1
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Khurana P, Shu X, Kaur G, Pulicharla R, Kumar P, Brar SK. Long-chain perfluoro carboxylic acids in landfill leachate: Extraction, detection and biodegradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123518. [PMID: 39673845 DOI: 10.1016/j.jenvman.2024.123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Landfills serve as major repositories for products containing per- and polyfluoroalkyl substances (PFASs). These compounds have been documented in the resulting leachate, posing a significant threat to both surface water and groundwater quality. Long-chain perfluoro carboxylic acids (LC-PFCAs), which act as precursors to shorter-chain PFCAs, are particularly persistent in the environment. Despite this, data on LC-PFCA's occurrence in landfill leachate is limited, highlighting the need for thorough monitoring and control efforts. This study focuses on the extraction of LC-PFCA using solid-phase extraction (SPE), detection by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their biodegradation using an autochthonous bacterial community of landfill leachate based on the hypothesis that native bacteria can consume these pollutants. The findings of the study indicate that SPE efficiency and PFCA recovery rates were higher in diluted leachate samples. LC-MS/MS exhibited superior sensitivity and accuracy compared to direct MS injection, with lower detection limits. Throughout the sampling period, perfluoro nonanoic acid (PFNA) and perfluoro decanoic acid (PFDA), were detected in concentrations ranging from 30 to 640 ng/L and 40-510 ng/L, respectively. Further, the native microbial community degraded spiked PFNA and PFDA (1, 10, and 100 mg/L), with efficiencies of 35.26 ± 5.47% and 53.38 ± 6.54%, respectively, and Aeromonas, Proteus, Moheibacter, Pseudochrobactrum, Providencia and Pseudomonas were identified as the most promising genus to degrade LC-PFCAs. Overall, these findings of the study highlight the significance of robust analytical methods for LC-PFCA detection and reveals the promising prospects for PFNA and PFDA biodegradation by pre-existing bacterial communities.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Xuhan Shu
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Gurpreet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Pratik Kumar
- Department of Civil Engineering, Indian Institute of Technology Jammu, India
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada.
| |
Collapse
|
3
|
Sabba F, Kassar C, Zeng T, Mallick SP, Downing L, McNamara P. PFAS in landfill leachate: Practical considerations for treatment and characterization. JOURNAL OF HAZARDOUS MATERIALS 2024:136685. [PMID: 39674787 DOI: 10.1016/j.jhazmat.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS. The purpose of this review is to understand the most appropriate treatment technology combinations for mitigating PFAS in landfill leachate. The first objective is to understand the unique chemical characteristics of landfill leachate. The second objective is to establish the role and importance of known and emerging analytical techniques for PFAS characterization in leachate, including quantification of precursor compounds. Next, an overview of technologies that concentrate PFAS and technologies that destroy PFAS is provided, including fundamental background content and key operating parameters. Finally, practical considerations for PFAS treatment technologies are reviewed, and recommendations for PFAS treatment trains are described. Both pros and cons of treatment trains are noted. In summary, the complex matrix of leachate requires a separation treatment step first, such as foam fractionation, for example, to concentrate the PFAS into a lower-volume stream. Then, a degradation treatment step can be applied to the concentrated PFAS stream.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Christian Kassar
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Synthia P Mallick
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Patrick McNamara
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| |
Collapse
|
4
|
Arp HPH, Gredelj A, Glüge J, Scheringer M, Cousins IT. The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19925-19935. [PMID: 39475534 PMCID: PMC11562725 DOI: 10.1021/acs.est.4c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
Trifluoroacetic acid (TFA) is a persistent and mobile substance that has been increasing in concentration within diverse environmental media, including rain, soils, human serum, plants, plant-based foods, and drinking water. Currently, TFA concentrations are orders of magnitude higher than those of other per- and polyfluoroalkyl substances (PFAS). This accumulation is due to many PFAS having TFA as a transformation product, including several fluorinated gases (F-gases), pesticides, pharmaceuticals, and industrial chemicals, in addition to direct release of industrially produced TFA. Due to TFA's extreme persistence and ongoing emissions, concentrations are increasing irreversibly. What remains less clear are the thresholds where irreversible effects on local or global scales occur. There are indications from mammalian toxicity studies that TFA is toxic to reproduction and that it exhibits liver toxicity. Ecotoxicity data are scarce, with most data being for aquatic systems; fewer data are available for terrestrial plants, where TFA bioaccumulates most readily. Collectively, these trends imply that TFA meets the criteria of a planetary boundary threat for novel entities because of increasing planetary-scale exposure, where potential irreversible disruptive impacts on vital earth system processes could occur. The rational response to this is to instigate binding actions to reduce the emissions of TFA and its many precursors.
Collapse
Affiliation(s)
- Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), 0484, Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491, Trondheim, Norway
| | - Andrea Gredelj
- Norwegian
Geotechnical Institute (NGI), 0484, Oslo, Norway
| | - Juliane Glüge
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk
University, 625 00 Brno, Czech
Republic
| | - Ian T. Cousins
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Wang X, Huang X, Zhi Y, Liu X, Wang Q, Yue D, Wang X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135658. [PMID: 39226686 DOI: 10.1016/j.jhazmat.2024.135658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingyao Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Liu Z, Liu J, Zhu P, Ma Y. Interaction and coexistence characteristics of dissolved organic matter and toxic metals with per- and polyfluoroalkyl substances in landfill leachate. ENVIRONMENTAL RESEARCH 2024; 260:119680. [PMID: 39059619 DOI: 10.1016/j.envres.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Landfill leachate-containing per- and polyfluoroalkyl substances (PFAS) is both an important 'sink' and a 'source' of secondary pollution, posing serious threaten to surrounding environments. To date, the pollution characteristics of PFAS in landfill leachate, and the coexistence and interaction between PFAS and other leachate contaminants, such as dissolved organic matter (DOM) and toxic metals remains unclear. Herein, our results showed that 17 target PFAS, with concentrations ranged from 1804 to 43309 ng/L, were detected in landfill leachates. The main PFAS were short-chain and even-chain substances represented by perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS). Leachate derived DOM is mainly composed of protein-like and humic-like substance, among which the total contribution of protein-like substance is as high as 73.7%. Correlation analysis results showed that the distribution of PFAS was strongly correlated with the substituted functional groups (e.g., carboxyl and hydroxyl) on the aromatic ring of humic-like substance (C2 and E253/E203) and autochthonous metabolism by microbial activities (FI). Furthermore, Mn element showed a significantly strong correlation with PFAS. Both organic and inorganic substances positively correlated with toxic metals. Our findings are helpful to understand the environmental fate of PFAS, and contribute to decision-making regarding DOM, toxic metals, and PFAS management in landfill.
Collapse
Affiliation(s)
- Zhenhai Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Jiameng Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Panpan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
7
|
Zhao M, Yao Y, Dong X, Fang B, Wang Z, Chen H, Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. WATER RESEARCH 2024; 268:122667. [PMID: 39509771 DOI: 10.1016/j.watres.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used across various industries, leading to their prevalent occurrence in sludges generated by wastewater treatment plants (WWTPs). Consequently, industrial sludges serve as typical reservoirs for PFAS. This study examined 46 target PFAS in sludge samples intended for brick production from nine WWTPs in North China, identifying emerging PFAS and categorizing their behaviors through high-resolution mass spectrometry (HRMS) screening and total oxidizable precursor (TOP) assay. Forty-one PFAS were detected, with trifluoroacetic acid (TFA), perfluorooctane sulfonic acid, and hexafluoropropylene oxide dimer acid being the most prevalent. Twenty-nine emerging PFAS were identified, and their behaviors were categorized using TOP assay. Notably, four CF3-containing PFAS were identified, all confirmed as precursors of TFA, with a molar yield of 16.4 %-25.6 % in Milli-Q water during TOP assay validation. These findings indicate that the transformation of these precursors during sludge recycling may substantially contribute to TFA release, underscoring potential risks associated with secondary PFAS release during sludge resource utilization.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Baqar M, Zhao M, Saleem R, Cheng Z, Fang B, Dong X, Chen H, Yao Y, Sun H. Identification of Emerging Per- and Polyfluoroalkyl Substances (PFAS) in E-waste Recycling Practices and New Precursors for Trifluoroacetic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16153-16163. [PMID: 39178241 DOI: 10.1021/acs.est.4c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rimsha Saleem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Qiao B, Chen H, Song D, Yu H, Baqar M, Li X, Zhao L, Yao Y, Sun H. Multimedia distribution and release characteristics of emerging PFAS in wastewater treatment plants in Tianjin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134879. [PMID: 38876021 DOI: 10.1016/j.jhazmat.2024.134879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of ƩPFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of ƩPFAS) and sludge (up to 4690 ng/g, 95 % of ƩPFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported. The emerging substitute p-perfluorous nonenoxybenzenesulfonate (OBS) and AFFF-related cationic and zwitterionic PFAS show a stronger tendency to partition into particle phase in air and wastewater than perfluorooctane sulfonic acid (PFOS). The estimated total PFAS emissions from the effluent and sludge of WWTP A were 202 kg/y and 351 kg/y, respectively. While the target PFAS only accounted for 20-33 % of the total emissions, suggesting a significant underestimation of environmental releases of the nontarget PFAS and unknown perfluoroalkyl acid precursors through the wastewater and sludge disposal. Overall, this study highlights the importance of comprehensive monitoring and understanding the behavior of legacy and emerging PFAS in wastewater systems, and fills a critical gap in our understanding of PFAS exposure.
