1
|
Hussain N, Mikolajek H, Harrison PJ, Paterson N, Akhtar MW, Sadaf S, Naismith JH. Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification. Arch Biochem Biophys 2024; 764:110274. [PMID: 39701201 DOI: 10.1016/j.abb.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C. The enzyme exhibited a high level of processivity on RAC and retained over 90% activity at 80°C for an extended period, indicating exceptional thermal stability. The 1.20 Å crystal structure of the Tt_End5A catalytic domain revealed an archetypal glycoside hydrolase family 5 (GH5) catalytic TIM-(β/α)8-barrel, supplemented with additional β-strands, elongated α-helices, and a rare cis-non-Pro (His481-cis-Ala482) peptide. A large central cleft was observed in the 3D structure, which is likely related to the enzyme's multifunctionality and processivity. The catalytic domain is preceded by a novel N-terminal multivalent carbohydrate-binding module (CBM) that enhances the enzymatic degradation of insoluble polysaccharides. Mutagenesis studies, ligand interaction analyses, and the structurally conserved positions of E329 and E448 in Tt_End5A suggest that these residues function as the proton donor and nucleophile in the catalytic mechanism. Owing to its multifunctionality and processivity, Tt_End5A can reduce the need for multiple saccharification enzymes to generate fermentable sugars from plant biomass for bioethanol production. Additionally, it holds promise for applications in the pharmaceutical, feed, and food industries.
Collapse
Affiliation(s)
- Naveed Hussain
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Halina Mikolajek
- The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Peter J Harrison
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Neil Paterson
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Muhammad W Akhtar
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Saima Sadaf
- School of Biochemistry & Biotechnology, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - James H Naismith
- The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK.
| |
Collapse
|
2
|
Reza MAS, Rasouli A, Vahidi H, Kobarfard F. Molecular identification of Shiitake (Lentinula edodes), analysis and production of beta-glucan using beech wood sawdust waste. Int J Biol Macromol 2024; 280:135539. [PMID: 39276893 DOI: 10.1016/j.ijbiomac.2024.135539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Lentinula edodes has the ability to grow and produce bioactive compounds on industrial by-products. This study aimed to produce B-glucan of cell wall Shiitake on Beechwood Sawdust (BWS) through a two-step procedure, which included fermentation and B-glucan extraction and purification. Shiitake mushrooms are cultivated by solid-state fermentation (SSF) using the Jamas method to increase the purity of B-glucan. The fermented substrate was first separated and then hydrolyzed by sodium hydroxide (NaOH) (10 M, 1 M), followed by acid hydrolysis extraction. The structure and purity of B-glucan were confirmed by FTIR, NMR, and AFM spectroscopy. The fungus used was molecularly identified by the 18 s rRNA method. Shiitake mushroom was produced by SSF using BWS and high purity β-glucan was extracted from the produced polysaccharide in the amount of 67.33 mg/g. FTIR, NMR, and AFM analyses proved the production of beta-glucan, and based on molecular identification, it was determined that the mushroom used was Lentinula edodes. The results obtained show that SSF is a valuable technology for the production of biomass and polysaccharides by utilizing the strain of L. edodes. To the best of our knowledge, the yield reported is the highest by the strain of L. edodes using SSF.
Collapse
Affiliation(s)
| | - Alireza Rasouli
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Wzorek-Łyczko K, Woźniak W, Piwowarczyk A, Kuchar E. The anti-infective effect of β-glucans in children. INT J VITAM NUTR RES 2024; 94:296-307. [PMID: 37779363 DOI: 10.1024/0300-9831/a000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background: β-glucans are bioactive β-D-glucose polysaccharides of natural origin, presenting antimicrobial and immunomodulation properties, with a low risk of toxicity. Objectives: This scoping review aims to present the current knowledge on the anti-infective properties of β-glucans in the pediatric population. Methods: We used the PRISMA Extension for Scoping Reviews Checklist to prepare this review. Studies were identified by electronic searches of Pubmed, Embase, and Cochrane databases up to May 2021. Results: The primary search allowed us to find 6232 studies, twelve of which were finally included in the analysis. Eight studies were designed as randomized, placebo-controlled trials, while in four studies the intervention outcome was compared with the pre-intervention period in the same group. The type of preparation and doses varied between studies: in five trials pleuran was administered (in dose 10 mg/5 kg of body weight/day), and in one study baker's yeast β-glucan was used (in two doses: 35 mg/day and 75 mg/day). In six other studies, the analyzed preparation comprised β-glucan and other substances. The shortest study lasted seven days, while the most prolonged intervention lasted six months, followed by six months of follow-up. Ten out of twelve trials demonstrated the effectiveness of β-glucans in reducing respiratory tract infection incidence or alleviation of upper respiratory tract infection symptoms. Ten out of twelve studies have reported a good tolerance and safety profile. Conclusions: Good tolerance of β-glucans shows a favorable benefit-risk ratio of this type of intervention. Nevertheless, further monitoring of their efficacy and safety in high-quality research is necessary.
Collapse
Affiliation(s)
- Katarzyna Wzorek-Łyczko
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Weronika Woźniak
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Anna Piwowarczyk
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Ernest Kuchar
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| |
Collapse
|
6
|
Hamza A, Khalad A, Kumar DS. Enhanced production of mycelium biomass and exopolysaccharides of Pleurotus ostreatus by integrating response surface methodology and artificial neural network. BIORESOURCE TECHNOLOGY 2024; 399:130577. [PMID: 38479624 DOI: 10.1016/j.biortech.2024.130577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.
Collapse
Affiliation(s)
- Arman Hamza
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Abdul Khalad
- Department of Mechanical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Devarai Santhosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
8
|
Lindequist U. Medicinal Mushrooms as Multicomponent Mixtures-Demonstrated with the Example of Lentinula edodes. J Fungi (Basel) 2024; 10:153. [PMID: 38392825 PMCID: PMC10890338 DOI: 10.3390/jof10020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Medicinal mushrooms are multicomponent mixtures (MOCSs). They consist of a large number of individual compounds, each with different chemical structures, functions, and possible pharmacological activities. In contrast to the activity of an isolated pure substance, the effects of the individual substances in a mushroom or its extracts can influence each other; they can strengthen, weaken, or complement each other. This results in both advantages and disadvantages for the use of either a pure substance or a multicomponent mixture. The review describes the differences and challenges in the preparation, characterization, and application of complex mixtures compared to pure substances, both obtained from the same species. As an example, we use the medicinal and culinary mushroom Lentinula edodes, shiitake, and some of its isolated compounds, mainly lentinan and eritadenine.
