1
|
Wu Y, Zhang Q, Luo Y, Jin K, He Q, Lu Y. Spatial and temporal distribution characteristics and source apportionment of biogenic elements using APCS-MLR model in the main inlet tributary of Danjiangkou Reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35898-3. [PMID: 39833582 DOI: 10.1007/s11356-025-35898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Danjiangkou Reservoir has been widely concerned as the water source of the world's longest cross basin water transfer project. Biogenic elements are the foundation of material circulation and key factors affecting water quality. However, there is no comprehensive study on the biogenic elements in tributaries of Danjiangkou Reservoir, hindering a detailed understanding of geochemical cycling characteristics of biogenic elements in this region. Guanshan River, one of the main tributaries that directly enter the Danjiangkou Reservoir, was token as the research object. Spatiotemporal distribution characteristics of basic water quality parameters and biogenic elements were studied. Water quality was comprehensively evaluated through water quality index (WQI). Absolute principal component score-multiple linear regression (APCS-MLR) model was adopted to explore the main sources of biogenic elements. Results showed that, in terms of season, the concentrations of total nitrogen (TN), total phosphorus (TP), and dissolved organic carbon (DOC) were significantly higher in wet season than in dry season, while no significant differences were found for dissolved inorganic carbon (DIC) and dissolved silica (DSi). Spatially, the concentrations of dissolved carbon, DIC, TN, and TP in the middle and lower reaches were higher than that in the upstream. DOC concentration peaked in the middle reaches, while DSi showed higher concentrations in the upstream. WQI values indicated that the river water quality was between good and excellent, although the water quality in wet season was slightly worse than that in the dry season. PCA extracted five potential sources, which accounting for 84.12% of the total variance, including rock weathering, mixed source of sewage discharge and agricultural non-point source pollution, dissolved soil CO2, seasonal factor, and agricultural non-point source pollution. These sources contributed 38.96%, 12.33%, 13.54%, 23.95%, and 11.21% to river water quality parameters, respectively. Strengthening the monitoring of biogenic elements, controlling pollutant discharge, and exploring the relationship between biogenic elements and other pollutants are important for the water environment management in this basin.
Collapse
Affiliation(s)
- Yihang Wu
- Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing, 400026, China
| | - Qianzhu Zhang
- Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing, 400026, China.
| | - Yuan Luo
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ke Jin
- Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing, 400026, China
| | - Qian He
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yang Lu
- Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing, 400026, China
| |
Collapse
|
2
|
Liu W, Xing X, Zou Y, Li X, Gao Y, Liu Y, Zhu X, Qi S. Novel insights into PAHs accumulation and multi-method characterization of interaction between groundwater and surface water in middle Yangtze River: Hydrochemistry, isotope hydrology and fractionation effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178023. [PMID: 39693653 DOI: 10.1016/j.scitotenv.2024.178023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
To meet the challenge of water quality protection and management in the middle Yangtze River and understand the accumulation mechanism of PAHs in aquatic complexity systems, caused by hydro-chemical changes, anthropogenic and geological activities, and intensive surface water-groundwater interaction, a comprehensive study is urgently needed. The study investigated the pollution levels, potential sources, accumulation mechanism, and groundwater- surface water interaction of polycyclic aromatic hydrocarbons (PAHs) in wet and dry seasons of the middle Yangtze River. There was no significant difference of PAHs accumulation between wet and dry seasons of the middle Yangtze River. PAHs occurrence in the middle Yangtze River was dominated by the input of tributary. Phenanthrene and Naphthalene were still the dominant species of PAHs. Coal combustion (CC) and biomass burning (BB) were the major contributor for the PAHs occurrence. However, the CC apportionment concentration increased by 6.18 ng·L-1 from wet to dry season, suggesting higher density of coal consumption in dry season. The potential mechanism of PAHs occurrence was demonstrated by the mantel test and structural equation model (SEM). Results revealed that the pollution of the middle Yangtze River could be mainly affected by primary emission in wet and dry seasons due to the significant positive effect between eutrophication levels and PAHs pollution sources. Meanwhile, the difference in redox conditions could directly affect the fate of pollutants (including the valence state transformation of nitrogen and phosphorus). The stronger interaction of groundwater and surface water in dry season was presented by hydrochemistry and isotope hydrology (δ18O and δ2H). The similar result was also evidenced by fractionation effect of PAHs, because more similar behaviors of characteristic pollutants were observed in dry season. Consequently, PAHs can be considered as an effective geochemical tracer and further expanded their toxic effects through the surface water-groundwater interaction.
Collapse
Affiliation(s)
- Weijie Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yanmin Zou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xin Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ying Gao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ying Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | | | - Shihua Qi
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Xie Y, Guo J, Fan Q, Huang S, Qi W, Cao X, Peng J, Chen Y, Chen M. High-density sampling reveals the occurrence, levels and transport flux of 15 polycyclic aromatic hydrocarbons derivatives (PAHs-d) along the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177907. [PMID: 39644634 DOI: 10.1016/j.scitotenv.2024.177907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons derivatives (PAHs-d) have higher toxicity levels compared to its parent polycyclic aromatic hydrocarbons (PPAHs). Their partitioning in different media and large-scale transport patterns in rivers remain largely unknown. This study investigated the occurrence of 15 PAHs-d and 19 PPAHs in water and suspended particulate matter (SPM) of the Yangtze River between 2019 and 2020. The range of Σ15PAHs-d concentrations was 20.54 to 2010.03 ng·L-1 in water and 0.62 to 29.80 μg·g-1 in SPM. The primary PAHs-d components were 2,6-dimethylnaphthalene, 2-methylnaphthalene, and anthraquinone. The range of Σ19PPAHs concentrations in water and SPM was 34.89 to 739.53 ng·L-1 and 0.37 to 204.62 μg·g-1, respectively. And low-ring PAHs-d and PPAHs were more prevalent in water than SPM. Partitioning behaviors indicated that PAHs-d and PPAHs were more readily partitioned into water and SPM during normal and dry periods, respectively. The concentrations of PAHs-d saw significant changes in their spatial distribution, which rose in water and reduced in SPM in downstream of the Three Gorges Dam. This is due to the dam's blocking effect on sediment transport. Positive matrix factorization source analysis revealed biomass combustion upstream and vehicle emissions downstream as primary sources, shaped by the evolving energy consumption patterns of urban areas situated around the Yangtze River. The annual fluxes of PAHs-d in water and SPM of the Yangtze River were 90.40 t·yr-1 and 11.95 t·yr-1, representing 88.3 % and 11.7 % of the overall PAHs-d fluxes, respectively. The total fluxes of PAHs-d and PPAHs in water and SPM tended to increase spatially along the river, with growth rates exceeding 76 and 24 times, respectively. Interception within the Three Gorges Reservoir area has resulted in the differences in the concentration and transport distribution of PAHs-d and PPAHs upstream and downstream, which play important roles in reducing PAHs-d and PPAHs entry into the sea. Future studies on PAHs-d in Yangtze River basin tributaries and estuaries are essential.
Collapse
Affiliation(s)
- Yu Xie
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qinya Fan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufeng Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Min Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| |
Collapse
|
4
|
Shi K, Feng X, Liu C, Liang J, Luo J. Combating regional air pollution significantly enhance the photodegradation of atmospheric benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177849. [PMID: 39631331 DOI: 10.1016/j.scitotenv.2024.177849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Air pollution control strategies aim to reduce the levels of primary pollutants, but unexpectedly induce changes in atmospheric photochemistry. This may create favorable condition for the photodegradation of atmospheric Benzo(a) pyrene (BaP), leading to new environmental challenges because of the more toxic derivatives. Based on the field observations from 1998 to 2021 at Tsuen Wan (TW) and Central & Western District (CWD) sites in Hong Kong, Coupling detrended fluctuation analysis (CDFA) has been applied to quantitatively describe the photodegradation degree of BaP in real atmosphere. From the temporal evolution process, it has been discovered that BaP photodegradation exhibits a significant increase trend since 2019 in Hong Kong. Correlation analysis shows that degree of BaP photodegradation is positively correlated with factors (T, RH, hv, O3 and NO2/NOx), while is negatively correlated with factor (PM2.5/PM10). Due to the impact of sea salt aerosols, the effect of O3 and NO2 on BaP photodegradation at CWD site is less significant than that at TW site. Furthermore, the relative contribution of major atmospheric oxidants NO2 and O3 to BaP photodegradation in real atmosphere has been determined. The results suggest that contribution of NO2 to BaP photodegradation is greater than that of O3, and the contribution of O3 is gradually increasing in Hong Kong. This work has discovered a new environmental effect that may be caused by air pollution control strategies. New insights have significant implications for improving ecological risk assessment.
Collapse
Affiliation(s)
- Kai Shi
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong 63700, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 63700, China
| | - Xiaohan Feng
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong 63700, China
| | - Chunqiong Liu
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong 63700, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 63700, China.
| | - Juan Liang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Jie Luo
- College of Environmental Sciences and Engineering, China West Normal University, Nanchong 63700, China
| |
Collapse
|
5
|
Liu X, Hong X, Song H, Zhang T, Chen K, Chu J. Exploring source-specific ecological risks of PAHs near oil platforms in the Yellow River Estuary, Bohai Sea. MARINE POLLUTION BULLETIN 2024; 207:116870. [PMID: 39173476 DOI: 10.1016/j.marpolbul.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The Yellow River Estuary (YRE) is one of highly remarkable regions profoundly impacted by human activities, with numerous oil platforms dispersed throughout. In this area, offshore oil exploitation may pose significant ecological risks. To comprehensively evaluate the quantitative impacts of oil field exploitation on the marine coastal ecosystem, this study investigated the occurrence, sources, and ecological risks associated with 16 polycyclic aromatic hydrocarbons (PAHs) in seawater and sediment near oil platforms in the YRE. We found that 1) The concentrations of PAHs decreased from the surface seawater to sediments; 2) The ecological risk level of PAHs in seawater exceeded that in sediments; 3) terrestrial sources (combustion), rather than offshore oil drilling activities, significantly influenced regional ecological risks through processes of atmospheric deposition and surface runoff. These findings provide essential data for future estuarine research efforts while supporting mitigation measures aimed at addressing marine environmental pollution related to oil production activities.
