1
|
Liu Q, Guo L, Zhang H, Ge J, Luo J, Song K, Zhao L, Yang S. Hypoxia induces reversible gill remodeling in largemouth bass (Micropterus salmoides) through integrins-mediated cell adhesion. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109918. [PMID: 39307257 DOI: 10.1016/j.fsi.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Gill remodeling is an important strategy for fish to cope with hypoxia, and many of the teleost possess this ability, but the underlying mechanism is not well understood. To investigate the mechanism of hypoxia-induced gill remodeling, largemouth bass (Micropterus salmoides) exposed to hypoxia (dissolved oxygen level: 2.0 ± 0.2 mg L-1) for 7 days, followed by 7 days of reoxygenation. Hypoxia tests were also performed on primary gill cells from largemouth bass. We found that hypoxia-induced gill remodeling increased the respiratory surface area of the gills. This change in gill morphology was reversible and recovered after reoxygenation. A reduction in the number of mucous cells and rearrangement of mitochondria-rich cells (MRCs) were observed during gill remodeling. After 7 days of reoxygenation, the number of mucous cells and the position of the MRCs were restored. Hypoxia resulted in a 2.92-fold increase in the number of primary gill cells that underwent migration over a 12-h period. The mRNA levels of nine integrin subunits (α1, α2, α5, α7, α8, α10, αL, β1 and β2) were significantly up-regulated after 12 h of hypoxia in vivo, and the changes in the expression of these subunits were consistent with the HIF-1α trend. Immunohistochemistry showed that integrin β1 protein levels were significantly increased and were abundantly expressed in the interlamellar cell mass after exposure to hypoxia. Taken together, the results of the present study demonstrated that changes in mucosal cells and MRCs play an important role in hypoxia-induced gill remodeling in largemouth bass and that these changes are regulated by integrins.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Xu J, Chen WJ, Hu HB, Xie ZW, Zhang DG, Zhao J, Xiang J, Wei QY, Tidwell T, Girard O, Ma FH, Li ZW, Ren YM. A global view on quantitative proteomic and metabolic analysis of rat livers under different hypoxia protocols. Heliyon 2024; 10:e37791. [PMID: 39381102 PMCID: PMC11456861 DOI: 10.1016/j.heliyon.2024.e37791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Hypobaric hypoxia causes altitude sickness and significantly affects human health. As of now, focusing on rats different proteomic and metabolic changes exposed to different hypoxic times at extreme altitude is blank. Our study integrated in vivo experiments with tandem mass tag (TMT)- and gas chromatography time-of-flight (GC-TOF)-based proteomic and metabolomic assessments, respectively. Male Sprague-Dawley rats were exposed to long-term constant hypoxia for 40 days or short-term constant hypoxia for three days, and their responses were compared with those of a normal control group. Post-hypoxia, serum marker assays related to lipid metabolism revealed significant increases in the levels of low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (TC) in the liver. In contrast, high-density lipoprotein (HDL) levels were upregulated in the long-term constant hypoxia cohorts and were significantly reduced in the short-term constant hypoxia cohorts. Furthermore, metabolic pathway analysis indicated that glycerolipid and glycerophospholipid metabolisms were the most significantly affected pathways in long-term hypoxia group. Subsequently, RT-qPCR analyses were performed to corroborate the key regulatory elements, including macrophage galactose-type lectin (MGL) and Fatty Acid Desaturase 2 (FADS2). The results of this study provide new information for understanding the effects of different hypobaric hypoxia exposure protocols on protein expression and metabolism in low-altitude animals.
Collapse
Affiliation(s)
- Jin Xu
- Qinghai University, Xining, 810001, China
| | | | | | | | | | - Jia Zhao
- Qinghai University, Xining, 810001, China
| | - Jing Xiang
- Qinghai University, Xining, 810001, China
| | - Qi-yu Wei
- Qinghai University, Xining, 810001, China
| | - Tawni Tidwell
- Center for Healthy Minds, University of Wisconsin-Madison, 625 Washington Ave, Madison, WI, 53711, USA
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Fu-hai Ma
- Qinghai Institute of Sports Science, Xi Ning, China
| | | | | |
Collapse
|
3
|
Laurent J, Le Berre I, Armengaud J, Waeles M, Sturbois A, Durand G, Le Floch S, Laroche J, Pichereau V. Environmental signatures and fish proteomics: A multidisciplinary study to identify the major stressors in estuaries located in French agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:124876. [PMID: 39383988 DOI: 10.1016/j.envpol.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 10/11/2024]
Abstract
Watersheds and estuaries are impacted by multiple anthropogenic stressors that affect their biodiversity and functioning. Assessing their ecological quality has consequently remained challenging for scientists and stakeholders. In this paper, we propose a multidisciplinary approach to identify the stressors in seven small French estuaries located in agricultural watersheds. We collected data from landscape (geography, hydrobiology) to estuary (pollutant chemistry) and fish individual scales (environmental signatures, proteomics). This integrative approach focused on the whole hydrosystems, from river basins to estuaries. To characterize each watershed, we attempted to determine the land use considering geographic indicators (agricultural and urbanised surfaces) and landscape patterns (hedges density and riparian vegetation). Juveniles of European flounder (Platichthys flesus) were captured in September, after an average residence of five summer months in the estuary. Analyses of water, sediments and biota allowed to determine the concentrations of dissolved inorganic nitrogen species, pesticides and trace elements in the systems. Environmental signatures were also measured in flounder tissues. These environmental parameters were used to establish a typology of the watersheds. Furthermore, data from proteomics on fish liver were combined with environmental signatures to determine the responses of fish to stressors in their environments. Differential protein abundances highlighted a dysregulation related to the detoxification of xenobiotics (mainly pesticides) in agricultural watersheds, characterized by intensive cereal and vegetable crops and high livestock. Omics also revealed a dysregulation of proteins associated with the response to hypoxia and heat stress in some estuaries. Furthermore, we highlighted a dysregulation of proteins involved in urea cycle, immunity and metabolism of fatty acids in several systems. Finally, the combination of environmental and molecular signatures appears to be a relevant method to identify the major stressors operating within hydrosystems.
Collapse
Affiliation(s)
- Jennifer Laurent
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France; CEDRE, 715 rue Alain Colas, 29200, Brest, France.
| | - Iwan Le Berre
- Univ Brest - CNRS, UMR 6554 LETG-Brest GEOMER, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207, Bagnols-sur-Cèze, France
| | - Matthieu Waeles
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Anthony Sturbois
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France; Vivarmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Ploufragan, France
| | - Gaël Durand
- LABOCEA, 120 Avenue Alexis de Rochon, 29280, Plouzané, France
| | | | - Jean Laroche
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Vianney Pichereau
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| |
Collapse
|
4
|
Jia Y, Wang F, Chen S, Wang J, Gao Y. Long-term hypoxia-induced physiological response in turbot Scophthalmus maximus L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01398-3. [PMID: 39190213 DOI: 10.1007/s10695-024-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Hypoxia affects fish's survival, growth, and physiological metabolism processes. In this study, turbot plasma glucose and cortisol contents, hepatic glycolysis (hexokinase [HK], phosphofructokinase [PFK], pyruvate kinase [PK]) and lipolysis (fatty acid synthetase [FAS], lipoprotein lipase [LPL]) enzyme activities, anti-oxidant enzyme (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]) activities, malondialdehyde (MDA), lactate and glycogen contents, gill histological parameters (lamellar length [SLL], width [SLW], interlamellar distance [ID]), respiratory frequency (RF), the proportion of the secondary lamellae available for gas exchange (PAGE), and hifs (hif-1α, hif-2α, hif-3α) expression were determined during long-term hypoxia and reoxygenation. Results showed that long-term hypoxia (3.34 ± 0.17 mg L-1) significantly elevated plasma cortisol and glucose contents; increased hepatic HK, PK, PFK, FAS, and LPL activity; decreased hepatic glycogen, lactate contents, and lipid drop numbers; and caused changes of hepatocyte (vacuolation, pyknotic, and lytic nucleus) after treatment for 4 weeks. Hepatic SOD, CAT, GSH-Px activity, and MDA contents; lamellar perimeter, SLL, ID, RF, and PAGE; and hepatic hif-1α, hif-2α, and hif-3α manifested similar results. Meanwhile, hif-1α is significantly higher than hif-2α, and hif-3α. Interestingly, females and males demonstrated no sex dimorphism significantly different from the above parameters (except hepatic FAS, LPL activity, and lipid drop number) under hypoxia. The above parameters recovered to normal levels after reoxygenation treatment for 4 weeks. Thus, long-term hypoxia promotes turbot hepatic glycogenolysis and lipolysis, induces oxidative damage and stimulates hepatic antioxidant capacity, and alters gill morphology to satisfy insufficient energy demand and alleviate potential damage, while hif-1α plays critical roles in the above physiological process.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
| | - Feng Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuaiyu Chen
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiawei Wang
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| |
Collapse
|
5
|
Ma Q, Zhang R, Wei Y, Liang M, Xu H. Effects of Intermittent and Chronic Hypoxia on Fish Size and Nutrient Metabolism in Tiger Puffer ( Takifugu rubripes). Animals (Basel) 2024; 14:2470. [PMID: 39272255 PMCID: PMC11393956 DOI: 10.3390/ani14172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Intermittent and chronic hypoxia are common stresses to marine fish, but the different responses of fish to intermittent and chronic hypoxia have not been well-known. In this study, tiger puffers were farmed in normoxia conditions (NO, 6.5 ± 0.5 mg/L), intermittent hypoxia (IH, 6.5 ± 0.5 mg/L in the day and 3.5 ± 0.5 mg/L in the night), or choric hypoxia (CH, 3.5 ± 0.5 mg/L) conditions for 4 weeks, after which the growth, nutrient metabolism and three hifα isoforms expression were measured. Both intermittent and chronic hypoxia decreased the fish growth and visceral weight but increased the feed conversion ratio and blood hemoglobin content. Chronic hypoxia but not intermittent hypoxia promoted protein synthesis and whole-fish protein content by activating mtor gene expression and promoted the glycolysis pathway by activating gene expression of hif1α and hif2α. Intermittent hypoxia but not chronic hypoxia decreased the hepatic lipid synthesis by inhibiting fasn and srebf1 gene expression. Meanwhile, intermittent hypoxia reduced the monounsaturated fatty acid content but increased the n-3 polyunsaturated fatty acids percentage. The results of this study clarified the adaptive mechanism of tiger puffer to intermittent and chronic hypoxia, which provides important information about mechanisms of hypoxia adaption in fish.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Renxiao Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Li Y, Wu S, Huang J, Zhao L. Integration of physiological, miRNA-mRNA interaction and functional analysis reveals the molecular mechanism underlying hypoxia stress tolerance in crucian carp (Carassius auratus). FASEB J 2024; 38:e23722. [PMID: 38934365 DOI: 10.1096/fj.202302629rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Hypoxia has become one of the most critical factors limiting the development of aquaculture. Crucian carp (Carassius auratus) is widely consumed fish in China, with excellent tolerance to hypoxic environment. However, the molecular mechanisms underlying hypoxia adaptation and tolerance in crucian carp remain unclear. Compared with the control, increased T-SOD, CAT, GSH-Px, T-AOC, ALT, and AST activities and MDA, TCHO, and TG contents, and decreased TP and ATP contents were observed after hypoxia stress. Based on RNA-seq, 2479 differentially expressed (DE) mRNAs and 60 DE miRNAs were identified, and numerous DE mRNAs involved in HIF signaling pathway (hif-1α, epo, vegfa, and ho), anaerobic metabolism (hk1/hk2, pfk, gapdh, pk, and ldh) and immune response (nlrp12, cxcr1, cxcr4, ccr9, and cxcl12) were significantly upregulated after hypoxia exposure. Integrated analysis found that ho, igfbp1, hsp70, and hk2 were predicted to be regulated by novel_867, dre-miR-125c-3p/novel_173, dre-miR-181b-5p, and dre-miR-338-5p/dre-miR-17a-3p, respectively, and targets of DE miRNAs were significantly enriched in MAPK signaling pathway, FoxO signaling pathway, and glycolysis/gluconeogenesis. Expression analysis showed that the mRNA levels of vegfa, epo, ho, hsp70, hsp90aa.1, igfbp1, ldh, hk1, pfk, pk, and gapdh exhibited a remarkable increase, whereas sdh and mdh were downregulated in the H3h, H12h, and H24h groups compared with the control. Furthermore, research found that hk2 is a target of dre-miR-17a-3p, overexpression of dre-miR-17a-3p significantly decreased the expression level of hk2, while the opposite results were obtained after dre-miR-17a-3p silencing. These results contribute to our understanding of the molecular mechanisms of hypoxia tolerance in crucian carp.
