1
|
Wang Q, Gao Y, Tang X, Yang Z, Tang L, Luo G, Liu C, Tong H. How aging microplastics influence heavy metal environmental fate and bioavailability: A systematic review. ENVIRONMENTAL RESEARCH 2025; 271:121128. [PMID: 39954926 DOI: 10.1016/j.envres.2025.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Microplastics (MPs) are now pervasive in the environment, with annual emissions estimated to range from 10 to 40 million metric tons. Aging (weathering) processes induced by environmental changes, gradually degrade MPs into smaller particles with higher surface reactivity. These particles readily adsorb surrounding heavy metals (HMs), forming complex pollutants. Such composite contaminants can bioaccumulate through the food chain, ultimately posing significant threats to ecosystems and human health. At present, this type of combined pollution has emerged as a pressing global challenge requiring urgent attention. Although research on the impact of MPs aging processes on the environmental behavior of HMs has increased in recent years, there remains a lack of systematic reviews. Therefore, there is an urgent need to collate relevant studies to better assess and mitigate the risks of composite pollution by MPs and HMs. This paper provides a comprehensive review of the effects of aging processes on the physicochemical properties of MPs and explores the mechanisms of adsorption, mobility, and bioavailability of HMs by aged MPs, systematically summarizing the key environmental factors influencing the interactions between aged MPs and HMs. Finally, the prospects for research on the co-occurrence of MPs and HMs in the environment were discussed. This review provides a scientific basis for the environmental risk assessment of such combined pollution and holds substantial practical significance for advancing ecological conservation.
Collapse
Affiliation(s)
- Qian Wang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; Institute of Guizhou Mountain, Guizhou Education University, Guiyang, 550018, China
| | - Yining Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiaoyan Tang
- The Faculty of Geography Resource Sciences, Sichuan Normal University, Chengdu, 610066, Sichuan, China
| | - Zhuanling Yang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Liang Tang
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Guangjie Luo
- School of Geography and Resources, Guizhou Education University, Guiyang, 550018, Guizhou, China; Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, Guangdong, China.
| |
Collapse
|
2
|
Li M, Cao Y, Yang X, He J, Zhou H, Zhan J, Zhang X. Response of wastewater treatment performance and bacterial community to original and aged polyvinyl chloride microplastics in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2025; 419:132044. [PMID: 39778683 DOI: 10.1016/j.biortech.2025.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are prevalent in wastewater treatment systems, and their behavior is further complicated after undergoing aging processes. This study explored the impact of original and aged polyvinyl chloride (PVC) MPs on wastewater treatment performance and bacterial communities. Results revealed that Fenton-aging treatment induced surface roughening of the MPs and altered their chemical properties. Prolonged exposure to original and aged PVC MPs severely inhibited the removal of chemical oxygen demand and NH4+-N, along with lower sludge concentrations. Additionally, PVC MPs increased the production of loosely-bound extracellular polymeric substances (EPS) and decreased protein levels in tightly-bound fractions. The presence of PVC MPs also shifted the bacterial community, reducing nitrogen removal bacteria while enriching EPS-forming bacteria. Furthermore, exposure to PVC MPs led to a decrease in the abundance of key genes involved in nitrogen metabolism. These findings offer insights into the effects of MPs, especially aged variants, on wastewater treatment processes.
Collapse
Affiliation(s)
- Menglong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yizhen Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jiawei He
- Ecological and Environmental Protection Service Center of Panjin, Panjin 124000, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
3
|
Liu C, Jiao Y, Yang C, Li B, Li W, Qian T, Liu X. Interfacial interactions of submicron plastics with carbon dots: Insights into the interface properties of microplastic weathering. WATER RESEARCH 2025; 277:123377. [PMID: 40010125 DOI: 10.1016/j.watres.2025.123377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The interfacial properties and environmental behavior of microplastics (MPs) will change with weathering. A new idea to study the interfacial properties of MPs is provided based on fluorescence response and light scattering changes. Submicron microspheres (PS-AA) obtained by soap-free emulsion polymerization have a well-defined composition and clean surface with carboxyl groups. The interfacial properties of PS-AA changed after Fenton and UV aging, and the sharp edges became blurred. Information on the interfacial interactions of leaf-derived carbon dots (R-CDs) and citrate carbon dots (B-CDs) with aged PS-AA was obtained by recording fluorescence and scattering changes. R-CDs can fluorescently respond to carrying contaminants on aged PS-AA, and their correlation increases with the degree of aging (R2=0.8388). The scattering peak of PS-AA decreased after aging, and the change in scattering/fluorescence ratios with concentration had a good linear relationship under the coexistence of B-CDs (R2=0.9983). Aging of PS-AA increases the contamination-carrying capacity and decreases the optical properties, which may be attributed to the increased oxygen-containing functional groups, ring opening of substituted benzene, and shell decomposition. The response mechanism of carbon dots (CDs), the aging process of PS-AA, and the interfacial behavior were further explained based on the density functional theory (DFT). This study reveals the changes in interfacial properties of submicron plastics with the aging process based on fluorescence response and scattering changes.
Collapse
Affiliation(s)
- Chao Liu
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China
| | - Yuan Jiao
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; Wanli Energy Technology Development Co., Ltd, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chunfan Yang
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China
| | - Bo Li
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Wenjun Li
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Tianwei Qian
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Xiaona Liu
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| |
Collapse
|
4
|
Xie A, Chen S, Liang X, Li L, Song Y, Lv M, Liang F, Zhou W. Influence of microplastic aging on the adsorption and desorption behavior of Ni(II) under various aging conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:87. [PMID: 39985584 DOI: 10.1007/s10653-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Plastic products have significantly enhanced convenience in daily life; however, their degradation through weathering and environmental exposure leads to the formation of microplastics. These microplastics can serve as carriers for pollutants, such as heavy metals, through adsorption and desorption processes, posing potential risks to living organisms. This study focuses on the adsorption and desorption characteristics of nickel (Ni) on two representative microplastics-Polystyrene (PS) and Polylactic Acid (PLA)-before and after three aging processes: freeze-thaw cycling, alternating dry-wet conditions, and alkali treatment. Following these aging treatments, both microplastics exhibited increased specific surface area, pore size, and crystallinity, along with the emergence of oxygen-containing functional groups on their surfaces. Adsorption experiments indicated that nickel adsorption kinetics aligned more closely with the proposed second-order model, while adsorption isotherms were best described by the Langmuir model. Aged microplastics demonstrated higher adsorption capacities compared to their unaged counterparts, with adsorption capacity ranking as follows: alkali aging > alternating dry-wet aging > freeze-thaw cycling. Furthermore, PLA exhibited a greater adsorption capacity than PS. Among the aging processes, alkali treatment resulted in the highest nickel desorption rates, whereas freeze-thaw cycling and alternating dry-wet aging produced similar desorption outcomes. These findings contribute to a deeper understanding of microplastic aging mechanisms and their implications for heavy metal adsorption and desorption in environmental systems.
Collapse
Affiliation(s)
- Anqi Xie
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Su Chen
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China.
| | - Xiao Liang
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Linjing Li
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Yuting Song
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Meng Lv
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Fangfang Liang
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Wenhui Zhou
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| |
Collapse
|
5
|
Xiao X, Hodson ME, Sallach JB. Biodegradable microplastics adsorb more Cd than conventional microplastic and biofilms enhance their adsorption. CHEMOSPHERE 2025; 371:144062. [PMID: 39755213 DOI: 10.1016/j.chemosphere.2025.144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture to reduce plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium (Cd) is a significant soil contaminant, and can be adsorbed by MPs. It is increasingly recognised that in the natural environment biofilms can develop on MPs and that this can affect their adsorption properties. We exposed PLA and PE mulches outdoors for 16 months. MPs were then generated from pristine and weathered mulches. Biofilms developed on the weathered plastics. Oxygen-containing functional groups were detected on the weathered, but not the pristine PE, abundance of these groups increased for the weathered PLA. After removal of the biofilm the observed increases in oxygen-containing functional groups relative to the pristine plastics remained. In adsorption experiments pristine PLA MPs had a greater maximum adsorption capacity than pristine PE MPs (106-126 vs 23.2 mg/kg) despite having a lower specific surface area (0.325 m2/g vs 1.82 m2/g) suggesting that the greater levels of adsorption were due to MP chemistry. The weathered plastics adsorbed more Cd than the pristine plastics (e.g. maximum adsorption capacities of 153-185 and 152 mg/kg for the weathered PLA and PE respectively). However, after removal of the biofilm, adsorption of Cd to the weathered MPs was no greater than for the pristine plastics. This suggests that the increased adsorption of Cd due to weathering was caused primarily by adsorption onto the biofilm.