Collapse
Affiliation(s)
- Xin Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Xuguang Hong
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Hongjun Song
- First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Tong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; First Institute of Oceanography, MNR, Qingdao 266061, PR China
| | - Kan Chen
- First Institute of Oceanography, MNR, Qingdao 266061, PR China.
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Zheng ZY, Yang YT, Zhou JX, Peng ZX, Ni HG. Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna. TOXICS 2024; 12:714. [PMID: 39453134 PMCID: PMC11510787 DOI: 10.3390/toxics12100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
There are enormous differences in benzo[a]pyrene (BaP) acute toxicity tests on Daphnia magna, according to previous publications. The explanations of the reasons for this extreme variation are necessary. In this context, the acute toxicity tests of different experiment conditions (light/dark, culture medium, and solvent) were conducted on Daphnia magna with BaP as the toxicant of concern. Based on the experiments above, molecular dynamics (MD) simulations were employed to investigate the mechanisms of action. According to our results, the significant influence of light exposure on the acute toxicity test of BaP (p < 0.05) on D. magna was recorded. On the basis of the MD simulations, it was possible that BaP may not affect the normal operation of Superoxide Dismutase and Catalase directly, and it could be quickly transferred from the body through Glutathione S-transferase and Cytochromes P450. Therefore, when exposed to light, the oxidative stress process intensifies, causing damage to Daphnia magna. Apparently, the ecotoxicity tests based on inhibition for D. magna cannot adequately reflect the toxic effects of BaP.
Collapse
Affiliation(s)
| | | | | | | | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (Z.-Y.Z.); (Y.-T.Y.); (J.-X.Z.); (Z.-X.P.)
| |
Collapse
|
7
|
Yin F, Gao C, Feng D, Sun Y. A review of the pollution signatures of polycyclic aromatic hydrocarbons in the sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124386. [PMID: 38897279 DOI: 10.1016/j.envpol.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Marine sediments serve as crucial reservoirs for polycyclic aromatic hydrocarbons (PAHs), and their PAH signatures offer valuable historical pollution records. This article provides a comprehensive review of the pollution status of 16 priority PAHs in more than 1000 sediments from the East China Sea (ECS). It focuses on the PAH sources, spatiotemporal distributions, driving factors, and ecological risks, with information derived from peer-reviewed papers published between 2003 and 2023. The results revealed that vehicular emissions, mixed combustion sources of coal, biomass, and coke, as well as petrogenic sources, were the primary contributors to PAH pollution in the ECS sediments, accounting for 50%, 34%, and 16%, respectively. Human activities, hydrodynamic mechanisms, and environmental variables such as particle size and organic matter, collectively influenced the distribution of PAHs. Additionally, the population size and economic development played a key role in the temporal distribution of PAHs in the ECS sediments. The ecotoxicity assessment of PAHs in sediments indicated a low risk level. These outcomes are expected to provide environmentalists with detailed and up-to-date insights into sedimentary PAHs in the ECS, helping to develop suitable monitoring plans and strategies for promoting better management of ECS environment.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Yawei Sun
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, PR China.
| |
Collapse
|
8
|
Aminzai MT, Yabalak E, Kalderis D, Gizir AM. Environmental remediation of emerging contaminants using subcritical water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121800. [PMID: 38996600 DOI: 10.1016/j.jenvman.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The continuous rise of emerging contaminants (ECs) in the environment has been a growing concern due to their potentially harmful effects on humans, animals, plants, and aquatic life, even at low concentrations. ECs include human and veterinary pharmaceuticals, hormones, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic dyes, heavy metals (HMs), and others. The world's growing population contributes to the release of many kinds of chemicals into the environment, which is estimated to be more than 200 billion metric tons annually and results in over 9 million deaths. The removal of these contaminants using conventional physical, chemical, and biological treatments has proven to be ineffective, highlighting the need for simple, effective, inexpesive, practical, and eco-friendly alternatives. Thus, this article discusses the utilization of subcritical water oxidation (SBWO) and subcritical water extraction (SBWE) techniques to remove ECS from the environment. Subcritical water (water below the critical temperature of 374.15 °C and critical pressure of 22.1 Mpa) has emerged as one of the most promising methods for remediation of ECs from the environment due to its non-toxic properties, simplicity and efficiency of application. Furthermore, the impact of temperature, pressure, treatment time, and utilization of chelating agents, organic modifiers, and oxidizing agents in the static and dynamic modes was investigated to establish the best conditions for high ECs removal efficiencies.
Collapse
Affiliation(s)
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronics Engineering, Hellenic Mediterranean University, Chania, 73100, Greece.
| | - A Murat Gizir
- Department of Chemistry, Mersin University, 33342, Mersin, Turkey
| |
Collapse
|
9
|
Zhang F, Cui K, Yuan X, Huang Y, Yu K, Li CX, Zhang X, Chen Y. Differentiated cognition of the effects of human activities on typical persistent organic pollutants and bacterioplankton community in drinking water source. ENVIRONMENTAL RESEARCH 2024; 252:118815. [PMID: 38555085 DOI: 10.1016/j.envres.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.
Collapse
Affiliation(s)
- Feng Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuansheng Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
10
|
Mai Y, Wang Y, Geng T, Peng S, Lai Z, Wang X, Li H. A systematic toxicologic study of polycyclic aromatic hydrocarbons on aquatic organisms via food-web bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172362. [PMID: 38649047 DOI: 10.1016/j.scitotenv.2024.172362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Pollution-induced declines in fishery resources restrict the sustainable development of fishery. As a kind of typical environmental pollutant, the mechanism of polycyclic aromatic hydrocarbons (PAHs) facilitating fishery resources declines needs to be fully illustrated. To determine how PAHs have led to declines in fishery resources, a systematic toxicologic analysis of the effects of PAHs on aquatic organisms via food-web bioaccumulation was performed in the Pearl River and its estuary. Overall, PAH bioaccumulation in aquatic organisms was correlated with the trophic levels along food-web, exhibiting as significant positive correlations were observed between PAHs concentration and the trophic levels of fishes in the Pearl River Estuary. Additionally, waterborne PAHs exerted significant direct effects on dietary organisms (P < 0.05), and diet-borne PAHs subsequently exhibited significant direct effects on fish (P < 0.05). However, an apparent block effect was found in dietary organisms (e.g., zooplankton) where 33.49 % of the total system throughput (TST) was retained at trophic level II, exhibiting as the highest PAHs concentration, bioaccumulation factor (BAF), and biomagnification factor (BMF) of ∑15PAHs in zooplankton were at least eight-fold greater than those in fishes in both the Pearl River and its estuary, thereby waterborne PAHs exerted either direct or indirect effects on fishes that ultimately led to food-web simplification. Regardless of the block effect of dietary organisms, a general toxic effect of PAHs on aquatic organisms was observed, e.g., Phe and BaP exerted lethal effects on phytoplankton Chlorella pyrenoidosa and zooplankton Daphnia magna, and decreased reproduction in fishes Danio rerio and Megalobrama hoffmanni via activating the NOD-like receptors (NLRs) signaling pathway. Consequently, an assembled aggregate exposure pathway for PAHs revealed that increases in waterborne PAHs led to bioaccumulation of PAHs in aquatic organisms along food-web, and this in turn decreased the reproductive ability of fishes, thus causing decline in fishery resources.
Collapse
Affiliation(s)
- Yongzhan Mai
- National Agricultural Scientific Observing and Experimental Station for Fisheries Resources and Environment, Guangzhou, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yunfan Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Tuo Geng
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- National Agricultural Scientific Observing and Experimental Station for Fisheries Resources and Environment, Guangzhou, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan 528437, China.
| | - Haiyan Li
- National Agricultural Scientific Observing and Experimental Station for Fisheries Resources and Environment, Guangzhou, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
11
|
Wang W, Chen S, Chen L, Wang L, Chao Y, Shi Z, Lin D, Yang K. Effects of Chinese "double carbon strategy" on soil polycyclic aromatic hydrocarbons pollution. ENVIRONMENT INTERNATIONAL 2024; 188:108741. [PMID: 38749118 DOI: 10.1016/j.envint.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 09/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and carbon dioxide primarily originate from the combustion of fossil fuels and biomass. The implementation of the Chinese "double carbon strategy" is expected to impact the distribution of PAH emissions, consequently influencing the spatial distribution trend of PAHs in surface soil. Therefore, it is crucial to quantitatively evaluate the effectiveness of the Chinese "double carbon strategy" on soil PAH pollution for the purpose of "the reduction of pollution and carbon emissions". This study utilized 15,088 individual PAH concentration data from 943 soil samples collected between 2003 and 2020 in China, in conjunction with PAH emissions at a 10 km resolution, for meta-analysis. The calculated PAH emissions in this study are in line with the global PAH emission inventory (PKU-PAH-2007), with a relative standard deviation at the provincial level of less than 25 %. Subsequently, a novel method was developed using emission density and Kow of PAHs to predict PAH concentrations in surface soil based on a least-squares regression model. Compared to other environmental models, the method established in this study significantly reduced the percent sample deviation to less than 70 %. Furthermore, energy consumption data for China were simulated based on the implementation plan of the "double carbon strategy" to project PAH emissions and soil PAH levels for the years 2030 and 2060. The predicted PAH emissions in China were estimated to decrease to 41,300 t in 2030 and 10,406.5 t in 2060 from 78,815 t in 2020. Moreover, the heavily contaminated areas of soil PAHs (i.e., total PAH concentrations in soil exceeding 1000 μg kg-1) were projected to decrease by 45 % and 82 % in 2030 and 2060, respectively, compared to levels in 2020. These findings suggest that the implementation of the "double carbon strategy" can fundamentally reduce the pollution of PAHs in surface soil of China.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Songchao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lu Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lingwen Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yang Chao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhou Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
12
|
Naaz N, Pandey J. Spatial distribution of polycyclic aromatic hydrocarbons in water and sediment in the Ganga River: source diagnostics and health risk assessment on dietary exposure through a common carp fish Labeo rohita. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:196. [PMID: 38695954 DOI: 10.1007/s10653-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.
