1
|
Narwal N, Katyal D. The abundance and analytical characterization of microplastics in the surface water of Haryana, India. Microsc Res Tech 2025; 88:139-153. [PMID: 39222395 DOI: 10.1002/jemt.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as "low risk," it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
2
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
3
|
Yu F, Zhang L, Chu W, Wu X, Pei Y, Ma J. Occurrence and distribution of microplastics in freshwater aquaculture area with different culture modes in Yangtze River Delta of China. MARINE POLLUTION BULLETIN 2024; 209:117135. [PMID: 39486204 DOI: 10.1016/j.marpolbul.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
There are multiple sources of microplastic contamination in freshwater aquaculture areas, such as water inputs, use of plastic farming tools and weathering of discarded plastics, leading to microplastic contamination of aquaculture environments, but microplastics in freshwater aquaculture areas are still limited. In our study, we investigated the distribution of microplastics (MPs) in the aquaculture water, sediments and crabs during the growth cycle of crabs with different culture modes. The results show that from May to October, MPs in surface water first increased and then decreased, which is related to water evaporation and river water recharge caused by local hot and sunny weather. The concentration of microplastics in surface water reached a maximum of 9.25 items/L in September and 0.34 items/g-dry weight in sediment in June. The MPs in the sediments, although relatively stable, fluctuated due to river water replenishment. The number of detected MPs in male crabs was higher than that in female crabs, 17.96 ± 6.23 and 16.71 ± 4.45 items/individual, respectively. Crabs of different sexes were not selective for the color of MPs. The abundance of microplastics in different tissues of river crabs was in the order of foregut > hindgut > gill > hepatopancreas, whereas they were not detected in muscles. There were microplastic uptake and excretion behaviors during the growth culture cycle of river crabs. The microplastic amount was higher in the early stage and then showed a dynamic change of decreasing and then increasing. The number of MPs was higher in culture modes with different sex ratios, especially in male-dominated culture modes, which may be related to the more frequent activities of male crabs when the male ratio is high. This study provides useful information to understand the accumulation of microplastics in cultured hairy crabs and the source sinks and transportation of microplastics in artificial freshwater aquaculture in China.
Collapse
Affiliation(s)
- Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Leilihe Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Wei Chu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| | - Yizhi Pei
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Xue Q, Yu G, Lu F, Dong Y. Fluorescent labelling combined with confocal differential Raman spectroscopy to detect microplastics in seawater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124591. [PMID: 38850818 DOI: 10.1016/j.saa.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
As an emerging marine pollutant, microplastics represent a focal point in global monitoring and management efforts. With seawater accounts for 97 % of the total global water resources, scientific assessments of microplastics in seawater are crucial for pollution control and management of marine environments. This study focuses on investigating microplastics in near-shore seawater and proposes a rapid and accurate detection method using a constructed confocal Raman spectroscopy detection system. By optimizing the pretreatment process of seawater microplastic samples, the efficient removal of organic matter interference in microplastic detection is achieved. Employing fluorescent labeling addresses the issues of prolonged detection time and high false positive rates associated with traditional methods, enabling rapid differentiation between microplastics and other substances and significantly enhancing detection efficiency and accuracy. Additionally, the use of differential Raman spectroscopy effectively mitigates fluorescence signal interference, thus improving the signal-to-noise ratio of the spectra. By employing dual-wavelength laser excitation at 784 nm/785 nm, microplastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS) ranging in size from 60 to 500 μm are successfully detected in seawater. The results demonstrate that the proposed pretreatment method for seawater microplastics and novel detection techniques enable rapid screening and comprehensive non-destructive detection of microplastics in seawater, thereby facilitating the characterization of marine microplastics and providing scientific support for enhancing the management of microplastic pollution and ecological risk control.
Collapse
Affiliation(s)
- Qingsheng Xue
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Laboratory for Regional Oceanography and Numerical Modeling, Qingdao Marine Science and Technology Center, 266200 Qingdao, Shangdong Province, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China.
| | - Guiting Yu
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China
| | - Fengqin Lu
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China; Basic Teaching Center, Ocean University of China, Qingdao 266100, China
| | - Yang Dong
- College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao 266100, China
| |
Collapse
|
5
|
Sukmono Y, Hadibarata T, Kristanti RA, Singh A, Al Farraj DA, Elshikh MS. Occurrence and visual characterization of microplastics from Mahakam River at Tenggarong City, Indonesia. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104440. [PMID: 39396457 DOI: 10.1016/j.jconhyd.2024.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Indonesia generates approximately 7.8 million tons of plastic waste annually, which 4.9 million tons is mismanaged. Presently, there is significant concern on microplastics (MPs) pollution in aquatic environment. The research on the prevalence of MPs in river systems are comparatively lower than the studies conducted on marine systems. The primary goal of this research was to look into the prevalence of MPs in the river water of Mahakam of Tenggarong City, Indonesia. To adequately represent this area, a meticulous selection method was used to find five separate sampling locations, with two stations at each location, positioned 200 m apart on opposite sides of the river. According to the study's findings, MPs has been observed in the range of 19.2 ± 1.8 to 58.5 ± 3.5 particles/l. Based on the MPs type, fragments (43.4 %) were the most common type of MPs found in water samples. Furthermore, 44.6 % of the MPs had size smaller than 1000 μm. The prevalent hues observed in the water samples were transparent and black, composing 75.6 % of overall formation. The determination of microplastic polymers employed Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy, revealing the presence of various type, such as polyethylene (PE) and polypropylene (PP).
Collapse
Affiliation(s)
- Yudi Sukmono
- Industrial Engineering Program, Faculty of Engineering, Mulawarman University, Samarinda 75119, Indonesia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta 14430, Indonesia.
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Li X, Yu Y, Yang M, Wen S, Zhang J. Tracking Microplastics Contamination in Drinking Water Supply Chain in Haikou, China: From Source to Household Taps. TOXICS 2024; 12:793. [PMID: 39590973 PMCID: PMC11597948 DOI: 10.3390/toxics12110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
The presence of microplastics (MPs) in aquatic environments has become a significant global concern due to their potential adverse effects on human health. This study aimed to investigate the contamination of MPs throughout the drinking water supply chain in Haikou City, China, and to conduct risk assessments regarding the relationship between MPs contamination and human health. The results revealed that the abundance of MPs in raw, treated, and tap water was 0.6 ± 0.6, 5.2 ± 2.7, and 1.2 ± 1.1 particles·L-1, respectively. Fragments were identified as the most prevalent shape across all samples, with the size category of 20-50 μm showing the highest abundance of MPs. Among the 11 types of polymers identified, polyethylene and polypropylene accounted for 50% and 29%, respectively. The potential risk index values were significantly higher for treated water (370.26) and tap water (303.85) compared to raw water (13.46), suggesting that plastic pipes may be a key contributor to MPs contamination in drinking water. Therefore, efforts should be directed toward developing pipes with low release rates of MPs, as well as improving detection methods for smaller particles and accurately assessing associated risks.
Collapse
Affiliation(s)
- Xiangxiang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
- School of Public Health, Hainan Medical University, Haikou 571199, China
| | - Yihan Yu
- School of Stomatology, Hainan Medical University, Haikou 571199, China;
| | - Mei Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
| | - Shaobai Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
| | - Jun Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (X.L.); (M.Y.)
- School of Public Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
Zhang Y, Shi P, Cui L. Microplastics in riverine systems: Recommendations for standardized sampling, separation, digestion and characterization. MARINE POLLUTION BULLETIN 2024; 207:116950. [PMID: 39243470 DOI: 10.1016/j.marpolbul.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) pollution has emerged as a global concern, prompting numerous studies on MP detection. Due to the remaining methodological challenges, it affects the accuracy and reliability of MP's impact assessment on river systems. To address this, the establishment of standardized operating protocols is crucial, encompassing sampling, separation, digestion, and characterization methods. This study evaluates the current tools used for identifying and quantifying MPs in riverine ecosystems, aiming to offer harmonized guidelines for future protocols. Recommendations include adopting a consistent format for reporting MP concentrations and providing improved information on sampling, separation, and digestion for enhanced cross-study comparisons. The importance of quality assurance and quality control is also discussed. Furthermore, we highlight unresolved issues, proposing avenues for further investigation. Suggestions encompass standardizing river sampling methods, optimizing technical steps and analysis processes, and enhancing the accuracy, reliability, and comparability of detection data to advance our understanding of MPs in river environments.