Collapse
Affiliation(s)
- Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Rekik H, Arab H, Pichon L, El Khakani MA, Drogui P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. CHEMOSPHERE 2024; 358:142044. [PMID: 38648982 DOI: 10.1016/j.chemosphere.2024.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada.
| |
Collapse
|
11
|
Mehdi Q, Griffin EK, Esplugas J, Gelsleichter J, Galloway AS, Frazier BS, Timshina AS, Grubbs RD, Correia K, Camacho CG, Bowden JA. Species-specific profiles of per- and polyfluoroalkyl substances (PFAS) in small coastal sharks along the South Atlantic Bight of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171758. [PMID: 38521272 DOI: 10.1016/j.scitotenv.2024.171758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have gained widespread commercial use across the globe in various industrial and consumer products, such as textiles, firefighting foams, and surface coating materials. Studies have shown that PFAS exhibit a strong tendency to accumulate within aquatic food webs, primarily due to their high bioaccumulation potential and resistance to degradation. Despite such concerns, their impact on marine predators like sharks remains underexplored. This study aimed to investigate the presence of 34 PFAS in the plasma (n = 315) of four small coastal sharks inhabiting the South Atlantic Bight of the United States (U.S). Among the sharks studied, bonnetheads (Sphyrna tiburo) had the highest ∑PFAS concentration (3031 ± 1674 pg g - 1 plasma, n = 103), followed by the Atlantic sharpnose shark (Rhizoprionodon terraenovae, 2407 ± 969 pg g - 1, n = 101), blacknose shark (Carcharhinus acronotus, 1713 ± 662 pg g - 1, n = 83) and finetooth shark (Carcharhinus isodon, 1431 ± 891 pg g - 1, n = 28). Despite declines in the manufacturing of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the long-chain (C8 - C13) perfluoroalkyl acids (PFAAs) were frequently detected, with PFOS, perfluorodecanoic acid (PFDA), and perfluorotridecanoic acid (PFTrDA) present as the most dominant PFAS. Furthermore, males exhibited significantly higher ∑PFAS concentrations than females in bonnetheads (p < 0.01), suggesting possible sex-specific PFAS accumulation or maternal offloading in some species. The results of this study underscore the urgency for more extensive biomonitoring of PFAS in aquatic/marine environments to obtain a comprehensive understanding of the impact and fate of these emerging pollutants on marine fauna.
Collapse
Affiliation(s)
- Qaim Mehdi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juliette Esplugas
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jim Gelsleichter
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Ashley S Galloway
- South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Alina S Timshina
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - R Dean Grubbs
- Coastal and Marine Laboratory, Florida State University 3618 Highway 98, St. Teresa, FL 32358, USA
| | - Keyla Correia
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Camden G Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Mikhael E, Bouazza A, Gates WP, Gibbs D. Are Geotextiles Silent Contributors of Ultrashort Chain PFASs to the Environment? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8867-8877. [PMID: 38733414 DOI: 10.1021/acs.est.2c08987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
We investigated the presence of per- and poly fluoroalkyl substances (PFASs) in woven and nonwoven polypropylene geotextiles and four nonwoven polyester geotextiles commonly used in modern geosynthetic composite lining systems for waste containment facilities such as landfills. Targeted analysis for 23 environmentally significant PFAS molecules and methods for examining "PFAS total" concentrations were utilized to assess their occurrence in geotextiles. This analysis showed that most geotextile specimens evaluated in the current investigation contained the ultrashort chain PFAS compound pentafluoropropionic acid (PFPrA). While the concentrations ranged from nondetectable to 10.84 μg/g, the average measured concentrations of PFPrA were higher in polypropylene than in polyester geotextiles. "PFAS total" parameters comprising total fluorine (TF) and total oxidizable precursors (TOPs) indicate that no significant precursor mass nor untargeted intermediates were present in geotextiles. Therefore, this study identified geotextiles as a possible source of ultrashort PFASs in engineered lined waste containment facilities, which may contribute to the overall PFAS total concentrations in leachates or liquors they are in contact with. The findings reported for the first time herein may lead to further implications on the fate and migration of PFASs in geosynthetic composite liners, as previously unidentified concentrations, particularly of ultrashort-chain PFASs, may impact the extent of PFAS migration through and attenuation by constituents of geosynthetic composite liner systems. Given the widespread use of geotextiles in various engineering activities, these findings may have other unknown impacts. The significance of these findings needs to be further elucidated by more extensive studies with larger geotextile sample sizes to allow broader, generalized conclusions to be drawn.
Collapse
Affiliation(s)
- Elissar Mikhael
- Department of Civil Engineering, Monash University, 23 College Walk, Melbourne, Victoria 3800, Australia
| | - Abdelmalek Bouazza
- Department of Civil Engineering, Monash University, 23 College Walk, Melbourne, Victoria 3800, Australia
| | - Will P Gates
- Institute for Frontier Materials, Deakin University, Melbourne-Burwood Campus, 221 Burwood Highway, Melbourne, Victoria 3125, Australia
| | - Daniel Gibbs
- Research and Innovation, Geofabrics, 11 Production Avenue, Molendinar, Queensland 4214, Australia
| |
Collapse
|
13
|
Björklund S, Weidemann E, Jansson S. Distribution of Per- and Polyfluoroalkyl Substances (PFASs) in a Waste-to-Energy Plant─Tracking PFASs in Internal Residual Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8457-8463. [PMID: 38685907 PMCID: PMC11097385 DOI: 10.1021/acs.est.3c10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) constitute a diverse group of man-made chemicals characterized by their water- and oil-repellent properties and persistency. Given their widespread use in consumer products, PFASs will inevitably be present in waste streams sent to Waste-to-Energy (WtE) plants. We have previously observed a subset of PFASs in residual streams (ashes, treated process water, and flue gas) from a WtE plant. However, the transport and distribution of PFASs inside the WtE plant have remained unaddressed. This study is part of a comprehensive investigation to create a synoptic overview of the distribution of PFASs in WtE residues. PFASs were found in all sample types except for boiler ash. The total levels of 18 individual PFASs (Σ18PFASs) in untreated flue gas ranged from 5.2 to 9.5 ng m-3, decreasing with 35% ± 10% after wet flue gas treatment. Σ18PFASs in the condensate ranged from 46 to 50 ng L-1, of which perfluorohexanoic acid (PFHxA) made up 90% on a ng L-1 basis. PFHxA was also dominant in filter ash, where Σ18PFASs ranged from 0.28 to 0.79 ng g-1. This study shows that flue gas treatment can capture some PFASs and transfer them into WtE residues.
Collapse
Affiliation(s)
- Sofie Björklund
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
- Industrial
Doctoral School, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Weidemann
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stina Jansson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
14
|
Lily M, Lv X, Chandra AK, Tsona Tchinda N, Du L. New insights into the mechanism and kinetics of the addition reaction of unsaturated Criegee intermediates to CF 3COOH and tropospheric implications. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:751-764. [PMID: 38465670 DOI: 10.1039/d3em00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this work, we have investigated the mechanism, thermochemistry and kinetics of the reaction of syn-cis-CH2RzCRyCO+O- (where Rz, Ry = H, CH3-) unsaturated Criegee intermediates (CIs) with CF3COOH using quantum chemical methods. The rate coefficients for the barrierless reactions were calculated using variable reaction coordinate variational transition state theory (VRC-VTST). For the syn-cis-CH2RzCRyCO+O- conformation in which conjugated CC and CO double bonds are aligned with each other, we propose a new pathway for the unidirectional addition of an OC-OH molecule (CF3COOH) to the CC double bond of syn-cis-CH2RzCRyCO+O-. The rate coefficient for the 1,4-CC addition reaction at 298 K is ∼10-10 to 10-11 cm3 s-1, resulting in the formation of CF3C(O)OCH2CRzRyCOOH trifluoroacetate alkyl allyl hydroperoxide (TFAAAH) as a new transitory adduct. It can act as a precursor for the formation of secondary organic aerosols (SOAs). This novel TFAAAH hydroperoxide was identified through a detailed quantum chemical study of the 1,4-addition mechanism and will provide new insights into the significance of the 1,4-addition reaction of unsaturated Cls with trace tropospheric gases on -CRzCH2 vinyl carbon atoms.
