduced using toxicity assessment software. Overall, this work provides an effective approach for the degradation of BDE209 in environmental remediation.
Collapse
Affiliation(s)
- Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
15
|
Qin M, Ma WL, Yang PF, Li WL, Wang L, Shi LL, Li L, Li YF. A level IV fugacity-based multimedia model based on steady-state particle/gas partitioning theory and its application to study the spatio-temporal trends of PBDEs in atmosphere of northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168622. [PMID: 37979874 DOI: 10.1016/j.scitotenv.2023.168622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Particle/gas (P/G) partitioning can significantly affect the environmental behavior of atmospheric pollutants. In this study, we established a large-scale level IV fugacity-based multimedia model (the S-L4MF Model) based on the steady-state P/G partitioning theory. The spatial and temporal trends with the atmospheric contamination of polybrominated diphenyl ethers (PBDEs) in northeastern China under various climate conditions were simulated by the model. There is a reasonable agreement between the simulated and measured gaseous and particulate concentrations of 3 selected PBDE congeners (BDE-47, -99 and -209). For BDE-47, -99 and -209, 91.9 %, 94.8 % and 86.2 % of data points in the evaluation of the spatial trend, whereas 97.4 %, 98.2 % and 91.6 % of data points in the evaluation of the temporal trend, exhibit discrepancies between the modeled and measured data within 1 order of magnitude. The S-L4MF Model performed better than the other model with the same configuration but an equilibrium-state P/G partitioning assumption. The sensitivity and uncertainty analysis indicated that the air temperature and hexadecane-air partition coefficient were the dominant influencing factors on atmospheric concentrations. In addition, the model was successfully applied to study the inter-annual and seasonal variations of gaseous and particulate concentrations of the three PBDEs during 1971-2020 in Harbin, a northeastern Chinese city. Finally, we illustrated the potential to use the model to understand P/G partitioning behavior and the effects of snow and ice on atmospheric concentrations. In summary, the S-L4MF Model provided a powerful and effective tool for studying the environmental behavior of atmospheric organic pollutants, especially in cold regions.
Collapse
Affiliation(s)
- Meng Qin
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li-Li Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2J 3N8, Canada
| |
Collapse
|
16
|
Liu Y, Xie Y, Tian Y, Liao J, Fang D, Wang L, Zeng R, Xiong S, Liu X, Chen Q, Zhang Y, Yuan H, Li Q, Shen X, Zhou Y. Exposure levels and determinants of placental polybrominated diphenyl ethers in Chinese pregnant women. ENVIRONMENTAL RESEARCH 2024; 241:117615. [PMID: 37949289 DOI: 10.1016/j.envres.2023.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are a group of widely used chemicals and humans are exposed to them in their daily life. PBDEs exposure during pregnancy may have adverse effects on pregnant women and their fetuses. Nevertheless, limited information is available on the levels and determinants of PBDEs exposure in Chinese pregnant women. METHODS The internal exposure levels of eight PBDEs (BDE-28, 47, 99, 100, 153, 154, 183, and 209) in placental samples of 1280 pregnant women from Zunyi birth cohort were analyzed using gas chromatography tandem mass spectrometry. All PBDEs concentrations were lipid adjusted (ng/g lw). Determinants of exposure were assessed by multivariable logistic regression model. RESULTS Eight PBDE homologues were quantifiable in more than 70% of the samples. The highest median concentrations were found for BDE-209 (2.78 ng/g lw), followed by BDE-153 (1.00 ng/g lw) and BDE-183 (0.93 ng/g lw). The level of ΣPBDEs ranged from 0.90 to 308.78 ng/g lw, with a median concentration of 10.02 ng/g lw. Multivariate logistic regression analysis showed that maternal age older than 30 years old (OR: 1.59; 95% CI: 1.14, 2.23), pre-pregnancy obesity (1.51; 1.08, 2.10), home renovation within 2 years (1.43; 1.08, 1.91), spending more time outdoors during pregnancy (0.70; 0.55, 0.89), high consumption of fish/seafood (1.46; 1.13, 1.90) and eggs (1.44; 1.04, 2.00), male infant sex (1.69; 1.18, 2.42) were associated with PBDEs exposure. CONCLUSION The study population is generally exposed to PBDEs, of which BDE-209 is the dominant congener, indicating extensive application of products containing deca-BDE mixtures. Maternal age, pre-pregnancy BMI, home decoration, average outdoor time during pregnancy, fish, seafood, eggs consumption, and fetal sex were exposure-determinning factors. This study contributes to the knowledge on region-specific PBDEs contamination in pregnant women and related risk factors.
Collapse
Affiliation(s)
- Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- People's Hospital of Xingyi City, Qianxinan, 562400, Guizhou, China
| | - Juan Liao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Derong Fang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Linglu Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Qing Chen
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Ya Zhang
- People's Hospital of Xishui County, Zunyi, 564600, Guizhou, China
| | - Hongyu Yuan
- People's Hospital of Xishui County, Zunyi, 564600, Guizhou, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - XuBo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
17
|
Zhang Y, Xie J, Ouyang Y, Li S, Sun Y, Tan W, Ren L, Zhou X. Adverse outcome pathways of PBDEs inducing male reproductive toxicity. ENVIRONMENTAL RESEARCH 2024; 240:117598. [PMID: 37939807 DOI: 10.1016/j.envres.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants, they are easily released into environment and causing adverse effects to the ecosystem and human health. This review aims to summarize the research status of PBDEs-induced male reproductive toxicity and its mechanisms at various levels such as molecular/cellular, tissue/organ and individual/population. The Adverse Outcome Pathways (AOPs) diagram showed that PBDEs-induced reactive oxygen species (ROS) production, disruptions of estrogen receptor-α (ERα) and antagonism of androgen receptor (AR) were defined as critical molecular initiating events (MIEs). They caused key events (KEs) at the molecular and cellular levels, including oxidative stress, increased DNA damage, damaging mitochondria, increased glycolipid levels and apoptosis, depletion of ectoplasmic specialization and decreased Leydig cells numbers. These in turn lead to followed KEs at the tissue or organ levels, such as the impaired spermatogenesis, impaired blood-testis barrier and reduced testosterone synthesis and function. As a result, reproductive system-related adverse outcomes (AOs) were reported, such as the decreased sperm quantity or quality, shorten male anogenital distance and cryptorchidism in individual and reduced reproduction of the population. This review assembled information on the mechanisms of male reproductive toxicity induced by PBDEs, and constructed a causal mechanism relationship diagram from different levels using the an AOP framework to provide theoretical basis for ecological risk assessment and environmental management of PBDEs. The AOP framework makes it possible to develop risk management strategies based on toxicity mechanisms and support for development of Integrated Approach to Testing and Assessment (IATA) which are available for regulatory purposes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yixin Ouyang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yulin Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weilun Tan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Burgos Melo HD, de Souza-Araujo J, Benavides Garzón LG, Macedo JC, Cardoso R, Mancini SD, Harrad S, Rosa AH. Concentrations and legislative aspects of PBDEs in plastic of waste electrical and electronic equipment in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167349. [PMID: 37769718 DOI: 10.1016/j.scitotenv.2023.167349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Brominated flame retardants (BFRs) have been widely used as additives in polymeric products such as electronic and electrical equipment (EEE) to help meet fire safety regulations. However, some BFRs like polybrominated diphenyl ethers (PBDEs), are now listed under the Stockholm Convention on persistent organic pollutants (POPs) and banned in many countries, due to their adverse health impacts, environmental persistence, and capacity for bioaccumulation and long-range atmospheric transport. Despite this, in Brazil, only a few studies exist of the presence of these contaminants in the environment, and even fewer in waste EEE (WEEE). Against this backdrop, this study measured the presence of PBDEs in samples (n = 159) of WEEE in the metropolitan region of Sorocaba, Sao Paulo, Brazil. PBDEs were detected in 149 samples, with concentrations in 18 samples exceeding the European Union's Low POP Content Limit (LPCL) of 1000 mg/kg. Decabromodiphenyl ether (BDE-209) was the congener present at the highest concentration in most samples, with those of other PBDEs such as BDE-47 much lower. In general, samples containing >1000 mg/kg are those categorised as display items and miscellaneous EEE (n = 15.27 %), comprising: parts from cathode ray tube TVs (n = 11), audio systems (n = 2), and LCD TVs (n = 2). In addition, in 5 % (n = 3) of IT and telecommunications equipment samples (computer parts) PBDE concentrations exceeded 1000 mg/kg. Our results show the need for greater control and monitoring of the presence of these pollutants in WEEE before recycling and final disposal, to prevent PBDEs entering the recycling stream.
