1
|
Mazur DM, Artaev VB, Lebedev AT. GC × GC-HRMS with complementary ionization methods in the suspect screening analysis of fragrance allergens: overwhelming or justified? Anal Bioanal Chem 2024; 416:4987-4997. [PMID: 39001903 DOI: 10.1007/s00216-024-05436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Modern gas chromatography-mass spectrometry (GC-MS) allows for the analysis of complex samples, such as fragrances. However, identifying all the constituents in natural fragrance mixtures, especially allergens that need to be listed on product labels, is a significant challenge. This is primarily due to the high complexity of the sample and the fact that electron ionization, the most commonly used ionization method in GC-MS, produces numerous nonspecific fragment ions, often resulting in the absence or very low abundance of the molecular ion. These factors affect confidence in assigning the analyte. In this study, we demonstrate that the combination of GC × GC separation, with high mass resolution and accurate mass measurements, as well as chemical ionization in addition to traditional electron ionization, becomes an efficient tool for reliable qualitative analysis of a mixture containing 100 fragrance allergens, even when many of them are closely related species or isomers. The proposed approach expands the applicability of the comprehensive GC × GC-HRMS method, which includes complementary ionization techniques, from studies on anthropogenic priority pollutants and emerging contaminants to the analysis of natural products. Although targeted qualitative and quantitative analysis of allergens in the modern laboratories is well organized, GC × GC-HRMS, being a useful complement to routine quality control of volatile allergens in fragrances, definitely gives an additional contribution to the analytical cases when conventional 1D-GC-MS faces some problems or uncertainties.
Collapse
Affiliation(s)
- Dmitrii M Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China
| | | | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen, 517182, China.
| |
Collapse
|
2
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
3
|
Sharin T, Leinen LJ, Schreiber D, Swenson VA, Emsley SA, Trammell EJ, Videau P, Crump D, Gaylor MO. Description of Solvent-Extractable Chemicals in Thermal Receipts and Toxicological Assessment of Bisphenol S and Diphenyl Sulfone. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:63. [PMID: 38615298 DOI: 10.1007/s00128-024-03871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.
Collapse
Affiliation(s)
- Tasnia Sharin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - David Schreiber
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - E Jamie Trammell
- Environmental Science and Policy Program, Southern Oregon University, Ashland, OR, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA.
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA.
- Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
4
|
Ekpe OD, Choo G, Kang JK, Yun ST, Oh JE. Identification of organic chemical indicators for tracking pollution sources in groundwater by machine learning from GC-HRMS-based suspect and non-target screening data. WATER RESEARCH 2024; 252:121130. [PMID: 38295453 DOI: 10.1016/j.watres.2024.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
In this study, the strong analytical power of gas chromatography coupled to a high resolution mass spectrometry (GC-HRMS) in suspect and non-target screening (SNTS) of organic micropollutants was combined with machine learning tools for proposing a novel and robust systematic environmental forensics workflow, focusing on groundwater contamination. Groundwater samples were collected from four different regions with diverse contamination histories (namely oil [OC], agricultural [AGR], industrial [IND], and landfill [LF]), and a total of 252 organic micropollutants were identified, including pharmaceuticals, personal care products, pesticides, polycyclic aromatic hydrocarbons, plasticizers, phenols, organophosphate flame retardants, transformation products, and others, with detection frequencies ranging from 3 % to 100 %. Amongst the SNTS identified compounds, a total of 51 chemical indicators (i.e., OC: 13, LF: 12, AGR: 19, IND: 7) which included level 1 and 2 SNTS identified chemicals were pinpointed across all sampling regions by integrating a bootstrapped feature selection method involving the bootfs algorithm and a partial least squares discriminant analysis (PLS-DA) model to determine potential prevalent contamination sources. The proposed workflow showed good predictive ability (Q2) of 0.897, and the suggested contamination sources were gasoline, diesel, and/or other light petroleum products for the OC region, anthropogenic activities for the LF region, agricultural and human activities for the AGR region, and industrial/human activities for the IND region. These results suggest that the proposed workflow can select a subset of the most diagnostic features in the chemical space that can best distinguish a specific contamination source class.