Collapse
Affiliation(s)
- Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Wu S, Huang J, Li Y. A novel hypoxic lncRNA, LOC110520012 sponges miR-206-y to regulate angiogenesis and liver cell proliferation in rainbow trout (Oncorhynchus mykiss) by targeting vegfaa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116554. [PMID: 38878335 DOI: 10.1016/j.ecoenv.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
Long non-coding RNA (lncRNA) is a novel emerging type of competitive endogenous RNA (ceRNA) that performs key functions in multiple biological processes. However, little is known about the roles of lncRNA under hypoxia stress in fish. Here, vascular endothelial growth factor-Aa (vegfaa) was cloned in rainbow trout (Oncorhynchus mykiss), with the complete cDNA sequence of 2914 bp, encoding 218 amino acids. The molecular weight of the protein was approximately 25.33 kDa, and contained PDGF and VEGF_C domains. Time-course and spatial expression patterns revealed that LOC110520012 was a key regulator of rainbow trout in response to hypoxia stress, and LOC110520012, miR-206-y and vegfaa exhibited a ceRNA regulatory relationship in liver, gill, muscle and rainbow trout liver cells treated with acute hypoxia. Subsequently, the targeting relationship of LOC110520012 and vegfaa with miR-206-y was confirmed by dual-luciferase reporter analysis, and overexpression of LOC110520012 mediated the inhibition of miR-206-y expression in rainbow trout liver cells, while the opposite results were obtained after LOC110520012 silencing with siRNA. We also proved that vegfaa was a target of miR-206-y in vitro and in vivo, and the vegfaa expression and anti-proliferative effect on rainbow trout liver cells regulated by miR-206-y mimics could be reversed by LOC110520012. These results suggested that LOC110520012 can positively regulate vegfaa expression by sponging miR-206-y under hypoxia stress in rainbow trout, which facilitate in-depth understanding of the molecular mechanisms of fish adaptation and tolerance to hypoxia.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Wu S, Huang J, Li Y, Zhao L. Comparative transcriptomics combined with physiological and functional analysis reveals the regulatory mechanism of rainbow trout (Oncorhynchus mykiss) under acute hypoxia stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116347. [PMID: 38691881 DOI: 10.1016/j.ecoenv.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Hypoxia, largely triggered by global warming and water contamination, has become an environmental issue of great concern, posing a great threat to aquatic ecosystem. As one of the world's most economically important fish, rainbow trout (Oncorhynchus mykiss) is extremely intolerant of hypoxic environments, however, little is known about the roles of non-coding RNAs (ncRNAs) in the response of rainbow trout to hypoxia stress. Herein, effects of moderate (Tm12L) and severe hypoxia for 12 h (Ts12L) and 12 h reoxygenation on histology, biochemical parameters (antioxidant, metabolism and immunity) and transcriptome (lncRNA, miRNA and mRNA) in rainbow trout liver were investigated. We further validated the regulatory relationships between LOC110519952, novel-m0023-5p and glut1a via dual‑luciferase reporter, overexpression and silencing assays. Compared with Tm12L, the liver in Ts12L showed more severe oxidative damage. Anaerobic, lipid and protein metabolism was enhanced under hypoxia stress, especially in Ts12L. We also found that Tm12L could strengthen innate immune response, which was inhibited in Ts12L. Besides, several hypoxia-related genes (glut1a, vegfaa, hmox, epoa, foxo1a and igfbp1) and ceRNA networks were identified from 1824, 427 and 545 differentially expressed mRNAs, miRNAs and lncRNAs, including LOC118965299-novel-m0179-3p-epoa, LOC110519952-novel-m0023-5p-glut1a, MSTRG.7382.2-miR-184-y-hmox and LOC110520012-miR-206-y-vegfaa. Through in vitro and in vivo functional analysis, we demonstrated that glut1a is a target of novel-m0023-5p, and LOC110519952 can positively regulate glut1a by targeting novel-m0023-5p. Introduction of LOC110519952 could attenuate the promoting effects of novel-m0023-5p on rainbow trout liver cell viability and proliferation. This study highlights the differences in the regulatory mechanism of rainbow trout under different concentrations of hypoxia stress and provides valuable data for further research on the molecular mechanisms of fish adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
O'Brien KM, Rix AS, Jasmin A, Lavelle E. The hypoxia response pathway in the Antarctic fish Notothenia coriiceps is functional despite a poly Q/E insertion mutation in HIF-1α. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101218. [PMID: 38412701 PMCID: PMC11128347 DOI: 10.1016/j.cbd.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Antarctic notothenioid fishes, inhabiting the oxygen-rich Southern Ocean, possess a polyglutamine and glutamic acid (poly Q/E) insertion mutation in the master transcriptional regulator of oxygen homeostasis, hypoxia- inducible factor-1α (HIF-1α). To determine if this mutation impairs the ability of HIF-1 to regulate gene expression in response to hypoxia, we exposed Notothenia coriiceps, with a poly Q/E insertion mutation in HIF-1α that is 9 amino acids long, to hypoxia (2.3 mg L-1 O2) or normoxia (10 mg L -1 O2) for 12 h. Heart ventricles, brain, liver, and gill tissue were harvested and changes in gene expression quantified using RNA sequencing. Levels of glycogen and lactate were also quantified to determine if anaerobic metabolism increases in response to hypoxia. Exposure to hypoxia resulted in 818 unique differentially expressed genes (DEGs) in liver tissue of N. coriiceps. Many hypoxic genes were induced, including ones involved in the MAP kinase and FoxO pathways, glycolytic metabolism, and vascular remodeling. In contrast, there were fewer than 104 unique DEGs in each of the other tissues sampled. Lactate levels significantly increased in liver in response to hypoxia, indicating that anaerobic metabolism increases in response to hypoxia in this tissue. Overall, our results indicate that the hypoxia response pathway is functional in N. coriiceps despite a poly Q/E mutation in HIF-1α, and confirm that Antarctic fishes are capable of altering gene expression in response to hypoxia.
Collapse
Affiliation(s)
- K M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A S Rix
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A Jasmin
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA
| | - E Lavelle
- National Center for Genome Resources, Santa Fe, NM 87505, USA.
| |
Collapse
|
10
|
Zhao C, Song Y, Zhang G, Zhang K, Yin S, Ji J. Multi-omics analysis identifies sex-specific hepatic protein-metabolite networks in yellow catfish (Pelteobagrus fulvidraco) exposed to chronic hypoxia. Int J Biol Macromol 2024; 268:131892. [PMID: 38677698 DOI: 10.1016/j.ijbiomac.2024.131892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia disrupts the endocrine system of teleosts. The liver plays important roles in the endocrine system, energy storage, and metabolic processes. The aim of this study was to investigate the sex-specific hepatic response of yellow catfish under chronic hypoxia at the multi-omics level. Common hepatic responses in both sexes included the HIF-1 signaling pathway, glycolysis/gluconeogenesis, and steroid biosynthesis. Hypoxia dysregulated primary bile acid biosynthesis, lipid metabolism, and vitellogenin levels in female fish. Endoplasmic reticulum function in females also tended to be disrupted by hypoxia, as evidenced by significantly enriched pathways, including ribosome, protein processing in the endoplasmic reticulum, and RNA degradation. Other pathways, including the TCA cycle, oxidative phosphorylation, and Parkinson's and Huntington's disease, were highly enriched by hypoxia in male fish, suggesting that mitochondrial function was dysregulated. In both sexes of yellow catfish, the cell cycle was arrested and apoptosis was inhibited under chronic hypoxia. Multi-omics suggested that SLC2A5, CD209, LGMN, and NEDD8 served as sex-specific markers in these fish under chronic hypoxia. Our results provide insights into hepatic adaptation to chronic hypoxia and facilitate our understanding of sex-specific responses in fish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Yufeng Song
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Kai Zhang
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| | - Jie Ji
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| |
Collapse
|
11
|
Chen J, Hu Z, Li P, Wang G, Wei H, Li Q, Fu B, Sun Y. Transcriptomic atlas for hypoxia and following re-oxygenation in Ancherythroculter nigrocauda heart and brain tissues: insights into gene expression, alternative splicing, and signaling pathways. Front Genet 2024; 15:1365285. [PMID: 38689653 PMCID: PMC11058841 DOI: 10.3389/fgene.2024.1365285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hypoxia is a mounting problem that affects the world's freshwaters, with severe consequence for many species, including death and large economical loss. The hypoxia problem has increased recently due to the combined effects of water eutrophication and global warming. In this study, we investigated the transcriptome atlas for the bony fish Ancherythroculter nigrocauda under hypoxia for 1.5, 3, and 4.5 h and its recovery to normal oxygen levels in heart and brain tissues. We sequenced 21 samples for brain and heart tissues (a total of 42 samples) plus three control samples and obtained an average of 32.40 million raw reads per sample, and 95.24% mapping rate of the filtered clean reads. This robust transcriptome dataset facilitated the discovery of 52,428 new transcripts and 6,609 novel genes. In the heart tissue, the KEGG enrichment analysis showed that genes linked to the Vascular smooth muscle contraction and MAPK and VEGF signaling pathways were notably altered under hypoxia. Re-oxygenation introduced changes in genes associated with abiotic stimulus response and stress regulation. In the heart tissue, weighted gene co-expression network analysis pinpointed a module enriched in insulin receptor pathways that was correlated with hypoxia. Conversely, in the brain tissue, the response to hypoxia was characterized by alterations in the PPAR signaling pathway, and re-oxygenation influenced the mTOR and FoxO signaling pathways. Alternative splicing analysis identified an average of 27,226 and 28,290 events in the heart and brain tissues, respectively, with differential events between control and hypoxia-stressed groups. This study offers a holistic view of transcriptomic adaptations in A. nigrocauda heart and brain tissues under oxygen stress and emphasizes the role of gene expression and alternative splicing in the response mechanisms.