Collapse
Affiliation(s)
- Hansel David Burgos Melo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Juliana de Souza-Araujo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | | | - João Carlos Macedo
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Rafael Cardoso
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Sandro Donnini Mancini
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
19
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
20
|
Lin Y, Li X, Zhang S, Yang Q, Zhang R, Zhang X. Congener Variation of Genetic Dependent-Developmental Toxicology in Two Emerging Classes of Dioxin-like Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21650-21661. [PMID: 38078857 DOI: 10.1021/acs.est.3c05622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Emerging classes of dioxin-like compounds (DLCs) like hydroxylated/methoxylated polybrominated diphenyl ethers (HO-/MeO-PBDEs) and polychlorinated diphenyl sulfides (PCDPSs) could lead to diverse adverse outcomes in humans and wildlife, yet knowledge gaps exist in their molecular mechanisms associated with different structures following early life environmental exposure. This study integrated a genetic knockout technique and concentration-dependent reduced zebrafish transcriptome approach (CRZT) to unravel the toxicological pathways underpinning developmental toxicity of four HO-/MeO-PBDEs and five PCDPSs at environmentally relevant doses. Generally, the dependence of aryl hydrocarbon receptor (AhR) on the embryotoxicity and transcriptomic potencies induced by the HO-PBDEs and PCDPSs varied across different congeners. The knockout of the ahr2 gene led to 1.02- to 76.48-fold decreases of DLC-induced embryotoxicities and reduced the transcriptome-based potencies ranging from 1.38 to 2124.74 folds in the CRZT test. The fold changes denoting AhR-mediated potentials significantly increased with the increasing chlorination degrees of MeO-PBDEs and PCDPSs (p < 0.05). Moreover, ahr2 knockout primarily affected the DLC-induced early molecular responses relevant to DNA damage, enzyme activation, and organ development. Our integrated approach revealed the differential role of AhR in mediating the developmental toxicity of emerging DLCs possessing varied structures at environmentally relevant doses.
Collapse
Affiliation(s)
- Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyi Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qinyu Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
21
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Regulatory mechanisms of submerged macrophyte on bacterial community recovery in decabromodiphenyl ether contaminated sediment: Microbiological and metabolomic perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122616. [PMID: 37757929 DOI: 10.1016/j.envpol.2023.122616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Polybrominated diphenyl ether contamination in sediments poses serious threats to human health and ecological safety. Despite the broad application of submerged macrophytes for remediating pollutants, their regulatory influence on bacterial communities in contaminated sediments remains unclear. Herein, we analyzed the effects of decabromodiphenyl ether (BDE-209) and Hydrilla verticillata on sediment bacterial community and function using 16S rRNA gene sequencing and sediment metabolomics. Results showed that BDE-209 significantly inhibited sediment bacterial diversity and metabolic functions. It also enhanced bacterial interactions and altered both the bacterial community and metabolite composition. Uridine and inosine were critical metabolites that positively co-occurred with bacterial taxa inhibited by BDE-209. Notably, planting H. verticillata effectively alleviated the adverse impacts of BDE-209 by reducing its residuals, increasing the total organic carbon, and modifying metabolic profiles. Such mitigation was evidenced by enhancing bacterial diversity, restoring metabolic functions, and attenuating bacterial interactions. However, mitigation effectiveness depended on treatment time. Additionally, propionic acid, palmitic acid, and palmitoleic acid may facilitate the restoration of phylum Proteobacteria and class Planctomycetacia in H. verticillata planted sediment. Together, these findings improve understanding of BDE-209's impacts on aquatic ecosystems and provide valuable insights for ecological restoration using submerged macrophytes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| |
Collapse
|
22
|
Ma Y, Romanak KA, Capozzi SL, Xia C, Lehman DC, Harrad S, Cline-Cole R, Venier M. Socio-Economic Factors Impact US Dietary Exposure to Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:478-484. [PMID: 37333937 PMCID: PMC10269323 DOI: 10.1021/acs.estlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
Although diet is an important route of exposure for brominated flame retardants (BFRs), little is known of their presence in US food. Therefore, we purchased meat, fish, and dairy product samples (n = 72) in Bloomington, IN, from 3 stores representing national retail chains at different price levels. Composite samples (n = 42) were analyzed for polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), novel BFRs (NBFRs), and dechlorane plus (DP). Concentrations of total halogenated flame retardants (HFRs) ranged between 54 and 1,400 pg/g ww, with PBDEs being the predominant compounds. Concentrations of NBFRs, but not PBDEs, in US food items were significantly impacted by price, raising the issue of environmental justice. Nonorganic food generally had a higher abundance of BDE-209 than organic food items. Estimates of dietary exposure revealed that meat and cheese consumption contribute most to the overall HFR intake and that intakes are highest for children and for non-Hispanic Asians. Taking into account several caveats and limitations of this study, these results as a whole suggest that health burdens from dietary exposure to HFRs have become minimal for US citizens, highlighting the positive impact of regulatory efforts.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Kevin Andrew Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Staci Lynn Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel Crawford Lehman
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
23
|
Motamedi M, Yerushalmi L, Haghighat F, Chen Z, Zhuang Y. Comparison of photocatalysis and photolysis of 2,2,4,4-tetrabromodiphenyl ether (BDE-47): Operational parameters, kinetic studies, and data validation using three modern machine learning models. CHEMOSPHERE 2023; 326:138363. [PMID: 36907486 DOI: 10.1016/j.chemosphere.2023.138363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are halogenated organic compounds that are among the major pollutants of water, and there is an urgent need for their removal. This work compared the application of two techniques, i.e., photocatalytic reaction (PCR) and photolysis (PL), for 2,2,4,4- tetrabromodiphenyl ether (BDE-47) degradation. Although a limited degradation of BDE-47 was observed by photolysis (LED/N2), photocatalytic oxidation by using TiO2/LED/N2 proved to be effective in the degradation of BDE-47. The use of a photocatalyst enhanced the extent of BDE-47 degradation by around 10% at optimum conditions in anaerobic systems. Experimental results were systematically validated through modeling with three new and powerful Machine Learning (ML) approaches, including Gradient Boosted Decision Tree (GBDT), Artificial Neural Network (ANN), and Symbolic Regression (SBR). Four statistical criteria (Coefficient of Determination (R2), Root Mean Square Error (RMSE), Average Relative Error (ARER), and Absolute Error (ABER)) were calculated for model validation. Among the applied models, the developed GBDT was the desirable model for predicting the remaining concentration (Ce) of BDE-47 for both processes. Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) results confirmed that BDE-47 mineralization required additional time than its degradation in both PCR and PL systems. The kinetic study demonstrated that BDE-47 degradation for both processes followed the pseudo-first-order form of the Langmuir-Hinshelwood (L-H) model. More importantly, the calculated electrical energy consumption of photolysis was shown to be ten percent higher than that for photocatalysis, possibly due to the higher irradiation time required in direct photolysis, which in turn increases electricity consumption. This study is useful in proposing a feasible and promising treatment process for the degradation of BDE-47.