Collapse
Affiliation(s)
- Neha Naaz
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Ting YC, Zou YX, Pan SY, Ko YR, Ciou ZJ, Huang CH. Sources-attributed contributions to health risks associated with PM 2.5-bound polycyclic aromatic hydrocarbons during the warm and cold seasons in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171325. [PMID: 38428604 DOI: 10.1016/j.scitotenv.2024.171325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Xuan Zou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ko
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Wang W, Chen S, Chen L, Wang L, Chao Y, Shi Z, Lin D, Yang K. Drivers distinguishing of PAHs heterogeneity in surface soil of China using deep learning coupled with geo-statistical approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133840. [PMID: 38394897 DOI: 10.1016/j.jhazmat.2024.133840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Although numerous studies have reported the influencing factors of polycyclic aromatic hydrocarbons (PAHs) in surface soil from source, process or soil perspectives, the mechanism of PAHs heterogeneity in surface soil are still not well understood. In this study, the effects of 16 PAHs in surface soil of China sampled between 2003 and 2020 with their 17 "source-process-sink" factors at 1 km resolution (N = 660)) were explored using deep learning (eXtreme Gradient Boosting) to mine key information from complex dataset under the optimized parameters (i.e., learning rate = 0.05, maximum depth = 5, sub-sample = 0.8). It was observed that top five factors of 16 PAH had the largest cumulative contribution (i.e., from 84.8% to 98.1%) on their soil concentrations. PAH emission was the predominant driver, and its effect on soil PAH increases with increasing logKow. Soil was the second driver, in which clay can promote the partition of PAHs with low or middle logKow. However, sand can accumulate those congeners with high logKow. Moreover, the deep learning plus geo-statistical models (with low deviation for testing dataset (N = 283)) were capable of predicting soil PAH concentrations using their drivers with high accuracy. This study improved the understanding of the environmental fate and spatial variability of soil PAHs, as well as provided a novel technique (i.e., deep learning coupled with geo-statistics) for accurate prediction of soil pollutants.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Songchao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lu Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lingwen Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yang Chao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhou Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
15
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
16
|
Zheng ZY, Ni HG. Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167590. [PMID: 37802352 DOI: 10.1016/j.scitotenv.2023.167590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The initial step in the assessment of the ecological risk of pollutants is to determine the predicted no-effect concentration (PNEC). However, ecological risk assessments of eight carcinogenic polycyclic aromatic hydrocarbons (PAHs), including dimethylbenz[a]anthracene (DMBA), methylcholanthrene (MCA), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and dibenzo(a,h)anthracene (DBA), are rarely conducted due to the lack of their PNECs based on test data. In this study, quantitative structure-activity relationship (QSAR) models and interspecies correlation estimation (ICE) models were combined to predict the acute toxicity of these eight target PHAs. A Kolmogorov-Smirnov analysis for species sensitivity distributions (SSDs) of native and all species was conducted. There was no significant difference between the predictions for native Chinese species and the predictions for all species by the QSAR-ICE models. In addition, the feasibility of the QSAR-ICE models was demonstrated by comparing the SSD curves constructed by measured toxicity data of BaP and those predicted by the QSAR-ICE models. The PNECs of the eight PAHs were estimated based on the SSDs and acute to chronic ratio (ACR) method; these data were 0.071 μg/L, 0.033 μg/L, 0.049 μg/L, 0.114 μg/L, 0.019 μg/L, 0.021 μg/L, 0.038 μg/L and 0.054 μg/L for DMBA, DBA, BaP, MCA, BaA, CHR, BbF, BkF, respectively. The higher PNECs of the alkylated PAHs suggested their lower ecological risks. Based on the mixed risk quotient (mRQ) of PAHs through the concentration addition (CA) model, high ecological risk watersheds, such as the Songhua River (mRQ = 1.95), the Liao River (mRQ = 4.59), and the Huai River (mRQ = 1.93), were identified.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
17
|
Zhao Y. Spatial distribution, source, and ecological risk of PAHs in the sediment of the Fenhe River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112397-112408. [PMID: 37831238 DOI: 10.1007/s11356-023-30171-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 10/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments. The growth of PAH toxicities and related ecotoxicology risk in sediment has been a serious concern. Present study examined the PAH concentration, sources, and ecological risk from the selected sites in sediment of Fenhe River. The characteristic molecular ratio (CMR) and principal component analysis (PCA) were applied to analyze the sources. The ecological risk assessment was conducted based on the sediment quality guidelines, the mean effects range median quotient, as well as the toxic equivalent quantity values. The results showed that the mean values of total contents of the 16 individual PAHs were 3.66 mg/kg and 3.16 mg/kg in wet and dry seasons, which were relatively high when compared with other rivers worldwide. Their spatial distribution presented the lower contents in the upstream, while higher concentrations in the middle and down streams of the river. The low molecular weight PAHs were major constituents, and 3-ring PAHs have the highest contents. The results of source analysis indicated that PAHs were primarily from the burning of oil, coal, and biomass. The ecological risk evaluations suggested that the possible adverse biological effects, the low to medium comprehensive risks, and the minor carcinogenic risks existed in the study area. This investigation might provide useful baseline data and technical support for policy-makers and researchers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Chemistry and Chemical Engineering, Jinzhong University, Yuci, 030619, China.
| |
Collapse
|
18
|
Halmagyi A, Butiuc-Keul A, Keul M, Dobrotă C, Fodorpataki L, Pintea A, Mocan A, Pop V, Coste A. Impact of Arieş River Contaminants on Algae and Plants. TOXICS 2023; 11:817. [PMID: 37888668 PMCID: PMC10611376 DOI: 10.3390/toxics11100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The Arieş River (Western Romania) represents one of the most important affluents of the Mureş River, with great significance in the Mureş Tisza basin. The environmental quality of the Arieş basin is significantly affected by both historic mining activities and contemporary impacts. Thus, an evaluation of the effects of the main contaminants found in water (organochlorine pesticides-OCPs, monocyclic aromatic hydrocarbons-MAHs, polycyclic aromatic hydrocarbons-PAHs, and metals) on cyanobacteria and plants was performed. Among OCPs, hexachlorocyclohexane isomers, dichlorodiphenyltrichloroethane, and derivatives were detected in plants while admissible concentrations were detected in water. Among MAHs, high levels of benzene were detected both in water and in plants. The levels of PAHs exceeded the allowable values in all samples. Increased concentrations of metals in water were found only at Baia de Arieş, but in plants, all metal concentrations were high. The pH, nitrates, nitrites, and phosphates, as well as metals, pesticides, and aromatic hydrocarbons, influenced the physiological characteristics of algae, test plants, and aquatic plants exposed to various compounds dissolved in water. Considering that the Arieş River basin is the site of intense past mining activities, these data provide information about the impact on water quality as a consequence of pollution events.
Collapse
Affiliation(s)
- Adela Halmagyi
- Department of Experimental Biology, National Institute of Research and Development for Biological Sciences, Branch Institute of Biological Research Cluj-Napoca, 48 Republicii Street, 400015 Cluj-Napoca, Romania; (A.H.)
| | - Anca Butiuc-Keul
- Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Martin Keul
- Department of Experimental Biology, National Institute of Research and Development for Biological Sciences, Branch Institute of Biological Research Cluj-Napoca, 48 Republicii Street, 400015 Cluj-Napoca, Romania; (A.H.)
| | - Cristina Dobrotă
- Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - László Fodorpataki
- Department of Horticulture, Sapientia University, 2 Sighișoarei Rd., 540485 Târgu Mureș, Romania
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
| | - Aurel Mocan
- Institute of Public Health Prof. Dr. I. Moldovan, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Valeria Pop
- Doctoral School “Environmental Science”, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Research Institute for Sustainability and Disaster Management Based on High Performance Computing, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ana Coste
- Department of Experimental Biology, National Institute of Research and Development for Biological Sciences, Branch Institute of Biological Research Cluj-Napoca, 48 Republicii Street, 400015 Cluj-Napoca, Romania; (A.H.)
| |
Collapse
|
19
|
Panwar R, Mathur J. Microbial-assisted phytodegradation for the amelioration of pyrene-contaminated soil using Pseudomonas aeruginosa and Aspergillus oryzae with alfalfa and sunflower. 3 Biotech 2023; 13:251. [PMID: 37388857 PMCID: PMC10299988 DOI: 10.1007/s13205-023-03664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Environmental pollution caused by polycyclic aromatic hydrocarbons (PAHs) jeopardizes nature. PAHs are the most toxic, mutagenic, and carcinogenic pollutants and their cleanup is important for the environment. In the current research, to assess and evaluate three remediation strategies for pyrene removal from the soil, a pot experiment was performed: (a) bioremediation with Pseudomonas aeruginosa and Aspergillus oryzae, (b) phytoremediation with sunflower (Helianthus annuus) and alfalfa (Medicago sativa L.) and (c) microbial-assisted phytoremediation for the treatment of pyrene (700 mg kg-1). Results depict that P. aeruginosa significantly promoted the growth and tolerance of taken plants and reduced pyrene concentration in soil. Compared with those planted in pyrene-contaminated soil without inoculation. The highest percentage of pyrene removal was observed in P. aeruginosa inoculated alfalfa (91%), alfalfa inoculated with A. oryzae (83.96%), and without inoculation (78.20%). Moreover, alfalfa planted in P. aeruginosa augmented soil had the highest dehydrogenase activity (37.83 μg TPF g-1 soil h-1), and fluorescein diacetate hydrolysis (91.67 μg fluorescein g-1 dry soil). DHA and FDA are the indicators of bioaugmentation influence on the indigenous microbial activity of contaminated soil. As a result of the findings, the rhizospheric association of plants and microbes is beneficial for pyrene removal. Therefore, P. aeruginosa-assisted phytodegradation might be a more successful remediation technique for pyrene-contaminated soil than bioremediation and phytodegradation solely.