Collapse
Affiliation(s)
- Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology, University of Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
9
|
Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, Putra PP, Wahyuni FS. Comprehensive studies of the anti-inflammatory effect of tetraprenyltoluquinone, a quinone from Garcinia cowa Roxb. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117381. [PMID: 37967776 DOI: 10.1016/j.jep.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia cowa Roxb. is called asam kandis in West Sumatra. This plant contains several quinone compounds, including tetraprenyltoluquinone (TPTQ). The bioactivity of this compound has been tested as an anticancer agent. However, reports regarding its anti-inflammatory effects are still limited, especially against coronavirus disease (Covid-19). AIM OF THE STUDY This study explores the anti-inflammatory effect of TPTQ in silico, in vitro, and in vivo. MATERIALS AND METHODS In silico testing used the Gnina application, opened via Google Colab. The TPTQ structure was docked with the nuclear factor kappa B (NF-ĸB) protein (PDB: 2RAM). In vitro testing began with testing the cytotoxicity of TPTQ against Raw 264.7 cells, using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A phagocytic activity test was carried out using the neutral red uptake method, and interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretion tests were carried out using the enzyme-linked immunosorbent assay (ELISA) method. In vivo, tests were carried out on mice by determining cluster of differentiation 8+ (CD8+), natural killer cell (NK cell), and IL-6 parameters, using the ELISA method. RESULTS TPTQ has a lower binding energy than the native ligand and occupies the same active site as the native ligand. TPTQ decreased the phagocytosis index and secretion of IL-6 and TNF-α experimentally in vitro. TPTQ showed significant downregulation of CD8+ and slightly decreased NK cells and IL-6 secretion in vivo. CONCLUSION The potent inhibitory effect of TPTQ on the immune response suggests that TPTQ can be developed as an anti-inflammatory agent, especially in the treatment of Covid-19.
Collapse
Affiliation(s)
- Irene Puspa Dewi
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia; Akademi Farmasi Prayoga, Padang, 25111, Indonesia
| | - Dachriyanus
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Yufri Aldi
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Puncak Alam Campus, Selangor, Malaysia
| | - Dira Hefni
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Meri Susanti
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | | | | |
Collapse
|
10
|
Zhou G, Liu H, Yuan Y, Wang Q, Wang L, Wu J. Lentinan progress in inflammatory diseases and tumor diseases. Eur J Med Res 2024; 29:8. [PMID: 38172925 PMCID: PMC10763102 DOI: 10.1186/s40001-023-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Shiitake mushrooms are a fungal food that has been recorded in Chinese medicine to nourish the blood and qi. Lentinan (lLNT) is an active substance extracted from shiitake mushrooms with powerful antioxidant, anti-inflammatory, anti-tumor functions. Inflammatory diseases and cancers are the leading causes of death worldwide, posing a serious threat to human life and health and posing enormous challenges to global health systems. There is still a lack of effective treatments for inflammatory diseases and cancer. LNT has been approved as an adjunct to chemotherapy in China and Japan. Studies have shown that LNT plays an important role in the treatment of inflammatory diseases as well as oncological diseases. Moreover, clinical experiments have confirmed that LNT combined with chemotherapy drugs has a significant effect in improving the prognosis of patients, enhancing their immune function and reducing the side effects of chemotherapy in lung cancer, colorectal cancer and gastric cancer. However, the relevant mechanism of action of the LNT signaling pathway in inflammatory diseases and cancer. Therefore, this article reviews the mechanism and clinical research of LNT in inflammatory diseases and tumor diseases in recent years.
Collapse
Affiliation(s)
- Guangda Zhou
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, 250062, China
| | - Haiyan Liu
- Department of Ultrasound, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Yuan
- Department of Neurology, Xingtai Third Hospital, Xingtai, 054000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Lanping Wang
- Department of Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Jianghua Wu
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| |
Collapse
|
11
|
Fan W, You B, Wang X, Zheng X, Xu A, Liu Y, Peng H, Yin W, Xu M, Dong X, Liu Y, Zhao P, Liang X. Safety and efficacy of lentinan nasal drops in patients infected with the variant of COVID-19: a randomized, placebo-controlled trial. Front Pharmacol 2023; 14:1292479. [PMID: 38108068 PMCID: PMC10722177 DOI: 10.3389/fphar.2023.1292479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Objective: Lentinan has antiviral, anti-tumor, immunomodulatory, stimulating interferon production, and other pharmacological effects. Previous animal experiments have shown that lentinan nasal drops can assist [Corona Virus Disease 2019) COVID-19] vaccine to induce high levels of neutralizing antibodies and can effectively resist the invasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to evaluate the safety and efficacy of lentinan nasal drops in patients infected with Omicron (SARS-CoV-2 variant) through a dose-escalation study and a placebo-controlled trial. Methods: A randomized, placebo-controlled trial. The study was divided into two phases: Phase I: a dose escalation trial in which 24 COVID-19 patients were enrolled, that is, 12 in the escalation dose group (50, 75, and 100 µg/day) and 12 in the standard treatment group. The aim was to evaluate the safety and tolerance of lentinan nasal drops. The second stage was a placebo-controlled study. The optimal dose group of the first stage was used as the therapeutic dose, and the sample size was expanded to verify the anti-COVID-19 efficacy of lentinan nasal drops. Results: In the dose-increasing study, lentinan nasal drops showed good safety, and no serious adverse reactions occurred. The virus shedding time of the 100 µg dose group was significantly shorter than that in the control group (7.75 ± 1.71 VS 13.41 ± 3.8 days) (p = 0.01), and the 100 µg/day lentinan nasal drops were tolerated well. The results of the placebo-controlled study showed that compared with that in the placebo group, the time for COVID-19 antigen to turn negative was significantly shorter in the 100 µg lentinan nasal drop group (p = 0.0298), but no significant difference was observed in symptom improvement between the two groups. In the placebo-controlled study, two patients experienced mild nasal discomfort with nasal drops, but the symptoms relieved themselves. Conclusion: Lentinan nasal drops are tolerated well and can shorten the time of virus clearance.