Collapse
Affiliation(s)
- Mahsa Motamedi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Laleh Yerushalmi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Yanbin Zhuang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
24
|
Qi J, Wang X, Fan L, Gong S, Wang X, Wang C, Li L, Liu H, Cao Y, Liu M, Han X, Su L, Yao X, Tysklind M, Wang X. Levels, distribution, childhood exposure assessment, and influencing factors of polybrominated diphenyl ethers (PBDEs) in household dust from nine cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162612. [PMID: 36871734 DOI: 10.1016/j.scitotenv.2023.162612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Household dust is an important source of premature exposure to polybrominated diphenyl ethers (PBDEs), especially for children. In this onsite study, 246 dust samples were collected from 224 households in nine Chinese cities during 2018-2019. Questionnaires were administered to explore the association between household-related information and PBDEs in household dust. The median concentration of Σ12PBDEs in household dust from 9 cities was 138 ng/g (94-227 ng/g), with the arithmetic mean of 240 ± 401 ng/g. Among the nine cities, the highest median concentration of Σ12PBDEs in household dust was found in Mianyang (295.57 ng/g), while the lowest was found in Wuxi (23.15 ng/g). BDE-71 was the most dominant congener, ranging from 42.08 % to 98.15 % of the 12 PBDE congeners among 9 cities. Three potential sources for the indoor environment were Penta-BDE, Octa-BDE commercial products, and photolytic bromine from Deca-BDEs based on the largest contribution (81.24 %). Under the moderate exposure scenario, the exposure levels through ingestion and dermal absorption for children were 7.30 × 10-1 ng/kg BW/day and 3.26 × 10-2 ng/kg BW/day, respectively. Temperature, CO2, years of residence, income, family size, household size, use of computers, heating, use of insecticide, and use of humidifiers were influential factors for PBDE concentrations in household dust. Based on the evidence of the correlation between PBDEs and these household parameters, it can be applied to reduce PBDE concentrations in household dust, which is a basis for controlling PBDEs pollution in Chinese households and protecting population health.
Collapse
Affiliation(s)
- Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Xiaoli Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mats Tysklind
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province 210000, China.
| |
Collapse
|
25
|
Zhang L, Zheng X, Shaw S, Berger M, Roos A, Bäcklin BM, Sun J, Liu X, Chen D. Exposure to legacy and alternative flame retardants in two harbor seal populations and the association with blubber fatty acid profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162170. [PMID: 36858217 DOI: 10.1016/j.scitotenv.2023.162170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Flame retardants (FRs) are ubiquitously present in various environmental compartments due to widespread application. However, there have been few reports on the alternative FRs in harbor seals, and their relationship with fatty acid (FA) profiles have largely been overlooked. Here, we investigated the levels of legacy and alternative FRs and FA profiles in the blubber of harbor seals from the coasts of South Sweden (2009-2016) and Northeastern US (NE US) (1999-2010). We observed different proportions of mono- and poly-unsaturated FAs (MUFAs and PUFAs) between the two populations, which may reflect variations in the diet. Significantly higher concentrations of ΣPBDE were also observed in harbor seals from US compared to those from Sweden, both dominated by BDE 47. By comparison, the levels of alternative FRs, noticeably HBBZ and PBEB were much lower compared to those of PBDEs. Moreover, we found a positive correlation between BDE 99 and Σn-6/Σn-3 PUFA in harbor seals from Sweden. In addition, BDE 153 and BDE 154 were positively correlated with ΣUFA/ΣSFA in seals from Sweden and US, respectively. Our results imply the influence of diet in FA profiles and FR concentrations in top predators, as well as the importance of blubber FA characteristics in indicating FR exposure. Further investigations are required to assess the risk of exposure in these harbor seals, as well as to elucidate the underlying mechanisms associating FA profiles with FR exposure.
Collapse
Affiliation(s)
- Long Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Xiaoshi Zheng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Susan Shaw
- Shaw Institute, Blue Hill Research Center, Blue Hill, ME 04614, United States
| | - Michelle Berger
- Shaw Institute, Blue Hill Research Center, Blue Hill, ME 04614, United States
| | - Anna Roos
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Stockholm SE-10405, Sweden
| | - Britt-Marie Bäcklin
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Stockholm SE-10405, Sweden
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, CN-266003 Qingdao, China.
| | - Xiaotu Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
27
|
Gu C, Jin Z, Fan X, Ti Q, Yang X, Sun C, Jiang X. Comparative evaluation and prioritization of key influences on biodegradation of 2,2',4,4'-tetrabrominated diphenyl ether by bacterial isolate B. xenovorans LB400. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117320. [PMID: 36696759 DOI: 10.1016/j.jenvman.2023.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants being widely distributed and harmful to human health and wildlife, and the development of sustainable rehabilitation strategies including microbial degradation is of great concern. Although the increasing number of bacteria, especially the broad-spectrum and potent aerobes have been isolated for the efficient removal of PBDEs, the external influences and the corresponding influential mechanism on biodegradation are not fully understood yet. Given the wide-spectrum biodegradability of aerobic bacterial isolate, B. xenovorans LB400 for PBDEs, the dual impacts of many pivotal factors including pH, temperature, presence of dissolved organic matter (DOM) and cadmium ion etc. were comprehensively revealed on biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Due to the structural resemblance and stimulation of specific enzyme activity in bacteria, the biphenyl as substrates showed the greater capacity than non-aromatic compounds in improving biodegradation. The individual adaptation to neutrality and cultivation at about 30 °C was beneficial for biodegradation since the bacterial cellular viability and enzyme activity was mostly preserved. Although it was possibly good for the induction of hormesis and favorable to enhance the permeability or bioavailability of pollutant, the exceeding increase of Cd2+ or DOM may not give the profitable increase of biodegradation yet for the detrimental effect. For biodegradation, the mechanistic relationship that took account of the integrative correlation with the influential factors was artfully developed using partial least square (PLS) regression technique. Relative to the most significant influence of culture time and initial concentration of BDE-47, the larger relevance of other factors primarily marked as pH and DOM was consecutively shown after the quantitative prioritization. This may not only help understand the influential mechanism but provide a prioritizing regulation strategy for biodegradation of BDE-47. The PLS-derived relationship was validated with the certain predictability in biodegradation, and could be used as an alternative to accelerate a priori evaluation of suitability or improve the feasibility of such bacteria in remediation of PBDEs in the environment.
Collapse
Affiliation(s)
- Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingqing Ti
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinglun Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
28
|
Li X, Zhang Y, Gao L, Yang X, Zhou G, Sang Y, Xue J, Shi Z, Sun Z, Zhou X. BDE-209 induced spermatogenesis disorder by inhibiting SETD8/H4K20me1 related histone methylation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161162. [PMID: 36572290 DOI: 10.1016/j.scitotenv.2022.161162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Past studies have observed that decabromodiphenyl ether (BDE-209) induces reproductive and developmental toxicity, but the specific mechanism remains unclear. Based on our previous work, male mice were orally given BDE-209 at 75 mg/kg/d via continuous exposure for one spermatozoon development period (50 days) and then stopping exposure for another 50 days. The mouse spermatocyte line GC-2spd was used to examine the toxic effects of BDE-209 on histone methylation and spermatogenesis. The findings indicated that BDE-209 damaged testis and epididymis structure, induced spermatogenic cell apoptosis, and decreased sperm quantity and quality after the 50-day exposure. Furthermore, BDE-209 lowered the levels of SETD8/H4K20me1 and activated the upstream signaling of DNA damage response (Mre11/Rad50/NBS1), thereby causing spermatogenic cell cycle arrest and apoptosis. Downregulation of meiotic promoter Stra8 was associated with a decrease in SETD8 after BDE-209 exposure. After stopping the exposure for 50 days, reproductive system damage and meiosis and cell cycle inhibition due to histone methylation did not improve. In vitro experiments revealed that Setd8 overexpression upregulated the histone methylation and Stra8 expression but did not promote the cell cycle in GC-2 cells. Therefore, BDE-209 exposure impaired spermatogenesis by affecting SETD8/H4K20me1-linked histone methylation and inhibiting meiosis initiation and cell cycle progression, thereby resulting in long-term male reproductive toxicity.