Collapse
Affiliation(s)
- Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
9
|
Feng S, Lu H, Xue Y, Liu Y, Li H, Zhou C, Zhang X, Yan P. Occurrence of microplastics in the headwaters of Yellow River on the Tibetan Plateau: Source analysis and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135327. [PMID: 39111180 DOI: 10.1016/j.jhazmat.2024.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
The widespread occurrence of Microplastics (MPs) has aroused increasing concerns. However, the fate of MPs in remote areas remains poorly understood. Here, the spatial distribution, potential sources, and environmental risks of MPs were analyzed in the headstream of the Yellow River on the eastern Tibetan Plateau. The average MP abundances are (464.3 ± 200.9) items /m3 and (63.6 ± 34.7) items /kg in the water and sediment, respectively, with both majority polymer is polypropylene (PP) (water: 28.7 %; sediment: 25.2 %). The structural equation modeling and conditional fragmentation model were used in this study to analyze the source and impact factors of riverine MPs. According to the models, MPs were influenced by water quality parameters and anthropogenic activities. Furthermore, the source analysis through MP characteristics and statistical analysis showed that the main sources of MPs include domestic sewage, plastic waste disposal, and the use of agricultural plastic film. Moreover, the differences in MP sources along the river were distinguished by the conditional fragmentation model. The potential ecological risks of MPs were evaluated, resulting in relatively medium-to-low levels. Our findings will serve as important references for improving the understanding of the plateau environmental impacts of MP distribution in the headwaters of large rivers.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yunlong Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Chaodong Zhou
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Liang T, Ho YW, Wang Q, Wang P, Sun S, Fang JKH, Liu X. Distribution and risk assessment of microplastics in water, sediment and brine shrimps in a remote salt lake on the Tibetan Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134959. [PMID: 38925053 DOI: 10.1016/j.jhazmat.2024.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Microplastics (MPs) are pervasive environmental contaminants that have infiltrated even the most remote ecosystems. Despite their widespread distribution, the transfer patterns and impacts of MPs in remote lakes remain poorly understood. This study aimed to address the knowledge gap regarding the pathways and consequences of MP pollution in these isolated environments. Focusing on Kyêbxang Co, a remote salt lake in Tibet, this study investigated the transfer patterns, sources and ecological impacts of MPs, providing insights into their mobility and fate in pristine ecosystems. Water, sediment and biota (brine shrimp) samples from Kyêbxang Co, collected during the summer of 2020, were analyzed using µ-Raman spectroscopy to determine MP abundances, polymer types and potential sources. Findings indicated significant MP contamination in all examined media, with concentrations highlighting the role of runoff in transporting MPs to remote locations. The majority of detected MPs were small fragments (<0.5 mm), constituting over 93 %, with polypropylene being the predominant polymer type. The presence of a halocline may slow the descent of MPs, potentially increasing the exposure and ingestion risk to brine shrimp. Despite the currently low ecological risk estimated for MPs, this study underscores the need for long-term monitoring and development of a comprehensive ecological risk assessment model for MPs.
Collapse
Affiliation(s)
- Ting Liang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuen-Wa Ho
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Qi Wang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Pengfei Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Shichun Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Fisheries College, Ocean University of China, Qingdao 266003, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China; Research Institute for Future Food, Research Institute for Land and Space, and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Guo Z, Chen J, Yu H, Zhang Q, Duo B, Cui X. Characteristics, sources and potential ecological risk of atmospheric microplastics in Lhasa city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:347. [PMID: 39073604 PMCID: PMC11286671 DOI: 10.1007/s10653-024-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Atmospheric microplastics are important contributors to environmental contamination in aquatic and terrestrial systems and pose potential ecological risks. However, studies on atmospheric microplastics are still limited in urban regions of the Tibetan Plateau, a sentinel region for climate and environmental change under a warming climate. In this study, the occurrence and potential ecological risk of atmospheric microplastics were investigated in samples of suspended atmospheric microplastics collected in Lhasa city during the Tibetan New Year in February 2023. The results show that the average abundance of atmospheric microplastics in Lhasa was 7.15 ± 2.46 MPs m-3. The sizes of the detected microplastics ranged from 20.34 to 297.18 μm, approximately 87% of which were smaller than 100 μm. Fragmented microplastics (95.76%) were the dominant shape, followed by fibres (3.75%) and pellets (0.49%). The primary polymer chemical components identified were polyamide (68.73%) and polystyrene (16.61%). The analysis of meteorological data and the backwards trajectory model indicated the air mass in Lhasa mainly controlled by westwards, and the atmospheric microplastics mainly originated from long-distance atmospheric transport. The potential ecological risk index assessment revealed that the atmospheric microplastic pollution in Lhasa was relatively low. This study provides valuable insights and a scientific foundation for future research on the prevention and control of atmospheric microplastic pollution in Lhasa and other ecologically sensitive cities.
Collapse
Affiliation(s)
- Zimeng Guo
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Junyu Chen
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Hanyue Yu
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Qiangying Zhang
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Bu Duo
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| | - Xiaomei Cui
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
13
|
Wang L, Huang J, Chen M, Jin H, Wu Y, Chen X. Investigation of microplastics in urban rivers of Eastern China in summer: abundance, characteristics and ecological risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1245-1256. [PMID: 38910540 DOI: 10.1039/d4em00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Microplastics (MPs) are increasingly becoming recognized as worldwide environmental contaminants, exerting a substantial impact on the safety of city rivers. This study explored the abundance and characteristics of MPs in summer 2023, including June and August, representing plum rain and typhoon rain seasons. The Qinhuai River exhibits more spatial fluctuations in six sampling sites with average concentrations of 470 ± 119.56 items per L, and the abundance increases with the water flows in the river. Downstream had the highest MP abundance of 484 ± 121.34 items per L, which were positive with the concentration of suspended solids (SS). Transparent and green MPs were more even in the sampling sites, and the shapes of fragments were predominant in the summer. Interestingly, the proportion of fiber and small-sized (38-75 μm) microplastics was predominant in the plum rain seasons, while the percentage of large-sized (270-5000 μm) and polymers of PE occurred in the typhoon rain seasons. The index of hazard scores of plastic polymers (H) revealed that the studied river had a severe pollution level (IV), which was highly influenced by PVC and PC. Besides, the pollution load index PLI value of different rain seasons was slightly polluted (I), while the PLI in autumn rain seasons was relatively higher than that in other seasons due to the higher variance of MPs. Therefore, the ecological risk of microplastics of PVC and PC in the Qinhuai River during varying seasons should be seriously considered. Our research is expected to provide valuable assistance in improving the management of urban rivers.
Collapse
Affiliation(s)
- Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Ming Chen
- Nanjing Research Institute of Environmental Protection, Nanjing 210008, China
| | - Hui Jin
- Nanjing Research Institute of Environmental Protection, Nanjing 210008, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Xuan Chen
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
14
|
Li N, Wang X, Li X, Yi S, Guo Y, Wu N, Lin H, Zhong B, Wu WM, He Y. Anthropogenic and biological activities elevate microplastics pollution in headwater ecosystem of Yangtze tributaries in Hindu Kush-Himalayan region. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134395. [PMID: 38663293 DOI: 10.1016/j.jhazmat.2024.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Microplastic (MP) pollution is widely spread in oceans, freshwater, and terrestrial environments but MPs in mountainous headwater ecosystem are rarely reported. This study focuses on the headwater of Yangtze tributaries of the Hindu Kush-Himalayan (HKH) region. Five streams at elevations of 900 to 3300 m were selected to investigate the distribution of MPs in water and sediments across altitudes. MPs were found in all water and sediment samples from top stream zone nearly in absence of anthropogenic activity, low anthropogenic zone, and high anthropogenic zone, increased from 12-54, 81-185 to 334-847 items/L, and 2-35, 26-84 to 124-428 items/kg, respectively. This elevation-dependent MP distribution indicated that as elevation decreased, anthropogenic activities intensified and increased MPs input and their abundance, size, and diversity. Notably, hydraulic projects, such as damming, were identified as potential barriers to the migration of MPs downstream. Microbiome analyses revealed the presence of bacterial genes associated with plastic biodegradation in all sediment samples. The study indicates that Shangri-la mountainous streams have been polluted with MPs for years with potential risk of generation of nano-sized particles via natural fragmentation and biodegradation, and thus raises concern on MPs pollution in headwaters streams in mountainous regions.
Collapse
Affiliation(s)
- Naying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaofeng Wang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xianxiang Li
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Shaoliang Yi
- International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ning Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Honghui Lin
- School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States.
| | - Yixin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
15
|
Guimarães GDA, Pereira SA, de Moraes BR, Ando RA, Martinelli Filho JE, Perotti GF, Sant'Anna BS, Hattori GY. The retention of plastic particles by macrophytes in the Amazon River, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42750-42765. [PMID: 38877194 DOI: 10.1007/s11356-024-33961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil.