Collapse
Affiliation(s)
- X Xiao
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom.
| | - M E Hodson
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| | - J B Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
6
|
Sekar V, Sundaram B. Adsorption behavior of Cu(II) on UV-aged polyethylene terephthalate and polypropylene microplastics in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35923-5. [PMID: 39832097 DOI: 10.1007/s11356-025-35923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment. Moreover, MPs will act as carriers for other contaminants, for example, heavy metals (HMs). Although many studies have explored MPs and HMs independently, their combined behavior and interactions remain poorly understood. Understanding these interactions is increasingly important given rising pollution levels. MP formation and adsorption behavior are heavily influenced by factors such as UV aging, which remains unclear. In this study, both virgin and UV-aged MPs specifically PET and PP (the most widely used plastics globally) were examined in their interactions with copper (Cu2+) solutions. Surface analysis techniques such as FTIR, SEM, XRD, and AAS were employed to compare the virgin and UV-aged MPs. The results revealed that UV-aged MPs exhibited high adsorption capacities for HMs compared to virgin MPs, which can be attributed to increased pore volume and oxidative degradation. Adsorption capacity differences at various concentrations showed up to a 20% increase, with UV-aged PET MPs displaying capacities ranging from 0.6 to 3.54 mg/g. Similarly, UV-aged PP MPs showed a 15% increase in adsorption capacity ranging from 1.51 to 4.25 mg/g. The present study provided the significant evidence on the behavior of MPs adsorption and underscores the need for further research on the long-term environmental impacts of aged MPs and their interactions with pollutants.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Baranidharan Sundaram
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
| |
Collapse
|
7
|
Pérez-Méndez MA, Fraga-Cruz GS, Álvarez-Gómez G, Nápoles-Rivera F, Jiménez-García G, Maya-Yescas R. Analysis of the anthropogenic effect on the Silencio River in Salvador Escalante, Michoacán, México. PeerJ 2025; 13:e18531. [PMID: 39822980 PMCID: PMC11737336 DOI: 10.7717/peerj.18531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/24/2024] [Indexed: 01/19/2025] Open
Abstract
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm3), of which 97.5% is saltwater and only 2.5% is freshwater. Nearly 70% is not available for human consumption as it is in glaciers, snow, and ice. It is estimated that only 0.77% is accessible freshwater for human use. Mexico has an availability of 451,584.7 million cubic meters (m3) of freshwater, with accessibility and distribution being unequal. The growth in urbanization, population, and industrialization has caused a decrease in water quality, and other parameters. Organic and inorganic contaminants evolved from various sources cause the degradation of water quality. The pollution of aquatic bodies, such as rivers and lakes, is one of the main problems in the world. In Salvador Escalante in México, the domestic wastewaters treatment plant (WWTP) is being exposed to effluents contaminated with metals like copper, cadmium, lead, and mercury. In this work, active sludges from the WWTP were analyzed. First, particle size distribution of flocs was measured by a sedimentation process. Secondly, analysis of the tolerance that microorganisms exhibit to metals (i.e., factors) was performed, based on a 2ˆ (4-1) factorial design of experiments at laboratory-scale, measuring pH, chemical oxygen demand (COD) and electrical conductivity (responses). This aims to evaluate the capacity of the WWTP for improve the water quality. Microbiologic cultures were used for a qualitative study of the microorganisms contained in the active sludges; it was found that Enterobacterium does not grow in presence of heavy metals. Cadmium is the most harmful metal for microorganisms according to Pareto diagrams presented in this study.
Collapse
Affiliation(s)
- Mario Alberto Pérez-Méndez
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Guadalupe Selene Fraga-Cruz
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Gustavo Álvarez-Gómez
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Fabricio Nápoles-Rivera
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Gladys Jiménez-García
- Academia de Ingeniería Biomédica, Instituto tecnológico superior de Pátzcuaro, Pátzcuaro, Michoacán, Mexico
| | - Rafael Maya-Yescas
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
8
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T, Tao R, Mei Y. Adsorption and Desorption Behavior of Cr(VI) on Two Typical UV-Aged Microplastics in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27492-27500. [PMID: 39680861 DOI: 10.1021/acs.langmuir.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) are novel pollutants that can adsorb heavy metals in water environments and migrate together as carriers and are prone to aging due to the light in water. However, few reports have been published on the synergistic behavior and effects of these different types of aged MPs on the adsorption and desorption of Cr(VI). Here, two MP types─polyamide (PA) and polylactic acid (PLA)─were aged by UV irradiation, and the adsorption and desorption behaviors of MPs on Cr(VI) were studied. The results indicated that UV light can rapidly age MPs. After the MPs were exposed to UV light, their specific surface area, negative charge, and oxygenic groups increased, resulting in enhanced hydrophilicity. The aged MPs depicted a markedly enhanced adsorption capacity for Cr(VI) compared with the results of aged-PA > pristine-PA > aged-PLA > pristine-PLA. The process followed the Langmuir and pseudo-second-order models, confirming that chemical and monolayer adsorption are the primary processes involved in the adsorption of Cr(VI) by aged MPs. Cr(VI) was more easily desorbed in the simulated gastric fluid environment. The desorption rate of aged MPs was lower than that of pristine MPs because of their stronger binding forces to Cr(VI). The binding of Cr(VI) to MPs mainly depends on synergistic mechanisms such as electrostatic attraction, reduction reactions, and chelation of oxygenic groups. This study clarifies the reciprocity mechanism between aging MPs and Cr(VI) and provides further insights and guidance for controlling the joint pollution between MPs and heavy metal pollutants in the future.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
10
|
Zhu Z, Sun L, Qin Q, Sun Y, Yang S, Wang J, Yang Y, Gao G, Xue Y. The Adsorption Process and Mechanism of Benzo[a]pyrene in Agricultural Soil Mediated by Microplastics. TOXICS 2024; 12:922. [PMID: 39771137 PMCID: PMC11728619 DOI: 10.3390/toxics12120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
The coexistence of microplastics and benzo[a]pyrene (BaP) in the environment, and their interactions within agricultural soils in particular, have garnered widespread attention. This study focused on the early-stage interactions between microplastics and BaP, aiming to uncover their initial adsorption mechanisms. Despite the significant environmental toxicity of both pollutants, research on their mutual interactions in soil is still limited. This study conducted adsorption thermodynamics and kinetics experiments to explore the effects and mechanisms of various microplastics (polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC)) on the adsorption of BaP. Using advanced techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy, this study explored the surface characteristics of microplastics and their interactions with BaP. The results demonstrated that PVC microplastics exhibited the highest adsorption capacity for BaP, which was primarily due to π-π interactions and increased hydrophobicity. In the soil-microplastic blend systems, BaP was predominantly found on microplastics, enhancing the soil's adsorption capacity for BaP, particularly PVC, which showed an adsorption capacity 3.69 times greater than that of soil alone. Density functional theory (DFT) simulation calculations indicated that the binding energy of BaP for PVC pretreated with soil was -59.16 kJ/mol, whereas it was -53.02 kJ/mol for untreated PVC, -39.35 kJ/mol for PE, and -48.84 kJ/mol for PS. These findings suggest that soil pretreatment enhances the adsorption stability of PVC for BaP, further elucidating the potential mechanisms behind the increased adsorption capacity in the soil-microplastic system. These findings confirm that microplastics serve as effective vectors for organic pollutants such as BaP, significantly influencing their environmental behavior in soils, and provide essential theoretical support for assessing the environmental toxicity and migration behaviors of microplastics and associated organic contaminants.
Collapse
Affiliation(s)
- Zhengyi Zhu
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Lijuan Sun
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
| | - Qin Qin
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
- Key Laboratory of Low-Carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yafei Sun
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
| | - Shiyan Yang
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
| | - Jun Wang
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
| | - Yang Yang
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Guangkuo Gao
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
| | - Yong Xue
- Eco-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (L.S.)
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Low-Carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
11
|
Barhoumi B, Metian M, Alonso-Hernández CM, Oberhaensli F, Mourgkogiannis N, Karapanagioti HK, Bersuder P, Tolosa I. Insight into the effect of natural aging of polystyrene microplastics on the sorption of legacy and emerging per- and polyfluorinated alkyl substances in seawater. Heliyon 2024; 10:e40490. [PMID: 39654741 PMCID: PMC11626057 DOI: 10.1016/j.heliyon.2024.e40490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with Kd values ranging from 327 L kg-1 for PFOA to 3247 L kg-1 for PFOS in aged PS-MPs. The difference in sorption capacity was mainly attributed to the physical-chemical changes and the adhered biofilm observed in aged PS-MPs. Results also showed that virgin PS-MPs adsorb PFAS mainly through steric hindrance, while the aged PS-MPs may involve more complex sorption mechanisms. This research provides additional insights into the ability of aged MPs as potential carriers of legacy and emerging contaminants in the marine environment.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Marc Metian
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | - François Oberhaensli
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | | | | | - Philippe Bersuder
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| | - Imma Tolosa
- IAEA Marine Environment Laboratories, 4a Quai Antoine 1er, 98000, Principality of Monaco, Monaco
| |
Collapse
|
12
|
Frost H, Bond T, Sizmur T, Felipe-Sotelo M. Sorption of metal ions onto PET-derived microplastic fibres. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2309-2319. [PMID: 39555912 DOI: 10.1039/d4em00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study investigated microplastic polyester fibres representative of those shed during laundering as sorbents for metal ions. During sewage distribution and treatment, microplastics are exposed to elevated concentrations of metal ions, typically for several days. Cryogenic milling was used to generate polyethylene terephthalate (PET) fibres. Characterisation using optical microscopy and Raman spectroscopy revealed that milling did not cause significant chemical alteration to the fibres. Milled fibres were subsequently assessed in screening tests for their capacity to retain 12 metal ions-Sb(III), As(III), Cd(II), Cr(VI), Cu(II), Co(II), Pb(II), Hg(II), Mo(VI), Ni(II), V(V) and Zn(II)-at pH 8. All metal ions were sorbed onto PET fibres. The highest distribution coefficient (Kd) was observed for Pb2+ (939 mL g-1), followed by Cd2+ (898 mL g-1), Cu2+ (507 mL g-1), Hg2+ (403 mL g-1), and Zn2+ (235 mL g-1). The extent of sorption is largely explicable by electrostatic interactions between the PET surface (1.95 point of zero net charge) and the predicted metal ion species. The sorption behaviour of Cd2+ and Hg2+ was examined in more detail since both showed high sorption capacity and are highly toxic. Kinetic experiments revealed that the sorption of both elements was relatively fast, with a steady state reached within six hours. Experimental data from isotherm tests fitted well to the Langmuir sorption model and demonstrated that PET fibres had a much greater sorption capacity for Hg2+ (17.3-23.1 μg g-1) than for Cd2+ (4.3-5.3 μg g-1). Overall, the results indicate that retention of metal ions onto PET fibres originating from laundry is expected during full-scale sewage treatment, which facilitates the subsequent transfer of metals into the terrestrial environment, given that sewage sludge is commonly applied to agricultural land.