Collapse
Affiliation(s)
- Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| |
Collapse
|
20
|
Sun X, Ding TT, Wang ZJ, Huang P, Liu SS. Optimized Derivation of Predicted No-Effect Concentrations (PNECs) for Eight Polycyclic Aromatic Hydrocarbons (PAHs) Using HC 10 Based on Acute Toxicity Data. TOXICS 2023; 11:563. [PMID: 37505529 PMCID: PMC10384761 DOI: 10.3390/toxics11070563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
For persistent organic pollutants, a concern of environmental supervision, predicted no-effect concentrations (PNECs) are often used in ecological risk assessment, which is commonly derived from the hazardous concentration of 5% (HC5) of the species sensitivity distribution (SSD). To address the problem of a lack of toxicity data, the objectives of this study are to propose and apply two improvement ideas for SSD application, taking polycyclic aromatic hydrocarbons (PAHs) as an example: whether the chronic PNEC can be derived from the acute SSD curve; whether the PNEC may be calculated by HC10 to avoid solely statistical extrapolation. In this study, the acute SSD curves for eight PAHs and the chronic SSD curves for three PAHs were constructed. The quantity relationship of HC5s between the acute and chronic SSD curves was explored, and the value of the assessment factor when using HC10 to calculate PNEC was derived. The results showed that, for PAHs, the chronic PNEC can be estimated by multiplying the acute PNEC by 0.1, and the value of the assessment factor corresponding to HC10 is 10. For acenaphthene, anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, the chronic PNECs based on the acute HC10s were 0.8120, 0.008925, 0.005202, 0.07602, 2.328, 12.75, 0.5731, and 0.05360 μg/L, respectively.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
21
|
Zhang NC, A D, Chao YQ, Li HY, Li C, Lin QQ, Li YY, Qiu RL. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of Phragmites australis: Organic acid co-metabolism, iron-driven, and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121608. [PMID: 37044257 DOI: 10.1016/j.envpol.2023.121608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Yan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Charles Li
- Department of Public Health, California State University, East Bay, CA, 94542, USA
| | - Qing-Qi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Tian B, Gao S, Zhu Z, Zeng X, Liang Y, Yu Z, Peng P. Two-dimensional gas chromatography coupled to isotope ratio mass spectrometry for determining high molecular weight polycyclic aromatic hydrocarbons in sediments. J Chromatogr A 2023; 1693:463879. [PMID: 36822039 DOI: 10.1016/j.chroma.2023.463879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
The accuracy of compound-specific isotope analysis (CSIA) of trace-level pollutants in complex environmental samples has always been limited by two main challenges: poor chromatographic separation and insufficient amounts of analytes. In this study, a two-dimensional gas chromatography-isotope ratio mass spectrometry (2DGC-IRMS) system was constructed for compound-specific δ13C analysis of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in estuarine/marine sediments. This construction occurred through hyphenating an extra gas chromatography system (GC) to a conventional GC-IRMS using a commercially available multi-column switching-cryogenic trapping system (MCS-CTS). Compared with the previous 2DGC-IRMS strategy, which utilizes a Deans Switch device, the newly implemented 2DGC-IRMS scheme resulted in online purification of target analytes as well as enriched them online via duplicate injection and cryogenic trapping in CTS; this resultingly lowered the limits of detection (LOD) of CSIA. To improve the sample transfer efficiency to the IRMS, a broader-bore and longer fused-silica capillary was utilized to replace the original sample capillary running from the sample open split to the IRMS. A ẟ13C analysis of PAH standards showed accurate ẟ13C values, and high precisions (standard deviations 0.13-0.37%) were achieved, with the LOD of HMW-PAHs reduced to at least 1.0 mg/L (i.e., 0.07 to 0.09 nmol carbon per compound on-column). The successful application of this newly developed 2DGC-IRMS scheme provides a practical solution for the reliable CSIA of trace-level pollutants in complex environmental samples that cannot be measured using the conventional GC-IRMS system.
Collapse
Affiliation(s)
- Boyang Tian
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Zhanjun Zhu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
23
|
Zhou X, Liu T, Zhang S, Kang B, Duan X, Yan Y, Feng L, Chen Y. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161122. [PMID: 36587690 DOI: 10.1016/j.scitotenv.2022.161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fluorene (Flu) occurs widely in various environments and its toxicity to organisms is well-known. However, the impact of Flu on complicated biochemical processes involving functional microbial community has been reported rarely. In this study, the facilitation of Flu on the volatile fatty acids (VFAs) generation executed by acidogenic microbial population during sludge acidogenic fermentation (37 °C, SRT = 8 d, pH = 10.0) was investigated. The accumulation of VFAs (particularly acetic acid) increased initially and then declined with the increasing of Flu concentration (0-500 mg/kg dry sludge), which reached a maximum (3211.1 mg COD/L) as Flu content was 200 mg/kg dry sludge. The Flu-enhanced VFAs production was primarily attributed to the shift of hydrolysis/acidification, as well as the corresponding functional microbial community and the activity of enzymes. Based on the metagenomics analysis, the conversion of organic substrates, i.e. amino acid and monosaccharide, into VFAs embraced in hydrolysis/acidification shaped by Flu was constructed at the genetic level. The relative abundances of genes included in aminotransfer and deamination process of amino acid and glycolysis of monosaccharide into VFA-precursors (pyruvate, acetyl-CoA and propionyl-CoA), and the further formation of VFAs were improved due to the Flu presence. This study shed light on the Flu-affected microbial processes at the molecular biology level during acidogenic fermentation and was of great significance in resource recovery of sludge containing persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Shengyi Zhang
- Staff Education and Training Center Bohai, Drilling Engineering Co., Ltd, China National Petroleum Corporation, 8 Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yuanyuan Yan
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, PR China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
24
|
Zhang H, Si P, Kong Q, Ma J. Transcriptome reveals the toxicity and genetic response of zebrafish to naphthenic acids and benzo[a]pyrene at ambient concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114700. [PMID: 36863161 DOI: 10.1016/j.ecoenv.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Naphthenic acids (NAs) are typical contaminants in heavily crude oil. Benzo[a]pyrene (B[a]P) is also a component of crude oil, but their combined effects have not been systematically explored. In this study, zebrafish (Danio rerio) were used as the test organisms, and behavioral indicators and enzyme activities were used as toxicity indicators. Combined with the effects of environmental concentrations, the toxic effects of low concentrations of commercially available NAs (0.5 mg/LNA) and benzo[a]pyrene (0.8 μg/LBaP) at single and compound exposures (0.5 mg/LNA and 0.8 μg/LBaP) were assayed in zebrafish, and transcriptome sequencing technology was used to explore the molecular mechanism of the two compounds affecting zebrafish from the molecular biology level. Sensitive molecular markers that could indicate the presence of contaminants were screened. The results showed that (1) zebrafish in the NA and BaP exposure groups exhibited increased locomotor behavior, and the mixed exposure group exhibited inhibition of locomotor behavior. Oxidative stress biomarkers showed increased activity under single exposure and decreased activity under the mixed exposure. (2) NA stress led to changes in the activity of transporters and the intensity of energy metabolism; BaP directly stimulates the pathway of actin production. When the two compounds are combined, the excitability of neurons in the central nervous system is decreased, and the actin-related genes are down-regulated. (3) After BaP and Mix treatments, genes were enriched in the cytokine-receptor interaction and actin signal pathway, while NA increased the toxic effect on the mixed treatment group. In general, the interaction between NA and BaP has a synergistic effect on the transcription of zebrafish nerve and motor behavior-related genes, resulting in increased toxicity under combined exposure. The changes in expression of various zebrafish genes are manifested in the changes in the normal movement behavior of zebrafish and the intensification of oxidative stress in the apparent behavior and physiological indicators. CAPSULE ABSTRACT: We investigated the toxicity and genetic alterations caused by NA, B[a]P, and their mixtures in zebrafish in an aquatic environment using transcriptome sequencing technology and comprehensive behavioral analysis. These changes involved energy metabolism, the generation of muscle cells, and the nervous system.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Panpan Si
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| |
Collapse
|
25
|
Grmasha RA, Abdulameer MH, Stenger-Kovács C, Al-Sareji OJ, Al-Gazali Z, Al-Juboori RA, Meiczinger M, Hashim KS. Polycyclic aromatic hydrocarbons in the surface water and sediment along Euphrates River system: Occurrence, sources, ecological and health risk assessment. MARINE POLLUTION BULLETIN 2023; 187:114568. [PMID: 36638718 DOI: 10.1016/j.marpolbul.2022.114568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study presented for the first time a comprehensive measurement campaign of 16 PAHs along the Euphrates River for five months, in both water and sediment samples. Our study revealed that the PAHs contamination increased along the flow direction due to the increasing non-point pollution and the return flows of agriculture. The 5-6 rings PAHs were dominant in water and sediment samples with an average of 42 % and 50 %, respectively. The diagnostic ratios of PAHs suggest that the pollution of these compounds originated mainly from petroleum product combustions. The carcinogenic PAHs formed 46 % and 55 % of the total measured compounds in water and sediment samples, respectively, which highlights potential ecological and human health risks. Based on sediment quality guidelines (SQGs), most sites exhibit an effect range between low and medium. The calculated incremental lifetime cancer risk (ILCR) for adult and children were in the 10-2-10-3 range, which is 3-6-fold higher than what was reported in the literature. These observations call for urgent attention from environmental authorities of countries sharing this key water source in Western Asia.