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil.
| | - Samantha Aquino Pereira
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - Rômulo Augusto Ando
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil
| | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Bruno Sampaio Sant'Anna
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| |
Collapse
|
16
|
Jahan I, Chowdhury G, Baquero AO, Couetard N, Hossain MA, Mian S, Iqbal MM. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121117. [PMID: 38733848 DOI: 10.1016/j.jenvman.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The ecological health of freshwater rivers is deteriorating globally due to careless human activities, for instance, the emission of plastic garbage into the river. The current research was the first assessment of microplastics (MPs) pollution in water, sediment, and representative organisms (fish, crustacean, and bivalve) from the Surma River. Water, sediment, and organisms were sampled from six river sites (Site 1: Charkhai; Site 2: Golapganj; Site 3: Alampur; Site 4: Kazir Bazar; Site 5: Kanishail and Site 6: Lamakazi), and major water quality parameters were recorded during sampling. Thereafter, MPs in water, sediment, and organism samples were extracted, and then microscopically examined to categorize selected MPs types. The abundance of MPs, as well as size, and color distribution, were estimated. Polymer types were analyzed by ATR-FTIR, the color loss of MPs was recorded, the Pollution Load Index (PLI) was calculated, and the relationship between MPs and water quality parameters was analyzed. Sites 4 and 5 had comparatively poorer water quality than other sites. Microplastic fibers, fragments, and microbeads were consistently observed in water, sediment, and organisms. A substantial range of MPs in water, sediment, and organisms (37.33-686.67 items/L, 0.89-15.12 items/g, and 0.66-48.93 items/g, respectively) was recorded. There was a diverse color range, and MPs of <200 μm were prevalent in sampling areas. Six polymer types were identified by ATR-FTIR, namely Polyethylene (PE), Polyamide (PA), Polypropylene (PP), Cellulose acetate (CA), Polyethylene terephthalate (PET), and Polystyrene (PS), where PE (41%) was recognized as highly abundant. The highest PLI was documented in Site 4 followed by Site 5 both in water and sediment. Likewise, Sites 4 and 5 were substantially different from other study areas according to PCA. Overall, the pervasiveness of MPs was evident in the Surma River, which requires further attention and prompt actions.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; School of Science, Technology and Engineering, University of the Sunshine Coast, QLD 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Andrea Osorio Baquero
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Coastal Marine Ecosystems Research Centre (CMERC), Central Queensland University, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton QLD 4701, Australia.
| | - Sohel Mian
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
17
|
Wan S, Xu G, Xiong P, Qiao H, Chen X, Gu L, Xiong H, Wang B, Gu F. Microplastic pollution characteristics and ecological risk assessment in the Wuding River Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124228. [PMID: 38801879 DOI: 10.1016/j.envpol.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Microplastics (MPs), as a new type of environmental pollutant, have attracted extensive attention in recent years. However, there has been relatively little research specifically focusing on MPs in the Yellow River Basin, China, particularly regarding MP migration patterns. Based on surface water and sediment samples from 19 sampling sites in the Wuding River (WDR), the abundances and characteristic distributions of MPs were analyzed, and the environmental factors affecting their distribution and potential ecological risks were evaluated. The results showed that the MP abundances in surface water and sediments of the WDR were significantly different (P < 0.05), with mean values of 2.98 ± 0.69 items/L and 419.47 ± 75.61 items/kg, respectively. In terms of MP characteristics, the most common size class was 0.1-0.5 mm in surface water. Polyethylene (PE, 32.50%) and polypropylene (PP, 27.50%) were the main polymer types of MPs in surface water. Although similar MP characteristics were observed in sediments, there were significantly more particles in the <0.1 mm particle size (P < 0.05), which was 15.0% higher than in surface water. Also, more high-density MP fragments were observed in sediment samples. The retention of MPs in sediments was influenced by the MP characteristics (density, shape, particle size) and sediment particle size. In contrast, the MP abundance in surface water was more closely related to the presence of other environmental pollutants, such as total phosphorus (WTP) and ammonia nitrogen (WAN). Temperature (T), agricultural land (AGR), and residential land (RES) only had significant effects on the distribution of MPs in surface water (P < 0.05). Potential ecological risk assessments revealed that MP pollution in sediments was more serious than in surface water, especially in the middle and lower reaches. The results of this study are important for understanding MP transport in a sandy river and for eliminating potential sources of MPs.
Collapse
Affiliation(s)
- Shun Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Guoce Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Hailiang Qiao
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Xin Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Liuyang Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Haijing Xiong
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Bin Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| | - Fengyou Gu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, Shaanxi, China
| |
Collapse
|
18
|
Fattahi H, Mirzaei N, Bagheri A, Ravanyar L, Ahmadpour M, Makhdoumi P, Pirsaheb M, Heshmati S, Hoseinzadeh E, Ahmadi K, Meshabaz RA, Hossini H, Franzem T. The occurrence and distribution of microplastic contamination in Qara-sou river, Iran: incidence, quantification, and qualification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2264-2279. [PMID: 37496422 DOI: 10.1080/09603123.2023.2239755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the current study to investigate the characte - rization of Microplastic - released into the Qara-Sou river, Kermanshah, Iran, 12 sampling sites were surveyed along a 100 km stretch of the river. The maximum and minimum numbers of MPs were about 10,000 and 45,000 items per m3. The average concentration of MPs in the Qara-sou river was 23,666 ± 12147 items per m3. The dominant size and shape of MPs ranged from 0.025 to 1 mm (~44%) and fiber shapes (~78%). In addition, SEM-EDS analyses confirmed the presence of carbon-dominant peaks with O, Ca, Fe, Al, and Si. FTIR spectra have identified some MPs in the PVC, PU, PS, PE, and nylon polymer categories. A high level of MPs was discharged into the Qara-sou river, which should be attracting the attention of the community and decision-makers to reduce damage to the environment and human health.
Collapse
Affiliation(s)
- Hadis Fattahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Social Determinants of Health (SDH), Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environmental Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ravanyar
- Health Education and Health Promotion, Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Ahmadpour
- Health Education and Promotion, Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pouran Makhdoumi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shohreh Heshmati
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Edris Hoseinzadeh
- Students Research Committee, Saveh University of Medical Sciences, Saveh, Iran
| | - Kosar Ahmadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thomas Franzem
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
19
|
Wang Y, Zhao J, Fu Z, Guan D, Zhang D, Zhang H, Zhang Q, Xie J, Sun Y, Wang D. Innovative overview of the occurrence, aging characteristics, and ecological toxicity of microplastics in environmental media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123623. [PMID: 38387545 DOI: 10.1016/j.envpol.2024.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.
Collapse
Affiliation(s)
- Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China.
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, PR China
| | - Jingliang Xie
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
20
|
Mercy FT, Alam AKMR. Assessment of microplastic contamination in shrimps from the Bay of Bengal and associated human health risk. MARINE POLLUTION BULLETIN 2024; 201:116185. [PMID: 38412798 DOI: 10.1016/j.marpolbul.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) were analyzed in seven shrimp species Tiger shrimp (Penaeus monodon), Red tiger shrimp (Caridina cantonensis), Indian shrimp (Penaeus indicus), Red shrimp (Metapenaeus dobsoni), White shrimp (Penaeus merguiensis), Brown shrimp (Metapenaeus monoceros), and Roshna shrimp (Palaemon styliferus) collected from the Bay of Bengal. The abundance and characteristics of MPs were assessed in the gastrointestinal tract (GIT), which certainly translocated to the muscle of shrimp species. The highest MP abundance was found in C. cantonensis with 7.2 items/individual (25.3 items/g in the GIT and 6.3 items/g in muscle). The prominent types of MPs in shrimp samples were fibers (30 %) and fragments (29 %). The ingestion rate of MPs of black and transparent color was comparatively higher, with 64 % of the ingested MPs were < 100 μm. The primary polymer types detected based on Fourier Transform Infrared (FTIR) analysis were Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), Polymethyl Methacrylate (PMMA), Polyvinyl Chloride (PVC), Polypropylene (PP), and Ethylene Vinyl Acetate (EVA). Results from Scanning Electron Microscopy (SEM) showed rough surface textures and adhered particles on the MPs isolated from shrimps. The margin of exposure for females was 71.42, and for males, it was 80.64, indicating that women in Bangladesh are more likely to be exposed to MPs and face a higher risk than men. Sensitivity analysis revealed that MPs particle size was the most sensitive parameter. These findings provide a comprehensive understanding of MP ingestion, human exposure, and contamination in shrimps of Bangladesh, which can help future monitoring efforts.
Collapse
Affiliation(s)
- Fariha Tahsin Mercy
- Department of Environmental Science, Bangladesh University of Professionals, Mirpur, Dhaka 1216, Bangladesh
| | - A K M Rashidul Alam
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| |
Collapse
|
21
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
22
|
Krishna ABS, Madhu M, Jayadev A. Investigation of microplastics and microplastic communities in selected river and lake basin soils of Thiruvananthapuram District, Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:66. [PMID: 38117399 DOI: 10.1007/s10661-023-12219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Riparian areas are highly dynamic bio-geophysical settings with a surge of waste deposition predominantly including land-based plastic discards. These polymer discards are destined to be the prime constitution of marine "plastisphere." The polymer fate is determined by waterbodies, where the chances of plastic retention are higher, eventually mediating the formation of microplastics (MPs) in years or decades. Such formed MPs are a potential threat to the aqua bio-regime. A systematic investigation of three waterbody basin soils (Karamana River, Killiyar, and Akkulam-Veli Lake) showed the presence of MPs in all the samples analyzed with varying sizes, shapes, colors, and compositions. MPs of the shapes flakes, fragments, filaments, sheets, foams, and fibers were observed with dimensions 0.3-4.7 mm. Most of the particles were white in hue (WT), followed by colorless (CL), light yellow (L.Y), light brown (L.B), orange (OR), red (RD), and blue (BL), respectively. The polymer communities were identified as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and nylon. The highest average MP density was identified in the basin of Killiyar (799 ± 0.09 pieces/kg) followed by Karamana River (671 ± 3.45 pieces/kg), indicating the closeness of the sampling station to the city center compared to Akkulam-Veli Lake (486 ± 58.55 pieces/kg). The majority of the sampling sites belonged to the slopy areas and came under the highly urbanized land category. A close association was observed between particle abundance and urban activity. The study foresees possible threats inflicted by MP abundance upon the area-wide hydro-biological system.