Collapse
Affiliation(s)
- Makroni Lily
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Xiaofan Lv
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Asit K Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| | | | - Lin Du
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
15
|
Li J, Sha H, Liu W, Yuan Y, Zhu G, Meng F, Xi B, Tan W. Transport of per-/polyfluoroalkyl substances from leachate to groundwater as affected by dissolved organic matter in landfills. ENVIRONMENTAL RESEARCH 2024; 247:118230. [PMID: 38237756 DOI: 10.1016/j.envres.2024.118230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The transport of per- and polyfluoroalkyl substances (PFAS) from landfill leachate to surrounding soil and groundwater poses a threat to human health via the food chain or drinking water. Studies have shown that the transport process of PFAS from the solid to liquid phase in the environment is significantly affected by dissolved organic matter (DOM) adsorption. However, the mechanism of PFAS release from landfill solids into leachate and its transport to the surrounding groundwater remains unclear. In this study, we identified the composition of PFAS and DOM components and analyzed the association between DOM components, physicochemical factors, and PFAS concentrations in landfill leachate and groundwater. This study demonstrated that the frequency of PFAS detection in the samples was 100%, and the PFAS concentrations in leachate were greater than in the groundwater samples. Physicochemical factors, such as ammonium-nitrogen (NH4+-N), sodium (Na), calcium (Ca), DOM components C4 (macromolecular humic acid), SUVA254 (aromatic component content), and A240-400 (humification degree and molecular weight), were strongly correlated with PFAS concentrations. In conclusion, PFAS environmental risk management should be enhanced in landfills, especially in closed landfills, or landfills that are scheduled to close in the near future.
Collapse
Affiliation(s)
- Jia Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoqun Sha
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Weijiang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Fanhua Meng
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
16
|
Zhang Y, Meng J, Zhou Y, Song N, Zhao Y, Hong M, Yu J, Cao L, Dou Y, Kong D. Transport and health risk of legacy and emerging per-and polyfluoroalkyl substances in the water cycle in an urban area, China: Polyfluoroalkyl phosphate esters are of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171010. [PMID: 38369148 DOI: 10.1016/j.scitotenv.2024.171010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are a group of emerging alternatives to the legacy per- and polyfluoroalkyl substances (PFAS). To better understand the transport and risk of PAPs in the water cycle, 21 PFAS including 4 PAPs and 17 perfluoroalkyl acids were investigated in multiple waterbodies in an urban area, China. PFAS concentrations ranged from 85.8 to 206 ng/L, among which PAPs concentrations ranged from 35.0 to 71.8 ng/L, in river and lake water with major substances of perfluorooctanoic acid (PFOA), 6:2 fluorotelomer phosphate (6:2 monoPAP), and 8:2 fluorotelomer phosphate (8:2 monoPAP). As transport pathways, municipal wastewater and precipitation were investigated for PFAS mass loading estimation, and PAPs transported via precipitation more than municipal wastewater discharge. Concentrations of PFAS in tap water and raw source water were compared, and PAPs cannot be removed by drinking water treatment. In tap water, PFAS concentrations ranged from 132 to 271 ng/L and among them PAPs concentrations ranged from 41.6 to 61.9 ng/L. Human exposure and health risk to PFAS via drinking water were assessed, and relatively stronger health risks were induced from PFOS, PAPs, and PFOA. The environmental contamination and health risk of PAPs are of concern, and management implications regarding their sources, exposure, and hazards were raised.
Collapse
Affiliation(s)
- Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ninghui Song
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yaxin Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing 211100, China
| | - Minghui Hong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jia Yu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Li Cao
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yezhi Dou
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China.
| |
Collapse
|
17
|
Zhou T, Li X, Liu H, Dong S, Zhang Z, Wang Z, Li J, Nghiem LD, Khan SJ, Wang Q. Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133637. [PMID: 38306831 DOI: 10.1016/j.jhazmat.2024.133637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Addressing per-and polyfluoroalkyl substances (PFAS) contamination is an urgent environmental concern. While most research has focused on PFAS contamination in water matrices, comparatively little attention has been given to sludge, a significant by-product of wastewater treatment. This critical review presents the latest information on emission sources, global distribution, international regulations, analytical methods, and remediation technologies for PFAS in sludge and biosolids from wastewater treatment plants. PFAS concentrations in sludge matrices are typically in hundreds of ng/g dry weight (dw) in developed countries but are rarely reported in developing and least-developed countries due to the limited analytical capability. In comparison to water samples, efficient extraction and cleaning procedures are crucial for PFAS detection in sludge samples. While regulations on PFAS have mainly focused on soil due to biosolids reuse, only two countries have set limits on PFAS in sludge or biosolids with a maximum of 100 ng/g dw for major PFAS. Biological technologies using microbes and enzymes present in sludge are considered as having high potential for PFAS remediation, as they are eco-friendly, low-cost, and promising. By contrast, physical/chemical methods are either energy-intensive or linked to further challenges with PFAS contamination and disposal. The findings of this review deepen our comprehension of PFAS in sludge and have guided future research recommendations.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Turin 10123, Italy
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stuart J Khan
- School of Civil Engineering, University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
18
|
Tang L, Yu X, Zhao W, Barceló D, Lyu S, Sui Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. WATER RESEARCH 2024; 252:121215. [PMID: 38309069 DOI: 10.1016/j.watres.2024.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.
Collapse
Affiliation(s)
- Linfeng Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Feng C, Lin Y, Le S, Ji J, Chen Y, Wang G, Xiao P, Zhao Y, Lu D. Suspect, Nontarget Screening, and Toxicity Prediction of Per- and Polyfluoroalkyl Substances in the Landfill Leachate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4737-4750. [PMID: 38408453 DOI: 10.1021/acs.est.3c07533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Jieyun Ji
- Shanghai Changning Center for Disease Control and Prevention, Shanghai 200051, China
| | - Yuhang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yunfeng Zhao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Beijing 100021, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| |
Collapse
|
20
|
Zhang H, Chen Y, Liu Y, Bowden JA, Townsend TG, Solo-Gabriele HM. Comparison of the PFAS and physical-chemical parameter fluctuations between an ash landfill and a MSW landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:558-567. [PMID: 38141373 DOI: 10.1016/j.wasman.2023.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Studies of per- and polyfluoroalkyl substances (PFAS) fluctuations at landfills have focused on municipal solid waste (MSW) leachate. Few studies exist that evaluate fluctuations (defined by the coefficient of variation, CV) in MSW incinerator ash (MSWA) landfill leachate and that evaluate PFAS fluctuations in stormwater, groundwater, and treated liquids on-site. In this study, aqueous landfill samples (leachate, treated leachate, stormwater, gas condensate, ambient groundwater, and effluent from a groundwater remediation system) were collected from a MSW and an MSWA landfill geographically located within close proximity (less than 40 km). The objective of this study was to compare the leachate compositions between these two landfill types and to evaluate temporal variations. Results indicated that the CV of total detected PFAS concentrations in leachate was higher for the MSW landfill (CV = 43 %) compared to the MSWA landfill (CV = 16 %). The total detected PFAS concentration in MSW leachate samples (mean: 9641 ng/L) was higher than in MSWA leachate samples (mean: 2621 ng/L) (p < 0.05). Within a landfill, PFAS concentrations were correlated (rs > 0.6, p < 0.05) with alkalinity, total organic carbon (TOC), and ammonia. Results from the on-site leachate treatment system at the MSW landfill indicated reductions in COD, TOC, and ammonia; however, the ∑26PFAS concentration increased 3 % after the treatment. Overall, results demonstrated that differences between landfill types and fluctuations in PFAS within landfills should be considered when designing landfill leachate collection and treatment systems to remove PFAS. The comparative analysis in this study can provide insights into optimizing leachate management for MSW and MSWA landfills.
Collapse
Affiliation(s)
- Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
21
|
Park H, Kim T, Kim J, Kim MK, Eom S, Choi Y, Zoh KD. Reductive degradation mechanism of perfluorooctanoic acid (PFOA) during vacuum ultraviolet (VUV) reactions combining with sulfite and iodide. CHEMOSPHERE 2024; 348:140759. [PMID: 37992904 DOI: 10.1016/j.chemosphere.2023.140759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In this study, PFOA removal and defluorination were examined during vacuum ultraviolet (VUV) photolysis in the presence of sulfite and sulfite/iodide conditions. PFOA (24 μM) degradation rate constant (kobs) and defluorination amount in VUV photolysis, and VUV/sulfite, and VUV/sulfite/iodide reactions under nitrogen-purging condition were 5.50 × 10-3, 7.26 × 10-2, 1.60 × 10-1 min-1, and 34.6, 72.7, 73.9% in 6 h, respectively. When tert-butanol (t-BuOH), NO2-, and NO3- ions were added as radical scavengers, hydrated electrons (eaq-) was confirmed as the main species responsible for degrading PFOA and mediating defluorination in VUV-based reactions. While, during VUV photolysis, short-chain perfluoroalkyl carboxylic acids (PFCAs), such as PFHpA, PFHxA, PFPeA, and PFBA, were mainly produced as transformation products (TPs) by the chain-shortening mechanism, additional 14 and 15 TPs were identified in the VUV/sulfite and VUV/sulfite/iodide reactions by LC-QTOF/MS, respectively. The main degradation mechanisms in these reactions are H-F exchange (e.g., TP395 (m/z = 394.9739) and TP377 (m/z = 376.9838)), •SO3--F exchange (TP474, m/z = 474.9323), carbon double bond formation by defluorination (e.g., TP392 (m/z = 392.9455), TP410 (m/z = 410.9355), and TP436 (m/z = 436.9347)), and H-F exchange followed by hydration reaction (TP393, m/z = 392.9773), respectively. PFOA degradation pathways were proposed for these VUV-based reactions based on the identified TPs, their time profiles, and the density functional theory (DFT). Finally, the toxicity of PFOA and its TPs produced during three reactions were assessed using ECOSAR simulation.