Collapse
Affiliation(s)
- Ruqayah Ali Grmasha
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200 Veszprem, Egyetem u. 10, Hungary; Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq.
| | | | - Csilla Stenger-Kovács
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200 Veszprem, Egyetem u. 10, Hungary; ELKH-PE Limnoecology Research Group, H-8200 Veszprém, Egyetem utca 10, Hungary
| | - Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Zaid Al-Gazali
- Nasiriyah Teaching Hospital, Ministry of health, Al-Nasiriyah, Thi-Qar, Iraq
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland; NYUAD Water Research Center, New York University-Abu Dhabi Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Iraq
| |
Collapse
|
26
|
Li H, Wang X, Mai Y, Lai Z, Zeng Y. Potential of microplastics participate in selective bioaccumulation of low-ring polycyclic aromatic hydrocarbons depending on the biological habits of fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159939. [PMID: 36336038 DOI: 10.1016/j.scitotenv.2022.159939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Currently, although the cumulative effects of microplastics (MPs) and organic pollutants (OPs) in the environment and within organisms are being investigated, whether and how MPs participate in bioaccumulation of OPs based on a carrier effect is still unclear. In the present study, water and aquatic organisms were collected from the Pearl River. Polycyclic aromatic hydrocarbons (PAHs) and MPs were separated by solid phase extraction and were measured by gas chromatography mass spectrometry and Fourier transform infrared spectroscopy, respectively. Higher PAH concentrations at the river outlet and higher MPs abundance in the inner river were observed, indicating a mismatched distribution between PAHs and MPs. No correlation between MP abundance and PAH concentration in fishes was detected, implying that MPs exerted limited influence on PAH concentrations. Interestingly, bioconcentration factors of one major low-ring PAH (phenanthrene) in fishes showed a significant correlation with MPs abundance, implying that although MPs did not affect the variation in PAH concentrations, they potentially participated in selective bioaccumulation of PAHs. Moreover, significant correlations between MPs abundance and PAHs in fishes with different feeding and living habits were found, indicating that MPs' participation in PAH bioaccumulation was dependent on fish biology and life history. Furthermore, the health risk posed by PAHs in fishes at the river outlet surpassed the line of potential high risk, while the ecological risk posed by MPs at the inner river was in the danger category, indicating the ecological risks posed by PAHs and MPs are uneven along the Pearl River. These findings deepen our understanding of the underlying mechanism of MPs participating in selective bioaccumulation of low-ring PAHs in fishes based on fish biology and point out the present risks posed by these two pollutants in the Pearl River and its estuary, which contribute to aquatic environmental protection and fishery production in this region.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
27
|
Castrec J, Pillet M, Receveur J, Fontaine Q, Le Floch S, Churlaud C, Lejeune P, Gobert S, Thomas H, Marengo M. Active and passive biomonitoring of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in small Mediterranean harbours. MARINE POLLUTION BULLETIN 2023; 187:114578. [PMID: 36645999 DOI: 10.1016/j.marpolbul.2023.114578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Pollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those environments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cucumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and suggest that the potential health risk for consumers eating seafood is low.
Collapse
Affiliation(s)
- Justine Castrec
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France.
| | - Marion Pillet
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Quentin Fontaine
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Pierre Lejeune
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Sylvie Gobert
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France; Université de Liège, Centre MARE, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Michel Marengo
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| |
Collapse
|
28
|
Shang N, Wang C, Kong J, Yu H, Li J, Hao W, Huang T, Yang H, He H, Huang C. Dissolved polycyclic aromatic hydrocarbons (PAHs-d) in response to hydrology variation and anthropogenic activities in the Yangtze River, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116673. [PMID: 36375425 DOI: 10.1016/j.jenvman.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Owing to their bioavailability and toxicity, the dissolved polycyclic aromatic hydrocarbons (PAHs-d) loaded in rivers are harmful to both inland and marine ecosystems. Thus, exploring the changes in PAHs-d levels and sources is important for controlling PAHs pollution. In this study, the concentration of PAHs-d in the mainstream of the Yangtze River during dry and wet seasons was investigated and the source was analyzed using the positive matrix factorization (PMF) model to assess the response of PAHs-d to hydrological and anthropogenic activities changes. The concentration of PAHs-d in the wet season (166.2 ± 52.51 ng/L) was significantly higher than that in the dry season (89.05 ± 20.89 ng/L) (ANOVA, P < 0.001), and the sampling sites with high pollution were mainly distributed in the downstream urban agglomeration. Herein, 2-3 rings were identified to play a dominant role in the composition of PAHs-d. Compared with the dry season, the proportion of the low molecular weight (LMW) PAHs-d were relatively depleted and the high molecular weight (HMW) PAHs-d were accumulated in the wet season. Coal and coke combustion were identified as the main sources of PAHs-d (65.9% in the dry season and 59.2% in the wet season), followed by vehicle emissions, petroleum sources, and biomass combustion. Owing to the change in energy consumption structure and climate characteristics, the sources of PAHs-d displayed seasonal variation and spatial heterogeneity. Further, flow was identified as the most important factor affecting PAHs-d in the hydrological parameters. Increases of flow, pH, and SPM decreased the proportion of LMW PAHs-d, and increased that of HMW PAHs-d. The increase in anthropogenic activities intensified the residual levels of 2-3rings and 5-6 rings in water, but had no significant impact on the levels of 4 rings.
Collapse
Affiliation(s)
- Nana Shang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jijie Kong
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Heyu Yu
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhong Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Weiyue Hao
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China.
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210023, China
| |
Collapse
|
29
|
Zhen Z, Yin Y, Zhang H, Li J, Hu J, Li L, Kuang X, Chen K, Wang H, Yu Q, Zhang X. Assessment of factors affecting the diurnal variations of atmospheric PAHs based on a numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158975. [PMID: 36152850 DOI: 10.1016/j.scitotenv.2022.158975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollutants that seriously endanger human health. Obtaining the diurnal variations of PAHs and clarifying their impact mechanisms are significant for the government to formulate targeted prevention and control measures. However, the influencing factors that dominate the diurnal variations of common PAHs are currently unclear. In order to solve this problem, 16 PAHs selected by the United States Environmental Protection Agency (EPA) as priority-controlled pollutants were simulated with high resolution. The simulation results were validated based on diurnal observations in the vertical direction. Although the model underestimated the particle-phase concentrations of most components, it captured their diurnal variations fairly well. In addition, we assessed the factors affecting the diurnal variations of PAHs with sensitivity tests, including chemical reactions and atmospheric diffusion. The results showed that the transforming ratios of PAHs by oxidants were higher during the day than that at night due to the dominant reactions with OH radical. Atmospheric dispersion affected the vertical distribution of PAHs, which resulted in higher day/night ratios at high altitudes than near the ground. We also compared the strength of atmospheric diffusion and chemical reaction on the diurnal trends of PAHs. Near the ground, atmospheric diffusion was the most dominant factor in determining their diurnal trends. At high altitudes, their diurnal trends were determined by a combination of atmospheric diffusion and chemical reactions. These findings can provide a comprehensive understanding of the diurnal variations of common PAHs, which are informative for the prevention and control of PAHs pollution.
Collapse
Affiliation(s)
- Zhongxiu Zhen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Haowen Zhang
- Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiang Kuang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Honglei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qingyuan Yu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
30
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
31
|
Li H, Wang X, Peng S, Lai Z, Mai Y. Seasonal variation of temperature affects HMW-PAH accumulation in fishery species by bacterially mediated LMW-PAH degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158617. [PMID: 36084776 DOI: 10.1016/j.scitotenv.2022.158617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, the specific mechanism generating seasonal variation in polycyclic aromatic hydrocarbons (PAHs) via bacterial biodegradation remains unclear, and whether this alteration affects PAH bioaccumulation is unknown. Therefore, we performed a study between 2015 and 2020 to investigate the effects of seasonal variation on bacterial communities and PAH bioaccumulation in the Pearl River Estuary. Significantly high PAH concentrations in both aquatic and fishery species were determined in dry seasons (the mean ∑16PAH concentration: water, 37.24 ng/L (2015), 30.83 ng/L (2020); fish, 51.01 ng/L (2015) and 72.60 ng/L (2020)) compared to wet seasons (the mean ∑16PAH concentration: water, 22.38 ng/L (2015), 19.40 ng/L(2020); fish, 25.28 ng/L (2015) and 32.59 ng/L (2020)). Distinct differences in taxonomic and functional composition of bacterial communities related to biodegradation of low molecular weight PAHs (LMW-PAHs) were observed between seasons, and the concentrations of PAHs were negatively correlated with seasonal variation in temperature. Temperature-related specific bacterial taxa (e.g., Stenotrophomonas) directly or indirectly participated in LMW-PAH degradation via encoding PAH degradation enzymes (e.g., protocatechuate 4,5-dioxygenase) that subsequently led to bioaccumulation of high molecular weight PAHs (HMW-PAHs) in wild and fishery species due to LMW-PAHs in the water. Based on this alteration, the ecological risk posed by PAHs decreased in wet seasons, and an unbalanced spatio-temporal distribution of PAHs was observed in this estuary. These results suggest that seasonal variation of temperature affects HMW-PAH accumulation in fishery species via bacterially mediated LMW-PAH biodegradation.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yongzhan Mai
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
32
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
33
|
Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. TOXICS 2022; 10:toxics10070401. [PMID: 35878306 PMCID: PMC9324633 DOI: 10.3390/toxics10070401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023]
Abstract
The Sele River, located in the Campania Region (southern Italy), is one of the most important rivers and the second in the region by average water volume, behind the Volturno River. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Sele River, water sediment samples were collected from areas around the Sele plain at 10 sites in four seasons. In addition, the ecosystem health risk and the seasonal and spatial distribution of PAHs in samples of water and sediment were assessed. Contaminant discharges of PAHs into the sea were calculated at about 1807.9 kg/year. The concentration ranges of 16 PAHs in surface water (DP), suspended particulate matter (SPM), and sediment were 10.1–567.23 ng/L, 121.23–654.36 ng/L, and 331.75–871.96 ng/g, respectively. Isomeric ratio and principal component analyses indicated that the PAH concentrations in the water and sediment near the Sele River were influenced by industrial wastewater and vehicle emissions. The fugacity fraction approach was applied to determine the trends for the water-sediment exchange of 16 priority PAHs; the results indicated that fluxes, for the most part, were from the water into the sediment. The toxic equivalent concentration (TEQ) of carcinogenic PAHs ranged from 137.3 to 292.6 ngTEQ g−1, suggesting that the Sele River basin presents a definite carcinogenic risk.