Collapse
Affiliation(s)
- Anjana B S Krishna
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India
| | - Maha Madhu
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India
| | - Ayona Jayadev
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
23
|
Liu Y, Prikler B, Bordós G, Lorenz C, Vollertsen J. Does microplastic analysis method affect our understanding of microplastics in the environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166513. [PMID: 37619728 DOI: 10.1016/j.scitotenv.2023.166513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Two analytical methods - both in active use at different laboratories - were tested and compared against each other to investigate how the procedure influences microplastic (MP) detection with micro Fourier Transform Infrared Spectroscopy (μFTIR) imaging. A representative composite water sample collected from the Danube River was divided into 12 subsamples, and processed following two different methods, which differed in MP isolation procedures, the optical substrate utilized for the chemical imaging, and the detection limit of the spectroscopic instruments. The first instrument had a nominal pixel resolution of 5.5 μm, while the second had a nominal resolution of 25 μm. These two methods led to different MP abundance, MP mass estimates, but not MP characteristics. Only looking at MPs > 50 μm, the first method showed a higher MP abundance, namely 418-2571 MP m-3 with MP mass estimates of 703-1900 μg m-3, while the second method yielded 16.7-72.1 MP m-3 with mass estimates of 222-439 μg m-3. Looking deeper into the steps of the methods showed that the MP isolation procedure contributed slightly to the difference in the result. However, the variability between individual samples was larger than the difference caused by the methods. Somewhat sample-dependent, the use of two different substrates (zinc selenide windows versus Anodisc filters) caused a substantial difference between results. This was due to a higher tendency for particles to agglomerate on the Anodisc filters, and an 'IR-halo' around particles on ZnSe windows when scanning with μFTIR. Finally, the μFTIR settings and nominal resolution caused significant differences in identifying MP size and mass estimate, which showed that the smaller the pixel size, the more accurately the particle boundary can be defined. These findings contributed to explaining disagreements between studies and addressed the importance of harmonization of methods.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark.
| | - Bence Prikler
- Eurofins Analytical Services Hungary Ltd., 6. Anonymus st., Budapest 1045, Hungary; Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Gábor Bordós
- Eurofins Analytical Services Hungary Ltd., 6. Anonymus st., Budapest 1045, Hungary
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg, Denmark
| |
Collapse
|
24
|
Das P, Halder G, Bal M. A critical review on remediation of microplastics using microalgae from aqueous system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166425. [PMID: 37598972 DOI: 10.1016/j.scitotenv.2023.166425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Microplastics (MPs) are deemed to be a global concern due to their harmful negative effects on the aquatic environment and human beings. MPs have a significant impact on both fresh and marine water ecosystems. In many countries, there is concern about the deleterious consequences of MPs on human health due to the presence of MPs in aquatic life for higher intake of marine food (fish and shellfish). Exposure to MPs causes fish to suffer from growth retardation, neurotoxicity, and behavioural abnormalities and it affects human as well. It causes oxidative stress, neurotoxicity, cytotoxicity, and immune system disruption after being ingested to these contaminated fish in human body. Due to these reasons, it has become imperative to find ways to resolve this problem. This review paper represents a pioneering endeavor by consolidating comprehensive information on microplastic-polluted Indian riverine ecosystems and effective MPs removal methods into a single, cohesive document. It meticulously evaluates the principles, removal efficiency, benefits, and drawbacks of various techniques, aiming to identify the most optimal solution. Furthermore, this paper provides a comprehensive exploration of the interesting interactions between MPs and microalgae, delving into the intricate processes of hetero-aggregation. Additionally, it shines a spotlight on the latest advancements in understanding the efficacy of microalgae in removing MPs, showcasing recent breakthroughs in this field of research. Moreover, the work goes beyond conventional assessments by elucidating the characteristics of MPs and exploring diverse influencing parameters that impact MPs removal by microalgae and also addresses the potential future aspects. This thorough investigation uncovers important factors that could significantly contribute to the development of more efficient and sustainable remediation strategies.
Collapse
Affiliation(s)
- Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India.
| |
Collapse
|
25
|
Ta AT, Babel S. Microplastics and heavy metals in a tropical river: Understanding spatial and seasonal trends and developing response strategies using DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165405. [PMID: 37429472 DOI: 10.1016/j.scitotenv.2023.165405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) have become an increasingly popular topic in recent years due to the growing concern about their impact on human health and the environment. Rivers in Southeast Asia are the dominant source of plastics and MPs into the environment; however, research on MPs in rivers from the region is insufficient. This study aims to investigate the impacts of spatial and seasonal variations on the distribution of MPs with heavy metals in one of the top 15 rivers releasing plastics into oceans (Chao Phraya, Thailand). Findings from this study are analyzed using the Driver-Pressure-State-Impact-Response (DPSIR) framework for proposing strategies to minimize plastic and MPs in this tropical river. Spatially, most MPs were detected in the urban zone, while the lowest was in the agricultural zone. Also, MP levels in the dry season are higher than at the end but lower than at the beginning of the rainy season. MPs with fragment morphology were mainly found in the river (70-78 %). Polypropylene was found with the highest percentage (54-59 %). MPs in the river were mostly detected in the size range of 0.05-0.3 mm (36-60 %). Heavy metals were also found in all MPs collected from the river. Higher metal concentrations were detected in the agricultural and estuary zones in the rainy season. Potential responses, including regulatory and policy instruments, environmental education, and environmental cleanups, were drawn from the DPSIR framework.
Collapse
Affiliation(s)
- Anh Tuan Ta
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani 12121, Thailand
| |
Collapse
|
26
|
Li Q, Jiang J, Lan Y, Kang S, Yang Y, Zhang J. Combined toxic effects of polypropylene and perfluorooctanoic acid on duckweed and periphytic microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108606-108616. [PMID: 37752396 DOI: 10.1007/s11356-023-30006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Microplastics and perfluorooctanoic acid coexist in the aquatic environment. Duckweed was exposed to a range of concentrations (0.1-1000 μg L-1) of solutions containing polypropylene (PP) and perfluorooctanoic acid (PFOA) for 14 days to measure their toxicity. The result showed the single and combined PP and PFOA treatments did not significantly influence the growth of duckweed. The greatest PP and PFOA concentrations of combined pollution affect plant chlorophyll. Moreover, the combined treatment of duckweed consistently resulted in increased malondialdehyde (MDA) levels, indicating oxidative damage. As an antioxidant stress response, the combination-treated plants were encouraged to produce superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Meanwhile, 3519 Operational Taxonomic Units (OTUs) were identified in the duckweed rhizosphere. Proteobacteria was the most predominant microbial community. Shannon, Simpson, and Chao1 discovered that microbial communities changed in response to single and combination PP and PFOA treatments, with decreased diversity and increased abundance. In addition, SEM analysis also revealed that the combined treatment significantly phyllosphere microorganisms. The findings of this investigation add to our knowledge of how PP and PFOA affect duckweed and the rhizospheric microorganisms, expanding the theoretical basis for employing duckweed in complex contamination.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China.
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| | - Jiahui Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610051, China
| |
Collapse
|
27
|
Gan M, Zhang Y, Shi P, Cui L, Sun H. Microplastic pollution in typical seasonal rivers in northern China: temporal variation and risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1479-1490. [PMID: 37581367 DOI: 10.1039/d3em00281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Rivers are important channels for the transport of microplastics (MPs) from land to sea. In this work, the temporal variation and risk assessment of MP pollution in the surface water of the Wei River, a typical seasonal river in northern China, were quantified. The number abundance of MPs in the dry season was significantly higher than that in the wet season (p < 0.05). Fiber was the most abundant type of MP in both dry and wet seasons. Infrared spectrometer and Raman spectroscopy identification showed that polypropylene (PP) and polyethylene (PE) were the major polymers found in both dry and wet seasons, and the mixture of different MP polymers was more diverse in the dry season. The risk assessment showed that the average pollution load index (PLI) and risk quotient (RQ) were 2.10 and 1.19 in the dry season, which significantly decreased to 1.25 and 0.74, respectively, in the wet season (p < 0.05). In total, the results from this study highlight the characteristics of seasonal rivers that influence the temporal distribution and risk assessment of microplastics, providing scientific reference for policymakers and river managers to effectively deal with MP pollution.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
28
|
Yusof KMKK, Anuar ST, Mohamad Y, Jaafar M, Mohamad N, Bachok Z, Mohamad N, Ibrahim YS. First evidence of microplastic pollution in the surface water of Malaysian Marine Park islands, South China Sea during COVID-19. MARINE POLLUTION BULLETIN 2023; 194:115268. [PMID: 37451046 DOI: 10.1016/j.marpolbul.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Malaysia is bounded by the South China Sea with many islands that support species megadiversity and coral reef ecosystems. This study investigates the distribution of microplastics (MPs) in the surface water around the four marine park islands (Perhentian, Redang, Kapas, and Tenggol) during COVID-19. The global pandemic has reset human activities, impacting the environment while possibly reducing anthropogenic contributions of microplastic pollution near the South China Sea islands. It was found that Pulau Perhentian recorded the most abundance of MPs (588.33 ± 111.77 items/L), followed by Pulau Redang (314.67 ± 58.08 items/L), Pulau Kapas (359.8 ± 87.70 items/L) and Pulau Tenggol (294.33 ± 101.64 items/L). Kruskal-Wallis analysis indicates a significant difference in total MPs abundance between islands. There are moderate correlations between salinity, pH, temperature and MPs variability. Among these parameters, only temperature is significant (p < 0.05) as proven by the principal component analysis and multiple linear regression analysis. Nearly 99 % of MPs are fiber type, with the majority of them being black and transparent. Micro-FTIR spectroscopy revealed polyethylene, polypropylene, polyvinyl methyl ether, polyamide, phenoxy-resins and polyurethane-acrylic are associated with MPs. The findings provide a new baseline reference for the MPs distribution on Malaysian islands, which contributes to a potential future direction regarding marine sustainability.