Collapse
Affiliation(s)
- Wenhan Fan
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Benming You
- Department of Pharmacy, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Xinyu Wang
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Xu Zheng
- Department of Microbiology, PLA Key Laboratory of Biodetection and Biodefense, Shanghai Key Laboratory of Medical Biodefense, Navy Military Medical University, Shanghai, China
| | - Aijing Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Yangang Liu
- Department of Microbiology, PLA Key Laboratory of Biodetection and Biodefense, Shanghai Key Laboratory of Medical Biodefense, Navy Military Medical University, Shanghai, China
| | - Haoran Peng
- Department of Microbiology, PLA Key Laboratory of Biodetection and Biodefense, Shanghai Key Laboratory of Medical Biodefense, Navy Military Medical University, Shanghai, China
| | - Wei Yin
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Xu Dong
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Yayun Liu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, PLA Key Laboratory of Biodetection and Biodefense, Shanghai Key Laboratory of Medical Biodefense, Navy Military Medical University, Shanghai, China
| | - Xuesong Liang
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Dai Y, Wang L, Chen X, Song A, He L, Wang L, Huang D. Lentinula edodes Sing Polysaccharide: Extraction, Characterization, Bioactivities, and Emulsifying Applications. Foods 2023; 12:3289. [PMID: 37685222 PMCID: PMC10486737 DOI: 10.3390/foods12173289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In the present work, the optimization of extraction, emulsifying properties, and biological activities of polysaccharides from Lentinula edodes Sing (LES) were studied. The results showed LES polysaccharides extracted by hot water or ultrasonication are a group of β-glucan. Among all the samples, the one extracted by hot water showed the best emulsifying capacity. In addition, the results demonstrated that LES polysaccharide had strong scavenging activities in vitro on DPPH and ABTS radicals, which reached the highest level for the one extracted by 90 min ultrasonication (p < 0.05). Overall, Lentinula edodes Sing polysaccharides (LESPs) may have potential applications as emulsifying agents in food industries.
Collapse
Affiliation(s)
- Yan Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Lei Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Xingyi Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Angxin Song
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Lingyuan Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| | - Diandian Huang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China (X.C.); (A.S.); (L.H.)
| |
Collapse
|
13
|
Baruah P, Patra A, Barge S, Khan MR, Mukherjee AK. Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19). J Fungi (Basel) 2023; 9:897. [PMID: 37755005 PMCID: PMC10532592 DOI: 10.3390/jof9090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Collapse
Affiliation(s)
- Paran Baruah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aparup Patra
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Sagar Barge
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Ashis K. Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| |
Collapse
|
14
|
Zhang H, Zhang J, Liu Y, Tang C. Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review. Foods 2023; 12:2975. [PMID: 37569244 PMCID: PMC10419088 DOI: 10.3390/foods12152975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ganoderma has served as a valuable food supplement and medicinal ingredient with outstanding active compounds that are essential for human protection against chronic diseases. Modern pharmacology studies have proven that Ganoderma β-d-glucan exhibits versatile biological activities, such as immunomodulatory, antitumor, antioxidant, and antiviral properties, as well as gut microbiota regulation. As a promising polysaccharide, β-d-glucan is widely used in the prevention and treatment of various diseases. In recent years, the extraction, purification, structural characterization, and pharmacological activities of polysaccharides from the fruiting bodies, mycelia, spores, and fermentation broth of Ganoderma species have received wide attention from scholars globally. Unfortunately, comprehensive studies on the preparation, structure and bioactivity, toxicology, and utilization of β-d-glucans from Ganoderma species still need to be further explored, which may result in limitations in future sustainable industrial applications of β-d-glucans. Thus, this review summarizes the research progress in recent years on the physicochemical properties, structural characteristics, and bioactivity mechanisms of Ganoderma β-d-glucan, as well as its toxicological assessment and applications. This review is intended to provide a theoretical basis and reference for the development and application of β-d-glucan in the fields of pharmaceuticals, functional foods, and cosmetics.
Collapse
Affiliation(s)
| | | | | | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China; (H.Z.); (J.Z.); (Y.L.)
| |
Collapse
|
15
|
Wang G, Li Z, Tian M, Cui X, Ma J, Liu S, Ye C, Yuan L, Qudus MS, Afaq U, Wu K, Liu X, Zhu C. β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses 2023; 15:1204. [PMID: 37243289 PMCID: PMC10221698 DOI: 10.3390/v15051204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Many studies have shown that β-glucan induces a trained immune phenotype in innate immune cells to defend against bacterial and fungal infections. The specific mechanism involves cellular metabolism and epigenetic reprogramming. However, it is unclear whether β-glucan plays a role in antiviral infection. Therefore, this study investigated the role of trained immunity induced by Candida albicans and β-glucan in antiviral innate immunity. It showed that C. albicans and β-glucan promoted the expression of interferon-β (IFN-β) and interleukin-6 (IL-6) in mouse macrophages triggered by viral infection. In addition, β-glucan pretreatment attenuated the pathological damage induced by the virus in mouse lungs and promoted the expression of IFN-β. Mechanistically, β-glucan could promote the phosphorylation and ubiquitination of TANK Binding Kinase 1 (TBK1), a key protein of the innate immune pathway. These results suggest that β-glucan can promote innate antiviral immunity, and this bioactive material may be a potential therapeutic target for antiviral treatment.