Collapse
Affiliation(s)
- H Frost
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland Street, Portsmouth PO1 3AH, UK
| | - T Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Water Research Centre, Frankland Rd, Swindon SN5 8YF, UK
| | - T Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - M Felipe-Sotelo
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
13
|
Páez-Osuna F, Valencia-Castañeda G, Bernot-Simon D, Arreguin-Rebolledo U. A critical review of microplastics in the shrimp farming environment: Incidence, characteristics, effects, and a first mass balance model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176976. [PMID: 39461520 DOI: 10.1016/j.scitotenv.2024.176976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
This review provides a critical overview of the sources, incidence, accumulation, effects, and interactions of microplastics (MPs) with other contaminants in the shrimp aquaculture environment, emphasizing this sector's challenges and future implications. A first and novel mass MPs balance model was developed to explore the fate and fluxes of MPs within shrimp farming systems. Two literature searches were conducted: one focused on MPs, crustaceans, and shrimp in aquaculture, and other on the effects of MPs in crustaceans, emphasizing shrimp. A total of 78 and 461 peer-reviewed papers were retrieved, respectively. This review details aspects of MPs in the shrimp farming environment, including water, sediments, food, zooplankton, and shrimp tissues. MPs can act as vectors for contaminants, including biological and chemical substances commonly used in shrimp aquaculture. A primary concern is the interaction between MPs and pathogens; thus MPs can facilitate the transport and retention of disease-causing agents. Key questions involve identifying which pathogen groups are most efficiently transported by MPs and how this may exacerbate disease outbreaks in aquaculture. This suggests that microorganisms can establish on MPs surfaces to disseminate an infection. Therefore, the possibility of disease outbreaks and epidemics is expected to rise as MP abundance increases. The mass balance shows that the primary source of MPs is associated with water during the filled (19.3 %) and water exchange (77.2 %) of shrimp ponds, indicating that MPs in the water input play a critical role in the MP dynamic in the shrimp farming environment. However, this initial mass balance model has several weaknesses, including liming, atmospheric deposition, and natural food, which must be addressed as other MPs suppliers. Macrofauna that incidentally enters shrimp ponds may also constitute a significant part of the MPs inventory. Future research should focus on the impact of polystyrene and polyethylene fibers commonly found in crustacean tissues.
Collapse
Affiliation(s)
- Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435, Culiacán 80000, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico
| | | | - Uriel Arreguin-Rebolledo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Calle Joel Montes Camarena s/n, Mazatlán, Sinaloa 82000, Mexico; Programa de Estancias de Investigación DGAPA, UNAM, Mexico
| |
Collapse
|
14
|
Wu L, Yin J, Wu W, Pang K, Sun H, Yin X. Effect of low-molecular-weight organic acids on the transport of polystyrene nanoplastics in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136343. [PMID: 39476696 DOI: 10.1016/j.jhazmat.2024.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 12/01/2024]
Abstract
Low molecular weight organic acids (LMWOAs) are extensively present as soluble organic matter in the environment, potentially influencing the transport of polystyrene nanoplastics (PSNPs) in soil and groundwater environments. In this study, we studied the impact of three LMWOAs (Acetic Acid (AA), Malic Acid (MA), and Citric Acid (CA)) on PSNPs migration under varied pH and Ionic Strength (IS) conditions in the saturated porous medium. The results demonstrated that the low LMWOAs concentrations (0.0001 mol L-1) promoted PSNPs migration rate, while high concentrations (0.001, 0.01 mol L-1) reduced the migration rate and increased the deposition. Due to the different relative molecular weights and number of functional groups of different LMWOAs, the order of promoting (0.0001 mol L-1) /inhibiting (0.001, 0.01 mol L-1) effects of LMWOAs on PSNPs migration rate under various physicochemical conditions in this study was AA < MA < CA. The decrease in IS and increase in pH promoted the migration of PSNPs. Electrostatic repulsion and spatial potential resistance affected PSNPs migration. This study offers theoretical support for the understanding of migration patterns and mechanisms of nanoparticles in soil-water environments.
Collapse
Affiliation(s)
- Lan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Li D, Tang X, Li L, Zhang B, Wang Z, Liu Z, Zhao Y. UV-B radiation aging changed the environmental behavior of polystyrene micro-/nanoplastics-adsorption kinetics of BDE-47, plankton toxicities and joint toxicities with BDE-47. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136198. [PMID: 39426143 DOI: 10.1016/j.jhazmat.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
UV-B radiation acts as an important environmental factor for aging micro-/nanoplastics (MNPs) in the marine environments, while the effect of aged MNPs on plankton is lacking specific research. Referencing to the UV-B radiation intensity in natural environments (2.29 W·m-2), we chose the floating polystyrene (PS) MNPs (50 nm, 1 µm) as the research target in this study. The results indicated that UV-B radiation aging for 30 days led to a rougher surface, increased SBET, increased hydrophobicity, and decreased negative charges of PS MNPs. Correspondingly, aged MNPs increased their adsorption abilities for 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), especially for the initial stage. After UV-B radiation aging processes, the individual toxicities of the two sized MNPs on Thalassiosira pseudonana and Brachionus plicatilis both increased, while their joint toxicities with BDE-47 decreased on T. pseudonana but increased on B. plicatilis. The changes in toxicity were more pronounced in 1 µm PS MNPs under air-aged conditions. This study provided the data basis for evaluating the changes of MNPs environmental behaviors under UV-B radiation in the marine environments, with important ecological significance.
Collapse
Affiliation(s)
- Danrui Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Ziqi Wang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Zhen Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.
| |
Collapse
|
16
|
Wang X, Li Z, Sun B, Wang F, Li Z, Gualtieri C. Impact of Fenton aging on the incipient motion of microplastic particles in open-channel flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176220. [PMID: 39265684 DOI: 10.1016/j.scitotenv.2024.176220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Upon entering the environment, Microplastics (MPs) experience aging processes that modify their properties and integrity. Previous methods for predicting the incipient motion of MPs have been validated using pristine plastics, which do not account for the effects of aging. This can lead to uncertainties in both quantification and characterization. This study investigates the effect of aging on the incipient motion of MPs with different bed roughness (smooth and rough beds) and MP properties (e.g., grain sizes and densities) in an open-channel flow. Five types of MPs were subjected to four different degrees of aging using the Fenton reagent, and their incipient velocities were tested on beds with two distinct roughness. The results suggest that the incipient velocity of MPs increases linearly with aging. However, this increase is not uniform across different particles and bed roughness. Upon comparing various commonly employed sediment incipient velocity equations, experimental results are in agreement with Ruijin Zhang's equation as the most precise. The parameters in Ruijin Zhang's equation are modified to enhance its applicability for predicting the incipient velocity of aged MPs. This study provides novel insights into the incipient motion of aged MPs in an open-channel flow, highlighting the intricate interaction between aged MP characteristics and bed roughness.
Collapse
Affiliation(s)
- Xuefeng Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiwei Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Bin Sun
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Feifei Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiwei Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China.
| | - Carlo Gualtieri
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Napoli 80125, Italy.
| |
Collapse
|
17
|
Lascari D, Cataldo S, Muratore N, Prestopino G, Pignataro B, Lazzara G, Arrabito G, Pettignano A. Label-free impedimetric analysis of microplastics dispersed in aqueous media polluted by Pb 2+ ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7654-7666. [PMID: 39320121 DOI: 10.1039/d4ay01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The rapid differentiation between polluted and unpolluted microplastics (MPs) is critical for tracking their presence in the environment and underpinning their potential risks to humans. However, the quantitative analysis of polluted microplastics on the field is limited by the lack of rapid methods that do not need optical analysis nor their capture onto sophisticated electrochemical sensor platforms. Herein, a simple analytical approach for MPs dispersed in aqueous media leveraging electrochemical impedance spectroscopy (EIS) analysis on screen-printed sensors is presented. This method is demonstrated by the EIS-based analysis of two standards of microplastics beads (MPs), one of polystyrene (PS) and one of polystyrene carboxylated (PS-COOH), when exposed to aqueous solutions containing Pb2+ ions. The adsorption of Pb2+ ions on the MPs was quantitatively determined by voltammetric analysis. EIS permitted to rapidly (about 2 minutes) differentiate clean MPs from the Pb2+ polluted ones. These results could constitute a first-step towards the realization of a portable impedimetric sensor for the quantification of microplastics polluted by metal ions in aqueous solutions.