Collapse
Affiliation(s)
- Ku Mohd Kalkausar Ku Yusof
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yuzwan Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Noorlin Mohamad
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Zainudin Bachok
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Najihah Mohamad
- Fisheries Research Institute, 11960, Batu Maung, Penang, Malaysia.
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
29
|
Barhoumi B, Metian M, Zaghden H, Derouiche A, Ben Ameur W, Ben Hassine S, Oberhaensli F, Mora J, Mourgkogiannis N, Al-Rawabdeh AM, Chouba L, Alonso-Hernández CM, Karapanagioti HK, Driss MR, Mliki A, Touil S. Microplastic-sorbed persistent organic pollutants in coastal Mediterranean Sea areas of Tunisia. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1347-1364. [PMID: 37401332 DOI: 10.1039/d3em00169e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Microplastics (MPs) are emerging pollutants of global concern due to their pervasiveness, high sorption ability for persistent organic pollutants (POPs) and direct and indirect toxicity to marine organisms, ecosystems, as well as humans. As one of the major coastal interfaces, beaches are considered among the most affected ecosystems by MPs pollution. The morphological characteristics of MPs (pellets and fragments) collected from four beaches along the Tunisian coast and sorbed POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), were investigated in this study. The results showed that the MPs varied greatly in color, polymer composition and degradation degree. The color varied from colored to transparent and the most prevalent polymer identified using Raman spectroscopy was polyethylene. Scanning electron microscope (SEM) images exhibited various surface degradation features including cavities, cracks, attached diatom remains, etc. The concentrations of Σ12PCBs over all beaches ranged from 14 to 632 ng g-1 and 26 to 112 ng g-1 in the pellets and fragments, respectively, with a notable presence and dominance of highly-chlorinated PCBs such as CB-153 and -138. Among the OCPs, γ-HCH is the only compound detected with concentrations ranging from 0.4 to 9.7 ng g-1 and 0.7 to 4.2 ng g-1 in the pellets and fragments, respectively. Our findings indicate that MPs found on the Tunisian coast may pose a chemical risk to marine organisms as the concentrations of PCBs and γ-HCH in most of the analysed samples exceeded the sediment-quality guidelines (SQG), especially the effects range medium (ERM) and the probable effects level (PEL). As the first report of its kind, the information gathered in this study can serve as the baseline and starting point for future monitoring work for Tunisia and neighbouring countries, as well as for stakeholders and coastal managers in decision-making processes.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Marc Metian
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - Hatem Zaghden
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Abdelkader Derouiche
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Walid Ben Ameur
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
- Ecologie de La Faune Terrestre UR17ES44, Département des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - François Oberhaensli
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - Janeth Mora
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | | | - Abdulla M Al-Rawabdeh
- Department of Earth and Environmental Science, Yarmouk University, Irbid 21163, Jordan
| | - Lassaad Chouba
- Laboratory of Marine Environment, National Institute of Marine Science and Technology (INSTM), Goulette, Tunisia
| | - Carlos M Alonso-Hernández
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | | | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| |
Collapse
|
30
|
Gao S, Wu Q, Peng M, Zeng J, Jiang T, Ruan Y, Xu L, Guo K. Rapid urbanization affects microplastic communities in lake sediments: A case study of Lake Aha in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117824. [PMID: 37004481 DOI: 10.1016/j.jenvman.2023.117824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Effective management of pollutants in urban environments is crucial for achieving sustainable cities. Microplastics, as an emerging pollutant widely present in contemporary environments, have received widespread attention in recent years. However, limited studies have reported the impact of rapid urbanization on regional microplastics. In this study, the abundance and composition of microplastic communities in the sediments of Lake Aha were analyzed using a "microplastic community" and slicing the sediments at 5 cm intervals. Results showed that microplastic abundance of sediments in Lake Aha was relatively high (up to 1700 items/kg) and decreased with increasing depth, with the highest abundance found in the surface layer (0-5 cm, 1090 ± 474 items/kg). Hierarchical cluster analysis (HCA), principal component analysis (PCA), and analysis of similarities (ANOSIM) revealed that the different sediment layers could be classified into high and low urbanization level groups based on the composition of microplastic communities. Linear discriminant analysis effect size (LEfSe) indicated that agricultural input was the main source of microplastic pollution during low urbanization levels, characterized by low abundance, large particle size, and high fiber proportion, while urban activities dominated during high urbanization levels, with high abundance, small particle size, high proportion of Polyethylene terephthalate (PET), fragments, and granules, and colorful microplastics. This study clarifies the impact of urbanization on the abundance and composition of microplastics in lake sediments, which has implications for more effective management and control of microplastic pollution in regions undergoing rapid urbanization.
Collapse
Affiliation(s)
- Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Qixin Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Meixue Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jie Zeng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Tingting Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Yunjun Ruan
- College of Bigdata and Information Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Guo
- Guiyang Research Academy of Eco-Environmental Science, Guiyang, Guizhou, 550025, China
| |
Collapse
|
31
|
Wang C, Sun D, Junaid M, Xie S, Xu G, Li X, Tang H, Zou J, Zhou A. Effects of tidal action on the stability of microbiota, antibiotic resistance genes, and microplastics in the Pearl River Estuary, Guangzhou, China. CHEMOSPHERE 2023; 327:138485. [PMID: 36966930 DOI: 10.1016/j.chemosphere.2023.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, the 16S rRNA gene amplicon sequencing technique was used to explore the microbial diversity and differences in the water environment of the Pearl River Estuary in Nansha District with various land use types such as the aquaculture area, industrial area, tourist area, agricultural plantation, and residential area. At the same time, the quantity, type, abundance, and distribution of two types of emerging environmental pollutants, antibiotic resistance genes (ARGs) and microplastics (MPs), are explored in the water samples from different functional areas. The results show that the dominant phyla in the five functional regions are Proteobacteria, Actinobacteria and Bacteroidetes, and the dominant genera are Hydrogenophaga, Synechococcus, Limnohabitans and Polynucleobacter. A total of 248 ARG subtypes were detected in the five regions, belonging to nine classes of ARGs (Aminoglycoside, Beta_Lactamase, Chlor, MGEs, MLSB, Multidrug, Sul, Tet, Van). Blue and white were the dominant MP colors in the five regions; 0.5-2 mm was the dominant MP size, and cellulose, rayon, and polyester comprised the highest proportion of the plastic polymers. This study provides the basis for understanding the environmental microbial distribution in estuaries and the prevention of environmental health risks from ARGs and microplastics.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| |
Collapse
|
32
|
Gündoğdu S, Kutlu B, Özcan T, Büyükdeveci F, Blettler MCM. Microplastic pollution in two remote rivers of Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:791. [PMID: 37261625 DOI: 10.1007/s10661-023-11426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Microplastic pollution in aquatic ecosystems presents an emerging environmental threat that can have adverse effects on ecology, endanger aquatic species, and result in economic damage. Despite the numerous studies reporting the presence of microplastics in marine environments, research into their presence in freshwater systems or inland waters remains limited. This study aimed to assess the level of microplastic pollution transported by the Munzur and Pülümür Rivers and some small rivers that flow into the Uzunçayır dam lake, which is the confluence of the Munzur and Pülümür Rivers in Türkiye. Samples were collected from 23 stations, with the concentration of microplastics ranging from 0.01 MP/m3 at P-4 station to 28.21 MP/m3 at P-10, a station located near a city. Microplastics comprise four types: fiber, film, fragment, and glitter. The average size of microplastics was 1.46 ± 0.05 mm, with the average size of fibers, films, fragments, and glitter-type microplastics being 1.58 ± 0.07 mm, 1.23 ± 0.10 mm, 1.21 ± 0.11 mm, and 0.78 ± 0.16 mm, respectively. The most frequent polymers were polyethylene (31.8%), polystyrene (21.1%), and polypropylene (10.5%). Despite being considered remote and less populated rivers compared to other river systems in Türkiye, all sampling sites showed varying concentrations of microplastics.