Collapse
Affiliation(s)
- Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaodi Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
29
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Temporal trends in concentrations of brominated flame retardants in UK foodstuffs suggest active impacts of global phase-out of PBDEs and HBCDD. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160956. [PMID: 36528953 DOI: 10.1016/j.scitotenv.2022.160956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Global restrictions on use of legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) have generated demand for novel BFRs (NBFRs) as substitutes. Our research group has previously reported decreased concentrations of PBDEs and HBCDD and increased concentrations of NBFRs in UK indoor environments, suggesting that restrictions on PBDEs and HBCDD are exerting an impact. In this study, we analysed UK foodstuffs collected in 2020-21 and compared the BFR concentrations found with those found in similar samples collected in 2015 to investigate whether similar trends in BFR concentrations would be observed. Concentrations of PBDEs and HBCDD isomers detected in our samples had declined by 78-92 % and 59-97 % since the 2015 study, respectively. Moreover, concentrations of NBFRs (dominated by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE or TBE), and bis(2-ethyl hexyl) tetrabromophthalate (BEH-TEBP or TBPH)) in UK foodstuffs increased significantly (28-1400 %) between 2015 and 2020-21. Combined, these findings suggest that restrictions on use of PBDEs and HBCDD have had a discernible impact on concentrations of these legacy BFRs and their NBFR replacements in UK foodstuffs. Interestingly, given recent reports of a significant increase in concentrations of decabromodiphenyl ethane (DBDPE) in UK house dust between 2014 and 2019, a significant decline (70-84 %) in concentrations of DBDPE was observed in UK foodstuffs.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Yin L, Wu N, Qu R, Zhu F, Ajarem JS, Allam AA, Wang Z, Huo Z. Insight into the photodegradation and universal interactive products of 2,2',4,4'-tetrabromodiphenyl ether on three microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130475. [PMID: 36455331 DOI: 10.1016/j.jhazmat.2022.130475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The transformation process of contaminants on microplastics (MPs) exposed to sunlight has attracted increasing attention. However, the interactions between them are typically disregarded; therefore, this work investigated the photodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on three MPs (polystyrene (PS), polypropylene (PP) and polyethylene (PE)) and the interactions between these two. The inhibition of aged PS on the elimination of BDE-47 was due to light shielding, while aged PP and PE increased the degradation rate. More hydroxyl radicals (HO•) was detected in the PS system, which resulted in the higher degradation rate of BDE-47 on PS. A total of 33 different products were identified and four reaction pathways were presented, and the reaction mechanisms mainly included debromination, hydroxylation, carbon-oxygen-bond breaking and interactive reactions. The Ecological Structure Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (TEST) programs were used to evaluate the toxicity of reaction products, and the results indicated that even though BDE-47 was the most toxic, the interaction products were still toxic or harmful to aquatic organisms. This study provides significant information on the photodegradation of contaminants on common microplastics and their interaction, which cannot be ignored.
Collapse
Affiliation(s)
- Linning Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Li B, Wang J, Hu G, Liu X, Yu Y, Cai D, Ding P, Li X, Zhang L, Xiang C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2671. [PMID: 36768037 PMCID: PMC9916311 DOI: 10.3390/ijerph20032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been commonly found in aquatic ecosystems. Many studies have elucidated the bioaccumulation and biomagnification of PBDEs in seas and lakes, yet few have comprehensively evaluated the bioaccumulation, biomagnification, and health risks of PBDEs in shallow lakes, and there is still limited knowledge of the overall effects of biomagnification and the health risks to aquatic organisms. METHODS In this study, a total of 154 samples of wild aquatic organism and environmental samples were collected from typical shallow lakes located in the Yangtze River Delta in January 2020. The concentrations of PBDEs were determined by an Agilent 7890 gas chromatograph coupled and an Agilent 5795 mass spectrometer (GC/MS) and the bioaccumulation behavior of PBDEs was evaluated in 23 aquatic organisms collected from typical shallow lakes of the Yangtze River Delta. Furthermore, their effects on human health were evaluated by the estimated daily intake (EDI), noncarcinogenic risk, and carcinogenic risk. RESULTS The concentrations of ΣPBDE (defined as the sum of BDE-28, -47, -100, -99, -153, -154, -183, and -209) in biota samples ranged from 2.36 to 85.81 ng/g lipid weight. BDE-209, BDE-153 and BDE-47 were the major PBDE congeners. The factors affecting the concentration of PBDEs in aquatic organisms included dietary habits, species, and the metabolic debromination ability of the PBDE congeners. BDE-209 and BDE-47 were the strongest bioaccumulative PBDE congeners in aquatic organisms. Additionally, except for BDE-99, BDE-153 and BDE-154, the trophic magnification factor (TMF) values of PBDE congeners were significantly higher than 1. Moreover, the log Kow played a significant role in the biomagnification ability of PBDE congeners. The noncarcinogenic risk of PBDE congeners and carcinogenic risk of BDE-209 from aquatic products were lower than the thresholds. CONCLUSIONS PBDE congeners were bioaccumulated and biomagnified to varying degrees in aquatic organisms from typical shallow lakes. Both the noncarcinogenic and carcinogenic risks assessment of edible aquatic products indicated that none of the PBDE congeners pose health risks to the localite. This study will provide a basis for a comprehensive assessment of PBDEs in aquatic ecosystems in shallow lakes and for environmental prevention measures for decision-makers.
Collapse
Affiliation(s)
- Bei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Juanheng Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiaolin Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chongdan Xiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| |
Collapse
|
32
|
Gu C, Wang L, Jin Z, Fan X, Gao Z, Yang X, Sun C, Jiang X. Congener-specificity, dioxygenation dependency and association with enzyme binding for biodegradation of polybrominated diphenyl ethers by typical aerobic bacteria: Experimental and theoretical studies. CHEMOSPHERE 2023; 314:137697. [PMID: 36586449 DOI: 10.1016/j.chemosphere.2022.137697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of organic pollutants that have attracted much concerns of scientific community over the ubiquitous distribution, chemical persistence and toxicological risks in the environment. Though a great number of aerobic bacteria have been isolated for the rapid removal of PBDEs, the knowledge about biodegradation characteristics and mechanism is less provided yet. Herein, the congener-specificity of aerobic biodegradation of PBDEs by typical bacteria, i.e. B. xenovorans LB400 was identified with the different biodegradation kinetics, of which the changes were largely hinged on the bromination pattern. The more bromination isomerically at ortho-sites other than meta-sites or the single bromination at one of aromatic rings might always exert the positive effect. The biodegradation of PBDEs should be thermodynamically constrained to some extent because the calculated Gibbs free energy changes of initial dioxygenation by quantum chemical method increased with the increase of bromination. Within the transition state theory, the high correlativity between the apparent biodegradation rates and Gibbs free energy changes implied the predominance and rate-limiting character of initial dioxygenation, while the regioselectivity of dioxygenation at the ortho/meta-sites was also manifested for the more negative charge population. The molecular binding with the active domain of dioxygenase BphA1 in aerobe was firstly investigated using docking approach. As significantly illustrated with the positive relationship, the higher binding affinity with BphA1 should probably signify the more rapid biodegradation. Besides the edge-on π-π stacking of PBDEs with F227 or Y277 and π-cation formulation with histidines (H233, H239) in BphA1, the reticular hydrophobic contacts appeared as the major force to underpin the high binding affinity and rapid biodegradation of PBDEs. Overall, the experimental and theoretical results would not only help understand the aerobic biodegradation mechanism, but facilitate enhancing applicability or strategy development of engineering bacteria for bioremediation of PBDEs in the environment.