Collapse
Affiliation(s)
- Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhen Hu
- Hubei Provincial Fisheries Technology Extension Center, Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd, Wuhan, China
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
12
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
13
|
Ma Q, Xu H, Wei Y, Liang M. Effects of acute hypoxia on nutrient metabolism and physiological function in turbot, Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:367-383. [PMID: 36609890 DOI: 10.1007/s10695-022-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Acute hypoxia is a common stress in aquaculture, and causes energy deficiency, oxidative damage and death in fish. Many studies have confirmed that acute hypoxia activated hif1α expression, anaerobic glycolysis and antioxidant system in fish, but the effects of acute hypoxia on lipid and protein metabolism, organelle damage, and the functions of hif2α and hif3α in economic fishes have not been well evaluated. In the present study, turbot was exposed to acute hypoxia (2.0 ± 0.5 mg/L) for 6 h, 12 h, and 24 h, respectively. Then, the contents of hemoglobin (HB), metabolite, gene expressions of hifα isoforms, energy homeostasis, endoplasmic reticulum (ER) stress, and apoptosis were measured. The results suggested that turbot is intolerant to acute hypoxia and the asphyxiation point is about 1.5 mg/L. Acute hypoxia induced perk-mediated ER stress, and increased lipid peroxidation and liver injury in turbot. The blood HB level and liver vegfab expression were increased under hypoxia, which enhances oxygen transport. At hypoxia stress, hif3α, anaerobic glycolysis-related genes expression, and lactate content were increased in the liver, and glycogen was broken down to ensure ATP supply. Meanwhile, hif2α, lipid synthesis-related genes expression, and TG content were increased in the liver, but the lipid catabolism and protein synthesis were suppressed during hypoxia, which reduced the oxygen consumption and ROS generation. Our results systematically illustrate the metabolic and physiological changes under acute hypoxia in turbot, and provide important guidance to improve hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
14
|
Wang QH, Wu RX, Ji JN, Zhang J, Niu SF, Tang BG, Miao BB, Liang ZB. Integrated Transcriptomics and Metabolomics Reveal Changes in Cell Homeostasis and Energy Metabolism in Trachinotus ovatus in Response to Acute Hypoxic Stress. Int J Mol Sci 2024; 25:1054. [PMID: 38256129 PMCID: PMC10815975 DOI: 10.3390/ijms25021054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid β-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.
Collapse
Affiliation(s)
- Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Jiao-Na Ji
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| |
Collapse
|
15
|
Yao H, Liang Z, Wang W, Niu C. Integrative analyses of transcriptomes and metabolomes provide insight into salinity adaption in Bangia (Rhodaphyta). Int J Biol Macromol 2023; 253:127466. [PMID: 37875187 DOI: 10.1016/j.ijbiomac.2023.127466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
The salinity of the external environment poses a serious threat to most land plants. Although seaweeds can adapt to this, intertidal species are subject to wide fluctuations in salinity, including hypo- and hyper-saline conditions. The red algal genus Bangiales is a typical example; it is one of the oldest eukaryotes with sexual reproduction and has successfully adapted to both marine and freshwater environments. However, there is a dearth of research focused on elucidating the mechanism by which marine Bangia (Bangia fuscopurpurea) adapts to hypo-salinity, as well as the mechanism by which freshwater Bangia (Bangia atropurpurea) adapts to hyper-salinity. The objective of this study is to employ third-generation full-length transcriptome data and untargeted metabolome data, to provide insights into the salinity adaptation mechanism of as well as the evolutionary relationship between both Bangia species. B. fuscopurpurea and B. atropurpurea exhibited 9112 and 8772 differentially expressed genes (DEGs), respectively, during various periods of hyper-saline condition. These genes were primarily enriched in secondary metabolites and energy-related metabolic pathways. Additionally, B. fuscopurpurea displayed 16,285 DEGs during different periods of hypo-saline condition, which were mainly enriched in metabolic pathways related to ion transport and membrane proteins. In the hyper- and hypo-saline adapt response processes of B. fuscopurpurea, a total of 303 transcription factors were identified, which belonged to 26 families. Among these, 85 and 142 differential transcription factors were identified, respectively, mainly belonging to the C2H2 and MYB family. Similarly, in the response process of B. atropurpurea to hyper-saline condition, a total of 317 transcription factors were identified, mainly belonging to 17 families. Among these, 121 differential transcription factors were identified, mainly belonging to the C2H2 and bZIP family. Furthermore, a correlation analysis was conducted to examine the relationship between the transcriptional and metabolic levels of both species under saline adaptation. The findings demonstrated that Bangia exhibits intricate adaptations to salinity, which involve swift regulation of its photosynthetic processes, alternations in membrane contents, and a robust anti-oxidation system to mitigate the effects of excess redox energy during exposure to varying salinity. Notably, the unsaturated fat and glutathione metabolic pathways were found to be significantly enriched in this context.
Collapse
Affiliation(s)
- Haiqin Yao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
| | - Zhourui Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Wenjun Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China.
| | - Citong Niu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
16
|
Ducros L, Touaibia M, Pichaud N, Lamarre SG. Resilience and phenotypic plasticity of Arctic char ( Salvelinus alpinus) facing cyclic hypoxia: insights into growth, energy stores and hepatic metabolism. CONSERVATION PHYSIOLOGY 2023; 11:coad099. [PMID: 38107465 PMCID: PMC10724465 DOI: 10.1093/conphys/coad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Arctic char (Salvelinus alpinus) is facing the decline of its southernmost populations due to several factors including rising temperatures and eutrophication. These conditions are also conducive to episodes of cyclic hypoxia, another possible threat to this species. In fact, lack of oxygen and reoxygenation can both have serious consequences on fish as a result of altered ATP balance and an elevated risk of oxidative burst. Thus, fish must adjust their phenotype to survive and equilibrate their energetic budget. However, their energy allocation strategy could imply a reduction in growth which could be deleterious for their fitness. Although the impact of cyclic hypoxia is a major issue for ecosystems and fisheries worldwide, our knowledge on how salmonid deal with high oxygen fluctuations remains limited. Our objective was to characterize the effects of cyclic hypoxia on growth and metabolism in Arctic char. We monitored growth parameters (specific growth rate, condition factor), hepatosomatic and visceral indexes, relative heart mass and hematocrit of Arctic char exposed to 30 days of cyclic hypoxia. We also measured the hepatic protein synthesis rate, hepatic triglycerides as well as muscle glucose, glycogen and lactate and quantified hepatic metabolites during this treatment. The first days of cyclic hypoxia slightly reduce growth performance with a downward trend in specific growth rate in mass and condition factor variation compared to the control group. This acute exposure also induced a profound metabolome reorganization in the liver with an alteration of amino acid, carbohydrate and lipid metabolisms. However, fish rebalanced their metabolic activities and successfully maintained their growth and energetic reserves after 1 month of cyclic hypoxia. These results demonstrate the impressive ability of Arctic char to cope with its changing environment but also highlight a certain vulnerability of this species during the first days of a cyclic hypoxia event.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Mohamed Touaibia
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Nicolas Pichaud
- Département de Chimie et Biochimie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, 18 Antonine Maillet, Moncton E1A 3E9, NB, Canada
| |
Collapse
|
17
|
Wu H, Yuan X, Xie M, Gao J, Xiong Z, Song R, Xie Z, Ou D. The Impact of Niclosamide Exposure on the Activity of Antioxidant Enzymes and the Expression of Glucose and Lipid Metabolism Genes in Black Carp ( Mylopharyngodon piceus). Genes (Basel) 2023; 14:2196. [PMID: 38137017 PMCID: PMC10743074 DOI: 10.3390/genes14122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Niclosamide (NIC, 2',5-dichloro-4'-nitrosalicylanilide) is a salicylanilide molluscicide, and the extensive utilization and environmental pollution associated with NIC engender a potential hazard to both human health and the wellbeing of aquatic organisms. However, the mechanism of the chronic toxicity of NIC at environmentally relevant concentrations in terms of oxidative stress, metabolic disorder, and barrier functions in black carp (Mylopharyngodon piceus) is unknown. Therefore, healthy juvenile black carp (M. piceus) (average weight: 38.2 ± 2.5 g) were exposed to NIC at an environmentally realistic concentration (0, 10, and 50 μg/L) for 28 days. The findings of this study indicate that exposure to NIC resulted in reductions in weight gain, decreased activity of antioxidant enzymes, and increased expression of the Nrf2 gene. Furthermore, the liver demonstrated a greater accumulation of NIC than that in the gut and gills, as determined with a chemical analysis. Additionally, NIC exposure led to a significant reduction in ATP content and the activity of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the gut. Meanwhile, exposure to NIC resulted in a decrease in the liver glucose (Glu) level, gut cholesterol (CHO), and glycogen (Gln) and triglyceride (TG) content in all examined tissues. Conversely, it led to an increase in tissue lactic acid (LA) and acetyl-CoA levels, as well as LDH activity. Furthermore, NIC exposure at environmentally relevant concentrations demonstrated an upregulation in the expression of genes associated with glycolysis, such as PK and GK, while concurrently downregulating the gluconeogenesis gene G6Pase. Additionally, NIC exhibited an upregulation in the expression of genes related to β-oxidation, such as CPT1 and ACOX, while downregulating genes involved in triglyceride synthesis, including SREBP1, GPAT, FAS, and ACC1. Moreover, NIC facilitated fatty acid transportation through the overexpression of FATP and Fat/cd36. These results suggest that chronic exposure to NIC is associated with oxidative stress, compromised barrier function, and metabolic disorder. Moreover, these results underscore the significance of assessing the potential consequences of NIC for black carp and aquatic environments for aquaculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (H.W.); (X.Y.); (M.X.); (J.G.); (Z.X.); (Z.X.); (D.O.)
| | | | | |
Collapse
|
18
|
Khieokhajonkhet A, Phoprakot M, Aeksiri N, Kaneko G, Phromkunthong W. Effects of thermal stress responses in goldfish (Carassius auratus): growth performance, total carotenoids and coloration, hematology, liver histology, and critical thermal maximum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1391-1407. [PMID: 37987934 DOI: 10.1007/s10695-023-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The present study aimed to investigate the effect of thermal stress on growth, feed utilization, coloration, hematology, liver histology, and critical thermal maximum (CTmax) in goldfish (Carassius auratus) cultured at three different acclimation temperatures including 27 °C, 30 °C, and 34 °C for 10 weeks. Goldfish were assigned randomly to tanks with a quadruplicate setup, accommodating 20 fish per tank. The result showed that fish acclimated to different temperatures did not significantly differ in weight gain (WG) and specific growth rate (SGR). However, increasing temperature significantly decreased feed efficiency ratio (FER), protein efficiency ratio (PER), and protein productive value (PPV), but significantly increased feed conversion ratio (FCR) (P < 0.05). The coloration parameters significantly decreased by high temperature in the trunk region with increasing temperature (L* and a* at week 5; L*, a*, and b* at week 10; P < 0.05). Total carotenoid contents in serum, fin, muscle, and skin also significantly decreased with increasing temperature (P < 0.05). Total protein, albumin, and globulin levels exhibited a notable decrease, while the albumin: globulin ratio showed a slight insignificant increase, with increasing temperature. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol, and triglycerides significantly increased with increasing temperature (P < 0.05). While, high-density lipoprotein cholesterol (HDL-c) decreased linearly (P < 0.05). Glucose and cortisol levels linearly increased with increasing temperature, the highest levels being observed in the 34 °C group. Liver histology showed swollen hepatocytes, nuclei displacement, and infiltration of inflammation in fish cultured at 34 °C. Goldfish acclimated to 34 °C displayed a higher CTmax of 43.83 °C compared to other groups. The present study showed that temperature should be kept below 34 °C for goldfish culture to prevent high FCR, fading coloration, and liver damages.