Collapse
Affiliation(s)
- Heungjoo Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Jaehee Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
22
|
Zhao M, Yao Y, Dong X, Baqar M, Fang B, Chen H, Sun H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20194-20205. [PMID: 37991390 DOI: 10.1021/acs.est.3c05859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
23
|
Zheng G, Eick SM, Salamova A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15782-15793. [PMID: 37818968 PMCID: PMC10603771 DOI: 10.1021/acs.est.2c06715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a large group of fluorinated organic compounds extensively used in consumer products and industrial applications. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the two perfluoroalkyl acids (PFAAs) with 8 carbons in their structure, have been phased out on a global scale because of their high environmental persistence and toxicity. As a result, shorter-chain PFAAs with less than 8 carbons in their structure are being used as their replacements and are now widely detected in the environment, raising concerns about their effects on human health. In this study, 47 PFAAs and their precursors were measured in paired samples of dust and drinking water collected from residential homes in Indiana, United States, and in blood and urine samples collected from the residents of these homes. Ultrashort- (with 2 or 3 carbons [C2-C3]) and short-chain (with 4-7 carbons [C4-C7]) PFAAs were the most abundant in all four matrices and constituted on average 69-100% of the total PFAA concentrations. Specifically, trifluoroacetic acid (TFA, C2) and perfluoropropanoic acid (PFPrA, C3) were the predominant PFAAs in most of the samples. Significant positive correlations (n = 81; r = 0.23-0.42; p < 0.05) were found between TFA, perfluorobutanoic acid (PFBA, C4), and perfluoroheptanoic acid (PFHpA, C7) concentrations in dust or water and those in serum, suggesting dust ingestion and/or drinking water consumption as important exposure pathways for these compounds. This study demonstrates that ultrashort- and short-chain PFAAs are now abundant in the indoor environment and in humans and warrants further research on potential adverse health effects of these exposures.
Collapse
Affiliation(s)
- Guomao Zheng
- School
of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Amina Salamova
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
Cioni L, Plassmann M, Benskin JP, Coêlho ACM, Nøst TH, Rylander C, Nikiforov V, Sandanger TM, Herzke D. Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14849-14860. [PMID: 37747946 PMCID: PMC10569050 DOI: 10.1021/acs.est.3c03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0-4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Therese H. Nøst
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Charlotta Rylander
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | | | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for public Health, Oslo NO-0213, Norway
| |
Collapse
|
25
|
Zhang H, Chen Y, Liu Y, Bowden JA, Tolaymat TM, Townsend TG, Solo-Gabriele HM. Relationships between per- and polyfluoroalkyl substances (PFAS) and physical-chemical parameters in aqueous landfill samples. CHEMOSPHERE 2023; 329:138541. [PMID: 36996915 PMCID: PMC10680781 DOI: 10.1016/j.chemosphere.2023.138541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Variable chemistries of liquids from landfills can potentially impact levels of per- and polyfluoroalkyl substances (PFAS). The objective of the current study was to evaluate relationships between physical-chemical properties (bulk measurements, oxygen demand components, and metals) and PFAS concentrations in different types of aqueous landfill samples. Aqueous landfill samples were collected from 39 landfill facilities in Florida, United States. These samples included leachates from landfills that receive different waste types, such as municipal solid waste incineration ash (MSWA), construction and demolition debris (C&D), and municipal solid waste (MSW). Additional aqueous landfill samples were sourced from treated landfill leachate, gas condensate, stormwater, and groundwater from within and near the landfill boundaries. Results showed significant correlations (p < 0.05) between ∑26PFAS and alkalinity (rs = 0.83), total organic carbon (TOC) (rs = 0.84), and ammonia (rs = 0.79) for all leachate types. Other physical-chemical parameters that were significantly correlated (rs > 0.60, p < 0.05) with PFAS included specific conductivity, chemical oxygen demand (COD), and to a lesser extent, total dissolved solids (TDS) and total solids (TS). For gas condensates, PFAS was significantly correlated with TOC. Stormwater and groundwater, within and near the landfill boundaries, had considerably lower levels of PFAS and had a minimal correlation between PFAS and physical-chemical parameters. Although PFAS concentrations and physical-chemical parameters and their correlations varied between different types of aqueous landfill samples, results suggest that physical-chemical properties can be useful indicators of relative PFAS concentrations within a leachate type. More research is needed to validate the mechanisms that relate physical-chemical parameters to PFAS concentrations in landfill leachates.
Collapse
Affiliation(s)
- Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida, 33146, United States
| | - Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida, 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, United States
| | - Thabet M Tolaymat
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida, 33146, United States.
| |
Collapse
|
26
|
Björklund S, Weidemann E, Jansson S. Emission of Per- and Polyfluoroalkyl Substances from a Waste-to-Energy Plant─Occurrence in Ashes, Treated Process Water, and First Observation in Flue Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37319344 DOI: 10.1021/acs.est.2c08960] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of compounds commonly used as industrial chemicals and constituents of consumer products, e.g., as surfactants and surface protectors. When products containing PFASs reach their end of life, some end up in waste streams sent to waste-to-energy (WtE) plants. However, the fate of PFASs in WtE processes is largely unknown, as is their potential to enter the environment via ash, gypsum, treated process water, and flue gas. This study forms part of a comprehensive investigation of the occurrence and distribution of PFASs in WtE residues. Sampling was performed during incineration of two different waste mixes: normal municipal solid waste incineration (MSWI) and incineration of a waste mix with 5-8 wt % sewage sludge added to the MSWI (referred to as Sludge:MSWI). PFASs were identified in all examined residues, with short-chain (C4-C7) perfluorocarboxylic acids being the most abundant. Total levels of extractable PFASs were higher during Sludge:MSWI than during MSWI, with the total annual release estimated to be 47 and 13 g, respectively. Furthermore, PFASs were detected in flue gas for the first time (4.0-5.6 ng m-3). Our results demonstrate that some PFASs are not fully degraded by the high temperatures during WtE conversion and can be emitted from the plant via ash, gypsum, treated process water, and flue gas.
Collapse
Affiliation(s)
- Sofie Björklund
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
- Industrial Doctoral School, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Weidemann
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
27
|
Pelch KE, McKnight T, Reade A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162978. [PMID: 37059129 DOI: 10.1016/j.scitotenv.2023.162978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
In this community-led pilot study we sought to investigate the utility of expanded per- and polyfluoroalkyl substances (PFAS) testing for drinking water, using a targeted analysis for 70 PFAS and the Total Oxidizable Precursor (TOP) Assay which can indicate the presence of precursor PFAS. PFAS were detected in 30 out of 44 drinking water samples across 16 states; 15 samples would exceed US EPA's proposed maximum contaminant levels for six PFAS. Twenty-six unique PFAS were identified, including 12 not covered by either US EPA Methods 537.1 or 533. An ultrashort chain PFAS, PFPrA, had the highest frequency of detection, occurring in 24 of 30 samples. It was also the PFAS reported at the highest concentration in 15 of these samples. We created a data filter to model how these samples would be reported under the upcoming fifth Unregulated Contaminant Monitoring Rule (UCMR5) requirements. All of the 30 samples with PFAS quantified by the 70 PFAS test had one or more PFAS present that would not be captured if the UCMR5 reporting requirements were followed. Our analysis suggests the upcoming UCMR5 will likely underreport PFAS in drinking water, due to limited coverage and higher minimum reporting limits. Results were inconclusive on the utility of the TOP Assay for monitoring drinking water. The results from this study provide important information to community participants regarding their current PFAS drinking water exposure. In addition, these results suggest gaps that need to be addressed by regulatory and scientific communities, in particular, the need for expanded targeted analysis of PFAS, the development of a sensitive, broad spectrum PFAS test, and further investigation into ultrashort chain PFAS.