Collapse
Affiliation(s)
- Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Wang
- Nanjing Audit University Jinshen College, Nanjing, 210042, China
| | - Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyuan Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinglun Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Wang Q, Chen G, Tian L, Kong C, Gao D, Chen Y, Junaid M, Wang J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159567. [PMID: 36272476 DOI: 10.1016/j.scitotenv.2022.159567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs) and can modify their bioavailability and toxicity to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47, one of the major PBDE congeners) on zebrafish embryos after an exposure of up to 120 hpf. Our results showed that PS-NPs and BDE-47 formed larger particle aggregates during co-exposure, which attached to the surface of the yolk membrane and even changed its structure, and these particles also bioaccumulated in the intestine of zebrafish larvae, compared with the PS-NPs single exposure. Further, the co-exposure significantly increased mortality, accelerated voluntary movements, enhanced hatching rate, and decreased heart rate. Hepatoxicity analyses revealed that the mixture exposure induced a darker/browner liver colour, atrophied liver and greater hepatotoxicity in zebrafish larvae. In addition to increased ROS accumulation, the reduced expression of the antioxidant gpx1a gene and increased expression of cyp1a1 were found after co-treatment. Moreover, ache and chrn7α genes associated with neurocentral development, were significantly downregulated, mainly in the co-exposure group. In conclusion, simultaneous exposure to PS-NPs and BDE-47 exacerbated oxidative stress, developmental impacts, hepatotoxicity, and neurodevelopmental toxicity in zebrafish larvae. Therefore, neurotoxic effects of complex chemical interactions between PS-NPs and persistent organic pollutants in freshwater environments should be paid more attention.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
34
|
Zhao J, Zhang H, Guan D, Wang Y, Fu Z, Sun Y, Wang D, Zhang H. New insights into mechanism of emerging pollutant polybrominated diphenyl ether inhibiting sludge dark fermentation. BIORESOURCE TECHNOLOGY 2023; 368:128358. [PMID: 36414141 DOI: 10.1016/j.biortech.2022.128358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), derived from electronics, furniture, etc., are detected with high level in excess sludge (ES). In this work, the influence of PBDEs on ES dark fermentation (ESDF) hydrogen production and the related key mechanisms were explored. The result shows PBDEs exposure reduced hydrogen production, and hydrogen accumulation decreased from 17.6 mL/g in blank to 12.3 mL/g with 12.0 mg/Kg PBDEs. PBDEs induced the reactive oxygen species production, which directly led to cell inactivation and reduced hydrogen production. Furthermore, PBDEs decreased ES disintegration, hydrolysis, acidification and homoacetogenic processes and inhibited the activities of enzymes related to hydrogen production. PBDEs also affected the diversity and richness of microbial communities in dark fermentation systems, especially high doses of PBDEs reduced the relative abundance of microorganisms associated with hydrogen production. In conclusion, PBDEs reduce hydrogen generation from ES.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Hongying Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
35
|
Xie B, Lin X, Wu K, Chen J, Qiu S, Luo J, Huang Y, Peng L. Adipose tissue levels of polybrominated diphenyl ethers in relation to prognostic biomarkers and progression-free survival time of breast cancer patients in eastern area of southern China: A hospital-based study. ENVIRONMENTAL RESEARCH 2023; 216:114779. [PMID: 36370816 DOI: 10.1016/j.envres.2022.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Evidence indicates that individual or groups of polybrominated diphenyl ethers (PBDEs) are associated with risk of breast cancer (BC). Epidemiological studies of PBDEs and BC progression are scarce. This study aimed to investigate the relationships between PBDE burdens in adipose tissues and prognostic biomarkers of BC as well as progression-free survival (PFS) of patients for the first time. The concentrations of 14 PBDE congeners in breast adipose tissues of 183 cases from the eastern area of southern China were analyzed by gas chromatography-mass spectrometry (GC-MS). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression models for the associations between PBDE levels and prognostic biomarkers. Kaplan-Meier and Cox regression analyses were conducted to identify the correlations between PBDEs and PFS. The results showed that BDE-99 and 190 levels were positively associated with clinical stage and N stage respectively (OR = 2.61 [1.26-5.40], OR = 2.78 [1.04-7.46]). Concentrations of BDE-28 and BDE-183 were negatively associated with the expression of estrogen receptor (ER) (OR = 0.30 [0.11-0.81]; 0.39 [0.15-0.99]) and progesterone receptor (PR) (OR = 0.36 [0.14-0.92]; 0.37 [0.15-0.91]), and increased BDE-47 was associated with lower human epidermal growth factor receptor 2 (HER2) expression (OR = 0.44 [0.23-0.86]). Adipose levels of BDE-71, 99, 138, 153, 154 and total PBDEs were positively associated with p53 expression (all P < 0.05). Finally, BDE-47, 99 and 183 were considered as independent prognostic factors for shorter PFS in the Cox models (adjusted hazard ratios = 3.14 [1.26-7.82]; 2.25 [1.03-4.94]; 2.60 [1.08-6.25], respectively). The recurrence risk and prognosis of BC may be closely bound to the body burdens of certain PBDE congeners. Further epidemiological and experimental studies are needed for confirmation.
Collapse
Affiliation(s)
- Bingmeng Xie
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; School of Public Health, Shantou University, Shantou, 515041, China.
| | - Xueqiong Lin
- Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, 515041, Shantou, Guangdong, China
| | - Kusheng Wu
- School of Public Health, Shantou University, Shantou, 515041, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shuyi Qiu
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; School of Public Health, Shantou University, Shantou, 515041, China
| | - Jianan Luo
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Yiteng Huang
- Health Care Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
36
|
Paliya S, Mandpe A, Kumar MS, Kumar S, Kumar R. Assessment of polybrominated diphenyl ether contamination and associated human exposure risk at municipal waste dumping sites. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4437-4453. [PMID: 35113302 DOI: 10.1007/s10653-022-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The reports concerning the occurrence and fate of polybrominated diphenyl ethers (PBDEs) at municipal solid waste (MSW) dumping sites are scarce, and considering the Indian context, no study has been conducted to assess PBDE contamination at MSW dumping sites and associated exposure and health risk. Therefore, in the present study, the concentration of PBDE congeners was investigated in soil samples amassed from MSW dumping sites of India and the factors affecting the dissemination of different PBDE congeners in soil were evaluated. Also, the human exposure and health risk through soil intake and dermal contact were also evaluated the first time in India. The total PBDE concentrations from tri- to deBDE congeners in soil ranged from 6.81 to 33.67 μg/g dw and showed a trend towards higher levels of PBDEs in the dumping sites of more populous cities. BDE 183 was found to be the main congener in the soil of the dumping sites. The congener profile in the soil exhibited the composition of the octa- and deBDE technical mixture and possibilities of biological and photodegradation of deBDE into lower brominated congeners. A significant correlation was observed between the measures of BDE 183 and BDE 209 congeners and carbon, nitrogen and hydrogen contents of the soil. The measured exposure doses of PBDEs through soil intake and dermal contact and the hazard index was estimated higher in children as compared to adults, which indicates the increased risk and susceptibility of infants and children to PBDE exposure. The results of the present study revealed that the MSW dumping sites in India are a sink of PBDEs and might have detrimental effects on human health.