Collapse
Affiliation(s)
- Anurak Khieokhajonkhet
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand.
| | - Marisa Phoprakot
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Niran Aeksiri
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, 3007 N. Ben Wilson, Victoria, TX, 77901, USA
| | - Wutiporn Phromkunthong
- Kidchakan Supamattaya Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90112, Thailand
| |
Collapse
|
19
|
Yan H, Zhao L, He Q, Hu Y, Li Q, He K, Zhang D, Liu Q, Luo J, Luo W, Chen S, Li L, Yang S. Exposure to Intermittent Environmental Hypoxia Promotes Vascular Remodeling through Angiogenesis in the Liver of Largemouth Bass ( Micropterus salmoides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17796-17807. [PMID: 36802614 DOI: 10.1021/acs.est.2c07329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we explored the effects of 4 weeks of intermittent hypoxic exposure (IHE) on liver angiogenesis and related regulatory mechanisms in largemouth bass (Micropterus salmoides). The results indicated that the O2 tension for loss of equilibrium (LOE) decreased from 1.17 to 0.66 mg/L after 4 weeks of IHE. Meanwhile, the red blood cell (RBC) and hemoglobin concentrations significantly increased during IHE. Our investigation also found that the observed increase in angiogenesis was correlated with a high expression of related regulators, such as Jagged, phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK). After 4 weeks of IHE, the overexpression of factors related to angiogenesis processes mediated by HIF-independent pathways (such as nuclear factor kappa-B (NF-κB), NADPH oxidase 1 (NOX1), and interleukin 8 (IL8)) was correlated with the accumulation of lactic acid (LA) in the liver. The addition of cabozantinib, a specific inhibitor of VEGFR2, blocked the phosphorylation of VEGFR2 and downregulated the expression of downstream angiogenesis regulators in largemouth bass hepatocytes exposed to hypoxia for 4 h. These results suggested that IHE promoted liver vascular remodeling by the regulation of angiogenesis factors, presenting a potential mechanism for the improvement of hypoxia tolerance in largemouth bass.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qishuang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Quanxi Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongmei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lisen Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
20
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
21
|
Qin H, Zhang X, Xie T, Gao Y, Li J, Jia Y. Hepatic transcriptomic analysis reveals that Hif1α/ldha signal is involved in the regulation of hypoxia stress in black rockfish Sebastes schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101098. [PMID: 37229966 DOI: 10.1016/j.cbd.2023.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Hypoxia has become a common problem for aquatic organisms due to the interaction of global climate change and human activity. Black rockfish inhabits rocky reefs in waters of Japan, Korea and China, whereas the limited hypoxia tolerance leads to mass mortality and great economic loss. In this study, high-throughput RNA-seq for transcriptomic analysis was used to investigate the hepatic response in black rockfish under hypoxia (critical oxygen tension, Pcrit; loss of equilibrium, LOE) and reoxygenation (recover normal dissolved oxygen 24 h, R24) to explore the mechanisms underlying hypoxia tolerance and adaptation. A total of 573,040,410 clean reads and 299 differentially expressed genes (DEGs) in total were obtained during hypoxia and reoxygenation. GO annotation and Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the DEGs are mainly enriched in the biochemical metabolic pathways and HIF-1 signaling pathways. Transcriptomic analysis also identified 18 DEGs associated with HIF-1 signaling pathway (hif1α, tf, epo, hmox, gult1, mknk2, ldha, pfkfb3, hkdc, aldoa) and biological process (hif2α, apoeb, bcl6, mr1, errfi1, slc38a4, igfbp1a, ap4m1) as further validated by quantitative real-time PCR. Moreover, hif1α was positively or negatively correlated with glucose (ldha, pfkfb3, hkdc, aldoa) and lipid (apoeb) metabolism-related genes. The mRNA level of hif1α was significantly up-regulated under acute hypoxia stress and obtained the higher values than hif2α. Meanwhile, hif1α recognized the hypoxia response element located in the promoter of ldha and directly bound to the promoter to transactivate ldha expression. These results indicated that black rockfish may mainly utilize glycolysis to maintain homeostasis, and hif1α facilities hypoxia tolerance by modulating ldha expression.
Collapse
Affiliation(s)
- Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China
| | - Juan Li
- Qingdao Agricultural University, Qingdao 266109, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Ning X, Han B, Shi Y, Qian X, Zhang K, Yin S. Hypoxia stress induces complicated miRNA responses in the gill of Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106619. [PMID: 37379777 DOI: 10.1016/j.aquatox.2023.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious damages to aquatic animals. microRNAs (miRNAs) as non-coding regulatory RNAs exert vital effects on hypoxia responses. Chinese mitten crab (Eriocheir sinensis) with the habitat on the sediment surface or the pond bottom is susceptible to oxygen deficiency. However, whether miRNAs are involved in the response of the crabs to hypoxia stress remains enigmas. In this study, we conducted the whole transcriptome-based miRNA-mRNA integrated analysis of Chinese mitten crab gill under hypoxic condition for 3 h and 24 h We found that the acute hypoxia induces complex miRNA responses with the extensive influences on their target genes that engaged in various bio-processes, especially those associated with immunity, metabolism and endocrine. The impact of hypoxia on crab miRNAs is severer, as the exposure lasts longer. In response to the dissolved oxygen fluctuation, the HIF-1 signaling is activated by miRNAs to cope with the hypoxia stress through strategies including balancing inflammatory and autophagy involved in immunity, changing metabolism to reducing energy consumption, and enhancing oxygen-carrying and delivering capacities. The miRNAs and their corresponding target genes engaged in hypoxia response were intertwined into an intricate network. Moreover, the top hub molecular, miR-998-y and miR-275-z, discovered from the network might serve as biomarkers for hypoxia response in crabs. Our study provides the first systemic miRNA profile of Chinese mitten crab induced by hypoxia stress, and the identified miRNAs and the interactive network add new insights into the mechanism of hypoxia response in crabs.
Collapse
Affiliation(s)
- Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
23
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
24
|
Chen X, Feng W, Yan F, Li W, Xu P, Tang Y. Alteration of antioxidant status, glucose metabolism, and hypoxia signal pathway in Eirocheir sinensis after acute hypoxic stress and reoxygenation. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109604. [PMID: 36906248 DOI: 10.1016/j.cbpc.2023.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Dissolved oxygen (DO) is crucial for the survival of Chinese mitten crab (Eirocheir sinensis); low DO levels adversely affect the health of these crabs. In this study, we evaluated the underlying response mechanism of E. sinensis to acute hypoxic stress by analyzing antioxidant parameters, glycolytic indicators, and hypoxia signaling factors. The crabs were exposed to hypoxia for 0, 3, 6, 12, and 24 h and reoxygenated for 1, 3, 6, 12, and 24 h. The hepatopancreas, muscle, gill, and hemolymph were sampled at different exposure times to detect the biochemical parameters and gene expression. The results showed that the activity of catalase, antioxidants, and malondialdehyde in tissues significantly increased under acute hypoxia and gradually decreased during the reoxygenation phase. Under acute hypoxic stress, glycolysis indices, including hexokinase (HK), phosphofructokinase, pyruvate kinase (PK), pyruvic acid (PA), lactate dehydrogenase (LDH), lactic acid (LA), succinate dehydrogenase (SDH), glucose, and glycogen in the hepatopancreas, hemolymph, and gills increased to varying degrees but recovered to the control levels after reoxygenation. Gene expression data showed that hypoxia signaling pathway-related genes, including hypoxia-inducible factor-1α/β (HIF1α/β), prolyl hydroxylase (PHD), factor inhibiting hypoxia-inducible factor (FIH), and glycolysis-related factors (HK and PK) were upregulated, showing that the HIF signaling pathway was activated under hypoxic conditions. In conclusion, acute hypoxic exposure activated the antioxidant defense system, glycolysis, and HIF pathway to respond to adverse conditions. These data contribute to elucidating the defense and adaptive mechanisms of crustaceans to acute hypoxic stress and reoxygenation.
Collapse
Affiliation(s)
- Xue Chen
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Fengyuan Yan
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou 225300, China; Jiangsu Haorun National Crab Seed Technology Co., Ltd, Taizhou 225300, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
25
|
Shuang L, Chen SL, Ren C, Su XL, Xu XN, Zheng GD, Zou SM. Effects of hypoxia and reoxygenation on oxidative stress, histological structure, and apoptosis in a new hypoxia-tolerant variety of blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111358. [PMID: 36572142 DOI: 10.1016/j.cbpa.2022.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A new hypoxia-tolerant variety of blunt snout bream was obtained by successive breeding of the wild population, which markedly improved hypoxia tolerance. In this study, the hypoxia-tolerant variety was exposed to hypoxia (2.0 mg O2·L-1) for 4, 7 days. The contents of blood biochemical indicators including the number of red blood cells (RBC), total cholesterol (T-CHO), total protein (TP), triglyceride (TG), glucose (GLU), and lactic acid (LD) increased significantly (P < 0.05) under hypoxia. The glycogen content in the liver and muscle decreased significantly (P < 0.05) and the LD content in the brain, muscle and liver increased significantly (P < 0.05) under hypoxia. The levels of oxidative stress-related indicators i.e., superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and total antioxidant capacity (T-AOC) also changed significantly (P < 0.05) in the heart, liver, and intestine of the new variety under hypoxia. Additionally, hypoxia has caused injuries to the heart, liver, and intestine, but it shows amazing repair ability during reoxygenation. The apoptotic cells and apoptosis rate in the heart, liver, and intestine increased under hypoxia. Under hypoxia, the expression of the B-cell lymphomas 2 (Bcl-2) gene in the heart, liver, and intestine was significantly (P < 0.05) down-regulated, while the expression of the BCL2-associated agonist of cell death (Bad) gene was significantly (P < 0.05) up-regulated. These results are of great significance for enriching the basic data of blunt snout bream new variety in response to hypoxia and promoting the healthy development of its culture industry.