Collapse
|
34
|
Wang Y, Zhuang JL, Lu QQ, Cui CZ, Liu YD, Ni BJ, Li W. Halophilic Martelella sp. AD-3 enhanced phenanthrene degradation in a bioaugmented activated sludge system through syntrophic interaction. WATER RESEARCH 2022; 218:118432. [PMID: 35472747 DOI: 10.1016/j.watres.2022.118432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of common recalcitrant pollutant in industrial saline wastewater that raised significant concerns, whereas traditional activated sludge (AS) has limited tolerance to high salinity and PAHs toxicity, restricting its capacity to degrade PAHs. It is therefore urgent to develop a bioaugmented sludge (BS) system to aid in the effective degradation of these types of compounds under saline condition. In this study, a novel bioaugmentation strategy was developed by using halophilic Martelella sp. AD-3 for effectively augmented phenanthrene (PHE) degradation under 3% salinity. It was found that a 0.5∼1.5% (w/w) ratio of strain AD-3 to activated sludge was optimal for achieving high PHE degradation activity of the BS system with degradation rates reaching 2.2 mg⋅gVSS-1⋅h-1, nearly 25 times that of the AS system. Although 1-hydroxy-2-naphthoic acid (1H2N) was accumulated obviously, the mineralization of PHE was more complete in the BS system. Reads-based metagenomic coupled metatranscriptomic analysis revealed that the expression values of ndoB, encoding a dioxygenase associated with PHE ring-cleavage, was 5600-fold higher in the BS system than in the AS system. Metagenome assembly showed the members of the Corynebacterium and Alcaligenes genera were abundant in the strain AD-3 bioaugmented BS system with expression of 10.3±1.8% and 1.9±0.26%, respectively. Moreover, phdI and nahG accused for metabolism of 1H2N have been annotated in both above two genera. Degradation assays of intermediates of PHE confirmed that the activated sludge actually possessed considerable degradation capacity for downstream intermediates of PHE including 1H2N. The degradation capacity ratio of 1H2N to PHE was 87% in BS system, while it was 26% in strain AD-3. These results indicated that strain AD-3 contributed mainly in transforming PHE to 1H2N in BS system, while species in activated sludge utilized 1H2N as substrate to grow, thus establishing a syntrophic interaction with strain AD-3 and achieving the complete mineralization of PHE. Long-term continuous experiment confirmed a stable PHE removal efficiency of 93% and few 1H2N accumulation in BS SBR system. This study demonstrated an effective bioaugmented strategy for the bioremediation of saline wastewater containing PAHs.
Collapse
Affiliation(s)
- Yu Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Qing-Qing Lu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Chang-Zheng Cui
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong-Di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia.
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
35
|
Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River. SUSTAINABILITY 2022. [DOI: 10.3390/su14116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have received extensive attention because of their widespread presence in various environmental media and their high environmental toxicity. Thus, figuring out the long-term variances of their occurrence and driving force in the environment is helpful for environmental pollution control. This study investigates the concentration levels, spatial variance, and source apportionment of PAHs in suspended particulate matter of Freiberger Mulde river, Germany. Results show that the concentrations of the 16 priority PAHs suggested by USEPA (Σ16PAHs) were in the range of 707.0–17,243.0 μg kg−1 with a mean value of 5258.0 ± 2569.2 μg kg−1 from 2002 to 2016. The relatively high average concentrations of Σ16PAHs were found in the midstream and upstream stations of the given river (7297.5 and 6096.9 μg kg−1 in Halsbrucke and Hilbersdorf, respectively). In addition, the annual average concentration of Σ16PAHs showed an obvious decreasing pattern with time. Positive Matrix Factorization (PMF) receptor model identified three potential sources: coke ovens (7.6–23.0%), vehicle emissions (35.9–47.7%), and coal and wood combustion (34.5–47.3%). The source intensity variation and wavelet coherence analysis indicated that the use of clean energy played a key role in reducing PAHs pollution levels in suspended sediments. The risk assessment of ecosystem and human health suggested that the Σ16PAHs in the given area posed a non-negligible threat to aquatic organisms and humans. The data provided herein could assist the subsequent management of PAHs in the aquatic environment.
Collapse
|
36
|
Wang W, Xu J, Qu X, Lin D, Yang K. An improved method to predict polycyclic aromatic hydrocarbons in surface freshwater by reducing the input parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151597. [PMID: 34774943 DOI: 10.1016/j.scitotenv.2021.151597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Predicting the concentration of polycyclic aromatic hydrocarbons (PAHs) in surface freshwater are critical for understanding their spatio-temporal distribution, regulation effectiveness, and the subsequent health risks. In this study, by exploring the correlation of PAHs concentrations in surface freshwater (CPAHs) in China reported in the past twenty years with their emission (EPAHs), a novel relationship of CPAHs with EPAHs and PAHs properties (i.e., logKow and Sw) was established. For PAHs individual, percent sample deviation between the measured concentrations and the calculated concentrations are in the range of 18% to 48%, suggesting that the calculated concentrations of PAHs are well consistent with the measured PAHs concentration in surface freshwater. Moreover, spatial distribution of predicted PAHs concentrations in surface freshwater of China is also matched well with measured ones. Compared with other environmental models, the established relationships in this work can reduce the number of model parameters from dozens to three, as well as decrease percent sample deviation from several orders of magnitude to less than 50%. The established relationship of PAHs concentrations in surface freshwater with EPAHs, Sw, and logKow of PAHs, are valuable to facilitate the prediction of PAHs concentrations in surface freshwater by reducing monitoring costs.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jialu Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China.
| |
Collapse
|
37
|
Wang X, Zhang X, Wang X, Liang W, Wang J, Niu L, Zhao X, Wu F. Deriving convincing human health ambient water quality criteria for benzo[a]pyrene and providing basis for the water quality management: The impacts of national bioaccumulation factors and probabilistic modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152523. [PMID: 34953824 DOI: 10.1016/j.scitotenv.2021.152523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Science-based water quality criteria are the cornerstone of water quality standards. This paper improved the methodology for the derivation of human health water quality criteria (HHWQC) and applied it for benzo[a]pyrene (BaP) to provide a scientific basis for the management of polycyclic aromatic hydrocarbons (PAHs) in surface waters. First, the national bioaccumulation factors (BAFs) for BaP were derived using field-measured BAFs and field-measured biota-sediment accumulation factors (BSAFs) across China, respectively, which results were comparable and demonstrated the reliability of the obtained national BAFs for BaP. The HHWQC for BaP derived using the probabilistic approach were 3.98-4.70 ng/L and were comparable with those derived by the deterministic approach, suggesting the accuracy of derived HHWQC for BaP. Through the probabilistic approach, the probability distributions of lifetime incremental cancer risk from BaP in water were provided and the consumption rates of aquatic products at trophic level 2 and 3 were identified as factors influencing risks of BaP significantly. The derived HHWQC for BaP in China are approximately 33-36 times higher than those in the United States because of the high national BAFs and cancer slope factor of BaP used for the United States. In addition, the recommended HHWQC for BaP conform to the situation in China and are approximately 1.5 times higher than the standard value of BaP in the current National Surface Water Quality Standard (GB 3838-2002) in China (2.80 ng/L), which will play an important role in the amendment of National Surface Water Quality Standard in the future. Approximately 36% of the studied surface freshwater in China contains BaP with levels exceeding the recommended HHWQC, suggesting the pollution of BaP in surface freshwater is severe and needs to be given more attention. This study is significant for the scientific development of HHWQC worldwide and the management of pollutants in water.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
38
|
Wang W, Xu J, Qu X, Lin D, Yang K. Current and Future Trends of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons in Surface Water and Sediments of China: Insights from Their Long-Term Relationships between Concentrations and Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3397-3406. [PMID: 35235289 DOI: 10.1021/acs.est.1c05323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we analyzed the temporal trend of polycyclic aromatic hydrocarbons (PAHs) in China using data reported over the past 20 years. We found that the total concentrations of low molecular weight PAHs (CΣLPAHs) in surface water and sediments were positively correlated with their total emissions (EΣLPAHs), which increased between 2000 and 2008, then decreased until 2017. Additionally, the total concentrations of high molecular weight PAHs (C∑HPAHs) in surface water and sediments were positively correlated with their total emissions (EΣHPAHs), which increased significantly from 2000 to 2014 and then plateaued. Two future scenarios were assessed to explore C∑LPAHs and C∑HPAHs in surface water and sediments. PAH emissions were reduced by technological improvement in 2030 for coal consumption in Scenario 1 and for control of biomass burning in Scenario 2. Scenario 1 was more efficient than Scenario 2 in reducing C∑HPAHs in the surface water and sediments of China for the areas where CΣHPAHs in surface water exceeded the annual average standard (i.e., 30 ng L-1), with reductions of 38 and 24% in Scenarios 1 and 2, respectively. The observed relationships in this study can provide tools for emission reduction policies in the future.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jialu Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
39
|
Wang W, Xu H, Qu X, Yang K, Lin D. Predicting the total PAHs concentrations in sediments from selected congeners using a multiple linear relationship. Sci Rep 2022; 12:3334. [PMID: 35228618 PMCID: PMC8885927 DOI: 10.1038/s41598-022-07312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we observed that four congeners, including naphthalene (Nap), acenaphthylene (Acy), phenanthrene (Phe), and benz(a)anthracene (BaA), are the characteristic congeners for predicting the emission and the sediment concentrations of polycyclic aromatic hydrocarbons (PAHs). A novel multiple relationship of the total PAHs concentrations (C∑PAHs) in sediments with the concentrations of four congeners was established (p < 0.01, R2 = 0.95) using published data over the past 30 years. Moreover, the multiple linear relationship of the total PAHs emission factors with the emission factors of four congeners was also established (p < 0.01, R2 = 0.99). Interestingly, the ratio of multicomponents coefficient from the multiple linear relationship in sediments to that from the multiple linear relationship in emission sources correlated positively with octanol–water partition coefficient (logKow) (p < 0.01, R2 = 0.88) of the four PAHs congeners. Therefore, a novel model was established to predict CΣPAHs in sediments using the emissions and logKow of the four characteristic PAHs congeners. The percent sample deviation between calculated C∑PAHs and their observed values was 54%, suggesting the established model can accurately predict CΣPAHs in sediments.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Huaping Xu
- Mathematics Teaching and Research Section, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China. .,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| |
Collapse
|
40
|
Xu X, Cui K, Chen Y, Chen X, Guo Z, Chen H, Deng G, He Y. Comprehensive insights into the occurrence, source, distribution and risk assessment of polycyclic aromatic hydrocarbons in a large drinking reservoir system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6449-6462. [PMID: 34453250 DOI: 10.1007/s11356-021-16142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The resource, environment, and ecological value of drinking reservoirs have received widespread concerns due to the pollution of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Therefore, we comprehensively studied the occurrence, source, distribution, and risk assessment of representative PAHs in Fengshuba Reservoir (FSBR) (large drinking reservoir, China). The total concentrations of 16 USEPA PAHs in the water phase, porewater phase, sediment phase, and soil phase were in ranges of 109.72-393.19 ng/L, 5.75-35.15 μg/L, 364.4-743.71 μg/kg, and 367.81-639.89 μg/kg, respectively. The naphthalene (Nap) was the dominant PAHs in the water phase, while it was Nap and phenanthrene (Phe) in porewater, sediment, and soil phase. The main sources of PAHs in FSBR were biomass combustion. Redundancy analysis indicated that the NTU, NO2-, NH4+, Chl-α, and IC were the dominant factors influencing the PAH distribution in water phase, and the PAHs in sediment phase was affected by T and NO3-. Pseudo-partitioning coefficients indicated that the PAHs in the porewater phase were more likely to migrate to the sediment phase. Risk assessment indicated that the PAHs both in the water and sediment phases were generally in a low-risk state, while the PAHs in the soil phase were in a moderate-risk state, and the Nap was in a high-risk state, and exposure to the PAHs in FSBR through drinking and skin exposure had little impact on consumers' health. In summary, Nap could be used as a key indicator to evaluate the existence and potential risk of PAHs in FSBR.