Collapse
Affiliation(s)
- Sonam Paliya
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashootosh Mandpe
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Civil Engineering, Indian Institute of Technology Indore, Indore, 453 552, India
| | - Manukonda Suresh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Rakesh Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| |
Collapse
|
37
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
38
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial monitoring and health risk assessment of polybrominated diphenyl ethers in environmental matrices from an industrialized impacted canal in South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3409-3424. [PMID: 34609624 DOI: 10.1007/s10653-021-01114-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the pollution of Markman stormwater runoff, which is a tributary to Swartkops River Estuary. Solid-phase and ultrasonic extraction methods were utilized in the extraction of water and sediment samples, respectively. The pH of the sampling sites was above the EU guideline. The ranges of concentration of [Formula: see text]PBDE obtained in water and sediment samples for all the seasons were 58.47-1357 ng/L and 175-408 ng/g, respectively. Results also showed that BDE-66 was the dominant congener, specifically in the industrial zone, where its concentrations ranged from 2 to 407 ng/g in sediment. Consequently, the high concentration of BDE- 66 in the sediment of stormwater calls for concern. Penta-BDE suggests potential moderate eco-toxicological risk, as evident in the calculated risk assessment. The result showed possible photodegradation along the contaminant's travel time, as only 7% of the PBDE was detected at the point of entry into the Swartkops River Estuary. Markman stormwater may be contributing heavily to the pollution load of Swartkops River, as evident in the alarming concentrations of PBDEs obtained. The industries at this zone should eliminate the contaminants before discharging their effluents into the canal.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
39
|
Jin M, Zhang S, Ye N, Zhou S, Xu Z. Distribution and source of and health risks associated with polybrominated diphenyl ethers in dust generated by public transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119700. [PMID: 35780998 DOI: 10.1016/j.envpol.2022.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Carcinogenic and neurotoxic polybrominated diphenyl ethers (PBDEs) are environmentally ubiquitous and have been widely investigated. However, little is understood regarding their pollution status, sources, and potential risk to persons in public transportation microenvironments (PTMs). We collected 60 dust samples from PTMs and then selected four materials typical of bus interiors to determine the sources of PBDEs in dust using principal component analysis coupled with Mantel tests. We then evaluated the risk of PBDEs to public health using Monte Carlo simulations. We found that PBDE concentrations in dust were 2-fold higher in buses than at bus stops and that brominated diphenyl ether (BDE)-209 was the main pollutant. The number of buses that passed through a bust stop contributed to the extent of PBDE pollution, and the primary potential sources of PBDEs in dust were plastic handles and curtains inside buses; BDE-209 and BDE-154 were the main contributors of pollution. We found that health risk was 8-fold higher in toddlers than in adults and that the reference doses of PBDEs in dust were far below the United States Environmental Protection Agency limits. Our findings provide a scientific basis that may aid in preventing PBDE pollution and guiding related pollution management strategies in PTMs.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shunfei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyu Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
40
|
Hu MJ, Wang S, Zhang Q, He JL, Zhao HH, Hu WL, Huang F. Associations between environmental exposure to polybrominated diphenyl ethers and nodular goiter risk: A case-control study. ENVIRONMENTAL RESEARCH 2022; 212:113345. [PMID: 35469855 DOI: 10.1016/j.envres.2022.113345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread and persistent environmental contaminants, but their association with nodular goiter (NG) remains unknown. The present case-control study of 179 NG cases and 358 matched normal controls aimed to investigate the association between PBDEs and risk of NG. The plasma concentrations of 8 PBDEs congeners (BDE-28, -47, -99, -100, -153, -154, -183, and -209) were determined by gas chromatograph-mass spectrometer. Conditional logistic regression model was used to evaluate the odds ratio (OR) and 95% confidence interval (CI) for the association between each PBDEs congener and NG. Bayesian kernel machine regression (BKMR) was used to evaluate the association between overall levels of 8 PBDEs mixture and NG. The results of logistic model suggested that increased risk of NG was associated with elevated concentrations of all PBDEs congeners, except for BDE-209. In BKMR model, the risk of NG increased with the increase in overall exposure level of 8 PBDEs mixture. Compared to when all PBDEs mixture were at their median value, the risk of exposure-response function for NG increased by 0.34 units when all PBDEs were at their 75th percentile. In women, the results showed similar trends after additional adjustment for age at menarche and menopausal status. These findings provide novel epidemiological evidence for the prevention of NG. However, larger prospective studies are required to address the associations between PBDEs exposure and NG risk.
Collapse
Affiliation(s)
- Ming-Jun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Jia-Liu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Huan-Huan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wen-Lei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Key Laboratory for Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
41
|
Li ZW, Wang JH. Analysis of the functional gene of degrading BDE-47 by Acinetobacter pittii GB-2 based on transcriptome sequencing. Gene 2022; 844:146826. [PMID: 35998843 DOI: 10.1016/j.gene.2022.146826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) is one of the most widely distributed PBDEs. BDE-47 is also the most abundant in organisms and the most toxic to humans and animals. Herein, we have studied the pathway of BDE-47 degradation and gene involvement in Acinetobacter pittii GB-2. This degradation is dominated by hydroxylation, resulting in hydroxylated products 6-OH-BDE-47, 5-OH-BDE-47 and 2'-OH-BDE-28, and bromophenol products 2,4-DBP and 4-BP. Transcriptome sequencing results showed 359 differentially expressed genes (DEGs) induced by BDE-47, of which 159 were up-regulated and 200 were down-regulated. The up-regulated ones were mainly related to substance transport, degradation and cell stress. From these results, we suggest that 1,2-dioxygenase, phenol hydroxylase and monooxygenase are involved in BDE-47 degradation. The function of AntA gene was identified by constructing a prokaryotic expression vector. Our study contributes to understanding how the metabolism of strain GB-2 changes under BDE-47 stress conditions, and sheds light on the mechanism of BDE-47 degradation.
Collapse
Affiliation(s)
- Zi-Wei Li
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ji-Hua Wang
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
42
|
Wang Q, Li Y, Chen Y, Tian L, Gao D, Liao H, Kong C, Chen X, Junaid M, Wang J. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 126:21-33. [PMID: 35597397 DOI: 10.1016/j.fsi.2022.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs), and can alter their bioavailability and toxic impacts to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, one of the dominant congeners of PBDEs) on zebrafish embryos after an exposure duration of up to 120 hpf. Results showed that PS-NPs and BDE-47 co-exposure exacerbated the morphological deformities in terms of pericardial edema, yolk sac edema and curved tail in zebrafish larvae. Compared to BDE-47 single exposure, the combined exposure caused lower survival rates, shorter body lengths, and accelerated spontaneous movements. Further, PS-NPs were quickly aggregated on the surface of the embryonic chorions covered almost the entire membrane at 12 and 48 hpf, and concentration dependent accumulation was also found in the brain, mouth, trunk, gills, heart, liver and gastrointestinal tract at the larval stages. During the recovery period (7 days), PS-NPs were released from all the organs, with the highest elimination from the gastrointestinal tract. Histopathological examination revealed that co-exposure caused greater damage to retinal structures, muscle fibers and cartilage tissues. Responses of hypothalamic-pituitary-thyroid axis (CRH, TSHβ, NIS, TTR, Dio2, TG, TRα and TRβ) and reproduction (Esr2 and Vtg1) related genes were also investigated, and results showed that the co-exposure induced more significant upregulated expressions of TSHβ, TG, Doi 2, and TRβ, compared to BDE-47 single exposure. In conclusion, co-exposure to NPs and BDE-47 exacerbated developmental and thyroid toxicity in zebrafish, generally elucidating the toxicological effects mediated by complex chemical interactions between NPs with POPs in the freshwater environment.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510006, China.