Collapse
Affiliation(s)
- Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Yuan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai 200135, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
16
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
17
|
Kumar A, Paliwal R, Gulbake A. Lentinan: An unexplored novel biomaterial in drug and gene delivery applications. J Control Release 2023; 356:316-336. [PMID: 36863692 DOI: 10.1016/j.jconrel.2023.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Recently, lentinan (LNT) has been utilized for its diversified potential in research with an extended role from nutritional or medicinal applications to a novel biomaterial. LNT is a biocompatible, multifunctional polysaccharide employed as a pharmaceutical additive in engineering customized drug or gene carriers with an improved safety profile. Its triple helical structure containing hydrogen bonding offers more extraordinary binding sites for the attachments of dectin-1 receptors and polynucleotide sequences (poly(dA)). Hence, the diseases expressing dectin-1 receptors can be specifically targeted through so-designed LNT-engineered drug carriers. Gene delivery using poly(dA)-s-LNT complexes and composites has exhibited greater targetability and specificity. The achievement of such gene applications is assessed through the pH and redox potential of the extracellular cell membrane. The steric hindrance-acquiring behavior of LNT shows promise as a system stabilizer in drug carrier engineering. LNT shows viscoelastic gelling behavior temperature-dependently and therefore needs to explore more to meet topical disease applications. The immunomodulatory and vaccine adjuvant properties of LNT help in mitigating viral infections too. This review highlights the new role of LNT as a novel biomaterial, particularly in drug delivery and gene delivery applications. In addition, its importance in achieving various biomedical applications is also discussed.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
18
|
Air Atmospheric Pressure Plasma Jet to Improve Fruiting Body Production and Enhance Bioactive Phytochemicals from Mutant Cordyceps militaris (White Cordyceps militaris). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
Ahmad I, Arif M, Mimi X, Zhang J, Ding Y, Lyu F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Kozarski M, Klaus A, van Griensven L, Jakovljevic D, Todorovic N, Wan-Mohtar WAAQI, Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Jafari M, Boskabaday MH, Rezaee SA, Rezaeian S, Behrouz S, Ramezannejad R, Pourianfar HR. Lentinan and β-glucan extract from shiitake mushroom, Lentinula edodes, alleviate acute LPS-induced hematological changes in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:836-842. [PMID: 37396940 PMCID: PMC10311971 DOI: 10.22038/ijbms.2023.67669.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/18/2023] [Indexed: 07/04/2023]
Abstract
Objectives Immunomodulatory activity of β-glucans of shiitake mushroom (Lentinula edodes) has been known. We investigated whether β-glucans from L. edodes would attenuate the acute effects of lipopolysaccharides (LPS) on peripheral hematological parameters in mice. Materials and Methods An in-house β-glucans extract (BG) prepared from fruiting bodies of shiitake mushroom L. edodes was chemically measured and characterized using spectrophotometry and HPLC. Male BALB/c mice directly inhaled aerosolized LPS of 3 mg/ml and were treated with BG or commercial β-glucan (known as lentinan; LNT) (10 mg/kg bw) at 1 hr before or 6 hr after LPS inhalation. The blood samples were collected by cardiac puncture from euthanized mice at 16 hr post-treatment. Results The results showed a significant reduction in levels of blood parameters, including red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), and platelets (PLT); and a significant increase in blood lymphocyte counts in LPS-treated mice as compared with the control mice (P≤0.05). Total white blood cells, neutrophils, and monocyte counts did not show any significant difference among the groups. Treatment of LPS-challenged mice with LNT or BG significantly increased the levels of RBC, HGB, HCT, and PLT; and reduced blood lymphocyte counts as compared with LPS-treated mice (P≤0.05). Conclusion These findings suggest that β-glucans from L. edodes might be effective in attenuating the effects of inhaled LPS on peripheral blood parameters. Thus, these findings might be useful in acute inflammatory diseases particularly pulmonary infectious diseases in which the hematological parameters would be affected.
Collapse
Affiliation(s)
- Mojdeh Jafari
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | | | - Seyed Abdolrahim Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Sharareh Rezaeian
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Ramezannejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
23
|
The Dectin-1 Receptor Signaling Pathway Mediates the Remyelination Effect of Lentinan through Suppression of Neuroinflammation and Conversion of Microglia. J Immunol Res 2022; 2022:3002304. [PMID: 36619719 PMCID: PMC9812608 DOI: 10.1155/2022/3002304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Demyelinating diseases such as multiple sclerosis (MS) are chronic inflammatory autoimmune diseases and involve demyelination and axonal degeneration. Microglia rapidly respond to changes in the environment by altering morphotype and function during the progressive disease stage. Although substantial progress has been made in the drug development for MS, treatment of the progressive forms of the disease remains unsatisfactory. There is great interest in identifying novel agents for treating MS. Lentinus edodes is a traditional food, which can improve physiological function. Lentinan (LNT), a type of polysaccharide extracted from mushroom Lentinus edodes, is an anti-inflammatory and immunomodulatory agent. Here, we studied the remyelination effects of LNT and its therapeutic target in regulating the functions of neuroinflammation. We found that LNT enhanced remyelination and rescued motor deficiency by regulating dectin-1 receptor to inhibit neuroinflammation and microglial cell transformation. LNT promoted the conversion of microglial cells from the M1 status induced by LPS to the M2 status, enhanced the anti-inflammatory markers IL-10 and BDNF, inhibited inflammatory markers TNF-α and IL-1β, and downregulated the microglia activation and oligodendrocyte and astrocyte proliferation by modulating dectin-1. If we injected the dectin-1-specific inhibitor laminarin (Lam), the remyelination effects induced by LNT were completely abolished. Thus, these results suggest that LNT is a novel and potential therapeutic agent that can rescue MS neuroimmune imbalance and remyelination through a dectin-1 receptor-dependent mechanism.
Collapse
|
24
|
Battaglia V, Sorrentino R, Verrilli G, del Piano L, Sorrentino MC, Petriccione M, Sicignano M, Magri A, Cermola M, Cerrato D, Lahoz E. Potential Use of Cardunculus Biomass on Pleurotus eryngii Production: Heteroglycans Content and Nutritional Properties (Preliminary Results). Foods 2022; 12:foods12010058. [PMID: 36613273 PMCID: PMC9818939 DOI: 10.3390/foods12010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The new perspective of using waste biomass to cultivate mushrooms as a source of protein for human nutrition, in line with the circular economy principles, is receiving increasing attention in the scientific community and represents great wealth in terms of environmental sustainability. Pleurotus eryngii is a mushroom also known as cardunculus mushroom due to its ability to grow on this plant. This study explores the potential intrinsic properties of cardunculus (for example, the presence of inulin in the roots) as raw material for the growth of cardunculus mushrooms, and the influence on heteroglycan content and nutrition parameters of the fruiting bodies. Both mycelium and fruiting bodies were used to determine the heteroglycan content in the presence of inulin or cardunculus roots rich in inulin. To produce heteroglycans from P. eryngii in greater quantities and shorter times without having to wait for the formation of the fruiting bodies, the mycelium could be used. The results showed that the presence of cardunculus biomass positively influences the heteroglycan content of P. eryngii. In terms of nutritional parameters, higher contents of polyphenols, flavonoids, anthocyanins, and antioxidant activity were detected in P. eryngii grown on the cardunculus stem and root substrate. In conclusion, recycling cardunculus biomass to generate growth blocks for edible mushrooms is a winning choice due to the opportunity to use this biomass waste, which is gaining more and more attention due to the increase in cultivated areas and the use of fruiting bodies of P. eryngii as a functional food and source of molecules with potential biological activities.