Collapse
Affiliation(s)
- Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
5
|
Jia W, Liu H, Ma Y, Huang G, Liu Y, Zhao B, Xie D, Huang K, Wang R. Reproducibility in nontarget screening (NTS) of environmental emerging contaminants: Assessing different HLB SPE cartridges and instruments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168971. [PMID: 38042181 DOI: 10.1016/j.scitotenv.2023.168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Non-targeted screening (NTS) methods are integral in environmental research for detecting emerging contaminants. However, their efficacy can be influenced by variations in hydrophilic-lipophilic balance (HLB) solid phase extraction (SPE) cartridges and high-resolution mass spectrometry (HRMS) instruments across different laboratories. In this study, we scrutinized the influence of five HLB SPE cartridges (Nano, Weiqi, CNW, Waters, and J&K) and four LC-HRMS platforms (Agilent, Waters, Thermo, and AB SCIEX) on the identification of emerging environmental contaminants. Our results demonstrate that 87.6 % of the target compounds and over 59.6 % of the non-target features were consistently detected across all tested HLB cartridges, with an overall 71.2 % universally identified across the four LC-HRMS systems. Discrepancies in detection rates were primarily attributable to variations in retention time stability, mass stability of precursors and fragments, system cleanliness affecting fold change and p-values, and fragment response. These findings confirm the necessity of refining parameter criteria for NTS. Moreover, our study confirms the efficacy of the PyHRMS tool in analyzing and processing data from multiple instrumental platforms, reinforcing its utility for multi-platform NTS. Overall, our findings underscore the reliability and robustness of NTS methods in identifying potential water contaminants, while also highlighting factors that may influence these outcomes.
Collapse
Affiliation(s)
- Wenhao Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yini Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - Guolong Huang
- Zhejiang GenPure Eco-Tech Co., Ltd., Hangzhou 310020, Zhejiang, China
| | - Yaxiong Liu
- Guangdong Institute for Drug Control, Guangzhou 510663, Guangdong, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Kaibo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China.
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China.
| |
Collapse
|
6
|
Song Z, Zhang L, Tian C, Li K, Chen P, Jia Z, Hu P, Cui S. Chemical characteristics, distribution patterns, and source apportionment of particulate elements and inorganic ions in snowpack in Harbin, China. CHEMOSPHERE 2024; 349:140886. [PMID: 38065265 DOI: 10.1016/j.chemosphere.2023.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Snowpack, which serves as a natural archive of atmospheric deposition of multiple pollutants, is a practical environmental media that can be used for assessing atmospheric records and input of the pollutants to the surface environments and ecosystems. A total of 29 snowpack samples were collected at 20 sampling sites covering three different functional areas of a major city (Harbin) in Northeast China. Two samples at the "snow layer" and one or two samples at the "particulate layer" were collected at each sampling site in the industrial areas characterized by multi-layer snowpack, and only one sample at the "snow layer" was collected at each sampling site in the cultural and recreational as well as agricultural areas. The snow contents of 31 elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb) and six major water-soluble inorganic ions (WSIIs, NH4+, K+, Ca2+, NO2-, NO3-, and SO42-) were analyzed. The total mass of the measured elements is dominated (95.8%-99.2%) by crustal elements. Heavy metals only account for 0.77%-4.07% of the total mass of the elements, but are occasionally close to or even above the standard limit in the "Environmental Quality Standards for Surface Water" of China (GB3838-2002). SO42- and Ca2+ are the main anion and cation, accounting for 34.9%-81.1% and 1.43%-29.9%, respectively, of the measured total ions. Total atmospheric deposition of crustal elements and heavy metals is dominated by wet deposition in areas near the petrochemical plant and by dry deposition in areas near the cement plant. Coal combustion, industrial emissions, and traffic-related activities lead to the enrichment of heavy metals in the snowpacks of urban and suburban areas, while coal combustion and biomass burning contribute to pollution in rural areas. The cities and regions situated in the western, northwestern, northern, and northeastern directions from Harbin are potential source regions of these pollutant species.
Collapse
Affiliation(s)
- Zihan Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Pengyu Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhaoyang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
7
|
Vargas Medina DA, Maciel EVS, Pereira Dos Santos NG, Lancas FM. The overshadowed role of electron ionization-mass spectrometry in analytical biotechnology. Curr Opin Biotechnol 2023; 82:102965. [PMID: 37393696 DOI: 10.1016/j.copbio.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Target and untargeted analysis of several compounds are crucial methods in important areas such as omics sciences. Gas chromatography coupled to mass spectrometry (GC-MS) is widely used for volatile and thermally stable compounds. In this case, the electron ionization technique (EI) is preferable as it produces highly fragmented and reproducible spectra comparable to spectral libraries. However, only a fraction of target compounds is analyzable by GC without chemical derivatization. Therefore, liquid chromatography (LC) coupled with MS is the most used technique. Contrary to EI, electrospray ionization does not produce reproducible spectra. That is why researchers have been working on interfaces between LC and EI-MS to bridge the gap between those techniques. This short review will discuss advancements, applications, and perspectives on biotechnological analysis.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O Box 780, 13566590 Sao Carlos, Brazil; Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Edvaldo Vasconcelos Soares Maciel
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O Box 780, 13566590 Sao Carlos, Brazil; Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Natalia Gabrielly Pereira Dos Santos
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O Box 780, 13566590 Sao Carlos, Brazil; Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Fernando Mauro Lancas
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O Box 780, 13566590 Sao Carlos, Brazil.