Collapse
Affiliation(s)
- Liang Shuang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Chao Ren
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Na Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| |
Collapse
|
26
|
Jiang T, Liang YS, Gu Y, Yao FC, Liu YF, Zhang KX, Song FB, Sun JL, Luo J. Different reoxygenation rates induce different metabolic, apoptotic and immune responses in Golden Pompano (Trachinotus blochii) after hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108640. [PMID: 36871632 DOI: 10.1016/j.fsi.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.
Collapse
Affiliation(s)
- Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Ye Song Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fu Cheng Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yi Fan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Kai Xi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
27
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Wang S, Sun M, Ning Z, Chen Y, Zhou H, Mu W. The effects of sustained and diel-cycling hypoxia on high-latitude fish Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101059. [PMID: 36706598 DOI: 10.1016/j.cbd.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii. P. lagowskii was divided into normoxic control (6.0-7.0 mg/L dissolved oxygen), sustained (1.5 mg/L dissolved oxygen), and diel-cycling hypoxic treatment (6.0-7.0 mg/L between 07:00-21:00, and 3.0-4.0 mg/L between 21:00-07:00) tanks for 28 days. Differentially expressed genes (DEGs) and significantly different metabolites (DMs) related to digestive proteases, lipid metabolism, estrogen signaling pathway, steroid hormone biosynthesis, glutathione metabolism, and tryptophan metabolism were identified from comparative metabolomic and transcriptomic data expression profiles within the liver. The current study found that P. lagowskii had significantly different responses between sustained and diel-cycling hypoxia. P. lagowskii faced with sustained hypoxia may enhance their tolerance capacity through phospholipid and glutathione metabolism. Our data provide new insights into the high latitude fish coping with changes in hypoxia and warrants further investigation into these potentially important genes and metabolites.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
29
|
Yu H, He Y, Zhang J, Zhang Z, Zhang X. Hepatic transcriptome analysis reveals the metabolic strategies of largemouth bass (Micropterus salmoides) under different dissolved oxygen condition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101032. [PMID: 36371883 DOI: 10.1016/j.cbd.2022.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dissolved oxygen (DO) affects aquatic animals at a fundamental level so that the differences in its metabolic strategies under prolonged hypoxic conditions need an urgent exploration. In this experiment, largemouth bass (Micropterus salmoides) were chronically exposed (6 weeks) to severe hypoxia (S-HYP, DO: 2.0 ± 0.4 mg/L) and mild hypoxia (M-HYP, DO: 5.1 ± 0.4 mg/L). Compared to the control group (CON, DO:8.4 ± 0.4 mg/L), 1196 and 232 differentially expressed genes (DEGs) were obtained in S-HYP and M-HPY groups via transcriptome analysis, respectively. In S-HYP, lipolysis was promoted while anabolism was blocked. Meanwhile, significantly less fat droplet area was observed in the liver histology of S-HYP. Additionally, the cell cycle also responded to hypoxia, being blocked in the G1 phase with the suspension of DNA replication process. In M-HYP, the processing of protein in the endoplasmic reticulum and the synthesis of various aminoacyl t-RNA were inhibited, and a novel balance of the urea cycle might be established in the biosynthesis of arginine. The key DEGs involved in the above metabolic pathways, such as atgl, cpt1, arg1, etc., were validated by Q-PCR yielding results consistent with transcriptome data. This study indicates that the largemouth bass is prone to increase the proportion of lipid as an energy supply to adapt to the reprogramming of energy metabolism, while reducing the rate of cell proliferation to adapt to chronic severe hypoxia. This is also an undescribed observation in fish liver metabolism that largemouth bass may transform the synthesis and processing strategies of protein when exposed to chronic mild hypoxia.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ziyi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
30
|
Yuan X, Wu H, Gao J, Geng X, Xie M, Song R, Zheng J, Wu Y, Ou D. Acute deltamethrin exposure induces oxidative stress, triggers endoplasmic reticulum stress, and impairs hypoxic resistance of crucian carp. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109508. [PMID: 36368507 DOI: 10.1016/j.cbpc.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Deltamethrin (Del) has been widely used for effectively controlling ectoparasites of crucian carp and was also strictly prohibited in a hypoxic environment. A previous study indicated that Del exposure causes gill injury in Carassius auratus, which is associated with oxidative stress and endoplasmic reticulum stress (ER stress), but the precise mechanism is not well understood. Here, crucian carp were exposed to Del (0.61, 1.22, 2.44, 4.88 μg/L) for 24 h and then subjected to acute hypoxia challenge (1.0 mg/L) for 24 h. The results revealed that acute exposure to Del notably increased MDA content but markedly decreased CAT activities. Moreover, the T-AOC and SOD activities first increased and then decreased in the 4.88 μg/L Del group. Likewise, the mRNA levels of Nrf2 signaling and its target genes (ho-1, mt, sod, cat, and gpx1) were significantly downregulated in the high concentration exposure groups, while the mRNA levels of keap1 showed the opposite change trend. Meanwhile, Del exposure evoked the PERK-ATF4-CHOP and IRE1 signaling pathways and triggered ER stress in a dose-dependent manner in crucian carp. Importantly, we found that Del exposure significantly decreased the survival rate of crucian carp after hypoxia challenge by reducing oxygen uptake, modifying energy metabolism, and promoting lactate accumulation. Additionally, Del exposure aggravated gill damage and apoptosis under hypoxic stress, which was confirmed by histological assays. Collectively, we inferred that acute exposure to deltamethrin induces oxidative stress and ER stress and impairs hypoxic resistance of crucian carp.
Collapse
Affiliation(s)
- Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Xiangchang Geng
- Changsha Animal and Plant Disease Control Center, Changsha 410153, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiaomei Zheng
- Changsha Animal and Plant Disease Control Center, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China
| |
Collapse
|
31
|
Liu Q, Wang H, Ge J, Luo J, He K, Yan H, Zhang X, Tahir R, Luo W, Li Z, Yang S, Zhao L. Enhance energy supply of largemouth bass (Micropterus salmoides) in gills during acute hypoxia exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1649-1663. [PMID: 36417053 DOI: 10.1007/s10695-022-01139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Gills are the location of gas exchange and also the first target organ of fish response for environmental stress. As a multifunctional organ, its energy supply, when faced with insufficient dissolved oxygen in the water, remains unclear. In this study, largemouth bass was subjected to hypoxia stress (1.2 mg/L) for 24 h and 12 h reoxygenation (R12) to evaluate energy supply strategy of gills. Under hypoxia exposure, the respiratory rate of largemouth bass increased by an average of 20 breaths per minute. A total of 2026, 1744, 1003, 579, 485, and 265 differentially expressed genes (DGEs) were identified at 0 h, 4 h, 8 h, 12 h, 24 h, and R12h in gills after hypoxia exposure. KEGG functional analysis of DEGs revealed that the glycolysis/gluconeogenesis pathway was enriched across all the sampling points (0, 4, 8, 12, 24 h, R12). The gene expression and enzyme activity of three rate-limiting enzymes (hexokinase, phosphofructokinase-6, pyruvate kinase) in glycolysis pathway were significantly increased. Increased levels of glycolysis products pyruvate and lactic acid, as well as the number of mitochondria (1.8-fold), suggesting an enhancement of aerobic and anaerobic metabolism of glucose in gills. These results suggest that the gill of largemouth bass enhanced the energy supply during acute exposure to hypoxia stress.
Collapse
Affiliation(s)
- Qiao Liu
- Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Sichuan Agricultural University, Chengdu, China
| | - Jiayu Ge
- Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- Sichuan Agricultural University, Chengdu, China
| | - Kuo He
- Sichuan Agricultural University, Chengdu, China
| | - Haoxiao Yan
- Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Sichuan Agricultural University, Chengdu, China
| | - Rabia Tahir
- Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- Sichuan Agricultural University, Chengdu, China.
| | - Liulan Zhao
- Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
32
|
Zhao L, Tang X, Huang R, Liu Q, Liao L, Hu Y, He K, Zhang X, Guo J, Chen S, Yang S. Acute hypoxia promotes the liver angiogenesis of largemouth bass (Micropterus salmoides) by HIF - Dependent pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 131:264-273. [PMID: 35940542 DOI: 10.1016/j.fsi.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A 24-h hypoxia exposure experiment was conducted to determine how hypoxia exposure induce liver angiogenesis in largemouth bass. Nitrogen (N2) was pumped into water to exclude dissolved oxygen into 1.2 ± 0.2 mg/L, and liver tissues were sampled during hypoxia exposure of 0 h, 4 h, 8 h, 12 h, 24 h and re-oxygenation for 12 h. Firstly, the results showed that hypoxia exposure promoted the angiogenesis occurrence by immunohistochemical analysis of vascular endothelial growth factor receptor 2 (VEGFR2). Secondly, the concentration of vasodilation factor increased and it's activity was elevated during 8 h exposure, such as nitric oxide (NO) and nitric oxide synthase (NOS) (p < 0.05). Thirdly, hypoxia exposure promoted angiogenesis through up-regulation the expression of matrix metalloproteinase 2 (MMP-2), jagged, protein kinase B (AKT), phosphoinositide-3-kinase (PI3K), mitogen-activated protein kinase (MAPK) at 4 h; contrarily, the expression of inhibiting angiogenesis genes presented up-regulated at 8 h (p < 0.05), such as matrix metalloproteinase inhibitor-2 (TIMP-2), matrix metalloproteinase inhibitor-3 (TIMP-3). Finally, the genes and proteins that regulate angiogenesis presented obvious chronological order. Parts of them promoted the budding and extension of blood vessels were up-regulated during 4 h-8 h (p < 0.05), such as vascular endothelial growth factor a (VEGFA), VEGFR2, monocarboxylic acid transporter 1 (MCT1), CD147, prolyl hydroxylase (PHD), nuclear factor kappa-B (NF-κB); other part of them promoted blood vessel maturation were highly expressed during 12 h-24 h (p < 0.05), such as angiogenin-1 (Ang-1) and angiogenin-2 (Ang-2). In short, acute hypoxia can promote the liver angiogenesis of largemouth bass by HIF - dependent pathway.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Resources and Environment in the Lpper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, Sichuan, 610011, China.
| | - Rui Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
33
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
34
|
Lai XX, Zhang CP, Wu YX, Yang Y, Zhang MQ, Qin WJ, Wang RX, Shu H. Comparative transcriptome analysis reveals physiological responses in liver tissues of Epinephelus coioides under acute hypoxia stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101005. [PMID: 35653833 DOI: 10.1016/j.cbd.2022.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia is a common stressor for aquatic animals, including Epinephelus coioides, with a considerable impact on sustainable aquaculture. E. coioides is a widely consumed fish in China owing to its high nutritious value and taste. However, water hypoxia caused by high density culture process has become a great threat to E. coioides culture, and its response to hypoxia stress has not been discussed before. Therefore, the aim of this study was to examine the response of E. coioides to acute hypoxia using transcriptomic techniques. To this end, RNA sequencing was performed on the liver tissues of fish exposed to normoxic and hypoxic conditions for 1 h. The results presented 503 differentially expressed genes (DEGs) in the liver tissue of fish exposed to hypoxic condition compared with those in the normoxic group. Enrichment analysis using the Gene Ontology database showed that the DEGs were mainly enriched for functions related to cell apoptosis signaling pathways, insulin resistance, antioxidant enzymes, and glycolysis/gluconeogenesis signaling pathways. KEGG enrichment analysis showed that HIF-1, PI3K-AKT, IL-17, NF-kappa B, and MAPK signaling pathways were significantly enriched by the DEGs. The DEGs were mainly involved in immune response, inflammatory response, cell apoptosis regulation, energy metabolism, and substance metabolism. Additionally, the hypoxia response in E. coioides was mainly regulated via the PI3K-AKT-HIF-1 signaling axis. Overall, the findings of this study contribute to the understanding of hypoxia stress response in E. coioides, and provides target genes for breeding hypoxia-tolerant Epinephelus spp.