Collapse
Affiliation(s)
- Valerio Battaglia
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Roberto Sorrentino
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
- Correspondence:
| | - Giulia Verrilli
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Luisa del Piano
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Maria Cristina Sorrentino
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics—Research Centre for Olive, Fruit and Citrus Crops (CREA-OFA), Via Torrino 3, 81100 Caserta, Italy
| | - Mariarosaria Sicignano
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Anna Magri
- Council for Agricultural Research and Economics—Research Centre for Olive, Fruit and Citrus Crops (CREA-OFA), Via Torrino 3, 81100 Caserta, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies—DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Michele Cermola
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Domenico Cerrato
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| | - Ernesto Lahoz
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops (CREA-CI), Via Torrino 3, 81100 Caserta, Italy
| |
Collapse
|
25
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
26
|
Immunostimulatory Activity of Cordyceps militaris Fermented with Pediococcus pentosaceus SC11 Isolated from a Salted Small Octopus in Cyclophosphamide-Induced Immunocompromised Mice and Its Inhibitory Activity against SARS-CoV 3CL Protease. Microorganisms 2022; 10:microorganisms10122321. [PMID: 36557573 PMCID: PMC9781638 DOI: 10.3390/microorganisms10122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, β-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.
Collapse
|
27
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Cariño-Cortés R, Acevedo-Sandoval OA, López-Perea P, Guzmán-Ortiz FA. Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. Foods 2022; 11:3231. [PMID: 37430980 PMCID: PMC9601750 DOI: 10.3390/foods11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Raquel Cariño-Cortés
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Elíseo Ramírez Ulloa, 400, Doctores, Pachuca de Soto 42090, Mexico
| | - Otilio Arturo Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Patricia López-Perea
- Área de Ingeniería Agroindustrial, Universidad Politécnica Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONACYT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| |
Collapse
|
28
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Arunachalam K, Sasidharan SP, Yang X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. FOOD CHEMISTRY ADVANCES 2022; 1:100023. [PMID: 36686330 PMCID: PMC8887958 DOI: 10.1016/j.focha.2022.100023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/25/2023]
Abstract
The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of β-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
30
|
Liu H, Liu H, Li J, Wang Y. Review of Recent Modern Analytical Technology Combined with Chemometrics Approach Researches on Mushroom Discrimination and Evaluation. Crit Rev Anal Chem 2022; 54:1560-1583. [PMID: 36154534 DOI: 10.1080/10408347.2022.2124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Mushroom is a macrofungus with precious fruiting body, as a food, a tonic, and a medicine, human have discovered and used mushrooms for thousands of years. Nowadays, mushroom is also a "super food" recommended by the World Health Organization (WHO) and Food and Agriculture Organization (FAO), and favored by consumers. Discrimination of mushroom including species, geographic origin, storage time, etc., is an important prerequisite to ensure their edible safety and commodity quality. Moreover, the effective evaluation of its chemical composition can help us better understand the nutritional properties of mushrooms. Modern analytical technologies such as chromatography, spectroscopy and mass spectrometry, etc., are widely used in the discrimination and evaluation researches of mushrooms, and chemometrics is an effective means of scientifically processing the multidimensional information hidden in these analytical technologies. This review will outline the latest applications of modern analytical technology combined with chemometrics in qualitative and quantitative analysis and quality control of mushrooms in recent years. Briefly describe the basic principles of these technologies, and the analytical processes of common chemometrics in mushroom researches will be summarized. Finally, the limitations and application prospects of chromatography, spectroscopy and mass spectrometry technology are discussed in mushroom quality control and evaluation.
Collapse
Affiliation(s)
- Hong Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Honggao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Zhaotong University, Zhaotong, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
31
|
Rowan NJ, Murray N, Qiao Y, O'Neill E, Clifford E, Barceló D, Power DM. Digital transformation of peatland eco-innovations ('Paludiculture'): Enabling a paradigm shift towards the real-time sustainable production of 'green-friendly' products and services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156328. [PMID: 35649452 DOI: 10.1016/j.scitotenv.2022.156328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 °C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 - a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.
Collapse
Affiliation(s)
- Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland.
| | - Niall Murray
- Software Research Institute, TUS, Athlone, Ireland
| | | | - E O'Neill
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland
| | | | - Damià Barceló
- Catalan Institute for Water Research, Faculty of Chemistry, University of Bacrelona, (ICRA), Spain
| | - Deborah M Power
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas 8005-139, Faro, Portugal
| |
Collapse
|
32
|
dos Reis EE, Schenkel PC, Camassola M. Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:385-395. [PMID: 35879221 PMCID: PMC9271422 DOI: 10.1016/j.joim.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 10/27/2022]
|
33
|
Long H, Xiao J, Wang X, Liang M, Fan Y, Xu Y, Lin M, Ren Z, Wu C, Wang Y. Laminarin acetyl esters: Synthesis, conformational analysis and anti-viral effects. Int J Biol Macromol 2022; 216:528-536. [PMID: 35809670 DOI: 10.1016/j.ijbiomac.2022.06.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
Chemical modification of polysaccharides is important for expanding their applications and gaining new insights into their structure-property relationships. Here we reported the synthesis, characterization, and anti-viral activities of laminarin acetyl derivatives. The chemical structure and chain conformation of acetylated laminarin were characterized by FT-IR, H1 NMR, AFM, UV-vis spectrum, and induced circular dichroism based on a modified Congo Red assay (ICD-CR assay). The inhibition effect of laminarin and its acetyl derivatives on HSV-1 was evaluated by viral plaque assay and virus-associated DNA/protein change. Acetylation modification was found to trigger the conformation transition of laminarin from triple helix to single helix, and the extent of transition can be tuned by the degree of substitution. The single helical acetylated laminarins were found to be stable in neutral aqueous solution and exhibited no cytotoxicity. However, the acetylated laminarin exhibited declined antiviral activity after modification.