| |
Collapse
|
43
|
Zhang W, Xia S, Zhong X, Gao G, Yang J, Wang S, Cao M, Liang Z, Yang C, Wang J. Characterization of 2,2'4,4'-Tetrabromodiphenyl ether (BDE47)-induced testicular toxicity via single-cell RNA-sequencing. PRECISION CLINICAL MEDICINE 2022; 5:pbac016. [PMID: 35875604 PMCID: PMC9306015 DOI: 10.1093/pcmedi/pbac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background The growing male reproductive diseases have been linked to higher exposure to certain environmental compounds such as 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) that are widely distributed in the food chain. However, the specific underlying molecular mechanisms for BDE47-induced male reproductive toxicity are not completely understood. Methods Here, for the first time, advanced single-cell RNA sequencing (ScRNA-seq) was employed to dissect BDE47-induced prepubertal testicular toxicity in mice from a pool of 76 859 cells. Results Our ScRNA-seq results revealed shared and heterogeneous information of differentially expressed genes, signaling pathways, transcription factors, and ligands-receptors in major testicular cell types in mice upon BDE47 treatment. Apart from disruption of hormone homeostasis, BDE47 was discovered to downregulate multiple previously unappreciated pathways such as double-strand break repair and cytokinesis pathways, indicative of their potential roles involved in BDE47-induced testicular injury. Interestingly, transcription factors analysis of ScRNA-seq results revealed that Kdm5b (lysine-specific demethylase 5B), a key transcription factor required for spermatogenesis, was downregulated in all germ cells as well as in Sertoli and telocyte cells in BDE47-treated testes of mice, suggesting its contribution to BDE47-induced impairment of spermatogenesis. Conclusions Overall, for the first time, we established the molecular cell atlas of mice testes to define BDE47-induced prepubertal testicular toxicity using the ScRNA-seq approach, providing novel insight into our understanding of the underlying mechanisms and pathways involved in BDE47-associated testicular injury at a single-cell resolution. Our results can serve as an important resource to further dissect the potential roles of BDE47, and other relevant endocrine-disrupting chemicals, in inducing male reproductive toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Siyu Xia
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Xiaoru Zhong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Guoyong Gao
- Department of Spine Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Shuang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Min Cao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700 , China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University , Dongguan, 523125, Guangdong , China
| |
Collapse
|
44
|
Zhao J, Qin C, Sui M, Luo S, Zhang H, Zhu J. Understanding the mechanism of polybrominated diphenyl ethers reducing the anaerobic co-digestion efficiency of excess sludge and kitchen waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41357-41367. [PMID: 35089515 DOI: 10.1007/s11356-022-18795-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) widely existing in the environment can pose a serious threat to the ecological safety. However, the influence of PBDEs on methane production by excess sludge (ES) and kitchen waste (KW) anaerobic co-digestion and its mechanism is not clear. To fill this gap, in this work, the co-digestion characteristics of ES and KW exposed to different levels of PBDEs at medium temperature were investigated in sequencing batch reactor, and the related mechanisms were also revealed. The results showed that PBDEs reduced methane production and the proportion of methane in the biogas. Methane yield decreased from 215.3 mL/g· volatile suspended solids (VSS) to 161.5 mL/(g·VSS), accompanied by the increase of PBDE content from 0 to 8.0 mg/Kg. Volatile fatty acid (VFA) yield was also inhibited by PBDEs; especially when PBDEs were 8.0 mg/Kg, VFA production was only 215.6 mg/g VSS, accounting for 75.7% of that in the control. Mechanism investigation revealed PBDEs significantly inhibited the processes of hydrolysis, acidogenesis, acetogenesis, and methanogenesis. Further study showed that PBDEs could inhibit the degradation and bioavailability of ES and KW, but it had a greater inhibition on the utilization of KW. Enzyme activity investigation revealed that all the key enzyme activities related to methane production were suppressed by PBDEs.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
| | - Chengzhi Qin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Meiping Sui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
| | - Huanyun Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
45
|
Yan D, Jiao Y, Yan H, Liu T, Yan H, Yuan J. Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Environ Health 2022; 21:53. [PMID: 35578291 PMCID: PMC9109392 DOI: 10.1186/s12940-022-00858-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/26/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the relationship between endocrine-disrupting chemicals (EDCs), including polychlorinated biphenyls (PCBs), poly-brominated diphenyl ethers (PBDEs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFAS) exposure and risk of gestational diabetes mellitus (GDM). METHODS Relevant studies from their inception to November 2021 were identified by searching EMBASE, PubMed, and Web of Science. The cohort and case-control studies that reported effect size with 95% confidence intervals (CIs) of EDC exposure and GDM were selected. The heterogeneity among the included studies was quantified by I2 statistic. Publication bias was evaluated through the Begg and Egger tests. RESULTS Twenty-five articles with a total of 23,796 participants were found. Results indicated that exposure to PCBs has a significant influence on the incidence of GDM (OR = 1.14; 95% CI = 1.00--1.31; n = 8). The risk of GDM was found to be associated with PBDE exposure (OR = 1.32; 95% CI = 1.15-1.53; n = 4). PAEs and PFASs exposure were also positively associated with the risk of GDM, with summary ORs of 1.10 (95% CI = 1.03-1.16; n = 7 for PAEs) and 1.09 (95% CI = 1.02-1.16; n = 11 for PFASs), respectively. When only cohort studies were considered, the summary OR between PCBs exposure and the risk of GDM was 0.99 (95% CI = 0.91-1.09; n = 5). Meanwhile, the summary ORs from cohort studies for PBDEs, PAEs, and PFASs exposure were 1.12 (95% CI = 1.00-1.26; n = 2), 1.08 (95% CI = 1.02-1.15; n = 5), and 1.06 (95% CI = 1.00-1.12; n = 8), respectively. The Beggs and Egger tests did not show publication bias, and the sensitivity analyses did not change the results in this meta-analysis. CONCLUSION These results support that exposure to certain EDCs, including PCBs, PBDEs, PAEs, and PFAS, increase the risk of GDM. Further large-sample epidemiologic researches and mechanistic studies are needed to verify the potential relationship and biological mechanisms. These results are of public health significance because the daily EDC exposure is expected to increase the risk of GDM development.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Tian Liu
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
46
|
Ren Q, Xie X, Zhao C, Wen Q, Pan R, Du Y. 2,2',4,4'-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARγ Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chem Res Toxicol 2022; 35:1023-1035. [PMID: 35575305 DOI: 10.1021/acs.chemrestox.2c00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE 47) is one of the most prominent PBDE congeners detected in the human body, suggesting that the potential health risks of PBDE 47 should be thoroughly considered. However, the cardiovascular toxicity of PBDE 47 remains poorly understood. Here, toxic outcomes of PBDE 47 in human THP-1 macrophages concerning foam cell formation, which play crucial roles in the occurrence and development of atherosclerosis, were elucidated. First, our results indicated that PBDE 47 affected the PPARγ pathway most efficiently in THP-1 macrophages by transcriptomic analysis. Second, the PPARγ target genes CD36 and FABP4, responsible for lipid uptake and accumulation in macrophages, were consistently upregulated both at transcriptional and translational levels in THP-1 macrophages upon PBDE 47. Unexpectedly, PBDE 47 failed to activate the PPARγ target gene LXRα and PPARγ-LXRα-ABCA1/G1 cascade, which is activated by the PPARγ full agonist rosiglitazone and enables cholesterol efflux in macrophages. Thus, coincident with the selective upregulation of the PPARγ target genes CD36 and FABP4, PBDE 47, distinct from rosiglitazone, functionally resulted in more lipid accumulation and oxLDL uptake in THP-1 macrophages through high-content analysis (HCA). Moreover, these effects were markedly abrogated by the addition of the PPARγ antagonist T0070907. Mechanistically, the structural basis of selective activation of PPARγ by PBDE 47 was explored by molecular docking and dynamics simulation, which indicated that PBDE 47 interacted with the PPARγ ligand binding domain (PPARγ-LBD) distinctively from that of rosiglitazone. PBDE 47 was revealed to interact with helix 3 and helix 5 but not helix 12 in the PPARγ-LBD. Collectively, these results unraveled the potential cardiovascular toxicity of PBDE 47 by selective activation of PPARγ to facilitate foam cell formation for the first time.