Collapse
Affiliation(s)
- Katherine E Pelch
- Natural Resources Defense Council, 111 Sutter St. Floor 20, San Francisco, CA 94104, USA
| | - Taryn McKnight
- Eurofins Environment Testing, 880 Riverside Parkway, West Sacramento, CA 95605, USA
| | - Anna Reade
- Natural Resources Defense Council, 111 Sutter St. Floor 20, San Francisco, CA 94104, USA.
| |
Collapse
|
28
|
Seay BA, Dasu K, MacGregor IC, Austin MP, Krile RT, Frank AJ, Fenton GA, Heiss DR, Williamson RJ, Buehler S. Per- and polyfluoroalkyl substances fate and transport at a wastewater treatment plant with a collocated sewage sludge incinerator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162357. [PMID: 36858229 DOI: 10.1016/j.scitotenv.2023.162357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study aims to understand the fate and transport of per- and polyfluoroalkyl substances (PFAS) and inorganic fluoride (IF) at an undisclosed municipal wastewater treatment plant (WWTP) operating a sewage sludge incinerator (SSI). A robust statistical analysis characterized concentrations and mass flows at all WWTP and SSI primary influents/effluents, including thermal-treatment derived airborne emissions. WWTP-level net mass flows (NMFs) of total PFAS were not statistically different from zero. SSI-level NMFs indicate that PFAS, and specifically perfluoroalkyl acids (PFAAs), are being broken down. The NMF of perfluoroalkyl sulfonic acids (PFSAs; -274 ± 34 mg/day) was statistically significant. The observed breakdown primarily occurred in the sewage sludge. However, the total PFAS destruction and removal efficiency of 51 % indicates the SSI may inadequately remove PFAS. The statistically significant IF source (NMF = 16 ± 4.2 kg/day) compared to the sink of PFAS as fluoride (NMF = -0.00036 kg/day) suggests that other fluorine-containing substances are breaking down in the SSI. WWTP PFAS mass discharges were primarily to the aquatic environment (>99 %), with <0.5 % emitted to the atmosphere/landfill. Emission rates for formerly phased-out PFOS and PFOA were compared to previously reported levels. Given the environmental persistence of these compounds, the observed decreases in PFOS and PFOA discharge rates from prior reports implies regional/local differences in emissions or possibly their accumulation elsewhere. PFAS were observed in stack gas emissions, but modestly contributed to NMFs and showed negligible contribution to ambient air concentrations observed downwind.
Collapse
Affiliation(s)
- Brannon A Seay
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States.
| | - Kavitha Dasu
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Ian C MacGregor
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Matthew P Austin
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Robert T Krile
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Aaron J Frank
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - George A Fenton
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Derik R Heiss
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Rhett J Williamson
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Stephanie Buehler
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| |
Collapse
|
29
|
Capozzi SL, Leang AL, Rodenburg LA, Chandramouli B, Delistraty DA, Carter CH. PFAS in municipal landfill leachate: Occurrence, transformation, and sources. CHEMOSPHERE 2023; 334:138924. [PMID: 37209854 DOI: 10.1016/j.chemosphere.2023.138924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
To understand sources and processes affecting per- and polyfluoroalkyl substances (PFAS), 32 PFAS were measured in landfill leachate from 17 landfills across Washington State in both pre-and post-total oxidizable precursor (TOP) assay samples, using an analytical method that was the precursor to EPA Draft Method 1633. As in other studies, 5:3FTCA was the dominant PFAS in the leachate, suggesting that carpets, textiles, and food packaging were the main sources of PFAS. Total PFAS concentrations (Σ32PFAS) ranged from 61 to 172,976 ng/L and 580-36,122 ng/L in pre-TOP and post-TOP samples, respectively, suggesting that little or no uncharacterized precursors remained in landfill leachate. Furthermore, due to chain-shortening reactions, the TOP assay often resulted in a loss of overall PFAS mass. Positive matrix factorization (PMF) analysis of the combined pre- and post-TOP samples produced five factors that represent sources and processes. Factor 1 consisted primarily of 5:3FTCA (intermediate of 6:2 fluorotelomer degradation and characteristic of landfill leachate), while factor 2 was dominated by PFBS (degradant of C-4 sulfonamide chemistry) and, to a lesser extent, by several PFCAs and 5:3FTCA. Factor 3 consisted primarily of both short-chain PFCAs (end-products of 6:2 fluorotelomer degradation) and PFHxS (derived from C-6 sulfonamide chemistry), while the main component of factor 4 was PFOS (dominant in many environmental media but minor in landfill leachate, perhaps reflecting a production shift from longer to shorter chain PFAS). Factor 5, highly loaded with PFCAs, was dominant in post-TOP samples and therefore represented the oxidation of precursors. Overall, PMF analysis suggests that the TOP assay approximates some redox processes which occur in landfills, including chain-shortening reactions which yield biodegradable products.
Collapse
Affiliation(s)
- Staci L Capozzi
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Amy L Leang
- Washington State Department of Ecology, Shoreline, WA, USA; University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| | | | | | - Cole H Carter
- Washington State Department of Ecology, Spokane, WA, USA
| |
Collapse
|
30
|
Madronich S, Sulzberger B, Longstreth JD, Schikowski T, Andersen MPS, Solomon KR, Wilson SR. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem Photobiol Sci 2023; 22:1129-1176. [PMID: 37310641 PMCID: PMC10262938 DOI: 10.1007/s43630-023-00369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, USA.
- USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, USA.
| | - B Sulzberger
- Academic Guest after retirement from Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
31
|
Dekant W, Dekant R. Mammalian toxicity of trifluoroacetate and assessment of human health risks due to environmental exposures. Arch Toxicol 2023; 97:1069-1077. [PMID: 36800005 DOI: 10.1007/s00204-023-03454-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
While trifluoroacetic acid has limited technical uses, the highly water-soluble trifluoroacetate (TFA) is reported to be present in water bodies at low concentrations. Most of the TFA in the environment is discussed to arise from natural processes, but also with the contribution from decomposition of environmental chemicals. The presence of TFA may result in human exposures. For hazard and risk assessment, the mammalian toxicity of TFA and human exposures are reviewed to assess the margin of exposures (MoE). The potential of TFA to induce acute toxicity is very low and oral repeated dose studies in rats have identified the liver as the target organ with mild liver hypertrophy as the lead effect. Biomarker analyses indicate that TFA is a weak peroxisome proliferator in rats. TFA administered to rats did not induce adverse effects in an extended one-generation study and in a developmental toxicity study or induce genotoxic responses. Based on recent levels of TFA in water and diet, MoEs for human exposures to TFA are well above 100 and do not indicate health risks.
Collapse
Affiliation(s)
- Wolfgang Dekant
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacherstr. 9, 97078, Würzburg, Germany.
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacherstr. 9, 97078, Würzburg, Germany
| |
Collapse
|
32
|
Bowers BB, Thornton JA, Sullivan RC. Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per- and polyfluoroalkyl substances (PFAS) analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:277-287. [PMID: 36189623 DOI: 10.1039/d2em00275b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of ultra-persistent anthropogenic contaminants. PFAS are ubiquitous in environmental and built systems, but very few online methods exist for their characterization in atmospheric gases and aerosols. Iodide time-of-flight chemical ionization mass spectrometry (iodide-ToF-CIMS) is a promising technology for online characterization of PFAS in the atmosphere. Previous work using iodide-ToF-CIMS was successful in measuring gas-phase perfluoroalkyl carboxylic acids and fluorotelomer alcohols, but those are just two of the myriad classes of PFAS that are atmospherically relevant. Therefore, our first objective was to test other sample introduction methods coupled to iodide-TOF-CIMS to evaluate its ability to measure a wider suite of PFAS in both gas and aerosol phases. Using a variety of sample introduction techniques, we successfully measured gas-phase fluorotelomer alcohols (FTOHs), gas and aerosol-phase perfluoroalkyl carboxylic acids (PFCAs), and aerosol-phase perfluoroalkyl sulfonic acids and polyfluoroalkyl phosphoric acid diesters (PFSAs and diPAPs). We also determined iodide-ToF-CIMS response factors for these compounds by introducing known quantities using a Filter Inlet for Gases and AEROsols (FIGAERO). These response factors ranged from 400 to 6 × 104 ions per nanogram, demonstrating low limits of detection. Furthermore, PFAS are a poorly understood diverse class of molecules that exhibit unusual and often unexpected physicochemical properties due to their highly fluorinated nature. Since detection of PFAS with iodide-ToF-CIMS relies on the analyte molecule to either undergo proton transfer or adduct formation with iodide, understanding PFAS behavior during chemical ionization gives rise to a more fundamental understanding of these compounds. Through voltage scanning experiments and DFT calculations, we found that PFCAs and FTOHs readily form iodide adducts, while PFSAs and diPAPs preferentially undergo proton transfer to iodide. Generally, binding energy increased with increasing linear chain length, and PFCAs had stronger binding than FTOHs. Overall, our results suggest that iodide-ToF-CIMS can be used to measure even nonvolatile PFAS such as PFSAs and diPAPs in the aerosol phase in a semi-continuous online fashion.