Collapse
Affiliation(s)
- Davide Lascari
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Salvatore Cataldo
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Nicola Muratore
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma "Tor Vergata", Via del Politecnico, 00133 Rome, Italy
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Giuseppe Arrabito
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, V.le delle Scienze, ed. 17, 90128 Palermo, Italy.
- NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
18
|
Bian J, Peng N, Zhou Z, Yang J, Wang X. A critical review of co-pollution of microplastics and heavy metals in agricultural soil environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117248. [PMID: 39467422 DOI: 10.1016/j.ecoenv.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The soil environment is a primary destination for contaminants such as microplastics (MPs) and heavy metals (HMs), which are frequently detected simultaneously. The long-term coexistence of MPs and HMs in the soil necessitates unavoidable interactions, affecting their environmental chemical behavior and bioavailability. These co-contaminants pose potential threats to soil organism growth and reproduction, crop productivity, food security, and may jeopardize human health via the food chain. This paper summarizes the sources and trends of MPs in the soil environment, along with the mechanisms and current research status of MP adsorption or desorption of HMs. Additionally, this paper reviews factors affecting HM adsorption on MPs, including MP properties, HM chemical properties, and other environmental factors. Lastly, the effects of MPs and HMs on soil ecology and human health are summarized. The interaction mechanisms and potential biological effects of their co-contamination require further exploration. Future research should delve deeper into the ecotoxic effects of MP-HM co-contamination at cellular and molecular levels, to provide a comprehensive reference for understanding the environmental behavior of their co-contamination in soil.
Collapse
Affiliation(s)
- Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Nian Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China.
| | - Ziyi Zhou
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| | - Junxing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 10048, PR China
| |
Collapse
|
19
|
Bi S, Liu S, Liu E, Xiong J, Xu Y, Wu R, Liu X, Xu J. Adsorption behavior and mechanism of heavy metals onto microplastics: A meta-analysis assisted by machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124634. [PMID: 39084591 DOI: 10.1016/j.envpol.2024.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics (MPs) have the potential to adsorb heavy metals (HMs), resulting in a combined pollution threat in aquatic and terrestrial environments. However, due to the complexity of MP/HM properties and experimental conditions, research on the adsorption of HMs onto MPs often yields inconsistent findings. To address this issue, we conducted a comprehensive meta-analysis assisted with machine learning by analyzing a dataset comprising 3340 records from 134 references. The results indicated that polyamide (PA) (ES = -1.26) exhibited the highest adsorption capacity for commonly studied HMs (such as Pb, Cd, Cu, and Cr), which can be primarily attributed to the presence of C=O and N-H groups. In contrast, polyvinyl chloride (PVC) demonstrated a lower adsorption capacity, but the strongest adsorption strength resulting from the halogen atom on its surface. In terms of HMs, metal cations were more readily adsorbed by MPs compared with metalloids and metal oxyanions, with Pb (ES = -0.78) exhibiting the most significant adsorption. As the pH and temperature increased, the adsorption of HMs initially increased and subsequently decreased. Using a random forest model, we accurately predicted the adsorption capacity of MPs based on MP/HM properties and experimental conditions. The main factors affecting HM adsorption onto MPs were HM and MP concentrations, specific surface area of MP, and pH. Additionally, surface complexation and electrostatic interaction were the predominant mechanisms in the adsorption of Pb and Cd, with surface functional groups being the primary factors affecting the mechanism of MPs. These findings provide a quantitative summary of the interactions between MPs and HMs, contributing to our understanding of the environmental behavior and ecological risks associated with their correlation.
Collapse
Affiliation(s)
- Shuangshuang Bi
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Shuangfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yun Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ruoying Wu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Xiang Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
20
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
21
|
Cheng X, Wang S, Zhang X, Iqbal MS, Yang Z, Xi Y, Xiang X. Accelerated aging behavior of degradable and non-degradable microplastics via advanced oxidation and their adsorption characteristics towards tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116864. [PMID: 39137460 DOI: 10.1016/j.ecoenv.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The increasing global utilization of biodegradable plastics due to stringent regulations on traditional plastics has caused a significant rise in microplastic (MPs) pollution in aquatic ecosystems from biodegradable products. However, the environmental behavior of biodegradable MPs remains inadequately elucidated. This study explored the aging processes of polylactic acid (PLA) and polystyrene (PS) under a heat-activated potassium persulfate (K2S2O8) system, as well as their adsorption characteristics towards tetracycline (TCs). In comparison to PS, the surface structure of PLA experienced more pronounced changes over aging, exhibiting evident pits, cracks, and fragmentation. The carbonyl index (CI) and oxygen/carbon ratio (O/C) of PS displayed exponential growth over time, whereas the values for PLA showed linear and exponential increases, respectively. The adsorption capacity of TCs by PS and PLA aged for 6 days increased from 0.312 mg‧g-1 and 0.457 mg‧g-1for original PS and PLA, respectively, to 0.372 mg‧g-1 and 0.649 mg‧g-1. Meanwhile, the adsorption rate (k2 values) for TCs decreased by 42.03 % for PS and 79.64 % for PLA compared to their initial values. The findings indicated that biodegradable PLA-MPs may exhibit higher tetracycline carrying capacities than PS, potentially increasing environmental and organismal risks, particularly in view of aging effects.
Collapse
Affiliation(s)
- Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | | | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
22
|
Du C, Sang W, Abbas M, Xu C, Jiang Z, Ma Y, Shi J, Feng M, Ni L, Li S. The interaction mechanisms of algal organic matter (AOM) and various types and aging degrees of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135273. [PMID: 39047561 DOI: 10.1016/j.jhazmat.2024.135273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Algal blooms can produce substantial amounts of algal organic matter (AOM). Microplastics (MPs) in aquatic environments inevitably interact with AOM. Meanwhile, the aging and type of MPs may increase the uncertainty surrounding interaction. This study focused on polyethylene (PE) and polylactic acid (PLA) to investigate their interaction with AOM before and after aging. The results shw that PLA has a stronger adsorption capacity for AOM than PE. Meanwhile, aging enhanced and weakened the adsorption of PE and PLA for AOM. Compared to unaged PE (UPE) and aged PLA (APLA), aged PE (APE) and unaged PLA (UPLA) more significantly promote the humification of AOM and alter its functional groups. 2D-IR-COS analysis reveals that the sequence of functional group changes in AOM interacting with MPs is influenced by the type and aging of MPs. After interacting with AOM, surface roughness increased for all MPs. FTIR and XPS analyses show that the addition of AOM accelerated the oxidation of MPs surfaces, especially for UPE and APLA, with oxygen content increasing by 9.32 % and 1 %. Aging enhances the interaction between PE and AOM, while weakening the interaction between PLA and AOM. These findings provide new insights into understanding the interplay between AOM and MPs.
Collapse
Affiliation(s)
- Cunhao Du
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Wenlu Sang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Mohamed Abbas
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Chu Xu
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Zhiyun Jiang
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Yushen Ma
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Jiahui Shi
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Muyu Feng
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China
| | - Lixiao Ni
- College of Environment, Hohai University, 210098 Nanjing, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Hohai University, 210098 Nanjing, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210097 Nanjing, China.
| |
Collapse
|
23
|
Wang L, He Y, Zhu Y, Zhang J, Zheng S, Huang W. Impact of the hydrated functional zone on the adsorption of ciprofloxacin to microplastics under the influence of UV aging. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39234686 DOI: 10.1080/09593330.2024.2398812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
The inevitable UV aging of microplastics (MPs) is one of the key factors affecting their interaction with antibiotics. In this study, polyethylene (PE) and polystyrene (PS) MPs were aged with UV irradiation. The adsorption isotherms and kinetics of ciprofloxacin (CIP) to virgin and aged MPs were investigated through various models, and the effects of pH on the adsorption amount were explored. Characterization revealed that the surfaces of aged MPs became rougher, and the hydrophilicity increased. These aged MPs were still in the early stage of aging on the basis of their carbonyl index (CI) (<0.2) and O/C (<0.04) values. The adsorption isotherms indicated that the adsorption mechanism of aged PE was different from that of virgin PE. Compared with virgin PE, the adsorption amount of aged PE increased by 87.80-95.45%, and the adsorption rate decreased by 65.52-80.74%. However, aging did not significantly affect the equilibrium adsorption amount or adsorption rate of aged PS. The external diffusion rate (Kext) (about 2.29-0.36 h-1) was almost 30 times greater than the internal diffusion rate (Kint) in the film-pore mass transfer (FPMT) model, indicating that CIP adsorption rate was dominated by external diffusion. A hydrated functional zone is thought to form around aged MPs, thus changing the adsorption mechanism and adsorption amount of aged PE. Therefore, more attention should be given to alterations in the hydrated functional zone in the early stage of MPs aging.