Collapse
Affiliation(s)
- Haiyue Long
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaohui Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Minting Liang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yapei Fan
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuying Xu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mengting Lin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
34
|
Zhang Y, Zhang G, Ling J. Medicinal Fungi with Antiviral Effect. Molecules 2022; 27:molecules27144457. [PMID: 35889330 PMCID: PMC9322162 DOI: 10.3390/molecules27144457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Pandemics from various viruses make natural organisms face challenges over and over again. Therefore, new antiviral drugs urgently need to be found to solve this problem. However, drug research and development is a very difficult task, and finding new antiviral compounds is desirable. A range of medicinal fungi such as Ganoderma lucidum and Cordyceps sinensis are widely used all over the world, and they can enhance human immunity and direct anti-virus activities and other aspects to play an antiviral role. Medicinal fungi are used as foods or as food supplements. In this review, the species of medicinal fungi with antiviral activity in recent decades and the mechanism of antiviral components were reviewed from the perspectives of human, animal, and plant viruses to provide a comprehensive theory based on better clinical utilization of medicinal fungi as antiviral agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| |
Collapse
|
35
|
Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, Jamaludin AA, Abdul Patah MF, Ahmad Usuldin SR, Rowan N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: a review. Bioengineered 2022; 13:14903-14935. [PMID: 37105672 DOI: 10.1080/21655979.2023.2184785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
Collapse
Affiliation(s)
- Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
- Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| | - Afnan Ahmadi Zahuri
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Adi Ainurzaman Jamaludin
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Fazly Abdul Patah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Agro-Biotechnology Institute, Malaysia, National Institutes of Biotechnology Malaysia, Serdang, Selangor, Malaysia
| | - Neil Rowan
- Research Institutes and Industry Centres, Bioscience Research Institute, Technological University of the Shannon, MidlandsMidwest, Westmeath, Ireland
| |
Collapse
|
36
|
Astragalus Shiitake—A Novel Functional Food with High Polysaccharide Content and Anti-Proliferative Activity in a Colorectal Carcinoma Cell Line. Nutrients 2022; 14:nu14112333. [PMID: 35684133 PMCID: PMC9182587 DOI: 10.3390/nu14112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
The chemical and nutritional constituents of mushrooms can alter significantly when grown on different substrates. Based on this fact, an approach was made to cultivate a new type of mushroom, Hengshan Astragalus Shiitake, by growing Shiitake mushrooms on beds supplemented with the roots of an edible herbal plant, Astragalus membranaceus. In this study, three green extraction techniques, including microwave-enzyme assisted (MEA), ultrasound-enzyme assisted (UEA) and microwave-ultrasound-enzyme assisted (MUEA) extractions, were used to compare both the yield and antiproliferative activity of the polysaccharide-rich extracts (PREs) from HAS in human colorectal carcinoma cells (HCT 116). Both HAS-A and HAS-B extracts contain significantly higher amounts of polysaccharides when compared to the control (Shiitake extract), regardless of the extraction methods. The PREs from HAS-B have significantly higher anti-proliferative activity in HCT 116 compared to the control when using the UEA extraction method. Our findings demonstrate that HAS-B can become a novel functional food with anti-proliferative activities and the optimization of UEA extraction would help to develop new active extract-based health products.
Collapse
|
37
|
Menezes TMF, Campelo MDS, Lima ABN, Câmara Neto JF, Saraiva MM, de Sousa JAC, Gonzaga MLDC, Leal LKAM, Ribeiro MENP, Ricardo NMPS, Soares SDA. Effects of polysaccharides isolated from mushrooms (Lentinus edodes Berk or Agaricus blazei Murill) on the gelation of Pluronic® F127. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Ziyaei K, Ataie Z, Mokhtari M, Adrah K, Daneshmehr MA. An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. Int J Biol Macromol 2022; 209:244-257. [PMID: 35306019 PMCID: PMC8924028 DOI: 10.1016/j.ijbiomac.2022.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/07/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. The rapidly increasing COVID-19 cases and successive mutations of the virus have made it a major challenge for scientists to find the best and efficient drug/vaccine/strategy to counteract the virus pathogenesis. As a result of research in scientific databases, regulating the immune system and its responses with nutrients and nutritional interventions is the most critical solution to prevent and combat this infection. Also, modulating other organs such as the intestine with these compounds can lead to the vaccines' effectiveness. Marine resources, mainly algae, are rich sources of nutrients and bioactive compounds with known immunomodulatory properties and the gut microbiome regulations. According to the purpose of the review, algae-derived bioactive compounds with immunomodulatory activities, sulfated polysaccharides, and polyunsaturated fatty acids have a good effect on the immune system. In addition, they have probiotic/prebiotic properties in the intestine and modulate the gut microbiomes; therefore, they can increase the effectiveness of vaccines produced. Thus, they with respectable safety, immune regulation, and modulation of microbiota have potential therapeutic against infections, especially COVID-19. They can also be employed as promising candidates for the prevention and treatment of viral infections, such as COVID-19.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran,Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Medical Bioinformatics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran,Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Kelvin Adrah
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Cui H, Zhang C, Zhang C, Cai Z, Chen L, Chen Z, Zhao K, Qiao S, Wang Y, Meng L, Dong S, Liu J, Guo Z. Anti-Influenza Effect and Mechanisms of Lentinan in an ICR Mouse Model. Front Cell Infect Microbiol 2022; 12:892864. [PMID: 35669119 PMCID: PMC9163413 DOI: 10.3389/fcimb.2022.892864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza virus is a serious threat to global human health and public health security. There is an urgent need to develop new anti-influenza drugs. Lentinan (LNT) has attracted increasing attention in recent years. As potential protective agent, LNT has been shown to have anti-tumor, anti-inflammatory, and antiviral properties. However, there has been no further research into the anti-influenza action of lentinan in vivo, and the mechanism is still not fully understood. In this study, the anti-influenza effect and mechanism of Lentinan were studied in the Institute of Cancer Research (ICR) mouse model. The results showed that Lentinan had a high degree of protection in mice against infection with influenza A virus, delayed the emergence of clinical manifestations, improved the survival rate of mice, significantly prolonged the middle survival days, attenuated the weight loss, and reduced the lung coefficient of mice. It alleviated the pathological damage of mice infected with the influenza virus and improved blood indices. Lentinan treatment considerably inhibited inflammatory cytokine (TNF-α, IL-1β, IL-4, IL-5, IL-6) levels in the serum and lung and improved IFN-γ cytokine levels, which reduced cytokine storms caused by influenza virus infection. The underlying mechanisms of action involved Lentinan inhibiting the inflammatory response by regulating the TLR4/MyD88 signaling pathway. This study provides a foundation for the clinical application of Lentinan, and provides new insight into the development of novel immunomodulators.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Animal Medicine, Jilin University, Changchun, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhuming Cai
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaoliang Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Sina Qiao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yingchun Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lijia Meng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| |
Collapse
|
40
|
O'Neill EA, Morse AP, Rowan NJ. Effects of climate and environmental variance on the performance of a novel peatland-based integrated multi-trophic aquaculture (IMTA) system: Implications and opportunities for advancing research and disruptive innovation post COVID-19 era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153073. [PMID: 35038521 DOI: 10.1016/j.scitotenv.2022.153073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.