Collapse
Affiliation(s)
- Bailey B Bowers
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Ryan C Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Liu X, Huang X, Wei X, Zhi Y, Qian S, Li W, Yue D, Wang X. Occurrence and removal of per- and polyfluoroalkyl substances (PFAS) in leachates from incineration plants: A full-scale study. CHEMOSPHERE 2023; 313:137456. [PMID: 36470352 DOI: 10.1016/j.chemosphere.2022.137456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Municipal solid wastes (MSWs) contain diverse per- and polyfluoroalkyl substances (PFAS), and these substances may leach into leachates, resulting in potential threats to the environment and human health. In this study, leachates from incineration plants with on-site treatment systems were measured for 17 PFAS species, including 13 perfluorocarboxylic acids (PFCAs) and 4 perfluorosulfonic acids (PFSAs). PFAS were detected in all of the raw leachates and finished effluents in concentrations ranging from 7228 to 16,565 ng L-1 and 43 to 184 ng L-1, respectively, with a greater contribution from the short-chain PFAS and PFCAs. The results showed that the existing combined processes (biological treatment and membrane filtration) were effective in decreasing PFAS in the aqueous phase with removal efficiencies over 95%. In addition, correlation analysis suggested that physical entrapment, not biodegradation, was the main means of PFAS reduction in the treatment system. These results filled a gap in the understanding of PFAS occurrence and removal in leachates from incineration plants during the full-scale treatment processes, and demonstrated those leachates were previously under-explored sources of PFAS.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xingyao Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoxiao Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Ecological Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Ecological Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
34
|
Cao X, Xin S, Liu X, Wang S. Occurrence and behavior of per- and polyfluoroalkyl substances and conversion of oxidizable precursors in the waters of coastal tourist resorts in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120460. [PMID: 36273687 DOI: 10.1016/j.envpol.2022.120460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluorolkyl substances (PFAS) were measured in the water and fish from 20 coastal tourist resorts in China, to investigate their sources, seasonal differences, and bioconcentration. An oxidative method with hydroxyl radicals was used to extract potential perfluoroalkyl acid (PFAA) precursors in the water of resorts. The results indicated that the total concentrations of target chemicals (i.e., ΣPFAS) in the original water were 59.4-138, 32.7-77.2, and 14.6-29.9 ng L-1 in December, April, and August, respectively. C4-C10 perfluorocarboxlate (PFCA) and perfluorooctane sulfonate (PFOS) accounted for 67%-92% of the ΣPFAS contents in all water samples. The PFAS concentrations in the muscles and liver of fish were 16.0-162 ng g-1 ww and 186-1240 ng g-1 ww, respectively. The dominant compounds were perfluorobutanoate acid (PFBA) and PFOS in the water, and perfluorooctanoic acid (PFOA) and PFOS in fish tissues. High bioconcentration were observed for PFCA (C ≥ 8) and perfluorosulfonate (PFSA, C ≥ 6). After oxidative conversion, the water exhibited a noticeable increase in the ΣPFAS value. Precursors that generated C4-C9 PFCA were more prevalent than precursors that generated other PFCA upon oxidation. The concentration of C8-based precursor was higher than that of C6-based precursor in wet and dry seasons. This study is the first to apply an oxidative method to investigate PFAS pollution in the water of coastal tourist resorts. The results verified that PFAA precursors exist in the water of coastal tourist resorts, and more attention should be given to the existence of PFAA precursors and the safety of water in coastal tourist resorts.
Collapse
Affiliation(s)
- Xuezhi Cao
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276826, Shandong, China; School of History and Culture, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
35
|
Zhang M, Zhao X, Zhao D, Soong TY, Tian S. Poly- and Perfluoroalkyl Substances (PFAS) in Landfills: Occurrence, Transformation and Treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:162-178. [PMID: 36379166 DOI: 10.1016/j.wasman.2022.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Landfills have served as the final repository for > 50 % municipal solid wastes in the United States. Because of their widespread uses and persistence in the environment, per- and polyfluoroalkyl substances (PFAS) (>4000 on the global market) are ubiquitously present in everyday consumer, commercial and industrial products, and have been widely detected in both closed (tens ng/L) and active (thousands to ten thousands ng/L) landfills due to disposal of PFAS-containing materials. Along with the decomposition of wastes in-place, PFAS can be transformed and released from the wastes into leachate and landfill gas. Consequently, it is critical to understand the occurrence and transformation of PFAS in landfills and the effectiveness of landfills, as a disposal alternative, for long-term containment of PFAS. This article presents a state-of-the-art review on the occurrence and transformation of PFAS in landfills, and possible effect of PFAS on the integrity of modern liner systems. Based on the data published from 10 countries (250 + landfills), C4-C7 perfluoroalkyl carboxylic acids were found predominant in the untreated landfill leachate and neutral PFAS, primarily fluorotelomer alcohols, in landfill air. The effectiveness and limitations of the conventional leachate treatment technologies and emerging technologies were also evaluated to address PFAS released into the leachate. Among conventional technologies, reverse osmosis (RO) may achieve a high removal efficiency of 90-100 % based on full-scale data, which, however, is vulnerable to the organic fouling and requires additional disposal of the concentrate. Implications of these knowledge on PFAS management at landfills are discussed and major knowledge gaps are identified.
Collapse
Affiliation(s)
- Man Zhang
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA.
| | - Xianda Zhao
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn AL 36849, USA; Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | - Te-Yang Soong
- CTI and Associates, Inc., 34705 W 12 Mile Rd Suite 230, Farmington Hills, MI 48331, USA
| | - Shuting Tian
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn AL 36849, USA; Institute of Environmental Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
36
|
Meegoda JN, Bezerra de Souza B, Casarini MM, Kewalramani JA. A Review of PFAS Destruction Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16397. [PMID: 36554276 PMCID: PMC9778349 DOI: 10.3390/ijerph192416397] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly toxic emerging contaminants that have caught the attention of both the public and private sectors due to their adverse health impacts on society. The scientific community has been laboriously working on two fronts: (1) adapting already existing and effective technologies in destroying organic contaminants for PFAS remediation and (2) developing new technologies to remediate PFAS. A common characteristic in both areas is the separation/removal of PFASs from other contaminants or media, followed by destruction. The widely adopted separation technologies can remove PFASs from being in contact with humans; however, they remain in the environment and continue to pose health risks. On the other hand, the destructive technologies discussed here can effectively destroy PFAS compounds and fully address society's urgent need to remediate this harmful family of chemical compounds. This review reports and compare widely accepted as well as emerging PFAS destruction technologies. Some of the technologies presented in this review are still under development at the lab scale, while others have already been tested in the field.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
37
|
Cioni L, Nikiforov V, Coêlho ACMF, Sandanger TM, Herzke D. Total oxidizable precursors assay for PFAS in human serum. ENVIRONMENT INTERNATIONAL 2022; 170:107656. [PMID: 36436462 DOI: 10.1016/j.envint.2022.107656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals including over 4700 substances. As a limited number of PFAS is routinely analyzed in human serum, complementary analytical methods are required to characterize the overlooked fraction. A promising tool is the total oxidizable precursors (TOP) assay to look for precursors by oxidation to perfluoroalkyl acids (PFAA). The TOP assay was originally developed for large volumes of water and had to be adapted for 250 μL of human serum. Optimization of the method was performed on serum samples spiked with model precursors. Oxidative conditions similar to previous TOP assay methods were not sufficient for complete oxidation of model precursors. Prolonged heating time (24 h) and higher oxidant amount (95 mg of Na2S2O8 per 225 μL of serum) were needed for complete conversion of the model precursors and accomplishing PFAA yields of 35-100 %. As some precursors are not fully converted to PFAA, the TOP assay can only provide semi-quantitative estimates of oxidizable precursors in human serum. However, the TOP assay can be used to give indications about the identity of unknown precursors by evaluating the oxidation products, including perfluoroalkyl sulfonic acids (PFSA) and perfluoroalkyl ether carboxylic acids (PFECA). The optimized TOP assay for human serum opens the possibility for high-throughput screening of human serum for undetected PFAA precursors.
Collapse
Affiliation(s)
- Lara Cioni
- Norwegian Institute for Air Research (NILU), Fram Centre, Tromsø NO-9296, Norway; UiT - The Arctic University of Norway, Department of Community Medicine, Tromsø NO-9019, Norway.
| | - Vladimir Nikiforov
- Norwegian Institute for Air Research (NILU), Fram Centre, Tromsø NO-9296, Norway
| | - Ana Carolina M F Coêlho
- UiT - The Arctic University of Norway, Department of Community Medicine, Tromsø NO-9019, Norway
| | - Torkjel M Sandanger
- Norwegian Institute for Air Research (NILU), Fram Centre, Tromsø NO-9296, Norway; UiT - The Arctic University of Norway, Department of Community Medicine, Tromsø NO-9019, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, Tromsø NO-9296, Norway
| |
Collapse
|
38
|
Chen Y, Zhang H, Liu Y, Bowden JA, Tolaymat TM, Townsend TG, Solo-Gabriele HM. Concentrations of perfluoroalkyl and polyfluoroalkyl substances before and after full-scale landfill leachate treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:110-120. [PMID: 36084369 PMCID: PMC10463282 DOI: 10.1016/j.wasman.2022.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Many consumer and industrial products, industrial wastes and dewatered sludge from municipal wastewater treatment plants containing per- and polyfluoroalkyl substances (PFAS) are disposed of in landfills at the end of their usage, with PFAS in these products leached into landfill leachates. On-site leachate treatment is one possible method to reduce PFAS in leachates. Many landfills are equipped with on-site leachate treatment systems, but few full-scale facilities have been systematically evaluated for PFAS concentration changes. The objective of this study was to evaluate a cross-section of full-scale on-site landfill treatment systems to measure changes in PFAS concentrations. Leachate samples were collected before and after treatment from 15 facilities and were evaluated for 26 PFAS, including 11 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulfonic acids (PFSAs), and 8 perfluoroalkyl acid precursors (PFAA-precursors). Transformation of precursors was evaluated by the total oxidizable precursor (TOP) assay. Results showed no obvious reductions in total measured PFAS (∑26PFAS) for on-site treatment systems including ponds, aeration tanks, powdered activated carbon (PAC), and sand filtration. Among evaluated on-site treatment systems, only systems fitted with reverse osmosis (RO) showed significant reductions (98-99 %) of ∑26PFAS in the permeate. Results from the TOP assay showed that untargeted PFAA-precursors converted into targeted short-chain PFCAs increasing ∑26PFAS in oxidized samples by 30 %, on average. Overall, results of this study confirm the efficacy of RO systems and suggest the presence of additional precursors beyond those measured in this study.