Collapse
Affiliation(s)
- Lin Wang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yang He
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yanhong Zhu
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Jianqiang Zhang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shijie Zheng
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Wen Huang
- School of Environmental science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
24
|
Tan Y, Chen S, Wang M, Fu H, Alvarez PJJ, Qu X. Intrinsic Peroxidase-like Activity of Polystyrene Nanoplastics Mediates Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15475-15485. [PMID: 39172699 DOI: 10.1021/acs.est.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nanoplastics represent a global environmental concern due to their ubiquitous presence and potential adverse impacts on public and environmental health. There is a growing need to advance the mechanistic understanding of their reactivity as they interact with biological and environmental systems. Herein, for the first time, we report that polystyrene nanoplastics (PSNPs) have intrinsic peroxidase-like activity and are able to mediate oxidative stress. The peroxidase-like activity is dependent on temperature and pH, with a maximum at pH 4.5 and 40 °C. The catalytic activity exhibits saturation kinetics, as described by the Michaelis-Menten model. The peroxidase-like activity of PSNPs is attributed to their ability to mediate electron transfer from peroxidase substrates to H2O2. Ozone-induced PSNP aging can introduce oxygen-containing groups and disrupt aromatic structures on the nanoplastic surface. While ozonation initially enhances peroxidase-like activity by increasing oxygen-containing groups without degrading many aromatic structures, extended ozonation destroys aromatic structures, significantly reducing this activity. The peroxidase-like activity of PSNPs can mediate oxidative stress, which is generally positively correlated with their aromatic structures, as suggested by the ascorbic acid assay. These results help explain the reported oxidative stress exerted by nanoplastics and provide novel insights into their environmental and public health implications.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Siyue Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Mengjiao Wang
- Greenpeace Research Laboratories, Bioscience, University of Exeter, Exeter EX4 4RN, United Kingdom
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
- Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| |
Collapse
|
25
|
Lisiecka N, Parus A, Simpson M, Kloziński A, Zembrzuska J, Frankowski R, Zgoła-Grześkowiak A, Woźniak-Karczewska M, Siwińska-Ciesielczyk K, Niemczak M, Sandomierski M, Eberlein C, Heipieper HJ, Chrzanowski Ł. Unraveling the effects of acrylonitrile butadiene styrene (ABS) microplastic ageing on the sorption and toxicity of ionic liquids with 2,4-D and glyphosate herbicides. CHEMOSPHERE 2024; 364:143271. [PMID: 39241837 DOI: 10.1016/j.chemosphere.2024.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40 to 45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Maria Simpson
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Arkadiusz Kloziński
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
26
|
Gong X, Chen R, Shi G, Sun H, Yang Y, Liang Y, Qin P, Yang H, Wu Z. Differential effects of polystyrene microplastics on the adsorption of cadmium and ciprofloxacin by tea leaf litter-derived magnetic biochar: Influencing factors and mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11117. [PMID: 39234890 DOI: 10.1002/wer.11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Water pollution involves the coexistence of microplastics (MPs) and traditional pollutants, and how can MPs influence the adsorption of other pollutants by biochar during the treatment process remains unclear. This study aimed to investigate the influence of polystyrene microplastics (PS MPs) on the adsorption of cadmium (Cd) and ciprofloxacin (CIP) by magnetic biochar (MTBC) in the single and binary systems. MTBC was prepared using tea leaf litter; the effects of time, pH, and salt ions on the adsorption behaviors were investigated; and X-ray photoelectronic spectroscopy (XPS) and density flooding theory analysis were conducted to elucidate the influence mechanisms. Results indicated that PS MPs reduced the pollutants adsorption by MTBC due to the heterogeneous aggregation between PS MPs and MTBC and the surface charge change of MTBC induced by PS MPs. The effects of PS MPs on heavy metals and antibiotics adsorption were distinctly different. PS MPs reduced Cd adsorption on MTBC, which were significantly influenced by the solution pH and salt ions contents, suggesting the participation of electrostatic interaction and ion exchange in the adsorption, whereas the effects of PS MPs on CIP adsorption were inconspicuous. In the hybrid system, PS MPs reduced pollutants adsorption by MTBC with 66.3% decrease for Cd and 12.8% decrease for CIP, and the more remarkable reduction for Cd was due to the predominated physical adsorption, and CIP adsorption was mainly a stable chemisorption. The influence of PS MPs could be resulted from the interaction between PS MPs and MTBC with changing the functional groups and electrostatic potential of MTBC. This study demonstrated that when using biochar to decontaminate wastewater, it is imperative to consider the antagonistic action of MPs, especially for heavy metal removal. PRACTITIONER POINTS: Magnetic biochar (MTBC) was prepared successfully using tea leaf litter. MTBC could be used for cadmium (Cd) and ciprofloxacin (CIP) removal. Polystyrene microplastics (Ps MPs) reduced Cd/CIP adsorption by MTBC. Ps MPs effects on Cd adsorption were more obvious than that of CIP. Ps MPs changed the functional groups and electrostatic potential of MTBC, thus influencing MTBC adsorption.
Collapse
Affiliation(s)
- Xiaoming Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Ranran Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Guanwei Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Huilin Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
27
|
Izlal S, Ruhad FM, Islam T, Rahman MH, Tania HA. Characterization and spatial distribution of microplastics in Surma river, Bangladesh: Assessing water and sediment dynamics. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11130. [PMID: 39313199 DOI: 10.1002/wer.11130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), or tiny pieces of plastic, have become a major global environmental problem because of their ubiquitous availability and possible risks to aquatic ecosystems. Surma is one of the vital rivers in Bangladesh located in the northeast part, with higher chances of MP pollution due to different anthropogenic reasons. In this instance, we carried out the investigation on the abundance, distribution, and characteristics of MPs in the sediment and surface water of the river. Samples were collected from 15 major locations of the Surma river flowing through Sylhet municipality. MPs particles were isolated from sediments and water samples utilizing techniques like sieve analysis, wet peroxide oxidation, density separation, and filtration and then characterized using a stereomicroscope. The abundance of MPs recorded 8 to 18 items/L in water samples (mean ± SD: 12.33 ± 2.98 items/L) and 360 to 1120 items/kg in sediment samples (mean ± SD: 522.67 ± 197.84 items/kg). The prominent size, shape, and color of MPs isolated from sediments were 1-2 mm sizes (24.49%), fragments (47.71%), and black (30.65%). However, for water samples, 1-2 mm sizes (37.22%), fiber shapes (48.48%), and transparent colors (38.46%) were dominant features. Conspicuously, in both sediment and water samples, there was a higher prevalence of smaller sized particles, posing a significant threat to the ecosystem. This heightened risk stems from the increased likelihood of ingestion by microorganisms, as well as the larger surface area of these particles, which may serve as vectors for other pollutants like organic pollutants and heavy metals. A greater abundance of fibers suggests an increased presence of lightweight particles in the water and sediment. Furthermore, the transparent color of the MPs in water might be impacted by prolonged weathering in the river, while the presence of black-colored MPs in sediment points to the existence of plastic pellets originating from industrial and diverse sources. Future studies should concentrate on long-term and broad monitoring, ecological effects, and practical mitigation techniques for MPs, providing essential baseline data to guide the formulation of policies in developing nations. PRACTITIONER POINTS: 12.33 items/L in surface water and 522.67 items/kg in sediment were observed. High correlation indicates a single MP source in mainstream water, differing from sediment. Fiber shapes, black, and transparent colored MPs are dominant. Higher prevalence of smaller sized MPs, posing a significant threat to the aquatic ecosystem.
Collapse
Affiliation(s)
- Saif Izlal
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Fahim Mahafuz Ruhad
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tariqul Islam
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Hafizur Rahman
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Hafsa Akter Tania
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
28
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
29
|
Wang C, Liu X, Ma Q, Xing S, Yuan L, Ma Y. Distribution and effects of microplastics as carriers of heavy metals in river surface sediments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104396. [PMID: 39047425 DOI: 10.1016/j.jconhyd.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are few studies on microplastics (MPs) in urban river sediments compared to oceans, soils, and even rivers. In this study, the seasonal abundance of MPs, as well as their influencing factors on heavy metal adsorption in river sediments of the Ancient Canal of Zhenjiang City, China, were investigated for the first time. Through on-site sampling, microscopic observation, Raman spectroscopy, scanning electron microscopy, and high-temperature digestion, the abundance, shape, color, particle size, type, and surface characteristics of MPs in Ancient Canal sediments in different seasons, as well as the influencing factors of MPs as heavy metal carriers in different seasons, were analyzed. The results showed that the average abundance of MPs is 2049.09 ± 883.78 and 2216.36 ± 826.21 items kg-1 dry sediments in summer and winter, respectively, and different sites change significantly. In addition, particle sizes, types, colors, and shapes of MPs exhibited seasonal variations. Four MPs shapes were mainly observed: fibers, fragments, particles, and films. Among them, MPs in summer sediments are mainly fiber, and MPs in winter sediments are mainly particles. In the sediment in summer and winter, transparent MPs and small-size (<0.5 mm) MPs are the main ones, where the abundance of MPs decreased with increasing MPs size. The main MPs species are polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE), with PP being the predominant MPs in the sediments in different seasons. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) revealed that the surfaces of the MPs were characterized by rough, porous, cracked, and torn, with the attachment of various heavy metal elements, and all of the heavy metal elements accumulated to different degrees on the MPs. There was a significant positive correlation (p < 0.05) between the Mn content in the MPs and the Mn content in the sediments in winter, suggesting that the Mn in the MPs in winter may be derived from the sediments. In addition, the type, shape, size, and color of MPs affect the adsorption capacity of heavy metals. Most of the adsorption of MPs on Pb showed a significant negative correlation, and the adsorption of MPs on Cr, Zn, Cu, Cd, and Mn showed a significant positive correlation. MPs can be used as carriers of heavy metals, which will further enhance the hazards of living organisms and pose a potential threat to the safety of the urban river environment.