Collapse
Affiliation(s)
- Xing-Xing Lai
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China.
| | - Cui-Ping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Yu-Xin Wu
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Yang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Ming-Qing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Wei-Jian Qin
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Rui-Xuan Wang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China.
| |
Collapse
|
35
|
Liu B, Wen H, Yang J, Li X, Li G, Zhang J, Wu S, Butts IAE, He F. Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (Paralichthys olivaceus). BIOLOGY 2022; 11:biology11081233. [PMID: 36009861 PMCID: PMC9405012 DOI: 10.3390/biology11081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary With global climate change and increased aquaculture production, fishes in natural waters or aquaculture systems are easily subjected to hypoxic stress. However, our understanding about their responsive mechanisms to hypoxia is still limited. Japanese flounder (Paralichthys olivaceus) is a widely cultivated marine economical flatfish, whose hypoxic responsive mechanisms are not fully researched. In this study, responses to hypoxia were investigated at blood physiological, biochemical, hormonal, and molecular levels. Responsive mechanisms of the HIF-1/LDH-A signaling pathway in epigenetic modification and transcriptional regulation were also researched. These results are important for enriching the theory of environmental responsive mechanisms and guiding aquaculture. Abstract Japanese flounder (Paralichthys olivaceus) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene LDH-A were deeply studied. Results showed that HIF-1α and LDH-A genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the LDH-A gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of HIF-1α and LDH-A genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the HIF-1α gene and LDH-A gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.
Collapse
Affiliation(s)
- Binghua Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jun Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Xiaohui Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Guangling Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jingru Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Shuxian Wu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Ian AE Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
36
|
He K, Zhao L, Yuan Z, Canario A, Liu Q, Chen S, Guo J, Luo W, Yan H, Zhang D, Li L, Yang S. Chromosome-level genome assembly of largemouth bass (Micropterus salmoides) using PacBio and Hi-C technologies. Sci Data 2022; 9:482. [PMID: 35933561 PMCID: PMC9357066 DOI: 10.1038/s41597-022-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
The largemouth bass (Micropterus salmoides) has become a cosmopolitan species due to its widespread introduction as game or domesticated fish. Here a high-quality chromosome-level reference genome of M. salmoides was produced by combining Illumina paired-end sequencing, PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. Ultimately, the genome was assembled into 844.88 Mb with a contig N50 of 15.68 Mb and scaffold N50 length of 35.77 Mb. About 99.9% assembly genome sequences (844.00 Mb) could be anchored to 23 chromosomes, and 98.03% assembly genome sequences could be ordered and directed. The genome contained 38.19% repeat sequences and 2693 noncoding RNAs. A total of 26,370 protein-coding genes from 3415 gene families were predicted, of which 97.69% were functionally annotated. The high-quality genome assembly will be a fundamental resource to study and understand how M. salmoides adapt to novel and changing environments around the world, and also be expected to contribute to the genetic breeding and other research.
Collapse
Affiliation(s)
- Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zihao Yuan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Adelino Canario
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Siyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongmei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lisen Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
37
|
Wu H, Gao J, Xie M, Wu J, Song R, Yuan X, Wu Y, Ou D. Chronic exposure to deltamethrin disrupts intestinal health and intestinal microbiota in juvenile crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113732. [PMID: 35679730 DOI: 10.1016/j.ecoenv.2022.113732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The indiscriminate use of deltamethrin in agriculture and aquaculture can lead to residues increased in many regions, which poses negative impacts on intestinal health of aquatic organisms. Although the potential toxicity of deltamethrin have recently attracted attention, the comprehensive studies on intestinal injuries after chronic deltamethrin exposure remain poorly understood. Herein, in a 28-day chronic toxicity test, crucian carp expose to different concentrations of deltamethrin (0, 0.3, and 0.6 μg/L) were used as the research object. We found that the morphology changes and increased goblet cells in intestinal tissue, and the extent of tissue injury increased along with the increasing exposure dose of deltamethrin. Additionally, the genes expression of antioxidant activity (Cu/Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase 1 (GPX1), and catalase (CAT)), inflammatory response (tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin 1 beta (IL-1β)), and tight junctions (Claudin 12 (CLDN12), and tight junction protein 1 (ZO-1)) dramatically increased. Meanwhile, the apoptosis and autophagy process were triggered through caspase-9 cascade and autophagy related 5 (ATG5)- autophagy related 12 (ATG12) conjugate. Besides, chronic deltamethrin exposure increased the amount of Proteobacteria and Verrucomicrobiota, while decreased Fusobacteriota abundance, resulting in intestinal microbiota function disorders. In summary, our results highlight that chronic exposure to deltamethrin cause serious intestinal toxicity and results in physiological changes and intestinal flora disturbances.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
38
|
Zhang C, Wang X, He J, Huang Y, Huang Q, Qin C, Qin J, Chen L. Neural excitotoxicity and the toxic mechanism induced by acute hypoxia in Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106131. [PMID: 35255275 DOI: 10.1016/j.aquatox.2022.106131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/05/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia can induce neural excitotoxicity in mammals, but this adverse effect has not been investigated in aquatic animals to date, especially in crustaceans. This study explored the induction effect and toxic mechanism of acute hypoxia stress (1.0 ± 0.1 mg dissolved oxygen /L) for 24 h on neural excitotoxicity in juvenile Chinese mitten crab, Eriocheir sinensis. The results showed that hemolymph glucose and serum lactic acid content were significantly increased, and the mRNA expression of crustacean hyperglycemic hormone and hypoxia-inducible factor 1α were significantly up-regulated in the hypoxia group compared with control. RNA-Seq results confirmed that acute hypoxia stress had a more significant impact on carbohydrate metabolism than lipid and protein metabolism. In addition, the TUNEL assay showed that the apoptosis rate of nerve cells was significantly higher in the hypoxia group than in the control, and similar trends were observed in the expression of apoptosis-related genes. RNA-Seq results also showed that acute hypoxia stress-induced neuronal apoptosis by regulating multiple apoptosis-related pathways. Moreover, free glutamate and GABA contents in the nerve tissue of thoracic ganglia were significantly higher in the hypoxia group than in the control group. Furthermore, the mRNA expression of NMDA related receptors was significantly up-regulated in the hypoxia group compared with the control. Similar trends were observed in the expression of calcium-dependent degrading enzymes and endogenous antioxidant-related proteins or enzymes. Meanwhile, the mRNA expression level of high-affinity neuronal glutamate transporter in the hypoxia group was significantly up-regulated compared with the control, whereas the vesicular glutamate transporter was significantly down-regulated. Furthermore, NMDA-R antagonists (MK-801 and Ro25-6981) injection showed that NMDA-R served as the bridge and core position of glutamate-induced neural neurotoxicity. This study provides a new perspective and theoretical guidance for exploring the regulation of hypoxic tolerance in E. sinensis.
Collapse
Affiliation(s)
- Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jiaqi He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qincheng Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
39
|
Tandem Mass Tagging-Based Quantitative Proteomics Analysis Reveals Damage to the Liver and Brain of Hypophthalmichthys molitrix Exposed to Acute Hypoxia and Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11030589. [PMID: 35326239 PMCID: PMC8945220 DOI: 10.3390/antiox11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aquaculture environments frequently experience hypoxia and subsequent reoxygenation conditions, which have significant effects on hypoxia-sensitive fish populations. In this study, hepatic biochemical activity indices in serum and the content of major neurotransmitters in the brain were altered markedly after acute hypoxia and reoxygenation exposure in silver carp (Hypophthalmichthys molitrix). Proteomics analysis of the liver showed that a number of immune-related and cytoskeletal organization-related proteins were downregulated, the ferroptosis pathway was activated, and several antioxidant molecules and detoxifying enzymes were upregulated. Proteomics analysis of the brain showed that somatostatin-1A (SST1A) was upregulated, dopamine-degrading enzyme catechol O methyltransferase (COMT) and ferritin, heavy subunit (FerH) were downregulated, and the levels of proteins involved in the nervous system were changed in different ways. In conclusion, these findings highlight that hypoxia–reoxygenation has potential adverse effects on growth, locomotion, immunity, and reproduction of silver carp, and represents a serious threat to liver and brain function, possibly via ferroptosis, oxidative stress, and cytoskeleton destruction in the liver, and abnormal expression of susceptibility genes for neurodegenerative disorders in the brain. Our present findings provide clues to the mechanisms of hypoxia and reoxygenation damage in the brain and liver of hypoxia-sensitive fish. They could also be used to develop methods to reduce hypoxia or reoxygenation injury to fish.
Collapse
|
40
|
Xin Y, Yang Z, Zhu Y, Li Y, Yu J, Zhong W, Chen Y, Lv X, Hu J, Lin J, Miao Y, Wang L. Hypoxia Induces Oxidative Injury and Apoptosis via Mediating the Nrf-2/Hippo Pathway in Blood Cells of Largemouth Bass (Micropterus salmoides). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating how aquatic animals respond to hypoxia brought about by changes in environmental temperature may be of great significance to avoid oxidative injury and maintain the quality of farmed fish in the background of global warming. Here, we investigated the effects of hypoxia on oxidative injury and environment-sensing pathway in blood cells of Micropterus salmoides. The total blood cell count (TBCC) and Giemsa staining showed that hypoxia could lead to damage of blood cells. Flow cytometry analysis confirmed that the apoptosis rate, Ca2+ level, NO production and ROS of blood cells were significantly increased under hypoxia stress. Environment-sensing pathways, such as Nrf2 pathway showed that hypoxia resulted in significant up-regulation of hiF-1 alpha subunit (Hif-1α), nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-1ike ECH- associated protein l (Keap1) expression. Meanwhile, the expression of Hippo pathway-related genes such as MOB kinase activator 1 (MOB1), large tumor suppressor homolog 1/2 (Lats1/2), yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ), protein phosphatase 2A (PP2A) were significantly increased in blood cells after hypoxia exposure. In addition, hypoxia stress also increased the expression of catalase (CAT) and glutathione peroxidase (GPx), but decreased the expression of superoxide dismutase (SOD). Consequently, our results suggested that hypoxia could induce oxidative injury and apoptosis via mediating environment-sensing pathway such as Nrf2/Hippo pathway in blood cells of M. salmoides.