Collapse
Affiliation(s)
- Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Thabet M Tolaymat
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
39
|
Huang X, Wei X, Liu H, Li W, Shi D, Qian S, Sun W, Yue D, Wang X. Occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69588-69598. [PMID: 35578077 DOI: 10.1007/s11356-022-20754-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Landfill leachate has been documented as a significant source of trace organic pollutants, comprising an expansive family of per- and polyfluoroalkyl substances (PFAS). This study presents the findings on the distribution of 13 perfluoroalkyl carboxylates (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) in leachates from 6 municipal solid waste (MSW) landfills in western China. The total concentrations of 17 PFAS in sampled leachates ranged from 1805 to 43,310 ng/L, and 15 compounds were detected in all samples. The short-chain compounds perfluorobutane sulfonate (PFBS, mean mass fraction 23.1%) and perfluorobutyric acid (PFBA, mean mass fraction 20.6%) were dominant. There were higher PFAS concentrations in leachates from operating landfills (mean: 12,194 ng/L) compared to closed landfills (mean: 2747 ng/L), but there was no significant difference between young (< 10 years) and old landfills (> 10 years). Moderate to weak correlations were observed between PFAS concentrations and leachate properties, e.g., TN, NH4+-N, TOC, and pH. This is the first report on the distribution of PFAS in landfill leachates from western China. The results have identified landfill leachate as an underestimated source of PFAS in the environment and have contributed to a more comprehensive evaluation on PFAS presence across China.
Collapse
Affiliation(s)
- Xingyao Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoxiao Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huazu Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Environmental Engineering, Chongqing University, Chongqing, 400045, China
| | - Shenhua Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
- Department of Environmental Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
40
|
Zhang H, Chen Y, Liu Y, Bowden JA, Townsend TG, Solo-Gabriele HM. Do PFAS changes in landfill leachate treatment systems correlate with changes in physical chemical parameters? WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:49-59. [PMID: 35926281 DOI: 10.1016/j.wasman.2022.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found at relatively elevated concentrations in landfill leachates. Some landfill facilities treat physical-chemical parameters of their leachates using on-site leachate treatment systems before discharge. The objective of this study was to evaluate whether changes in physical-chemical parameters of leachate at on-site treatment systems (including bulk measurements, oxygen demanding components, and metals) were associated with concentration changes in PFAS. Leachates were evaluated at 15 on-site treatment facilities which included pond systems, aeration tanks, powdered activated carbon (PAC), sand filtration, reverse osmosis (RO) and combination treatment processes. Results show that most physical-chemical parameters and PFAS were significantly reduced in RO systems (over 90 %). For pond systems, statistically significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and the changes in pH, alkalinity, ammonia, and some metals. Significant correlations were also found between ∑8PFAAs precursors changes and specific conductivity (SPC), pH, alkalinity, ammonia, and metals changes. For aeration tank systems, significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and changes in total dissolved solids and zinc, and between the changes of ∑8PFAAs precursors and field pH. These correlations are believed to be associated with rainfall dilution and precipitation of calcium carbonate and other metals as leachate is introduced to the atmosphere.
Collapse
Affiliation(s)
- Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
41
|
The Phytomanagement of PFAS-Contaminated Land. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116817. [PMID: 35682401 PMCID: PMC9180636 DOI: 10.3390/ijerph19116817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
Globally, several hundred thousand hectares of both agricultural and urban land have become contaminated with per- and polyfluoroalkyl substances (PFAS). PFAS compounds are resistant to degradation and are mobile in soil compared to other common contaminants. Many compounds have KD values (matrix/solution concentration quotients) of <10. PFAS compounds endanger the health of humans and ecosystems by leaching into groundwater, exposure via dust, and, to a lesser extent, through plant uptake. This review aims to determine the feasibility of phytomanagement, the use of plants, and the use of soil conditioners to minimize environmental risk whilst also providing an economic return in the management of PFAS-contaminated land. For most sites, PFAS combinations render phytoextraction, the use of plants to remove PFAS from soil, inviable. In contrast, low Bioaccumulation Coefficients (BAC; plant and soil concentration quotients) timber species or native vegetation may be usefully employed for phytomanagement to limit human/food chain exposure to PFAS. Even with a low BAC, PFAS uptake by crop plants may still exceed food safety standards, and therefore, edible crop plants should be avoided. Despite this limitation, phytomanagement may be the only economically viable option to manage most of this land. Plant species and soil amendments should be chosen with the goal of reducing water flux through the soil, as well as increasing the hydrophobic components in soil that may bind the C-F-dominated tails of PFAS compounds. Soil conditioners such as biochar, with significant hydrophobic components, may mitigate the leaching of PFAS into receiving waters. Future work should focus on the interactions of PFAS with soil microbiota; secondary metabolites such as glomalin may immobilize PFAS in soil.
Collapse
|
42
|
Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T, Houot S, Desrosiers M, Liu J, Sauvé S. Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6056-6068. [PMID: 34668380 DOI: 10.1021/acs.est.1c03697] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑46PFAS: 0.66 μg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑46PFAS: 220 μg/kg). Historical municipal biosolids and composts (1976-1998) were dominated by perfluorooctanesulfonate (PFOS), N-ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009-2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑160PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 μg/kg, max: 1300 μg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS.
Collapse
Affiliation(s)
- Gabriel Munoz
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Aurélia Marcelline Michaud
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sung Vo Duy
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Denis Montenach
- INRAE, UE UEAV, Unité d'expérimentation agronomique et viticole, 68000 Colmar, France
| | - Camille Resseguier
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Françoise Watteau
- INRAE, Laboratoire Sols et Environnement, Université de Lorraine, 54000 Nancy, France
| | - Valérie Sappin-Didier
- INRAE, UMR ISPA, Interactions Sol Plante Atmosphère, Bordeaux Sciences Agro, 33140 Villenave d'Ornon, France
| | - Frédéric Feder
- CIRAD, UPR Recyclage et risque, 97408 Saint-Denis, Réunion France
- CIRAD, UPR Recyclage et risque, Université de Montpellier, 34398 Montpellier, France
| | - Thierry Morvan
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Sabine Houot
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC G1P 3W8, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sébastien Sauvé
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| |
Collapse
|
43
|
Wang B, Yao Y, Wang Y, Chen H, Sun H. Per- and Polyfluoroalkyl Substances in Outdoor and Indoor Dust from Mainland China: Contributions of Unknown Precursors and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6036-6045. [PMID: 33769795 DOI: 10.1021/acs.est.0c08242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were analyzed in outdoor (n = 101) and indoor dust (n = 43, 38 paired with outdoors) samples across mainland China. From 2013 to 2017, the median concentration of ∑PFASs in outdoor dust tripled from 63 to 164 ng/g with an elevated contribution of trifluoroacetic acid and 6:2 fluorotelomer alcohol. In 2017, the indoor dust levels of ∑PFASs were in the range 185-913 ng/g, which were generally higher than the outdoor dust levels (105-321 ng/g). Emerging PFASs were found at high median levels of 5.7-97 ng/g in both indoor and outdoor dust samples. As first revealed by the total oxidized precursors assay, unknown perfluoroalkyl acid (PFAA)-precursors contributed 37-67 mol % to the PFAS profiles in indoor dust samples. A great proportion of C8 PFAA-precursors were precursors for perfluorooctanesulfonic acid, while C6 and C4 PFAA-precursors were mostly fluorotelomer based. Furthermore, daily perfluorooctanoic acid (PFOA) equivalent intakes of PFAAs (C4-C12) mixtures via indoor dust were first estimated at 1.3-1.5 ng/kg b.w./d for toddlers at high scenarios, which exceeds the derived daily threshold of 0.63 ng/kg b.w./d. from the European Food Safety Authority (EFSA). On this basis, an underestimation of 56%-69% likely remains without considering potential risks due to the biotransformation of unknown PFAA-precursors.
Collapse
Affiliation(s)
- Bin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
44
|
Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5355-5370. [PMID: 35446563 DOI: 10.1021/acs.est.2c02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
Collapse
Affiliation(s)
- Junli Wang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Zunhui Lin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xuexiang He
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Mingrui Song
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| |
Collapse
|
45
|
Longendyke GK, Katel S, Wang Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:196-208. [PMID: 34985474 DOI: 10.1039/d1em00465d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals and have been detected throughout the environment. Thermal treatment is the most common remediation approach for PFAS-contaminated solid wastes. Although various thermal treatment techniques have demonstrated the potential to destruct PFAS, the fate of PFAS, removal efficacy, potential emissions, and the formation of incomplete combustion products during thermal treatment are little known. This study provides a critical review on the behavior of PFAS based on different types of thermal treatment technologies with various PFAS-impacted environmental medias that include water, soil, sewage sludge, pure PFAS materials, and other PFAS-containing wastes. Different extents of PFAS thermal destruction are observed across various thermal treatment techniques and operating conditions. PFAS removal and destruction efficiencies rely heavily on PFAS structures, the complex combustion chemistry, the presence or absence of oxygen, temperature, and other operational conditions. This review also covers proposed PFAS thermal destruction mechanisms. Different thermal destruction mechanisms for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), and other PFAS are reviewed and compared. The majority of studies about PFAS thermal destruction mechanisms were focused on a specific list of PFAS and based mostly on the pyrolysis treatment. The basic pathway for PFAS destruction during pyrolysis is hydrodefluorination, which could be largely influenced by the alkaline condition. Future field-scale research that involves the characterization of PFAS destruction products and incomplete combustion products is needed to address public concerns and better emission control.