Collapse
Affiliation(s)
- E A O'Neill
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland.
| | - A P Morse
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, UK
| | - N J Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland
| |
Collapse
|
41
|
Phillips JM, Ooi SL, Pak SC. Health-Promoting Properties of Medicinal Mushrooms and Their Bioactive Compounds for the COVID-19 Era—An Appraisal: Do the Pro-Health Claims Measure Up? Molecules 2022; 27:molecules27072302. [PMID: 35408701 PMCID: PMC9000601 DOI: 10.3390/molecules27072302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
Many mushroom species are consumed as food, while significant numbers are also utilised medicinally. Mushrooms are rich in nutrients and bioactive compounds. A growing body of in vitro, in vivo, and human research has revealed their therapeutic potentials, which include such properties as anti-pathogenic, antioxidant, anti-inflammatory, immunomodulatory, gut microbiota enhancement, and angiotensin-converting enzyme 2 specificity. The uses of medicinal mushrooms (MMs) as extracts in nutraceuticals and other functional food and health products are burgeoning. COVID-19 presents an opportunity to consider how, and if, specific MM compounds might be utilised therapeutically to mitigate associated risk factors, reduce disease severity, and support recovery. As vaccines become a mainstay, MMs may have the potential as an adjunct therapy to enhance immunity. In the context of COVID-19, this review explores current research about MMs to identify the key properties claimed to confer health benefits. Considered also are barriers or limitations that may impact general recommendations on MMs as therapy. It is contended that the extraction method used to isolate bioactive compounds must be a primary consideration for efficacious targeting of physiological endpoints. Mushrooms commonly available for culinary use and obtainable as a dietary supplement for medicinal purposes are included in this review. Specific properties related to these mushrooms have been considered due to their potential protective and mediating effects on human exposure to the SARS CoV-2 virus and the ensuing COVID-19 disease processes.
Collapse
Affiliation(s)
- Jennifer Mary Phillips
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
- LAGOM NutriHealing, 16 Gentile Court, Hobart, TAS 7010, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.M.P.); (S.L.O.)
- Correspondence: ; Tel.: +61-2-6338-4952; Fax: +61-2-6338-4993
| |
Collapse
|
42
|
Monga S, Fares B, Yashaev R, Melamed D, Kahana M, Fares F, Weizman A, Gavish M. The Effect of Natural-Based Formulation (NBF) on the Response of RAW264.7 Macrophages to LPS as an In Vitro Model of Inflammation. J Fungi (Basel) 2022; 8:jof8030321. [PMID: 35330323 PMCID: PMC8955716 DOI: 10.3390/jof8030321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophages are some of the most important immune cells in the organism and are responsible for creating an inflammatory immune response in order to inhibit the passage of microscopic foreign bodies into the blood stream. Sometimes, their activation can be responsible for chronic inflammatory diseases such as asthma, tuberculosis, hepatitis, sinusitis, inflammatory bowel disease, and viral infections. Prolonged inflammation can damage the organs or may lead to death in serious conditions. In the present study, RAW264.7 macrophages were exposed to lipopolysaccharide (LPS; 20 ng/mL) and simultaneously treated with 20 µg/mL of natural-based formulation (NBF), mushroom–cannabidiol extract). Pro-inflammatory cytokines, chemokines, and other inflammatory markers were analyzed. The elevations in the presence of interleukin-6 (IL-6), cycloxygenase-2 (COX-2), C-C motif ligand-5 (CCL5), and nitrite response, following exposure to LPS, were completely inhibited by NBF administration. IL-1β and tumor necrosis factor alpha (TNF-α) release were inhibited by 3.9-fold and 1.5-fold, respectively. No toxic effect of NBF, as assessed by lactate dehydrogenase (LDH) release, was observed. Treatment of the cells with NBF significantly increased the mRNA levels of TLR2, and TLR4, but not NF-κB. Thus, it appears that the NBF possesses anti-inflammatory and immunomodulatory effects which can attenuate the release of pro-inflammatory markers. NBF may be a candidate for the treatment of acute and chronic inflammatory diseases and deserves further investigation.
Collapse
Affiliation(s)
- Sheelu Monga
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (S.M.); (F.F.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Basem Fares
- Cannabotech Ltd., 3 Arik Einstein St., Herzliya 4659071, Israel; (B.F.); (D.M.)
| | - Rami Yashaev
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Dov Melamed
- Cannabotech Ltd., 3 Arik Einstein St., Herzliya 4659071, Israel; (B.F.); (D.M.)
| | - Meygal Kahana
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (S.M.); (F.F.)
| | - Abraham Weizman
- Sackler Faculty of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel;
- Research Unit, Geha Mental Health Center, Petah Tikva 4910002, Israel
| | - Moshe Gavish
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel; (R.Y.); (M.K.)
- Correspondence:
| |
Collapse
|
43
|
Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of Fungal Bioactives for the Treatment of Mental Health Disorders and Morbidities of Chronic Pain. J Fungi (Basel) 2022; 8:jof8030290. [PMID: 35330292 PMCID: PMC8954642 DOI: 10.3390/jof8030290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
| | - Sarah Hehir
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland;
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
- Correspondence: ; Tel.: +353-071-9305529
| |
Collapse
|
44
|
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, O'Neil E, Major I, Laffey JG, Rowan N. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom - A potential treatment for inflammatory lung conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152177. [PMID: 34875322 PMCID: PMC9752827 DOI: 10.1016/j.scitotenv.2021.152177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in extracts isolated from seven mushroom species. The extracts with the highest β-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Department of Graduate Studies, Limerick Institute of Technology, Limerick, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brazil
| | | | | | | | - Emer O'Neil
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
45
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
46
|
Tarmizi NAKA, Kushairi N, Phan CW, Sabaratnam V, Naidu M, David P. β-Glucan-Rich Extract of Gray Oyster Mushroom, Pleurotus pulmonarius, Improves Object Recognition Memory and Hippocampus Morphology in Mice Fed a High-Fat Diet. J Med Food 2022; 25:230-238. [PMID: 35085010 DOI: 10.1089/jmf.2021.k.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity may cause behavioral alterations, while maternal obesity can contribute to metabolic disorders in subsequent generations. The effect of β-glucan-rich Pleurotus pulmonarius (βgPp) was investigated on mouse neurobehavior and hippocampus and its offspring's hippocampus development. Female ICR mice were fed with normal diet (ND), ND with βgPp, high-fat diet (HFD), or HFD with βgPp for 3 months followed by behavioral test and mating. Immunohistochemistry for the expression of neuronal nuclear protein (NeuN) and ionized calcium binding adaptor molecule-1 (Iba-1) in the hippocampus was carried out. βgPp significantly enhanced short-term object recognition memory in HFD-fed mice. βgPp also ameliorated the histological alterations and neuronal loss and increased Iba-1-positive microglia in the hippocampus regions of HFD-fed mice and their male offspring. These findings demonstrated that βgPp supplementation attenuated the effects of HFD on object recognition memory and the alterations on the hippocampal regions of maternal mice and their male offspring.