Collapse
|
41
|
Wang P, Liu H, Zhao S, Yu S, Xie S, Hua S, Yan B, Xing C, Gao H. Hypoxia stress affects the physiological responses, apoptosis and innate immunity of Kuruma shrimp, Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 122:206-214. [PMID: 35158069 DOI: 10.1016/j.fsi.2022.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
For commercial aquatic animals, hypoxia phenomenon often occurs in live transport and aquaculture. In previous studies, much interest has been focused on antioxidant enzyme activities and could not present the complexities. The multifaceted responses, especially considering physiological indexes, histological structure, cell apoptosis, and immune pathways, are still unknown. In this study, we investigated the comprehensive hypoxic responses of Marsupenaeus japonicus. The results showed that the physiological indexes showed time-dependent changes upon hypoxia stress. Hypoxia stress led to significant tissue damage and cell apoptosis in the gill and hepatopancreas. Compared with the control group, the apoptosis index (AI) of the 12 h hypoxic treatment increased significantly (p < 0.05) in the gills and hepatopancreas. Comparative transcriptome analysis identified 900 and 1400 differentially expressed genes (DEGs) in the gill and hepatopancreas, respectively. Several DEGs were related to the lysosome, glycolysis/gluconeogenesis, citrate cycle, and apoptosis, and seven of them were validated using quantitative real-time PCR. This study provided valuable clues to understanding the mechanisms underlying the hypoxic responses of M. japonicus.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Sizhe Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shihao Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shumin Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Songsong Hua
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| | - Chaofan Xing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China.
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China.
| |
Collapse
|
42
|
Hu Z, Feng J, Song H, Zhou C, Yang MJ, Shi P, Yu ZL, Guo YJ, Li YR, Zhang T. Metabolic response of Mercenaria mercenaria under heat and hypoxia stress by widely targeted metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151172. [PMID: 34710412 DOI: 10.1016/j.scitotenv.2021.151172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In the context of global climatic changes, marine organisms have been exposed to environmental stressors including heat and hypoxia. This calls for the design of multi-stressors to uncover the impact of oceanic factors on aquatic organisms. So far, little is known about the metabolic response of marine organisms, especially bivalves, to the combined effects of heat and hypoxia. In this study, we employed widely targeted metabolomic analysis to study the metabolic response of gills in hard clam, a heat- and hypoxia-tolerant bivalve. A total of 810 metabolites were identified. Results showed that the heat group (HT) and heat plus hypoxia group (HL) had a higher number of differential metabolites than the hypoxia group (LO). Glycolysis was affected by the heat and heat plus hypoxia stress. Moreover, anaerobic metabolic biomarkers were accumulated marking the onset of anaerobic metabolism. Environmental stresses may affect Tricarboxylic acid (TCA) cycle. Accumulation of carnitine and glycerophospholipid may promote fatty acid β oxidation and maintain cell membrane stability, respectively. The high content of oxidized lipids (i.e., Leukotriene) in HL and HT groups implied that the organisms were under ROS stress. The significantly differential metabolites of organic osmolytes and vitamins might relieve ROS stress. Moreover, accumulation of thermoprotective osmolytes (monosaccharide, Trimethylamine N-oxide (TMAO)) accumulation was helpful to maintain protein homeostasis. This investigation provided new insights into the adaptation mechanisms of hard clam to heat, hypoxia and combined stress at the metabolite level and highlighted the roles of molecules and protectants.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Lin Yu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
43
|
Molecular Characterization and Response of Prolyl Hydroxylase Domain (PHD) Genes to Hypoxia Stress in Hypophthalmichthys molitrix. Animals (Basel) 2022; 12:ani12020131. [PMID: 35049755 PMCID: PMC8772553 DOI: 10.3390/ani12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hypoxia is a common challenge for aquatic organisms, and prolyl hydroxylase domain (PHD) proteins play important roles in hypoxic adaptation by regulating the stability of the hypoxia-inducible factor 1 alpha subunit (HIF-1α). In this study, the full-length cDNAs of three PHD genes were obtained from Hypophthalmichthys molitrix, which is an important freshwater fish and sensitive to low oxygen tension. The amino acid sequence analysis and phylogenetic analysis of PHDs were performed among various species. Furthermore, the expression patterns and the transcriptional responses of H. molitrix PHD genes to acute hypoxia, continued hypoxia, and reoxygenation were explored in different tissues. Our study preliminarily explored the physiological regulation functions of PHD genes at the transcriptional level when addressing the hypoxic challenge and provided a foundation for future systematic explorations of the molecular mechanisms underlying hypoxia adaptation in silver carp. Abstract As an economically and ecologically important freshwater fish, silver carp (Hypophthalmichthys molitrix) is sensitive to low oxygen tension. Prolyl hydroxylase domain (PHD) proteins are critical regulators of adaptive responses to hypoxia for their function of regulating the hypoxia inducible factor-1 alpha subunit (HIF-1α) stability via hydroxylation reaction. In the present study, three PHD genes were cloned from H. molitrix by rapid amplification of cDNA ends (RACE). The total length of HmPHD1, HmPHD2, and HmPHD3 were 2981, 1954, and 1847 base pair (bp), and contained 1449, 1080, and 738 bp open reading frames (ORFs) that encoded 482, 359, and 245 amino acids (aa), respectively. Amino acid sequence analysis showed that HmPHD1, HmPHD2, and HmPHD3 had the conserved prolyl 4-hydroxylase alpha subunit homolog domains at their C-termini. Meanwhile, the evaluation of phylogeny revealed PHD2 and PHD3 of H. molitrix were more closely related as they belonged to sister clades, whereas the clade of PHD1 was relatively distant from these two. The transcripts of PHD genes are ubiquitously distributed in H. molitrix tissues, with the highest expressional level of HmPHD1 and HmPHD3 in liver, and HmPHD2 in muscle. After acute hypoxic treatment for 0.5 h, PHD genes of H. molitrix were induced mainly in liver and brain, and different from HmPHD1 and HmPHD2, the expression of HmPHD3 showed no overt tissue specificity. Furthermore, under continued hypoxic condition, PHD genes exhibited an obviously rapid but gradually attenuated response from 3 h to 24 h, and upon reoxygenation, the transcriptional expression of PHD genes showed a decreasing trend in most of the tissues. These results indicate that the PHD genes of H. molitrix are involved in the early response to hypoxic stress, and they show tissue-specific transcript expression when performing physiological regulation functions. This study is of great relevance for advancing our understanding of how PHD genes are regulated when addressing the hypoxic challenge and provides a reference for the subsequent research of the molecular mechanisms underlying hypoxia adaptation in silver carp.
Collapse
|
44
|
He Y, Wang Q, Li J, Li Z. Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:526-535. [PMID: 34953999 DOI: 10.1016/j.fsi.2021.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Lower pH gives rise to a harmful stress to crustacean. Here, we analyzed the proteomic response of Fenneropenaeus chinensis from control pH (pH value 8.2) and low pH (pH value 6.5) - treated groups by employing absolute quantitation-based quantitative proteomic (iTRAQ) analysis. Among the identified proteins, a total of 76 proteins differed in their abundance levels, including 45 upregulated and 31 downregulated proteins. The up-regulation of proteins like citrate synthase, cytochrome c oxidase, V-type proton ATPase, glyceraldehyde-3-phosphate dehydrogenase and fructose 1,6-bisphosphate-aldolase as well as the enrichment of the DEPs in multiple metabolic processes and pathways illustrated that increased energy and substrates metabolism was essential for F. chinensis to counteract low pH stress. Ion transporting related proteins, such as Na+/K+/2Cl- cotransporter and calmodulin, participated in the homeostatic maintenance of pH in F. chinensis. There were significant downregulation expressions of lectin, lipopolysaccharide- and beta-1,3-glucan binding protein, chitinase, cathepsin L and beta-glucuronidase, which indicating the immune dysfunction of F. chinensis when exposure to low pH condition. These findings can extend our understanding on the defensive mechanisms of the low pH stress and accelerate the breeding process of low pH tolerance in F. chinensis.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Qiong Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
45
|
Sun JL, Jiang T, Gu Y, Song FB, Wen X, Luo J. Differential immune and metabolic responses underlie differences in the resistance of Siganus oramin and Trachinotus blochii to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:166-179. [PMID: 34798286 DOI: 10.1016/j.fsi.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have demonstrated that Cryptocaryon irritans can efficiently propagate in golden pompano (Trachinotus blochii), especially under intensive high-density culture, which can lead to large-scale infection, bacterial invasion, and major economic losses. By contrast, Siganus oramin is less susceptible to C. irritans infection. Here, we artificially infected S. oramin and T. blochii with C. irritans. We then used RNA-seq to characterize the expression of genes in the gills of S. oramin and T. blochii at different times after infection, conducted bioinformatics analysis of relevant pathways, and compared the differentially expressed genes in the two species. The aim of this study was to enhance our understanding of host-parasite interactions to aid the development of effective prevention and treatment strategies for C. irritans. Infection with C. irritans induced the differential expression of a large number of genes in the gills of S. oramin, indicating that S. oramin may respond to C. irritans infection by modifying the expression of genes at the transcriptional level. Our research showed that the Toll-like receptor signaling pathway, Antigen processing and presentation, Complement and coagulation cascades, and Cytosolic DNA-sensing pathway are involved in the immune response of S. oramin and T. blochii to C. irritans infection. However, T. blochii has a weak ability to mobilize neutrophils to participate in defense against C. irritans infection and differs from S. oramin in its ability to induce specific immune responses. Because of gill tissue damage during infection, dissolved oxygen intake is reduced, which increases physiological and metabolic stress. The metabolic pathways of S. oramin and T. blochii significantly differed; specifically, the main pathways in S. oramin were related to glucose and lipid metabolism, and the main pathways in T. blochii were related to amino acid metabolism. This may reduce the efficiency of ATP biosynthesis in T. blochii and result in dysfunctional energy metabolism. Therefore, differential immune and metabolic responses underlie differences in the resistance of S. oramin and T. blochii to C. irritans.