Collapse
Affiliation(s)
- Grace K Longendyke
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| | - Sebica Katel
- Biochemistry, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA
| | - Yuxin Wang
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| |
Collapse
|
46
|
Liu S, Zhao S, Liang Z, Wang F, Sun F, Chen D. Perfluoroalkyl substances (PFASs) in leachate, fly ash, and bottom ash from waste incineration plants: Implications for the environmental release of PFAS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148468. [PMID: 34252761 DOI: 10.1016/j.scitotenv.2021.148468] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 05/12/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a family of chemicals widely distributed in daily use consumer products. Most of these products become municipal solid wastes (MSWs) after they have been used. In the present study, we examined different types of PFASs in leachate, fly ash and bottom ash produced from three MSW incineration plants in southern China. High PFAS levels were found in leachate (mean concentration 215 ng/mL, range 21.4-682 ng/mL) from the incineration plants, which indicated large amounts of PFASs in the wastes leached out. The average quantities of PFASs annually discharged from the leachates of the three plants were estimated to be approximately 384 kg (Plant A), 47.3 kg (Plant B), and 2.82 kg (Plant C). Relatively lower levels of PFASs in fly ash (mean 16.4 ng/g, range 1.46-87.6 ng/g) and bottom ash (mean 14.6 ng/g, range 3.11-77.4 ng/g) indicated that high-temperature incineration destroyed most of the PFASs. The wide array of PFASs concentrations in all three matrices illustrated that some PFASs-containing industrial wastes were still entered into local MSW. In general, short chain PFASs, including perfluorobutyric acid (PFBA) and perfluorobutane sulfonate (PFBS), were the primary PFASs in leachate samples. In addition, PFOS was the predominant PFASs in fly ash samples. The results showed that leachate, fly ash, and bottom ash from MSW incineration plants are important vectors of PFASs.
Collapse
Affiliation(s)
- Shanshan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shiyi Zhao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, Guangdong 510611, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
47
|
Ng C, Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Patton S, Scheringer M, Trier X, Wang Z. Addressing Urgent Questions for PFAS in the 21st Century. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12755-12765. [PMID: 34519210 PMCID: PMC8590733 DOI: 10.1021/acs.est.1c03386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the "PFAS problem": (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment.
Collapse
Affiliation(s)
- Carla Ng
- Departments of Civil & Environmental Engineering and Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Ian T. Cousins
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296 Tromsø, Norway, and Institute for Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 TromsH, Norway
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Mark Miller
- National Institute of Environmental Health Science and U.S. Public Health Service, Research Triangle Park, NC 27709, USA
| | - Sharyle Patton
- Health and Environment Program, Commonweal, Bolinas, California 94924, United States
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Xenia Trier
- European Environment Agency, Kgs Nytorv 6, DK - 1050 Copenhagen K, Denmark
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
48
|
Björklund S, Weidemann E, Yeung LW, Jansson S. Occurrence of per- and polyfluoroalkyl substances and unidentified organofluorine in leachate from waste-to-energy stockpile - A case study. CHEMOSPHERE 2021; 278:130380. [PMID: 33823356 DOI: 10.1016/j.chemosphere.2021.130380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a diverse group of chemicals used in consumer products, which will inevitably end up in waste streams. Landfills are widely recognized secondary point sources of PFASs, but other types of waste management sites have received less attention. Therefore, in a case study presented here we investigated releases of PFASs from temporarily stored waste by determining quantities of 34 PFASs in leachate from a Waste-to-Energy stockpile (45 000 ± 2000 tonnes) during five months in 2019. We also measured extractable organofluorine (EOF) to account for PFASs not included in the target list. The mean total concentration of the 34 PFAS (Σ34PFAS) was 211 ± 31 ng/L, and short-chain (C4-C7) perfluorocarboxylic acids (PFCAs) accounted for 56-60% of the total. Moreover, we found that Σ34PFAS only accounted for 12% ± 4% of EOF detected in the leachate. Our results demonstrate that waste stockpiles are previously unexplored sources of PFASs in the environment, and the dominance of short-chain PFCAs is consistent with observed profiles of contaminants in landfill leachates.
Collapse
Affiliation(s)
- Sofie Björklund
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden; Industrial Doctoral School, Umeå University, SE-901 87, Umeå, Sweden.
| | - Eva Weidemann
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden; Umeå Energi AB, Box 224, SE-901 05, Umeå, Sweden
| | - Leo W Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
49
|
Nikiforov VA. Hydrolysis of FTOH precursors, a simple method to account for some of the unknown PFAS. CHEMOSPHERE 2021; 276:130044. [PMID: 33735648 DOI: 10.1016/j.chemosphere.2021.130044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
There is a growing concern over a suspected presense of unknown perfluoroaliphatic substances (PFAS) in consumer goods and in the environment. Such unknown substances, possibly with high molecular weight, might be precursors of hazardous or controlled known PFAS. Recent studies confirmed that total organic fluorine (TOF) content often can not be explained by the measured target PFAS. One of the suspected classes of such unknowns are polymers with fluorotelomer alcohol (FTOH) residues in a side chain. In this report we suggest hydrolysis of precursors, as a complementary method to account for the unknown PFAS. It was shown here that hydrolysis allows to preserve structural information on the perlfuorinated parts of the precursors, which can be an advantage for the purpose of accurate risk assessment or source identification. A convenient procedure for hydrolysis with 4% sodium hydroxide in water-methanol mixture (1:9) at 60 °C for 16 h was shown to convert model substances - FTOH acrylate, methacrylate and isobutyrate esters as well as FTOH phenylcarbamate to free FTOHs. Analysis of extracts of textile samples with preliminary hydrolysis and without it showed up to 1300-fold higher level of "hidden" FTOHs.
Collapse
Affiliation(s)
- Vladimir A Nikiforov
- NILU - Norwegian Institute for Air Research, Hjalmar Johansens gate 14, Tromso, Norway.
| |
Collapse
|
50
|
Kaiser AM, Forsthuber M, Aro R, Kärrman A, Gundacker C, Zeisler H, Foessleitner P, Salzer H, Hartmann C, Uhl M, Yeung LWY. Extractable Organofluorine Analysis in Pooled Human Serum and Placental Tissue Samples from an Austrian Subpopulation-A Mass Balance Analysis Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9033-9042. [PMID: 34133125 PMCID: PMC8277134 DOI: 10.1021/acs.est.1c00883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Embryos and fetuses are of major concern due to their high vulnerability. Previous studies demonstrated that human exposure to per- and polyfluoroalkyl substances (PFAS) may be underestimated because only a limited number of known PFAS can be measured. This investigation studied the total PFAS exposure by measuring the extractable organofluorine (EOF) in pooled maternal serum, placental tissue, and cord serum samples (total number of pooled samples: n = 45). The EOF was analyzed using combustion ion chromatography, and the concentrations of known PFAS were determined using ultraperformance liquid chromatography coupled with a tandem mass spectrometer. Using a mass balance analysis approach, the amount of unknown PFAS was estimated between the levels of known PFAS and EOF. The EOF levels ranged from 2.85 to 7.17 ng F/mL (21 PFAS were quantified) in the maternal serum, from 1.02 to 1.85 ng F/g (23 PFAS were quantified) in the placental tissue, and from 1.2 to 2.10 ng F/mL (18 PFAS were quantified) in the cord serum. An average of 24, 51, and 9% of EOF is unidentified in the maternal serum, placental tissue, and cord serum, respectively. The results show that the levels of unidentified EOF are higher in the placental tissue, suggesting accumulation or potential transformation of precursors in the placenta.
Collapse
Affiliation(s)
- Andreas-Marius Kaiser
- Environment
Agency Austria, Spittelauer
Lände 5, A-1090 Vienna, Austria
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Forsthuber
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
- Department
of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Rudolf Aro
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Claudia Gundacker
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Harald Zeisler
- Department
of Obstetrics and Gynecology, Medical University
Vienna, A-1090 Vienna, Austria
| | - Philipp Foessleitner
- Department
of Gynecology and Obstetrics, University
Hospital St. Poelten, A-3100 St. Poelten, Austria
| | - Hans Salzer
- Clinic
for Pediatrics and Adolescent Medicine, University Hospital Tulln, A-3430 Tulln, Austria
| | | | - Maria Uhl
- Environment
Agency Austria, Spittelauer
Lände 5, A-1090 Vienna, Austria
| | - Leo W. Y. Yeung
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|