Collapse
Affiliation(s)
- Nor Athirah Kamaliah Ahmad Tarmizi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naufal Kushairi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Murali Naidu
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pamela David
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Shi S, Yin L, Shen X, Dai Y, Wang J, Yin D, Zhang D, Pan X. β-Glucans from Trametes versicolor (L.) Lloyd Is Effective for Prevention of Influenza Virus Infection. Viruses 2022; 14:v14020237. [PMID: 35215831 PMCID: PMC8880503 DOI: 10.3390/v14020237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Coriolus versicolor (C. versicolor) is a higher fungi or mushroom which is now known by its accepted scientific names as Trametes versicolor (L.) Lloyd. Many studies have shown that β-glucans from C. versicolor have various physiological activities, including activating macrophages to protect against Salmonella infection. However, whether β-glucans have antiviral effects has not been reported. Hence, the objective of this study was to confirm whether β-glucans could boost the immune response to combat influenza virus in mouse and chick models. The results show that β-glucans induced the expression of Dectin-1, costimulatory molecules (CD80/86) and cytokines IL-6, IL-1β, IFN-β and IL-10 in murine bone marrow dendritic cells (BMDCs). In addition, orally administered β-glucans reduced weight loss, mortality and viral titers in the lungs of mice infected with influenza virus and attenuated pathological lung damage caused by the virus in the mice. Orally administered β-glucans improved survival and reduced lung viral titers in chickens infected with H9N2 avian influenza virus. These results suggest that β-glucans have a significant antiviral effect. Therefore, β-glucans could become a potential immunomodulator against influenza virus.
Collapse
Affiliation(s)
- Shaohua Shi
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
- Correspondence: (D.Z.); (X.P.)
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (S.S.); (L.Y.); (X.S.); (Y.D.); (J.W.); (D.Y.)
- Correspondence: (D.Z.); (X.P.)
| |
Collapse
|
48
|
Rennerova Z, Picó Sirvent L, Carvajal Roca E, Paśnik J, Logar M, Milošević K, Majtan J, Jesenak M. Beta-(1,3/1,6)-D-glucan from Pleurotus ostreatus in the prevention of recurrent respiratory tract infections: An international, multicentre, open-label, prospective study. Front Pediatr 2022; 10:999701. [PMID: 36324817 PMCID: PMC9619242 DOI: 10.3389/fped.2022.999701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Preschool children are particularly susceptible to recurrent upper and lower respiratory tract infections due to their immune immaturity and other contributing factors. Preventing and/or treating children suffering from recurrent respiratory tract infections (RRTIs) is challenging, and it is important to provide more clinical evidence about the safety and efficacy of natural immunomodulating preparations, including β-glucans. The aim of the present study was to assess the incidence of respiratory tract infections (RTIs) in children with a history of RRTIs for a period of 6 months (3 months of pleuran supplementation and 3 months of follow-up) compared with the same period from October to March of the previous year prior to enrolment in the study. A total of 1,030 children with a mean age of 3.49 ± 1.91 years from seven countries were included in this study. The total number of RTIs observed during the study period was significantly lower compared to the same period of the previous year (7.07 ± 2.89 vs. 3.87 ± 3.19; p < 0.001). Analysis of each type of RTI revealed significant reductions in the mean number and duration of infections for all RTI subtypes compared to the previous year. This study also confirmed the beneficial safety profile of pleuran supplementation. In conclusion, pleuran supplementation represents an interesting and prospective supplement in preventing respiratory infections and reveals new strategies for supporting immune functions in the paediatric population.
Collapse
Affiliation(s)
- Zuzana Rennerova
- Department of Paediatric Pulmonology and Phthisiology, Faculty of Medicine, Slovak Medical University, National Children Institute of Health, Bratislava, Slovakia
| | - Leandro Picó Sirvent
- Paediatrics Department, Hospital de la Salud, Valencia, Spain.,Faculty of Medicine and Health Sciences, Valencia Catholic University Saint Vincent Martyr, Valencia, Spain
| | - Eva Carvajal Roca
- Paediatrics Department, Hospital de la Salud, Valencia, Spain.,Faculty of Medicine and Health Sciences, Valencia Catholic University Saint Vincent Martyr, Valencia, Spain
| | | | - Mateja Logar
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Infectious Diseases and Epidemiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Milošević
- Department of Pulmonology and Allergology, University Children's Hospital, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, University Teaching Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia.,Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
| |
Collapse
|
49
|
Ruksiriwanich W, Khantham C, Linsaenkart P, Chaitep T, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Režek Jambrak A, Nazir Y, Yooin W, Sommano SR, Jantrawut P, Sainakham M, Tocharus J, Mingmalairak S, Sringarm K. Anti‐inflammation of bioactive compounds from ethanolic extracts of edible bamboo mushroom (
Dictyophora indusiata
) as functional health promoting food ingredients. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Tanakarn Chaitep
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 1000 Croatia
| | - Yasir Nazir
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences Faculty of Pharmacy Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
| | | | | | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal Chiang Mai University Chiang Mai 50200 Thailand
- Cluster of Agro Bio‐Circular‐Green Industry Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Department of Animal and Aquatic Sciences Faculty of Agriculture Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
50
|
Booi HN, Lee MK, Fung SY, Ng ST, Tan CS, Lim KH, Roberts R, Ting KN. Medicinal Mushrooms and Their Use to Strengthen Respiratory Health During and Post-COVID-19 Pandemic. Int J Med Mushrooms 2022; 24:1-14. [DOI: 10.1615/intjmedmushrooms.2022045068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|