Collapse
Affiliation(s)
- Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey.
| | - Banu Kutlu
- Faculty of Fisheries, Department of Basic Sciences, Munzur University, 62000, Tunceli, Turkey
| | - Tahir Özcan
- Faculty of Marine Sciences and Technology, Iskenderun Technical University, TR-31200, Iskenderun, Hatay, Turkey
| | - Ferhat Büyükdeveci
- Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
- Adana Directorate of Provincial Food, Agriculture and Livestock, 01330, Adana, Turkey
| | - Martin C M Blettler
- The National Institute of Limnology (INALI; CONICET-UNL), Santa Fe, Argentina
| |
Collapse
|
33
|
Ta AT, Babel S. Occurrence and spatial distribution of microplastic contaminated with heavy metals in a tropical river: Effect of land use and population density. MARINE POLLUTION BULLETIN 2023; 191:114919. [PMID: 37060892 DOI: 10.1016/j.marpolbul.2023.114919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
Microplastics are of concern due to their potential environmental risks. This research aims to find the effect of land use (agriculture, urban, and aquaculture) and population density on the abundance of microplastics contaminated with heavy metals in surface water and sediment of the Chao Phraya River in Thailand. Results indicated that population density is directly correlated with increased microplastic abundance. Most microplastics were found in the urban zone (water: 80 ± 38 items/m3 and sediment: 62 ± 11 items/kg) and were small fragments (0.05 to 0.3 mm). Polymer types of polypropylene and polyethylene were commonly found. Heavy metals of Cr, Cu, Cd, Pb, Zn, Ni, and Ti were detected in microplastics in water and sediment, with Cu, Pb, and Zn being the most dominant. Heavy metals in microplastics were highest in the agriculture zone. In general, the presence of metals on microplastics may potentially impact the ecosystem and human health.
Collapse
Affiliation(s)
- Anh Tuan Ta
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani 12121, Thailand.
| |
Collapse
|
34
|
Nantege D, Odong R, Auta HS, Keke UN, Ndatimana G, Assie AF, Arimoro FO. Microplastic pollution in riverine ecosystems: threats posed on macroinvertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27839-9. [PMID: 37248351 DOI: 10.1007/s11356-023-27839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.
Collapse
Affiliation(s)
- Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria.
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Helen Shnada Auta
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Unique Ndubuisi Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Attobla Fulbert Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Francis Ofurum Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| |
Collapse
|
35
|
Talukdar A, Bhattacharya S, Bandyopadhyay A, Dey A. Microplastic pollution in the Himalayas: Occurrence, distribution, accumulation and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162495. [PMID: 36868287 DOI: 10.1016/j.scitotenv.2023.162495] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been reported from various ecosystems including lakes, ponds, wetlands, mountains, and forests globally. Recent research works showed microplastic deposition and accumulation in the Himalayan mountains and adjoining ecosystems, rivers and streams. Fine particles of microplastic originating from different anthropogenic sources can travel long distances, even upwards (altitudinally) through atmospheric transport and can pollute remote and pristine locations situated in the Himalayas. Precipitation also plays a vital role in influencing deposition and fallout of microplastics in the Himalayas. Microplastics can be trapped in the snow in glaciers for a long time and can be released into freshwater rivers by snow melting. Microplastic pollution in Himalayan rivers such as the Ganga, Indus, Brahmaputra, Alaknanda, and Kosi has been researched on both the upper and lower catchments. Additionally, Himalayan region draws many domestic and international tourists throughout the year, resulting in generation of massive and unmanageable volume of plastics wastes and finally ending up in the open landscapes covering forests, river streams and valley. Fragmentation of these plastic wastes can lead to microplastic formation and accumulation in the Himalayas. This paper discusses and explains occurrence and distribution of microplastics in the Himalayan landscapes, possible adverse effects of microplastic on local ecosystems and human population and policy intervention needed to mitigate microplastic pollution in the Himalayas. A knowledge gap was noticed regarding the fate of microplastics in the freshwater ecosystems and their control mechanisms in the Indian Himalayas. Regulatory approaches for microplastics management in the Himalayas sit within the broader plastics/solid waste management and can be implemented effectively by following integrated approaches.
Collapse
Affiliation(s)
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| |
Collapse
|
36
|
Yu F, Pei Y, Zhang X, Wu X, Zhang G, Ma J. Occurrence and distribution characteristics of aged microplastics in the surface water, sediment, and crabs of the aquaculture pond in the Yangtze River Delta of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162039. [PMID: 36746285 DOI: 10.1016/j.scitotenv.2023.162039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The artificial breeding of freshwater crabs in China has become the main source, accounting for 45.69 % of the total output in 2020. However, microplastics widely exist in ponds due to the addition of meals, and the aging and breakage of plastic tools, and people know little about the occurrence of microplastics in the environment and the tissues of crabs during the cultivation of crabs in ponds. In this study, the abundance and characteristics of microplastics in ponds and crabs were studied finely, and the types of microplastics produced by meals and tools and the aging degree of microplastics in different media were studied in a typical aquaculture experimental base in the Yangtze Estuary of China. After we digested all the samples, there were microplastics in the water, sediment, and inedible part of crabs and crab meals, mainly in fiber shape, with a particle size of 100~300μm, and they have a certain degree of aging. The abundance of microplastics in surface water ranges from 4.4 to 10.8 items/L, and that in sediment ranges from 28.6 to 54.3 items/100 g·dry weight sediments. The average abundance of microplastics in crabs was 23.9 ± 15.9 items/individual. The content of microplastics in crabs' intestinal tissue was the highest, followed by gills and hepatopancreas. At the same time, the microplastics found in crabs were positively correlated with crab body weight and negatively correlated with hepatopancreas index. The results show that in the process of artificial breeding pond feeding, microplastics will be released from the process of meals dissolving in water, and fall off due to wear and tear during the use of tools. Microplastics found in the water, sediments and the tissues of crabs were all aged. Humans have a risk of ingesting microplastics when they eat the tissues of nonedible parts of crabs.
Collapse
Affiliation(s)
- Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Yizhi Pei
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Xiaochen Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Guangbao Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
37
|
Li B, Li B, Jia Q, Cai Y, Xie Y, Yuan X, Yang Z. Dynamic characteristics of microplastics under tidal influence and potential indirect monitoring methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161869. [PMID: 36709889 DOI: 10.1016/j.scitotenv.2023.161869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Rivers are an important channel for the transport of microplastics from inland areas to the ocean. It is of great significance to explore the dynamic changes in microplastic pollution characteristics under tidal fluctuations to understand the exchange of microplastics between rivers and oceans. In this study, the occurrence of microplastics in typical tidal channels in the lower reaches of the Dong River was investigated during the wet and dry weather seasons, and high frequency continuous dynamic monitoring of microplastics was carried out in a typical tidal cross section during a tidal cycle. The abundances of microplastics during wet and dry weather seasons were 3.97-102.87 ± 28.63 item/m3 and 5.43-56.43 ± 14.32 item/m3, respectively. The microplastics generally exhibited a fluctuating growth pattern, with low contents in the upstream area and high contents in the downstream area, and the abundance of microplastics differed greatly in the different functional zones. The dynamic monitoring results showed that the abundance of microplastics was clearly affected by the tides, in that it increased during the flood tide and decreased during the ebb tide, with abundances ranging from 11.15 to 95.26 item/m3. In addition, there was a significant linear relationship between the abundance of microplastics and flow in the typical tidal cross section. The relationship between the response of microplastic pollution characteristics and tides combined with local hydrometeorological factors may be a potentially effective real-time monitoring method for assessing microplastic pollution indirectly.