Collapse
Affiliation(s)
- Changyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Xin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyu Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lubin Yuan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China.
| |
Collapse
|
30
|
Ioannidis I, Kokonopoulou V, Pashalidis I. Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most. CHEMOSPHERE 2024; 363:142970. [PMID: 39084298 DOI: 10.1016/j.chemosphere.2024.142970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO2-coating (PET/MnO2) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the Kd values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO2 and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Vaia Kokonopoulou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
31
|
Lin L, Yuan B, Liu H, Ke Y, Zhang W, Li H, Lu H, Liu J, Hong H, Yan C. Microplastics emerge as a hotspot for dibutyl phthalate sources in rivers and oceans: Leaching behavior and potential risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134920. [PMID: 38880047 DOI: 10.1016/j.jhazmat.2024.134920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Dibutyl phthalate (DBP) as a plasticizer has been widely used in the processing of plastic products. Nevertheless, these DBP additives have the potential to be released into the environment throughout the entire life cycle of plastic products. Herein, the leaching behavior of DBP from PVC microplastics (MPs) in freshwater and seawater and its potential risks were investigated. The results show that the plasticizer content, UV irradiation, and hydrochemical conditions have a great influence on the leaching of DBP from the MPs. The release of DBP into the environment increases proportionally with higher concentrations of additive DBP in MPs, particularly when it exceeds 15 %. The surface of MPs undergoes accelerated oxidation and increased hydrophilicity under UV radiation, thereby facilitating the leaching of DBP. Through 30 continuous leaching experiments, the leaching of DBP from MPs in freshwater and seawater can reach up to 12.28 and 5.42 mg g-1, respectively, indicating that MPs are a continuous source of DBP pollution in the aquatic environment. Moreover, phthalate pollution index (PPI) indicates that MPs can significantly increase DBP pollution in marine environment through land and sea transport processes. Therefore, we advocate that the management of MPs waste containing DBP be prioritized in coastal sustainable development.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Huiling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Yue Ke
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Weifeng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
32
|
Adamu H, Haruna A, Zango ZU, Garba ZN, Musa SG, Yahaya SM, IbrahimTafida U, Bello U, Danmallam UN, Akinpelu AA, Ibrahim AS, Sabo A, Aljunid Merican ZM, Qamar M. Microplastics and Co-pollutants in soil and marine environments: Sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. CHEMOSPHERE 2024; 362:142630. [PMID: 38897321 DOI: 10.1016/j.chemosphere.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) and their co-pollutants pose significant threats to soil and marine environments, necessitating understanding of their colonization processes to combat the plastic pandemic and protect ecosystems. MPs can act as invisible carriers, concentrating and transporting pollutants, leading to a more widespread and potentially toxic impact than the presence of either MPs or the pollutants alone. Analyzing the sorption and desorption dynamics of MPs is crucial for understanding pollutants amplification and predicting the fate and transport of pollutants in soil and marine environments. This review provides an in-depth analysis of the sorption and desorption dynamics of MPs, highlighting the importance of considering these dynamics in ecotoxicological risk assessment of MPs pollution. The review identifies limitations of current frameworks that neglect these interactions and proposes incorporating sorption and desorption data into robust frameworks to improve the ability to predict ecological risks posed by MPs and co-pollutants in soil and marine environments. However, failure to address the interplay between sorption and desorption can result in underestimation of the true impact of MPs and co-pollutants, affecting livelihoods and agro-employments, and exacerbate poverty and community disputes (SDGs 1, 2, 3, 8, 9, and 16). It can also affect food production and security (SDG 2), life below water and life on land (DSGs 14 and 15), cultural practices, and natural heritage (SDG 11.4). Hence, it is necessary to develop new approaches to ecotoxicological risk assessment that consider sorption and desorption processes in the interactions between the components in the framework to address the identified limitations.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Zaharadden N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria
| | - Suleiman Gani Musa
- Department of Chemistry, Al-Qalam University, 2137, Katsina, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | | | - Adeola Akeem Akinpelu
- Center of Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Sadiq Ibrahim
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Ahmed Sabo
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
33
|
Xu T, Chen H, Zhang L, Xie D, Tan S, Guo H, Xiang M, Yu Y. Aged polystyrene microplastics cause reproductive impairment via DNA-damage induced apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2024; 362:142519. [PMID: 38830467 DOI: 10.1016/j.chemosphere.2024.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Although polystyrene microplastics (PS-MPs) could induce toxic effects on environmental organisms, the toxicity of aged PS-MPs with H2O2 on soil organisms remains unclear. Our study utilized Caenorhabditis elegans as model organism to examine the reproductive toxicity of pristine PS-MPs (pPS-MPs) and aged PS-MPs (aPS-MPs) at environmentally relevant concentrations (0.1-100 μg/L). Acute exposure to aPS-MPs could induce greater reproductive impairment compared to pPS-MPs, as evidenced by changes in brood size and egg release. Assessment of gonad development using the number of mitotic cells, length of gonad arm, and relative area of gonad arm as parameters revealed a high reproductive toxicity caused by aPS-MPs exposure. Furthermore, aPS-MPs exposure promoted substantial germline apoptosis. Additionally, exposure to aPS-MPs (100 μg/L) markedly altered the expression of DNA damage-induced apoptosis-related genes (e.g., egl-1, cep-1, clk-2, ced-3, -4, and -9). Alterations in germline apoptosis caused by aPS-MPs were observed in mutants of cep-1, hus-1, egl-1, ced-3, -4, and -9. Consequently, the augmentation of reproductive toxicity resulting from aPS-MPs exposure was attributed to DNA damage-triggered cellular apoptosis. Additionally, the EGL-1-CEP-1-HUS-1-CED-3-CED-4-CED-9 signaling pathway was identified as a key regulator of germline apoptosis in nematodes. Our study provides insights into potential environmental risk of aPS-MPs with H2O2 on environmental organisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Luohong Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
34
|
Borgmeyer T, Zhou L, Breider F, Rossi MJ, Ludwig C. Natural and simulated weathering of polystyrene: A molecular view of the polymeric interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174609. [PMID: 38997043 DOI: 10.1016/j.scitotenv.2024.174609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
This work presents the changing abundance of surface functional groups (SFGs) on polystyrene (PS) upon weathering within one or a few molecular monolayers from a molecular point of view. PS particles were aged by exposing it to a gas flow of typically (5 %) O3 in O2 (PSO3), UV radiation using a solar simulator under controlled conditions in the laboratory (PSSS) and to the water/air interface immerged in a freshwater lake for 2 months (PSL). The chemical composition of the interface of weathered, compared to pristine (virgin or PSV) material was established using a titration technique that probed the chemical composition of the molecular interface of the polymer. The main conclusions of this exploratory study are: (a) The interface of PS changes significantly compared to ATR-FTIR spectra that do not show additional absorptions in the mid-IR spectrum over a penetration depth of more than hundred monolayers at 10 μm; (b) The average surface functionalization of the gas-solid interface, corresponding to the sum of all examined types of SFG, increases from 20 % of a monolayer for PSV to 40, 50 and 84 % for PSL, PSO3 and PSSS, respectively; (c) in all cases the most important SFG was surface -OH ranging from 11.2 to 64 % for PSV and PSSS, respectively; (d) each PS sample shows a characteristic SFG pattern or fingerprint using several probe gases; (e) O3 interaction led to interface acidification; (f) UV treatment leads to the highest degree of surface -OH functionalization compared to PSO3 and PSL. The accumulation of SFG's renders the interface more reactive towards adsorption of probe gases.
Collapse
Affiliation(s)
- T Borgmeyer
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-LUD, Station 2, CH-1015 Lausanne, Switzerland.
| | - L Zhou
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-CEL, Station 2, CH-1015 Lausanne, Switzerland; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - F Breider
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-CEL, Station 2, CH-1015 Lausanne, Switzerland.
| | - M J Rossi
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-LUD, Station 2, CH-1015 Lausanne, Switzerland.
| | - C Ludwig
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE GR-LUD, Station 2, CH-1015 Lausanne, Switzerland; Paul Scherrer Institute, PSI Center for Energy and Environmental Sciences, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
35
|
Zhang L, Qin Z, Bai H, Xue M, Tang J. Photochemically induced aging of polystyrene nanoplastics and its impact on norfloxacin adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172511. [PMID: 38641106 DOI: 10.1016/j.scitotenv.2024.172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China.
| | - Zhi Qin
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - He Bai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Manyu Xue
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| |
Collapse
|
36
|
Liu F, Wu Y, Long M, Ma Y, Zheng M, Cao S, Chen S, Du Y, Chen C, Deng H. Activating Adsorption Sites of Waste Crayfish Shells via Chemical Decalcification for Efficient Capturing of Nanoplastics. ACS NANO 2024; 18:15779-15789. [PMID: 38833666 DOI: 10.1021/acsnano.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The property of being stubborn and degradation resistant makes nanoplastic (NP) pollution a long-standing remaining challenge. Here, we apply a designed top-down strategy to leverage the natural hierarchical structure of waste crayfish shells with exposed functional groups for efficient NP capture. The crayfish shell-based organic skeleton with improved flexibility, strength (14.37 to 60.13 MPa), and toughness (24.61 to 278.98 MJ m-3) was prepared by purposefully removing the inorganic components of crayfish shells through a simple two-step acid-alkali treatment. Due to the activated functional groups (e.g., -NH2, -CONH-, and -OH) and ordered architectures with macropores and nanofibers, this porous crayfish shell exhibited effective removal capability of NPs (72.92 mg g-1) by physical interception and hydrogen bond/electrostatic interactions. Moreover, the sustainability and stability of this porous crayfish shell were demonstrated by the maintained high-capture performance after five cycles. Finally, we provided a postprocessing approach that could convert both porous crayfish shell and NPs into a tough flat sheet. Thus, our feasible top-down engineering strategy combined with promising posttreatment is a powerful contender for a recycling approach with broad application scenarios and clear economic advantages for simultaneously addressing both waste biomass and NP pollutants.