Collapse
Affiliation(s)
- Xiangyang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xing Chen
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Hongjie Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore, 117411, Singapore
| | - Guangwei Deng
- School of Management, Hefei University of Technology, Hefei, 230009, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
41
|
Zhou Y, Kong Q, Lin Z, Ma J, Zhang H. Transcriptome aberration associated with altered locomotor behavior of zebrafish (Danio rerio) caused by Waterborne Benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112928. [PMID: 34710819 DOI: 10.1016/j.ecoenv.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
42
|
Zhao H, Gu Y, Liu X, Liu J, Waigi MG. Reducing Phenanthrene Contamination in Trifolium repens L. With Root-Associated Phenanthrene-Degrading Bacterium Diaphorobacter sp. Phe15. Front Microbiol 2021; 12:792698. [PMID: 34899673 PMCID: PMC8660855 DOI: 10.3389/fmicb.2021.792698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Some root-associated bacteria could degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, their dynamic distribution and performance on root surface and in inner plant tissues are still unclear. In this study, greenhouse container experiments were conducted by inoculating the phenanthrene-degrading bacterium Diaphorobacter sp. Phe15, which was isolated from root surfaces of healthy plants contaminated with PAHs, with the white clover (Trifolium repens L.) via root irrigation or seed soaking. The dynamic colonization, distribution, and performance of Phe15 in white clover were investigated. Strain Phe15 could efficiently degrade phenanthrene in shaking flasks and produce IAA and siderophore. After cultivation for 30, 40, and 50 days, it could colonize the root surface of white clover by forming aggregates and enter its inner tissues via root irrigation or seed soaking. The number of strain Phe15 colonized on the white clover root surfaces was the highest, reaching 6.03 Log CFU⋅g–1 FW, followed by that in the roots and the least in the shoots. Colonization of Phe15 significantly reduced the contents of phenanthrene in white clover; the contents of phenanthrene in Phe15-inoculated plants roots and shoots were reduced by 29.92–43.16 and 41.36–51.29%, respectively, compared with the Phe15-free treatment. The Phe15 colonization also significantly enhanced the phenanthrene removal from rhizosphere soil. The colonization and performance of strain Phe15 in white clove inoculated via root inoculation were better than seed soaking. This study provides the technical support and the resource of strains for reducing the plant PAH pollution in PAH-contaminated areas.
Collapse
Affiliation(s)
- Hui Zhao
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Yujun Gu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Xiangyu Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Li Y, Lu G, Wang WX, Li H, You J. Temporal and spatial characteristics of PAHs in oysters from the Pearl River Estuary, China during 2015-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148495. [PMID: 34166900 DOI: 10.1016/j.scitotenv.2021.148495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Estuary connects the inland freshwater and open seawater, which may become a sink for pollutants from land-derived outflows, especially for persistent organic pollutants (e.g., polycyclic aromatic hydrocarbons, PAHs). Due to complex fluctuation in estuary, it's difficult to achieve a comprehensive assessment of the pollution characteristics by grabbed environmental samples. Oysters serve as efficient biomonitors of pollution status in highly dynamic and anthropogenically impacted estuaries, like the Pearl River Estuary (PRE), South China. Here, we investigated the annual, seasonal, and spatial variations of PAHs in the soft tissues of oysters from the PRE over the last six years (2015-2020) and quantitatively analyzed the influence of environmental factors on PAH occurrence in the oysters. The concentrations of Σ15PAH in oysters ranged from 74 to 1164 (337 ± 218) ng/g dry wt., with a peak occurrence in 2017. Highly seasonal and geographical variations in PAH pollution were documented in the PRE, with higher concentrations in oysters during the wet season than dry season, and in the eastern coast than western coast. Furthermore, geographical variation in PAH levels in the oysters was enhanced during the wet season, indicating a possible contribution of heavy rainfall flushing from the Pearl River. In addition to precipitation, water temperature and salinity also significantly influenced PAH levels in the oysters from the PRE by changing the bioavailability and biokinetics. Long-term biomonitoring using oysters in the current study reflected the pollution status and variation trends of PAHs in the highly dynamic PRE.
Collapse
Affiliation(s)
- Yang Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Guangyuan Lu
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
44
|
Simultaneous determination of multiple isomeric hydroxylated polycyclic aromatic hydrocarbons in urine by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122983. [PMID: 34655894 DOI: 10.1016/j.jchromb.2021.122983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Monitoring the level of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in urine is the key to exploring human metabolic changes and comprehensive potential toxicity of PAHs. The OH-PAHs with isomeric structure have different biological functions, indicating that their quantification is indispensable. However, the quantitation method is still dissatisfactory due to the poor separation of these isomeric OH-PAHs. The current study established a ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS) method to complete the simultaneous determination of 17 OH-PAHs, including two naphthalene metabolites (1-hydroxynaphthalene, 2-hydroxynaphthalene), two fluorene metabolites (2-hydroxyfluorene, 3-hydroxyfluorene), five phenanthrene metabolites (1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene), a pyrene metabolite (1-hydroxypyrene), five chrysene metabolites (1-hydroxychrysene, 2-hydroxychrysene, 3-hydroxychrysene, 4-hydroxychrysene, 6-hydroxychrysene) and two benzo[a]pyrene metabolites (3-hydroxybenzo[a]pyrene, 9-hydroxybenzo[a]pyrene). The method validation results showed good selectivity, linearity (r2 > 0.999), inter-day and intra-day precision (relative standard deviation (RSD) < 5.5% and RSD < 6.3%), stability (RSD < 19.3%), matrix effect (-8.3%-11.5%) and recovery (65.9%-116.2%). This method is convenient, sensitive and efficient, saving expensive materials and complicated derivatization procedures. The practical applicability of developed approach was also tested in urine samples to identify potential biomarkers of PAHs exposure in humans, and a great compromise was obtained between recoveries and extract convenience. The developed approach may be widely utilized for specific determination of OH-PAHs with isomer structure in urine samples. It is expected that the application of this method may provide powerful references for PAHs exposure assessment.