Collapse
Affiliation(s)
- Bowen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yulei Xie
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
38
|
Niu S, Wang T, Xia Y. Microplastic pollution in sediments of urban rainwater drainage system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161673. [PMID: 36657368 DOI: 10.1016/j.scitotenv.2023.161673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The sink of microplastics (MPs) in sediments of urban rainwater drainage system (RDS) is of great concern, because the MPs deposited can be resuspended by flow disturbance. Previous research has confirmed the significant accumulation of MPs in sediments of urban RDS, but it remains poorly elucidated, such as pollution sources and influencing factors. In this study, we investigated the MPs in sediments from RDS of a university campus. MPs were detected from all sediment samples, showing the ubiquity of microplastic pollution. Among 11 samples MPs' abundance ranged from 80 to 2610 particles/kg (dry weight), with highly spatial variability, depending on land type and environmental management practice within the catchment. Sites from office & teaching area had the averaged abundance of 335.00 ± 196.85 particles/kg, while 270.00 ± 89.09 particles/kg for staff residential area, and 795.00 ± 1050.65 particles/kg for student living area, indicating that the sediments of RDS from student living area had the highest abundance of MPs. However, independent sample t-test analysis suggests there is no statistically significant difference between land types, because of effective environmental management practices in the catchment. The surfaces of MPs were much rough, which implies that the fragmentation of larger plastic particles resulted in the production of MPs. Although the MPs of <1000 μm were the most, 1000-2000 μm MPs also accounted for a significant proportion in this study, showing a slight difference from the previous study in which MPs over 1 mm were quite low. Polypropylene (PP) and polyester (PET) found to be dominant with 49.75 ± 18.69 % and 49.75 ± 18.69 % of the total number, respectively. As to shapes, the proportion of fiber and fragment MPs exceeded 80 %. The color of MPs diversified greatly, and the MPs with bright colors occupied over 80 %. Fabric fibers, food packaging and courier packaging materials were figured out to be the considerable contributors of MPs.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China.
| | - Tiantian Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Yanrong Xia
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
39
|
Deng Y, Wu J, Chen J, Kang K. Overview of microplastic pollution and its influence on the health of organisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:412-422. [PMID: 36942439 DOI: 10.1080/10934529.2023.2190715] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has gradually become a major global concern, due to the widespread use of plastics. Microplastics enter the environment and are degradated, while also being ingested by organisms, affecting various physiological functions and adversely affecting the health of organisms. Microplastic pollution is currently a wide concern, but data on the impact on organisms is still not sufficient. Therefore, this review summarizes the research on microplastic pollution in marine, soil and fresh water, and its impact on organisms, focusing on the effects of microplastics on organisms' feeding behavior and oxidative stress responses, intestinal microbes and reproductive function, and the combined effects of microplastic pollutants on organisms. We also summarized the various possible ways of microplastics entering into the human body, and posing a potential threat to human health, which still needs further research.
Collapse
Affiliation(s)
- Yingling Deng
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jinjun Chen
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| |
Collapse
|
40
|
Zhou A, Zhao Y, Liu M, Suyamud B, Yuan W, Yang Y. Occurrence and risk assessment of microplastics in the Lhasa River-a remote plateau river on the Qinghai-Tibet Plateau, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:433. [PMID: 36856933 DOI: 10.1007/s10661-023-11040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in the aquatic environment and have received widespread attention worldwide as emerging pollutants. Urbanization and anthropogenic activities are the main sources of MPs in rivers; however, the MPs in plateau rivers with less human activities are not well understood. In this study, the pollution of MPs in the surface water and shore sediment of the Lhasa River from the Qinghai-Tibet Plateau was investigated, and a risk assessment was conducted. The abundance of MPs in the surface water and shore sediment of Lhasa River were 0.63 n/L and 0.37 n/g, respectively. MPs in surface water were mainly dominated by films (43.23%) and fibers (31.12%) in shape, transparent (54.25%) in color, and 0-0.5 mm (75.83%) in size, while MPs in the shore sediment were mainly fibers (43.69%) and fragments (36.53%), transparent (71.91%), and 0-0.5 mm (60.18%). PP and PE were the predominant polymer types, accounting for 44.55% and 30.79% respectively in the surface water and 32.51% and 36.01% respectively in the shore sediment. More notably, the polymer pollution index (H) of MPs in the Lhasa River was at hazard level III due to the high risk caused by PVC, but the pollution load index (PLI) was low at hazard level I. This study reveals that the remote river in the Qinghai-Tibet Plateau are polluted by MPs, and their potential risks to the vulnerable ecosystem deserve attention.
Collapse
Affiliation(s)
- Amei Zhou
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China
| | - Yuhong Zhao
- Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, China
| | - Minxia Liu
- College of Forestry, Shanxi Agricultural University, Taigu County, 030801, China
| | - Bongkotrat Suyamud
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Yuyi Yang
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Lumo Road No.1, Wuchang District, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
41
|
Wang L, Guo C, Qian Q, Lang D, Wu R, Abliz S, Wang W, Wang J. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. CHEMOSPHERE 2023; 313:137439. [PMID: 36460154 DOI: 10.1016/j.chemosphere.2022.137439] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As the "vector" of heavy metals in the aquatic environment, microplastics (MPs) have a great influence on the migration and transformation of heavy metals. In this study, the adsorption of polypropylene (PP), polyethylene (PE) and polystyrene (PS) on two models of heavy metals after UV aging and environmental variables (ionic coexistence, pH, salinity, and fulvic acid) were comprehensively explored on adsorption. The results show that new oxidation functional groups are formed and their hydrophilicity is enhanced after MPs aging. As a result, the adsorption experiments showed that the adsorption of contaminants by UV aged MPs exceeds that of pristine MPs. The adsorption amounts of Pb(II) and Cu(II) by PP, PE and PS increased by 1.45, 1.46, 1.25 and 1.63, 1.39, 1.22 times, respectively. Adsorption kinetic data were more consistent with the pseudo-second-order kinetic model, proving chemisorption to be the mechanism governing the interaction between metal ions and MPs. The Freundlich model could accurately predict the heavy metal adsorption isotherms on MPs, showing that non-homogeneous multilayer adsorption dominates the process. In Pb(II)-Cu(II) binary composite system, metal ion adsorption capacity on MPs is less than that of the single system adsorption capacity, which proves that there is a specific inhibitory effect between coexisting ions. Additionally, external factors like pH, salinity, and fulvic acid content have a big impact on adsorption behavior. According to mechanism analysis, the adsorption process mainly relies on electrostatic interaction, surface complexation, and van der Waals force.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Chengxin Guo
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Qianqian Qian
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Daning Lang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Ronglan Wu
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Shawket Abliz
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Wei Wang
- Institute of Chemistry and Center for Pharmacy,University of Bergen, 5020, Bergen, Norway.
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
42
|
Algal degradation of microplastic from the environment: Mechanism, challenges, and future prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Li R, Zhu L, Wang Y, Zhu YG. Metagenomic insights into environmental risk of field microplastics in an urban river. WATER RESEARCH 2022; 223:119018. [PMID: 36057234 DOI: 10.1016/j.watres.2022.119018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 08/20/2022] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) are emerging as anthropogenic vectors for the colonization and transportation of microbial communities in aquatic ecosystems. However, the composition of the microbiome and its environmental risk on field MPs at watershed scale has rarely been explored. Here, geographical distributions of microbiome, antibiotic resistance genes (ARGs) and virulence factors (VFs) on field MPs at watershed scale were characterized and their potential environmental risks were evaluated based on the data from metagenomic analyzes. The succession of microbial communities on MPs was observed along the watershed, and some ARGs and VFs were significantly enriched on MPs in urban region in comparison with rural region. Potential environmental risk of MPs conducted by Projection Pursuit Regression model in midstream (peri-urban region) and downstream (urban region) were significantly higher than that in upstream (rural region), and exhibit close relationships with MPs concentration and water velocity. Furthermore, our source tracking results demonstrated that the microbiome, ARGs and VFs in urban region MPs were largely derived from rural region MPs. Our results caution us that special attention should be paid to the risks posed by MPs in urban water bodies, and highlight the threat of MPs from rural upstream areas.
Collapse
Affiliation(s)
- Ruilong Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yijin Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
44
|
Talbot R, Granek E, Chang H, Wood R, Brander S. Spatial and temporal variations of microplastic concentrations in Portland's freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155143. [PMID: 35405237 DOI: 10.1016/j.scitotenv.2022.155143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
While microplastics are a pollutant of growing concern in various environmental compartments, less is known regarding the sources and delivery pathways of microplastics in urban rivers. We investigated the relationship between microplastic concentrations and various spatiotemporal factors (e.g., land use, arterial road length, water velocity, precipitation) in two watersheds along an urban-rural gradient in the Portland metropolitan area. Samples were collected in August, September, and February and were analyzed for total microplastic count and type. Nonparametric statistics were used to evaluate potential relationships with the explanatory variables, derived at both the subwatershed and near stream scales. In August, microplastic concentrations were significantly higher than in February. August concentrations also negatively correlated with flow rate, suggesting that lower flow rates may have facilitated the accumulation of microplastics. Smaller size microplastic particles (< 100 μm) were found more in August than September and February, while larger size particles were more dominant in February than the other months. Microplastic concentrations were positively related to 24-h antecedent precipitation in February. Negative correlations existed between wet season microplastic concentrations and agricultural lands at the near stream level. The results indicate that near stream variables may more strongly influence the presence and abundance of microplastics in Portland's waterways than subwatershed-scale variables. Fragments were the most commonly observed microplastic morphology, with a dominance of gray particles and the polymer polyethylene. The findings of this study can inform management decisions regarding microplastic waste and identify hotspots of microplastic pollution that may benefit from remediation.