Collapse
Affiliation(s)
- Fangtian Liu
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yang Wu
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Min Long
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yifan Ma
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Min Zheng
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shiyi Cao
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shixiong Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yumin Du
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
37
|
Guimarães GDA, Pereira SA, de Moraes BR, Ando RA, Martinelli Filho JE, Perotti GF, Sant'Anna BS, Hattori GY. The retention of plastic particles by macrophytes in the Amazon River, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42750-42765. [PMID: 38877194 DOI: 10.1007/s11356-024-33961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil.
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil.
| | - Samantha Aquino Pereira
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - Rômulo Augusto Ando
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil
| | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Bruno Sampaio Sant'Anna
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| |
Collapse
|
38
|
Yu F, Qin Q, Zhang X, Ma J. Characteristics and adsorption behavior of typical microplastics in long-term accelerated weathering simulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:882-890. [PMID: 38693902 DOI: 10.1039/d4em00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microplastics can function as carriers in the environment, absorbing various toxins and spreading to diverse ecosystems. Toxins accumulated in microplastics have the potential to be re-released, posing a threat. In this study, two typical plastics, namely polyethylene (PE) and polystyrene (PS), along with the degradable plastic poly(butylene adipate-co-terephthalate) (PBAT), were subjected to a long-term ultraviolet alternating weathering experiment. The study investigated the variations in the weathering process and pollutant adsorption of microplastics of different particle sizes. Furthermore, the adsorption capacity of microplastics for various pollutants was assessed. The findings indicate that particle size significantly influences weathering, leading to variations in adsorption capacity. The weathered PE displays a higher adsorption capacity for azo dyes. Additionally, the adsorption capacity of PBAT for neutral red is double that of antibiotics. Importantly, the maximum adsorption capacity of PBAT for pollutants after aging is approximately 10 times greater than that of PE. Consequently, degradable plastics undergoing weathering in the natural environment may pose a higher ecological risk than traditional plastics.
Collapse
Affiliation(s)
- Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Qiyu Qin
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Xiaochen Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Jie Ma
- School of Civil Engineering, Kashi University, Kashi 844000, China.
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
39
|
Mao Y, Hu Z, Li H, Zheng H, Yang S, Yu W, Tang B, Yang H, He R, Guo W, Ye K, Yang A, Zhang S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123863. [PMID: 38565391 DOI: 10.1016/j.envpol.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Aoguang Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
40
|
Peng H, Lin Z, Lu D, Yu B, Li H, Yao J. How do polystyrene microplastics affect the adsorption of copper in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171545. [PMID: 38458454 DOI: 10.1016/j.scitotenv.2024.171545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.
Collapse
Affiliation(s)
- Hongjia Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Zuhong Lin
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Bolun Yu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
41
|
Luo H, Tu C, Liu C, Zeng Y, He D, Zhang A, Xu J, Pan X. Probing the molecular interaction between photoaged polystyrene microplastics and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170933. [PMID: 38360324 DOI: 10.1016/j.scitotenv.2024.170933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
As emerging contaminants, microplastics (MPs) are becoming a matter of global concern, and they have complex interactions with dissolved organic matter (DOM) widely present in aqueous environments. Here, we investigate the molecular interactions between aged polystyrene microplastics (PS-MPs) and fulvic acid (FA) under neutral conditions using a series of analytical techniques. The structural changes of FA and the binding interactions of PS-MPs with FA at a molecular level were explored by fluorescence and FT-IR combined with two-dimensional correlation spectroscopy (2D-COS). Results showed that photoaging of PS-MPs changed the sequence of structural variations with FA. Atomic force microscopy-infrared spectroscopy (AFM-IR) strongly demonstrated that the surface roughness of both pristine and aged PS-MPs greatly increased after FA addition. Meanwhile, AFM-IR and Raman spectroscopy revealed a stronger interaction between aged PS-MPs and FA. The content of oxygen-containing functional groups in PS-MPs increased after aging and after binding with FA, and surface distribution of these functional groups also changed. XPS analyses indicated that the oxygen content in PS-MPs increased after the interaction with FA and the increase in oxygen content was even greater in aged PS-MPs. Overall, these research findings are useful to understand the environmental impacts of DOM-MPs interactions and to address the uncertainty of MPs aging effect on their environmental behavior in aquatic ecosystems.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Chaolin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T. Adsorption properties and mechanism of Cu(II) on virgin and aged microplastics in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29434-29448. [PMID: 38575820 DOI: 10.1007/s11356-024-33131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) migrate by adsorbing heavy metals in aquatic environments and act as their carriers. However, the aging mechanisms of MPs in the environment and the interactions between MPs and heavy metals in aquatic environments require further study. In this study, two kinds of materials, polyamide (PA) and polylactic acid (PLA) were used as target MPs, and the effects of UV irradiation on the physical and chemical properties of the MPs and the adsorption behavior of Cu(II) were investigated. The results showed that after UV irradiation, pits, folds and pores appeared on the surface of aged MPs, the specific surface area (SSA) increased, the content of oxygen-containing functional groups increased, and the crystallinity decreased. These changes enhanced the adsorption capacity of aged MPs for Cu(II) pollutants. The adsorption behavior of the PA and PLA MPs for Cu(II) conformed to the pseudo-second-order model and Langmuir isotherm model, indicating that the monolayer chemical adsorption was dominant. The maximum amounts of aged PA and PLA reached 1.415 and 1.398 mg/g, respectively, which were 1.59 and 1.76 times of virgin MPs, respectively. The effects of pH and salinity on the adsorption of Cu(II) by the MPs were significant. Moreover, factors such as pH, salinity and dosage had significant effects on the adsorption of Cu(II) by MPs. Oxidative complexation between the oxygen-containing groups of the MPs and Cu(II) is an important adsorption mechanism. These findings reveal that the UV irradiation aging of MPs can enhance the adsorption of Cu(II) and increase their role as pollutant carriers, which is crucial for assessing the ecological risk of MPs and heavy metals coexisting in aquatic environments.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| |
Collapse
|
43
|
Gao X, Chang S, Liu F, Wei J, Yan B. Adsorption characteristics of ciprofloxacin hydrochloride on polystyrene microplastics in freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24139-24152. [PMID: 38436855 DOI: 10.1007/s11356-024-32750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In order to reveal the adsorption mechanism of microplastics (MPs) on antibiotics, polystyrene (PS) was chosen as a typical microplastic, Fenton and high-temperature aging methods were used to obtain aged MPs particles. The adsorption behavior and mechanism of ciprofloxacin hydrochloride (CIP) on PS before and after aging were studied by batch adsorption experiments, and other influencing environmental conditions were evaluated concurrently. The results showed that the adsorption of CIP on PS was an exothermic reaction, the pseudo-second-order model and Freundlich isothermal models could fit the adsorption of CIP on PS. Aging treatment enhanced the adsorption capacity of PS to CIP, and Fenton aging for 7 days had the best effect. The highest adsorption was observed when the solution pH was 6. The adsorption capacity of microplastics gradually decreased with increasing ionic strength and the concentration of fulvic acid, while the aging microplastics changed little with the concentration of fulvic acid. The presence of both Cu (II) and CIP inhibits the adsorption of each other on microplastics. Based on the above findings, the adsorption of CIP on PS is dominated by physical adsorption, and electrostatic interactions and hydrogen bonding interactions are also important mechanisms for the adsorption of CIP on microplastics.
Collapse
Affiliation(s)
- Xi Gao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Silu Chang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Fengxu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiayu Wei
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, 300457, People's Republic of China.
- Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
44
|
Fan X, Cao B, Wang S, Li H, Zhu M, Sha H, Yang Y. Effects of tire-road wear particles on the adsorption of tetracycline by aquatic sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29232-29245. [PMID: 38573573 DOI: 10.1007/s11356-024-33132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tire-road wear particles (TRWPs) are formed by friction between the tire and the road. TRWPs are ubiquitous across the globe, especially in sediments. However, the possible effects of TRWPs on tetracycline (TC) in aquatic sediments are unknown. To investigate the potential role of TRWPs as carriers of co-pollutants, this study investigated the pore surface properties and TC adsorption behavior of TRWP-contaminated sediments and explored the TC behavior in water sediments, as well as the role of aging processes and TRWPs abundance. The results showed that the surface morphology of TRWP-contaminated sediments changed and the adsorption capacity of sediments to TC increased. The TC adsorption capacity of sediments contaminated by 2% TRWPs increased from 3.15 to 3.48 mg/g. Moreover, the surface physical and chemical properties of TRWPs after UV aging changed, which further increased the TC adsorption capacity. The TC adsorption capacity of the sediments contaminated by aged TRWPs increased from 3.48 to 3.65 mg/g. Changing the proportion of aged TRWPs, we found that the adsorption capacity of sediments contaminated by different proportions of TRWPs for TC was 2% > 1% > 0.5% > 4% > blank sediment. These results may contribute to predicting the potential environmental risks of TRWPs in aquatic sediments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Huixian Li
- Xuzhou River and Lake Management Center, Xuzhou, China
| | - Mingxian Zhu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| |
Collapse
|
45
|
Liu B, Zhao S, Qiu T, Cui Q, Yang Y, Li L, Chen J, Huang M, Zhan A, Fang L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170281. [PMID: 38272091 DOI: 10.1016/j.scitotenv.2024.170281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) in soil contamination are considered an emerging global problem that poses environmental and health risks. However, their interaction and potential biological effects remain unclear. Here, we reviewed the interaction of MPs with HMs in soil, including its mechanisms, influencing factors and biological effects. Specifically, the interactions between HMs and MPs mainly involve sorption and desorption. The type, aging, concentration, size of MPs, and the physicochemical properties of HMs and soil have significant impacts on the interaction. In particular, MP aging affects specific surface areas and functional groups. Due to the small size and resistance to decomposition characteristics of MPs, they are easily transported through the food chain and exhibit combined biological effects with HMs on soil organisms, thus accumulating in the human body. To comprehensively understand the effect of MPs and HMs in soil, we propose combining traditional experiments with emerging technologies and encouraging more coordinated efforts.
Collapse
Affiliation(s)
- Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
46
|
Chen L, Shao H, Ren Y, Mao C, Chen K, Wang H, Jing S, Xu C, Xu G. Investigation of the adsorption behavior and adsorption mechanism of pollutants onto electron beam-aged microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170298. [PMID: 38272098 DOI: 10.1016/j.scitotenv.2024.170298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed worldwide. Extensive research has been conducted to address the issue of microplastic pollution; however, effective methods for microplastic treatment are still lacking. This study innovatively utilizes electron beam technology to age and degrade microplastics. Compared to other treatment methods, electron beam technology can effectively promote the aging and degradation of microplastics. The Oxygen - carbon ratio of aged microplastics reached 0.071, with a mass loss of 48 % and a carbonyl index value of 0.69, making it the most effective method for short-term aging treatment in current research efforts. Theoretical calculations and experimental results demonstrate that a large number of oxygen-containing functional groups are generated on the surface of microplastics after electron beam irradiation, changing their adsorption performance for pollutants. Theoretical calculations show that an increase in oxygen-containing functional groups on the surface leads to a gradual decrease in hydrophobic pollutant adsorption capacity while increasing hydrophilic pollutant adsorption capacity for aged microplastics. Experimental studies were conducted to investigate the adsorption behavior and process of typical pollutants by aged microplastics which conform to pseudo-second-order kinetics and Henry model during the adsorption process, and the adsorption results are consistent with theoretical calculations. The results show that the degradation of microplastics is mainly due to hydroxyl radicals generated by electron beam irradiation, which can break the carbon chain of microplastics and gradually degrade them into small molecular esters and alcohols. Furthermore, studies have shown that microplastics can desorb pollutants in pure water and simulated gastric fluid. Overall, electron beam irradiation is currently the most effective method for degrading microplastics. These results also clearly elucidate the characteristics and mechanisms of the interaction between aged microplastics and organic pollutants, providing further insights for assessing microplastic pollution in real-world environments.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hongyong Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| | - Shuting Jing
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengwei Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| |
Collapse
|
47
|
Kong X, Zhou A, Chen X, Cheng X, Lai Y, Li C, Ji Q, Ji Q, Kong J, Ding Y, Zhu F, He H. Insight into the adsorption behaviors and bioaccessibility of three altered microplastics through three types of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170420. [PMID: 38301781 DOI: 10.1016/j.scitotenv.2024.170420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Advanced oxidation processes (AOPs) can significantly alter the structural properties, environmental behaviors and human exposure level of microplastics in aquatic environments. Three typical microplastics (Polyethylene (PE), polypropylene (PP), and polystyrene (PS)) and three AOPs (Heat-K2S2O8 (PDS), UV-H2O2, UV-peracetic acid (PAA)) were adopted to simulate the process when microplastics exposed to the sewage disposal system. 2-Nitrofluorene (2-NFlu) adsorption experiments found the equilibrium time decreased to 24 hours and the capacity increased up to 610 μg g-1, which means the adsorption efficiency has been greatly improved. The fitting results indicate the adsorption mechanism shifted from the partition dominant on pristine microplastic to the physical adsorption (pore filling) dominant. The alteration of specific surface area (21 to 152 m2 g-1), pore volume (0.003 to 0.148 cm3 g-1) and the particle size (123 to 16 μm) of microplastics after AOPs are implying the improvement for pore filling. Besides, the investigation of bioaccessibility is more complex, AOPs alter microplastic with more oxygen-containing functional groups and lower hydrophobicity detected by XPS and water contact angle, those modifications have increased the sorption concentration, especially in the human intestinal tract. Therefore, this indicates the actual exposure of organic compounds loaded in microplastic may be higher than in the pristine microplastic. This study can help to assess the human health risk of microplastic pollution in actual environments.
Collapse
Affiliation(s)
- Xiangcheng Kong
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuqi Lai
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Qingsong Ji
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Yuan Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Fengxiao Zhu
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| |
Collapse
|
48
|
Chang B, Huang Z, Yang X, Yang T, Fang X, Zhong X, Ding W, Cao G, Yang Y, Hu F, Xu C, Qiu L, Lv J, Du W. Adsorption of Pb(II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133413. [PMID: 38228006 DOI: 10.1016/j.jhazmat.2023.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering & Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
49
|
Zhou S, Wang L, Liu J, Zhang C, Liu X. Microplastics' toxic effects and influencing factors on microorganisms in biological wastewater treatment units. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1539-1553. [PMID: 38557717 DOI: 10.2166/wst.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Abstract
Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Lili Wang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Jin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuanguo Zhang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China
| | - Xianbin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China E-mail:
| |
Collapse
|
50
|
Parus A, Ciesielski T, Woźniak-Karczewska M, Ławniczak Ł, Janeda M, Ślachciński M, Radzikowska-Kujawska D, Owsianiak M, Marecik R, Loibner AP, Heipieper HJ, Chrzanowski Ł. Critical evaluation of the performance of rhamnolipids as surfactants for (phyto)extraction of Cd, Cu, Fe, Pb and Zn from copper smelter-affected soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168382. [PMID: 37963537 DOI: 10.1016/j.scitotenv.2023.168382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
Rhamnolipids are biosurfactants produced by bacteria belonging to the Pseudomonas genus. They are discussed to complex heavy metal cations stronger than cations of Fe, Ca, Mg. It is therefore suggested to employ rhamnolipids in phytoextraction where their addition to soil should result in preferential complexation of heavy metals that can be taken up by plants, thus enabling rapid and ecological clean-up of contaminated soil. In order to test this concept, we evaluated the rhamnolipid-mediated phytoextraction of heavy metal from soil collected from the vicinity of a copper smelter. The following aspects were investigated: i) selectivity of rhamnolipids towards Cu, Zn, Pb, Cd and Fe during soil washing; ii) phytoextraction efficiency of each ion with respect to the effective concentration of rhamnolipids; iii) possible phytotoxic effects; iv) effect of micro-sized polystyrene amendment. The experiments evaluated soil washing efficiency, BCR (Community Bureau of Reference) sequential extraction to determine the impact of rhamnolipids on the mobility of metal ions, phytoextraction with maize (Zea mays L.) and phytotoxic effects based on dry matter, chlorophyll fluorescence and content. The obtained results indicated that rhamnolipids lack desired selectivity towards heavy metal ions as Fe was complexed more efficiently by 80 % of the available rhamnolipids compared to priority pollutants like Zn, Cu, Pb, which were complexed by only 20 % of the tested rhamnolipids. With increased concentration of rhamnolipids, the soil washing efficiency increased and shifted in favour of Fe, reaching values of approx. 469 mg for Fe and only 118 mg in total of all tested heavy metals. Phytoextraction also favoured the accumulation of Fe, while Cd was not removed from the soil even at the highest applied rhamnolipid concentrations. Considering the selectivity of rhamnolipids and the costs associated with their production, our results suggest the need to search for other alternative (bio)surfactants with better selectivity and lower price.
Collapse
Affiliation(s)
- Anna Parus
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60 - 965 Poznan, Poland.
| | - Tomasz Ciesielski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60 - 965 Poznan, Poland
| | - Marta Woźniak-Karczewska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60 - 965 Poznan, Poland
| | - Łukasz Ławniczak
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60 - 965 Poznan, Poland
| | - Michał Janeda
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60 - 965 Poznan, Poland
| | - Mariusz Ślachciński
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60 - 965 Poznan, Poland
| | - Dominika Radzikowska-Kujawska
- Poznan University of Life Sciences, Agronomy Department, Faculty of Agronomy and Bioengineering, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Roman Marecik
- Poznan University of Life Sciences, Department of Biotechnology and Food Microbiology, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Andreas P Loibner
- Department IFA-Tulln, Institute of Environmental Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60 - 965 Poznan, Poland; Department IFA-Tulln, Institute of Environmental Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| |
Collapse
|