Collapse
Affiliation(s)
- Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| |
Collapse
|
46
|
Gu J, Liang H, Ge X, Xia D, Pan L, Mi H, Ren M. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:214-221. [PMID: 34843945 DOI: 10.1016/j.fsi.2021.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.1% (22.2%), 12.2% (33.3%), 16.3% (44.4%), 20.4% (55.5%), and 24.5% (66.6%), designated TM0, TM11, TM22, TM33, TM44, TM55, and TM66, respectively). 420 fish were randomly selected and placed in 21 cages (1 m*1 m*1 m, 7 treatments for triplicate, 20 fish per cage). Fish (initial weight 6.25 ± 0.03 g) were fed seven isonitrogenous (47%) and isocaloric (19 MJ kg-1) diets to satiety twice daily for 8 weeks. Compared to the control group (TM0), TM11 showed no significant difference in the weight gain rate (WGR), specific growth rate (SGR) or feed conversion ratio (FCR), while all other TM inclusion groups presented different degrees of decline. There was no significant difference in the whole-body composition among all groups (P > 0.05). Plasma total protein (TP), triglyceride (TG) and albumin (ALB) contents were significantly decreased in TM55 and TM66 (P < 0.05). The highest plasma aspartate transaminase (AST) activity was observed in TM66 (P < 0.05). TM33, TM44 and TM55 showed the lowest activities of plasma alanine amiotransferase (ALT) and alkaline phosphatase (ALP) (P < 0.05). Moreover, increased mRNA levels of superoxide dismutase (SOD) and catalase (CAT) were measured in the TM11 to TM55 groups, while intestinal SOD activity peaked in TM11 (P < 0.05). With the exception of TM11, the other TM inclusion groups showed significant inhibition of the relative expression of RelA, C3 and TNF-α (P < 0.05). All experimental groups exhibited lower expression of IL-10 than TM0 (P < 0.05). The TM11 group showed significantly upregulated expression of IL-1β and TGF-β (P < 0.05). In addition, TLR2 expression was increased in TM11 and TM22 (P < 0.05). Considering enzyme activities and immune-related gene expression, TM supplementation levels should not exceed 4% (TM11).
Collapse
Affiliation(s)
- Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Dong Xia
- Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Liangkun Pan
- Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Haifeng Mi
- Tongwei Co., Ltd.; Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
47
|
Liu Y, Jiang T, Chen Y, Gu Y, Song F, Sun J, Luo J. Identification of Candidate Genes Associated With Hypoxia Tolerance in Trachinotus blochii Using Bulked Segregant Analysis and RNA-Seq. Front Genet 2022; 12:811685. [PMID: 34970306 PMCID: PMC8712738 DOI: 10.3389/fgene.2021.811685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Golden Pompano (Trachinotus blochii) has rapidly developed into the one of the main valuable fish species in Chinese marine aquaculture. Due to its rapid growth, active metabolism, and high oxygen consumption, hypoxia will increase its mortality and cause serious economic losses. We constructed two experimental groups of fish with different degrees of tolerance to hypoxia, used BSR-Seq analysis based on genome and genetic linkage groups to locate SNPs and genes that were related to the differences in hypoxia tolerance. The results showed that hypoxia tolerance SNPs of golden pompano may be jointly determined by multiple linkage groups, especially linkage groups 18 and 22. There were 768 and 348 candidate genes located in the candidate regions of the brain and liver, respectively. These genes were mainly involved in anaerobic energy metabolism, stress response, immune response, waste discharge, and cell death. The prostaglandin-endoperoxide synthase 2 (PTGS2) on LG8, which is involved in the metabolism of arachidonic acid, has a G/A nonsynonymous mutation at position 20641628, and the encoded amino acid was changed from hydrophobic aspartic acid to asparaginate. The specific pathway of the RIG-I-like receptor signaling pathway in the liver may mediate the metabolic system and the immune system, linking glucose metabolism with immune regulation. The death of the hypoxia-intolerant group may be due to the accumulation of lactic acid caused by the activation of anaerobic glycolysis during the early stage of hypoxia stress, and the activation of type I interferon was inhibited, which resulted in decreased immunity. Among the genes involved in the RIG-I-like receptor signaling pathway, the CYLD Lysine 63 Deubiquitinase (CYLD) located on LG16 had a G/T nonsynonymous mutation at position 13629651, and the encoded amino acid was changed from alanine acid to valine. The interferon induced with helicase C domain 1 (Ifih1) located on LG18 has a G/C nonsynonymous mutation at position 16153700, and the encoded hydrophilic glycine was changed to hydrophobic alanine. Our findings suggest these SNPs may assist in the molecular breeding of hypoxia-tolerant golden pompano, and speculate that the balance of glucose and lipid metabolism plays a key role in Trachinotus blochii under acute hypoxia.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Youming Chen
- Hainan Blue Granary Technology Co., Ltd, Sanya, China
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, China
| |
Collapse
|
48
|
de Assis Porto L, Melo RMC, Beier SL, Luz RK, Favero GC. Lophiosilurus alexandri, a sedentary bottom fish, adjusts its physiological parameters to survive in hypoxia condition. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1793-1804. [PMID: 34519883 DOI: 10.1007/s10695-021-00996-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
We investigated blood gas, hematological and biochemical parameters, and gill morphology of Lophiosilurus alexandri juveniles submitted to hypoxia for 48 h, followed by recovery for 48 h. A total of 48 juveniles (360.0 ± 141.6 g) were distributed among eight tanks (120 L) and subjected to hypoxia condition (water with dissolved oxygen at 2.12 ± 0.90 mg L-1) or normoxia (at 5.60 ± 0.31 mg L-1). Blood gas values (pH, PvCO2, PvO2, sO2, HCO3-, stHCO3-, and base excess) in hypoxia were significantly different from normoxia, while for lactate and the electrolytes (K+, Na+, Cl-, and Ca2+) there was no significant change among treatments. The erythrocytes differed significantly between normoxia and hypoxia at 72 h (24 h of recovery), while for hemoglobin and hematocrit there were no significant differences. There was a significant difference in glucose, triglycerides, and cholesterol for both normoxia and hypoxia, while plasma protein remained unchanged. All gill components (epithelial cells, erythrocytes, pillar cells, mucous cells, ionocytes, undifferentiated cells, and blood capillary lumen) differed significantly between normoxia and hypoxia. A reduction in the length of the primary lamella was observed in the hypoxia and recovery treatments, when compared to normoxia. The secondary branchial lamella showed no significant difference for both treatments. Juveniles of Lophiosilurus alexandri adapted well to hypoxia for 48 h, as they were able to adjust most of their physiological variables to survive this stress condition. After 48 h of hypoxia recovery, fish showed parameters similar to animals in normoxia. Thus, the present study shows that the tolerance to hypoxia conditions of L. alexandri, together with other important beneficial characteristics of the species, such as the high meat quality and high commercial value, demonstrates its great potential for production among regional species.
Collapse
Affiliation(s)
- Livia de Assis Porto
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, C.P. 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, C.P. 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Suzane Lilian Beier
- Departamento de Clínica E Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, C.P. 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ronald Kennedy Luz
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, C.P. 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Cristina Favero
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, C.P. 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
- Laboratório de Aquacultura, Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos, 6627, CP 567, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
49
|
Zhang L, Li X, Yu Y, Zhang L, Dong L, Gan J, Mao T, Liu T, Peng J, He L. Comparative analyses of liver transcriptomes reveal the effect of exercise on growth-, glucose metabolism-, and oxygen transport-related genes and signaling pathways in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111081. [PMID: 34536566 DOI: 10.1016/j.cbpa.2021.111081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Grass carp is one of the most common farmed fish and its growth rate has been the focus of various studies. However, the impact of long-term exercise on growth rate of juvenile grass carp has not been clearly established. In this study, a four-month exercise trial and liver transcriptome analysis were performed to investigate changes in growth, liver molecular regulatory network and key genes in grass carp. When compared to the non-exercised grass carp (N-EXF), the exercised grass carp (EXF) showed a significant improvement in growth. Liver transcriptome analysis revealed 1714 significantly up-regulated and 1672 significantly down-regulated genes. These genes were enriched in various signaling pathways. These pathways included: those associated with growth, such as the PI3K-Akt and mTOR signaling pathways; those associated with glucose metabolism, such as glycolysis/gluconeogenesis, insulin and AMPK signaling pathways as well as those associated with oxygen transport, such as HIF-1, PI3K-Akt, PPAR and MAPK signaling pathways. In addition, growth-associated genes, such as ghr, igf1 and igf1r; glucose metabolism-associated genes, such as ins and insr as well as oxygen transport-associated genes, such as vhl, pdha and epo were identified. In conclusion, long-term moderate exercise improved the growth rate of grass carp. Our findings elucidate on changes in the liver molecular regulatory network and functional genes that occur during moderate exercise in fish.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Tao Mao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Jie Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
50
|
Saito K, Okada Y, Torimoto K, Takamatsu Y, Tanaka Y. Blood glucose dynamics during sleep in patients with obstructive sleep apnea and normal glucose tolerance: effects of CPAP therapy. Sleep Breath 2021; 26:771-781. [PMID: 34382134 PMCID: PMC9130196 DOI: 10.1007/s11325-021-02442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Purpose Glycemic variability (GV) and hypoglycemia during nighttime are presumed to be associated with fatal bradycardia. The aim of this prospective study was to evaluate blood glucose dynamics during sleep in patients with obstructive sleep apnea syndrome (OSA) and normal glucose tolerance. Methods Patients with OSA and no diabetes who underwent type 1 overnight polysomnography from December 2018 to May 2020 participated in this study. GV was evaluated in all participants for 14 days using a flash glucose monitoring device. Correlations were examined between GV indexes and indexes related to sleep breathing disorders, the effects of treatment with continuous positive airway pressure (CPAP) on these GV indexes, and the characteristics of glucose dynamics in different OSA subtypes classified by sleep stage. Results Among 42 patients with OSA and no diabetes, the standard deviation of GV during sleep correlated significantly with sleep time spent with oxygen saturation <90% (r=0.591, p=0.008). High blood glucose index during sleep correlated significantly with stage N1% (r=0.491, p=0.032) and negatively with stage N2% (r=−0.479, p=0.038). High blood glucose index correlated significantly with sleep time spent with oxygen saturation <90% (r=0.640, p=0.003). The rapid eye movement–related OSA group had a higher incidence of hypoglycemia. One-week with CPAP treatment significantly improved GV during sleep, standard deviation of GV (from 12.1 to 9.0 mg/dL, p<0.001), and high blood glucose index (from 0.7 to 0.4, p=0.006). Conclusions To evaluate GV during sleep in patients with OSA may be useful for clinical risk management. CPAP treatment for 1 week may have an improving GV and high blood glucose index. Clinical trial registration UMIN000038489 2019/11/04, UMIN 000025433 2016/12/27 Supplementary Information The online version contains supplementary material available at 10.1007/s11325-021-02442-9.
Collapse
Affiliation(s)
- Kimimasa Saito
- Saito Naika Kokyukika, Mie Sleep Clinic, 446 Sogo, Obata-chyo, Ise-shi, Mie, 519-0502, Japan.
| | - Yosuke Okada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushyu-shi, 807-8555, Japan
| | - Keiichi Torimoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushyu-shi, 807-8555, Japan
| | - Yoko Takamatsu
- Saito Naika Kokyukika, Mie Sleep Clinic, 446 Sogo, Obata-chyo, Ise-shi, Mie, 519-0502, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushyu-shi, 807-8555, Japan
| |
Collapse
|