Collapse
Affiliation(s)
| | - Elise Granek
- Department of Environmental Science and Management, Portland State University
| | - Heejun Chang
- Department of Geography, Portland State University.
| | - Rosemary Wood
- Department of Environmental Science and Management, Portland State University
| | - Susanne Brander
- Department of Fisheries, Wildlife, and Conservation Sciences; Coastal Oregon Marine Experiment Station, Oregon State University
| |
Collapse
|
45
|
Américo-Pinheiro JHP, Salomão GR, Moreno Paschoa CV, Cruz IA, Isique WD, Romanholo Ferreira LF, Torres NH, Bilal M, Iqbal HMN, Sillanpää M, Nadda AK. Effective adsorption of diclofenac and naproxen from water using fixed-bed column loaded with composite of heavy sugarcane ash and polyethylene terephthalate. ENVIRONMENTAL RESEARCH 2022; 211:112971. [PMID: 35276188 DOI: 10.1016/j.envres.2022.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The contamination of water by pharmaceutical pollutants is a major issue these days due to excessive use of these ingredients in modern life. This study evaluated the adsorption and effectiveness of a low-cost composite prepared from heavy sugarcane ash (HSA) fused with polyethylene terephthalate (PET) and functionalized with iron (Fe3+) in a dynamic system through a fixed-bed column. The solution of synthetic drugs was prepared and placed in a reservoir, using a peristaltic pump the solution is run onto the fixed bed column at a flow rate of 2 mL min-1. Saturation time and adsorption capacity were evaluated by centrifugation and extraction after a regular interval of 2 h from the adsorption column. The samples were analyzed using high-performance liquid chromatography (HPLC) and the data was modeled for quantification. For DIC removal, an adsorption capacity of 324.34 μg. g-1 and a saturation time of 22 h were observed, while the adsorption capacity of NAP was 956.49 μg. g-1, with a saturation time of 8 h. Thus, the PETSCA/Fe3+ adsorbent proved to be quite efficient for removing the pharmaceutical pollutants, with a longer period of operation for DIC removal. These findings suggested that a highly efficient bed column made from a less expensive waste material and could be used to remove hazardous pharmaceutical contaminants.
Collapse
Affiliation(s)
- Juliana Heloisa Pinê Américo-Pinheiro
- Post-graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, 08230-030, São Paulo, SP, Brazil; Post-graduate Program in Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, 56, Centro, 15385-000, Ilha Solteira, SP, Brazil.
| | - Gledson Renan Salomão
- Post-graduate Program in Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, 56, Centro, 15385-000, Ilha Solteira, SP, Brazil
| | - Claudomiro Vinicius Moreno Paschoa
- Post-graduate Program in Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, 56, Centro, 15385-000, Ilha Solteira, SP, Brazil
| | - Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - William Deodato Isique
- Post-graduate Program in Civil Engineering, School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, 56, Centro, 15385-000, Ilha Solteira, SP, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Nádia Hortense Torres
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| |
Collapse
|
46
|
Priya AK, Jalil AA, Dutta K, Rajendran S, Vasseghian Y, Qin J, Soto-Moscoso M. Microplastics in the environment: Recent developments in characteristic, occurrence, identification and ecological risk. CHEMOSPHERE 2022; 298:134161. [PMID: 35304213 DOI: 10.1016/j.chemosphere.2022.134161] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are developing as persistent pollutants that are causing significant concern in terms of environmental health. A microplastic is a particle of plastic that is less than 5 mm in diameter, which has penetrated and harmed the environment. MPs have been the subject of numerous analyses, including several adverse assessments; however, most of these studies have focused on their presence in coastal environments. The current state of knowledge regarding the characteristics, occurrences, and potential impact of MPs in the terrestrial ecosystem is incomplete. The goal of this study is to undertake a thorough review of existing knowledge and scientific publications on MP occurrences in the environment, their fate and mobility, and their consequences, as well as to explore such discoveries. MPs have been elaborately discussed in this review in terms of their occurrences, features, and origins in the oceans, freshwater, sediments, soils, and the atmosphere, along with the data obtained from experiments and models on the fate and mobility of MPs in the environment. This paper also includes research data on the environmental toxicity, bioavailability, and bioaccumulation of MPs.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad Del Bío-bío, Avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
47
|
Ruangpanupan N, Ussawarujikulchai A, Prapagdee B, Chavanich S. Microplastics in the surface seawater of Bandon Bay, Gulf of Thailand. MARINE POLLUTION BULLETIN 2022; 179:113664. [PMID: 35490488 DOI: 10.1016/j.marpolbul.2022.113664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the microplastics abundance, composition and distribution in Bandon Bay's surface seawater, in southern Thailand. Samples of microplastics were collected from 48 transects using a surface manta trawl at four different estuaries that support human activities. The results showed that the highest microplastic abundance occurred in the fishery and aquaculture areas with a mean abundance of 0.33 particles/m3. Fragments were the dominant form at all stations. Microplastics with <1 mm were the dominant size, and white was the colour most found in all stations. Polypropylene was the major type of microplastic, accounting for 57% overall. This study is an important reference for understanding the microplastics status in the surface seawater of Bandon Bay, as it will allow relevant agencies to accurately assess the pollution level of microplastics in the bay. It is of practical significance to understand the sources and sinks of microplastics.
Collapse
Affiliation(s)
- Natenapa Ruangpanupan
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Achara Ussawarujikulchai
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| | - Benjaphorn Prapagdee
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Zhao M, Cao Y, Chen T, Li H, Tong Y, Fan W, Xie Y, Tao Y, Zhou J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. CHEMOSPHERE 2022; 297:134192. [PMID: 35257703 DOI: 10.1016/j.chemosphere.2022.134192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
China plays a key role in global plastic production, consumption and disposal, which arouses growing concern about microplastics (MPs) contamination in Chinese freshwater systems. However, few reviews have discussed the characteristics of MP pollution in whole freshwater systems at a national scale. In this review, we summarized the characteristics, sources and transport pathways of MPs in Chinese freshwater systems including surface water and sediment. Results showed that current research mainly focused on the middle and lower reaches of the Yangtze River and its tributaries, as well as lakes and reservoirs along the Yangtze River. Large-scale reservoirs, rivers and lakes located in densely populated areas usually showed higher abundances of MPs. The majority of MPs in Chinese surface water and sediment mainly consisted of polyethylene and polypropylene, and the most common morphologies were fibers and fragments. To identify the sources and pathways, we introduced the source-sink-pathway model, and found that sewage system, farmland and aquaculture area were the three most prevalent sinks in freshwater systems in China. The source-sink-pathway model will help to further identify the migration of MPs from sources to freshwater systems.
Collapse
Affiliation(s)
- Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yifei Tong
- Wuhan Ecologic Environmental Carbon Technology Co., Ltd, Wuhan, 430073, China
| | - Wenbo Fan
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yuwei Xie
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ye Tao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| |
Collapse
|
49
|
Guo C, Guo H. Progress in the Degradability of Biodegradable Film Materials for Packaging. MEMBRANES 2022; 12:membranes12050500. [PMID: 35629826 PMCID: PMC9143987 DOI: 10.3390/membranes12050500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 01/28/2023]
Abstract
In today’s world, the problem of “white pollution” is becoming more and more serious, and many countries have paid special attention to this problem, and it has become one of the most important tasks to reduce polymer waste and to protect the environment. Due to the degradability, safety, economy and practicality of biodegradable packaging film materials, biodegradable packaging film materials have become a major trend in the packaging industry to replace traditional packaging film materials, provided that the packaging performance requirements are met. This paper reviews the degradation mechanisms and performance characteristics of biodegradable packaging film materials, such as photodegradation, hydrodegradation, thermo-oxidative degradation and biodegradation, focuses on the research progress of the modification of biodegradable packaging film materials, and summarizes some challenges and bottlenecks of current biodegradable packaging film materials.
Collapse
|
50
|
Padha S, Kumar R, Dhar A, Sharma P. Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas. ENVIRONMENTAL RESEARCH 2022; 207:112232. [PMID: 34687754 DOI: 10.1016/j.envres.2021.112232] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Microplastic (MP) pollution is a critical environmental concern that exists within different mountain ecosystem compartments. This review paper highlights the source, sampling, distribution, and behavior of MPs in mountain terrains and foothills. Atmospheric transport and tourism are major sources of MP pollution in mountain ecosystems. Snow samples provide the maximum concentration of MPs compared to that of stream or ice core samples. Precipitation events considerably influence MP deposition and fallout in mountains and glaciers. PE, PP, PS, polyester, and PVC are common plastic polymers with diverse shapes, such as fibers, fragments, films, and pellets. Ecological concerns and stress due to MP accumulated in natural ecosystems have also been discussed, with considerable focus on MP transport and distribution dynamics at higher altitudes as prospects for future research. A remarkable knowledge gap was observed regarding the MP pathways in the mountainous ecosystems and the assessment of microplastic-associated additives, such as heavy metals and other toxic chemicals, including the evidence of nano-sized plastics. Furthermore, studies on the ecological and biological risks posed by MPs on remote mountains is severely limited with respect to global climate change, biodiversity loss, and influence on ecosystem services.
Collapse
Affiliation(s)
- Shaveta Padha
- Department of Zoology, Central University of Jammu, Jammu and Kashmir, 181143, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Anjali Dhar
- Department of Zoology, Central University of Jammu, Jammu and Kashmir, 181143, India.
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India.
| |
Collapse
|