Collapse
Affiliation(s)
- Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Huo L, Zhao C, Gu T, Yan M, Zhong H. Aerobic and anaerobic biodegradation of BDE-47 by bacteria isolated from an e-waste-contaminated site and the effect of various additives. CHEMOSPHERE 2022; 294:133739. [PMID: 35085610 DOI: 10.1016/j.chemosphere.2022.133739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Degradation experiments are conducted to specifically compare the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by aerobic and anaerobic strains isolated from real e-waste sites contaminated by BDE-47. The effect of carbon sources, inducers and surfactants on the degradation was examined to strengthen such a comparison. An aerobic strain, B. cereus S1, and an anaerobic strain, A. faecalis S4, were obtained. The results indicated that BDE-47 could be used as the sole carbon source by B. cereus S1 and A. faecalis S4 under aerobic and anaerobic conditions, respectively. The degradation of BDE-47 by B. cereus S1 and A. faecalis S4 was illustrated a first-order kinetics process obtaining a removal efficiency of 61.6% and 51.6% with a first-order rate constant of 0.0728 d-1 and 0.0514 d-1, and corresponding half-life of 8.7 d and 13.5 d, respectively. The addition of carbon sources (yeast extract, glucose, acetic acid and ethanol) and inducers (2,4-dichlorophenol, bisphenol A and toluene) promoted BDE-47 degradation by both B. cereus S1 and A. faecalis S4 under aerobic and anaerobic conditions, while hydroquinone as the inducer inhibited the degradation. All of the surfactants tested (CTAB, Tween 80, Triton X-100, rhamnolipid and SDS) showed inhibitory effect. BDE-47 degradation by B. cereus S1 under aerobic condition was more efficient than A. faecalis S4 under anaerobic condition whether with or without the additives. The results of the study indicated that in the field sites contaminated by BDE-47, the aerobic condition can be more favorable for BDE-47 removal and the degradation can be further enhanced by applying suitable carbon sources and inducers.
Collapse
Affiliation(s)
- Lili Huo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Chenghao Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Tianyuan Gu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
48
|
Wen Q, Xie X, Ren Q, Du Y. Polybrominated diphenyl ether congener 99 (PBDE 99) promotes adipocyte lineage commitment of C3H10T1/2 mesenchymal stem cells. CHEMOSPHERE 2022; 290:133312. [PMID: 34919914 DOI: 10.1016/j.chemosphere.2021.133312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Obesogens are defined as chemicals that trigger obesity partially by stimulating adipogenesis. Adipogenesis consists of two successive processes: the adipocyte lineage commitment of pluripotent stem cells and the differentiation of preadipocytes. Compared with the differentiation of preadipocytes, the effects of most environmental obesogens on adipocyte lineage commitment remain largely unknown. In this study, investigations are performed to explore the influences of PBDE 99 on the adipocyte lineage commitment based on C3H10T1/2, which has been widely used as a mesenchymal stem cell (MSC) model. Our results indicated that exposure to PBDE 99 during commitment stage resulted in significant up-regulation of subsequent adipogenesis in C3H10T1/2 MSCs. Interestingly, PBDE 99 did not affect the osteogenesis of C3H10T1/2 MSCs, although the adipogenesis and osteogenesis of MSCs are typically reciprocal. PBDE 99 was further demonstrated to significantly decrease the expression of Pref1, the marker of very early adipose mesenchymal precursor, and its downstream effector, Sox9. This result strongly suggested that PBDE 99 facilitated adipocyte commitment to exert adipogenic effect on C3H10T1/2 MSCs. Mechanistic studies revealed that PBDE 99 efficiently inhibited Hedgehog signaling transduction, a conserved negative regulator of the adipocyte lineage commitment. Furthermore, the effects of PBDE 99 on adipogenesis were abrogated by the co-treatment with SAG, a specific Hedgehog signaling activator, suggesting inhibition of Hedgehog signaling is responsible for the effect of PBDE 99 on adipocyte commitment. Taking together, these results strongly suggested enhanced adipocyte lineage commitment was involved in potential obesogenic effect of PBDE 99, presumably through repressing Hedgehog signalling during commitment stage. Moreover, the results of this study indicated that C3H10T1/2 can be used as a feasible MSCs cell model to evaluate the capabilities of potential obesogens on adipocyte commitment.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
49
|
Cai K, Song Q, Yuan W, Yang G, Li J. Composition changes, releases, and potential exposure risk of PBDEs from typical E-waste plastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127227. [PMID: 34597928 DOI: 10.1016/j.jhazmat.2021.127227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Since Stockholm Convention listed polybrominated diphenyl ethers (PBDEs) as persistent organic pollutants and banned their addition, alternative halogen flame retardants (AHFRs) have been substituted for PBDEs. This study systematically investigates the change trends of PBDEs and AHFRs from typical e-waste plastics and dust, as well as clarifying human exposure risks of PBDEs in formal and informal e-waste recycling enterprises, repair store and residential building. The results show that the PBDEs levels in five typical types of e-waste vary in the range of 1.08 × 10-3-30.8 μg/g, meeting the requirements of RoHS regulation. Compared with the residential buildings (1.49-1.68 μg/g), PBDEs in the dust from the formal and informal e-waste recycling enterprises are much higher, ranging from 4.70 to 536 μg/g. BDE-209 is the main congener in most e-waste plastic and dust samples. Meanwhile, AHFRs have become the important composition (3.5-61.5%) in e-waste plastics, while its contribution is lower in dust, implying the higher enrichment efficiency of PBDEs. For PBDEs exposure, the dust intake risk of PBDEs is much higher than skin contact for the workers, and the highest hazard quotient (HQ) value (1.40 × 10-1) and cancer risk (CR) value (1.21 × 10-7) both imply safe exposure levels.
Collapse
Affiliation(s)
- Kaihan Cai
- Macao Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China; Macao Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Qingbin Song
- Macao Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Second Polytechnic University, Shanghai 201209, China
| | - Guiming Yang
- Foshan Shunde Xinhuanbao Resource Utilization Co., Ltd, Foshan 528000, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Li J, Li Y, Zhu M, Song S, Qin Z. A Multiwell-Based Assay for Screening Thyroid Hormone Signaling Disruptors Using thibz Expression as a Sensitive Endpoint in Xenopus laevis. Molecules 2022; 27:molecules27030798. [PMID: 35164063 PMCID: PMC8838645 DOI: 10.3390/molecules27030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
There is a need for rapidly screening thyroid hormone (TH) signaling disruptors in vivo considering the essential role of TH signaling in vertebrates. We aimed to establish a rapid in vivo screening assay using Xenopus laevis based on the T3-induced Xenopus metamorphosis assay we established previously, as well as the Xenopus Eleutheroembryonic Thyroid Assay (XETA). Stage 48 tadpoles were treated with a series of concentrations of T3 in 6-well plates for 24 h and the expression of six TH-response genes was analyzed for choosing a proper T3 concentration. Next, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA), two known TH signaling disruptors, were tested for determining the most sensitive TH-response gene, followed by the detection of several suspected TH signaling disruptors. We determined 1 nM as the induction concentration of T3 and thibz expression as the sensitive endpoint for detecting TH signaling disruptors given its highest response to T3, BPA, and TBBPA. And we identified betamipron as a TH signaling agonist, and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) as a TH signaling antagonist. Overall, we developed a multiwell-based assay for rapidly screening TH signaling disruptors using thibz expression as a sensitive endpoint in X. laevis.
Collapse
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.L.); (Y.L.); (M.Z.); (S.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-6291-9177
| |
Collapse
|