Collapse
|
45
|
Liu Z, Cui S, Zhang L, Zhang Z, Hough R, Fu Q, Li YF, An L, Huang M, Li K, Ke Y, Zhang F. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100128. [PMID: 36156999 PMCID: PMC9488002 DOI: 10.1016/j.ese.2021.100128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 05/04/2023]
Abstract
Neonicotinoid insecticides (NNIs) have been intensively used and exploited, resulting in their presence and accumulation in multiple environmental media. We herein investigated the current levels of eight major NNIs in the Harbin section of the Songhua River in northeast China, providing the first systematic report on NNIs in this region. At least four NNIs in water and three in sediment were detected, with total concentrations ranging from 30.8 to 135 ng L-1 and from 0.61 to 14.7 ng g-1 dw, respectively. Larger spatial variations in surface water NNIs concentrations were observed in tributary than mainstream (p < 0.05) due to the intensive human activities (e.g., horticulture, urban landscaping, and household pet flea control) and the discharge of wastewater from many treatment plants. There was a significant positive correlation (p < 0.05) between the concentrations of residual imidacloprid (IMI), clothianidin (CLO), and Σ4NNIs in the sediment and total organic carbon (TOC). Due to its high solubility and low octanol-water partition coefficient (K ow), the sediment-water exchange behavior shows that NNIs in sediments can re-enter into the water body. Human exposure risk was assessed using the relative potency factor (RPF), which showed that infants have the highest exposure risk (estimated daily intake (ΣIMIeq EDI): 31.9 ng kg-1 bw·d-1). The concentration thresholds of NNIs for aquatic organisms in the Harbin section of the Songhua River were determined using the species sensitivity distribution (SSD) approach, resulting in a value of 355 ng L-1 for acute hazardous concentration for 5% of species (HC5) and 165 ng L-1 for chronic HC5. Aquatic organisms at low trophic levels were more vulnerable to potential harm from NNIs.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingzhi Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
46
|
Famiyeh L, Chen K, Xu J, Sun Y, Guo Q, Wang C, Lv J, Tang YT, Yu H, Snape C, He J. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147741. [PMID: 34058584 DOI: 10.1016/j.scitotenv.2021.147741] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have gained attention because of their environmental persistence and effects on ecosystems, animals, and human health. They are mutagenic, carcinogenic, and teratogenic. The review provides background knowledge about their sources, metabolism, temporal variations, and size distribution in atmospheric particulate matter. The review article briefly discusses the analytical methods suitable for the extraction, characterization, and quantification of nonpolar and polar PAHs, addressing the challenges. Herein, we discussed the molecular diagnostic ratios (DRs), stable carbon isotopic analysis (SCIA), and receptor models, with much emphasis on the positive matrix factorization (PMF) model, for apportioning PAH sources. Among which, DRs and PCA identified as the most widely employed method, but their accuracy for PAH source identification has received global criticism. Therefore, the review recommends compound-specific isotopic analysis (CSIA) and PMF as the best alternative methods to provide detailed qualitative and quantitative source analysis. The compound-specific isotopic signatures are not affected by environmental degradation and are considered promising for apportioning PAH sources. However, isotopic fractions of co-eluted compounds like polar PAHs and aliphatic hydrocarbons make the PAHs isotopic fractions interpretation difficult. The interference of unresolved complex mixtures is a limitation to the application of CSIA for PAH source apportionment. Hence, for CSIA to further support PAH source apportionment, fast and cost-effective purification techniques with no isotopic fractionation effects are highly desirable. The present review explains the concept of stable carbon isotopic analysis (SCIA) relevant to PAH source analysis, identifying the techniques suitable for sample extract purification. We demonstrate how the source apportioned PAHs can be applied in assessing the health risk of PAHs using the incremental lifetime cancer risk (ILCR) model, and in doing so, we identify the key factors that could undermine the accuracy of the ILCR and research gaps that need further investigation.
Collapse
Affiliation(s)
- Lord Famiyeh
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Ke Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Jingsha Xu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yong Sun
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University of Nationalities, Wuhan 430074, China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing 100144, China
| | - Yu-Ting Tang
- Department of Geographical Sciences, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Huan Yu
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Collin Snape
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province. University of Nottingham Ningbo China, Ningbo 315100, China.
| |
Collapse
|
47
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
48
|
Li Y, Wang WX. Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117533. [PMID: 34261227 DOI: 10.1016/j.envpol.2021.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The Pearl River Estuary (PRE) is the largest estuary in southern China and under high metal stress. In the present study, we employed an integrated method of transcriptomics and proteomics to investigate the ecotoxicological effects of trace metals on the Hong Kong oyster Crassostrea hongkongensis. Three oyster populations with distinct spatial distributions of metals were sampled, including the Control (Station QA, the lowest metal levels), the High Cd (Station JZ, the highest Cd), and the High Zn-Cu-Cr-Ni (Station LFS, with the highest levels of zinc, copper, chromium, and nickel). Dominant metals in oysters were differentiated by principal component analysis (PCA), and theirgene and protein profiles were studied using RNA-seq and iTRAQ techniques. Of the 2250 proteins identified at both protein and RNA levels, 70 proteins exhibited differential expressions in response to metal stress in oysters from the two contaminated stations. There were 8 proteins altered at both stations, with the potential effects on mitochondria and endoplasmic reticulum by Ag. The genotoxicity, including impaired DNA replication and transcription, was specifically observed in the High Cd oysters with the dominating influence of Cd. The structural components (cytoskeleton and chromosome-associated proteins) were impaired by the over-accumulated Cu, Zn, Cr, and Ni at Station LFS. However, enhanced tRNA biogenesis and exosome activity might help the oysters to alleviate the toxicities resulting from their exposure to these metals. Our study provided comprehensive information on the molecular changes in oysters at both protein and RNA levels in responding to multi-levels of trace metal stress.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
49
|
Hanedar A, Tanik A, Girgin E, Güneş E, Karakaya N, Gorgun E, Gökdereli G, Çankaya BF, Kimence T, Karaaslan Y, Dikmen B. Utility of a source-related matrix in basin management studies: a practice on a sub-Basin in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50329-50343. [PMID: 33956321 DOI: 10.1007/s11356-021-14142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
According to the water framework directive (WFD), the chemical status should be determined for each water body in a basin through monitoring and evaluation studies, and the gap between the status of water bodies and good water status should be revealed in river basin management plans. In this context, the methodology starting with the evaluation of the monitoring results of the priority substances (PSs) until the end of determining the measures to achieve good condition in surface waters was given in this study. The key aim was to provide a useful methodology defined as a matrix for determining the sources of pollutants that caused this gap. This matrix was applied to the most polluted sub-basin of Küçük Menderes Basin located on the western part of the Turkey. Monitoring studies were carried out in 21 water bodies for a 1-year period for 45 PSs and monitoring results were compared with environmental quality standards (EQS). It was determined that 13 of 45 PSs in 15 water bodies exceeded the EQS. The common PSs in the basin were lead, nickel, fluoranthene, benzo(a)pyrene, C10-13 chloroalkanes, and 4-nonylphenols and average rates of exceeding the EQS were 58.3%, 36.4%, 91.5%, 99.9%, 74.8%, and 49.4%, respectively. The detailed emission inventory of each water body in the basin has been made. Potential sources of PSs were searched via the matrix formed and a total number of 420 basic and supplementary measures were proposed to improve the water quality of the sub-basin.
Collapse
Affiliation(s)
- Asude Hanedar
- Çorlu Faculty of Engineering, Department of Environmental Engineering, Namık Kemal University, 59860, Çorlu, Tekirdağ, Turkey.
| | - Aysegul Tanik
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University (ITU), 34469, Maslak, Istanbul, Turkey
| | - Emine Girgin
- io Environmental Solutions, Reşitpaşa Mah., Katar Cd. Arı Teknokent 1 2/5 D: 12,, 34469, Sarıyer, Istanbul, Turkey
| | - Elçin Güneş
- Çorlu Faculty of Engineering, Department of Environmental Engineering, Namık Kemal University, 59860, Çorlu, Tekirdağ, Turkey
| | - Nusret Karakaya
- Faculty of Engineering, Department of Environmental Engineering, Izzet Baysal University, 14030, Gölköy Campus, Bolu, Turkey
| | - Erdem Gorgun
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University (ITU), 34469, Maslak, Istanbul, Turkey
- io Environmental Solutions, Reşitpaşa Mah., Katar Cd. Arı Teknokent 1 2/5 D: 12,, 34469, Sarıyer, Istanbul, Turkey
| | - Gökçen Gökdereli
- General Directorate of Water Management, Ministry of Agriculture and Forestry of TR, Beştepe, Söğütözü Cd. No: 14,, 06560, Yenimahalle, Ankara, Turkey
| | - Burhan Fuat Çankaya
- General Directorate of Water Management, Ministry of Agriculture and Forestry of TR, Beştepe, Söğütözü Cd. No: 14,, 06560, Yenimahalle, Ankara, Turkey
| | - Taner Kimence
- General Directorate of Water Management, Ministry of Agriculture and Forestry of TR, Beştepe, Söğütözü Cd. No: 14,, 06560, Yenimahalle, Ankara, Turkey
| | - Yakup Karaaslan
- General Directorate of Water Management, Ministry of Agriculture and Forestry of TR, Beştepe, Söğütözü Cd. No: 14,, 06560, Yenimahalle, Ankara, Turkey
| | - Bilal Dikmen
- General Directorate of Water Management, Ministry of Agriculture and Forestry of TR, Beştepe, Söğütözü Cd. No: 14,, 06560, Yenimahalle, Ankara, Turkey
| |
Collapse
|
50
|
Yang Y, Chen Z, Zhang J, Wu S, Yang L, Chen L, Shao Y. The challenge of micropollutants in surface water of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146537. [PMID: 33774309 DOI: 10.1016/j.scitotenv.2021.146537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The Yangtze River, the third largest river and supporting nearly one-third of Chinese population, has been severely polluted in recent decades. Among the numerous pollutants, organic micropollutants, as one kind of important emerging contaminants, are currently key contaminants of concern. However, few studies have focused on their mixture environmental impacts, especially for the complex environmental mixtures. In the current study, four categories of organic micropollutants, including 16 polycyclic aromatic hydrocarbons (PAHs), 32 polychlorinated biphenyls (PCBs), 27 organochlorine pesticides (OCPs) and 20 pharmaceutical and personal care products (PPCPs) are analyzed in 10 study sites on the Yangtze River. Subsequently, comprehensive risk assessment for micropollutant mixtures was conducted by risk quotient based on the sum of PEC/PNEC values (RQMEC/PNEC) and risk quotient based on the toxic units (RQSTU). The mixture risk evaluation based on the detected environmental concentrations indicates that micropollutant mixtures in surface water of the Yangtze River exhibited relative high risks for aquatic organisms. The observed results revealed that mixture risk assessments have to consider the complexity of environmental samples; PCBs dominated main mixture risks in the upper stream; PAHs contributed major comprehensive risks in the middle stream; and OCPs were the key micropollutants in the downstream. The outcomes of the present study here can serve for pollution control in the Yangtze River, which provide the scientific underpinnings and regulatory reference for risk management and river protection.
Collapse
Affiliation(s)
- Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Jialing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|