| |
Collapse
|
8
|
Kosheleva NE, Vlasov DV, Timofeev IV, Samsonov TE, Kasimov NS. Benzo[a]pyrene in Moscow road dust: pollution levels and health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1669-1694. [PMID: 35583719 DOI: 10.1007/s10653-022-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the priority pollutants in the urban environment. For the first time, the accumulation of BaP in road dust on different types of Moscow roads has been determined. The average BaP content in road dust is 0.26 mg/kg, which is 53 times higher than the BaP content in the background topsoils (Umbric Albeluvisols) of the Moscow Meshchera lowland, 50 km east of the city. The most polluted territories are large roads (0.29 mg/kg, excess of the maximum permissible concentration (MPC) in soils by 14 times) and parking lots in the courtyards (0.37 mg/kg, MPC excess by 19 times). In the city center, the BaP content in the dust of courtyards reaches 1.02 mg/kg (MPC excess by 51 times). The accumulation of BaP depends on the parameters of street canyons formed by buildings along the roads: in short canyons (< 500 m), the content of BaP reaches maximum. Relatively wide canyons accumulate BaP 1.6 times more actively than narrow canyons. The BaP accumulation in road dust significantly increases on the Third Ring Road (TRR), highways, medium and small roads with an average height of the canyon > 20 m. Public health risks from exposure to BaP-contaminated road dust particles were assessed using the US EPA methodology. The main BaP exposure pathway is oral via ingestion (> 90% of the total BaP intake). The carcinogenic risk for adults is the highest in courtyard areas in the south, southwest, northwest, and center of Moscow. The minimum carcinogenic risk is characteristic of the highways and TRR with predominance of nonstop traffic.
Collapse
Affiliation(s)
- Natalia E Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Dmitry V Vlasov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation.
| | - Ivan V Timofeev
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Timofey E Samsonov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Nikolay S Kasimov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| |
Collapse
|
9
|
Mazur DM, Sosnova AA, Latkin TB, Artaev BV, Siek K, Koluntaev DA, Lebedev AT. Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow. Anal Bioanal Chem 2022; 415:2587-2599. [PMID: 36289105 DOI: 10.1007/s00216-022-04390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The best way to understand the environmental status of a certain region involves thorough non-target analysis, which will result in a list of pollutants under concern. Arkhangelsk (64° 32' N 40° 32' E, pop. ~ 344,000) is the largest city in the world to the north of the 60th parallel. Several industrial enterprises and the "cold finger" effect represent the major sources of air contamination in the city. Analysis of snow with comprehensive two-dimensional gas chromatography-high-resolution mass spectrometry allows detecting and quantifying the most hazardous volatile and semivolatile anthropogenic pollutants and estimating long-term air pollution. Target analysis, suspect screening, and non-target analysis of snow samples collected from ten sites within the city revealed the presence of several hundreds of organic compounds including 18 species from the US EPA list of priority pollutants. Fortunately, the levels of these compounds appeared to be much lower than the safe levels established in Russia. Phenol and dioctylphthalate could be considered as the pollutants of concern because their levels were about 20% of the safe thresholds. ChromaTOF® Tile, MetaboAnalyst software platform, and open-source software protocols were applied to process the obtained data. The obtained clusterization results of the samples were generally similar for various tools; however, each of them had certain peculiarities. Bis(2-ethylhexyl) hexanedioate, benzyl alcohol, phthalates, aniline, dinitrotoluenes, and fluoranthene showed the strongest influence on the clusterization of the studied samples. Possible sources of the major pollutants were proposed: car traffic and pulp and paper mills.
Collapse
Affiliation(s)
- D M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
| | - A A Sosnova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - T B Latkin
- Core Facility Center "Arktika", Lomonosov Northern (Arctic) Federal University, nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - B V Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - K Siek
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| | - D A Koluntaev
- "Scietegra", 12, 5 quarter, EZhKEdem, Gavrilkovo, Moscow Region, Russia
| | - A T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
10
|
Burns JS, Sergeyev O, Lee MM, Williams PL, Mínguez-Alarcón L, Plaku-Alakbarova B, Sokolov S, Kovalev S, Koch HM, Lebedev AT, Hauser R, Korrick SA. Associations of prepubertal urinary phthalate metabolite concentrations with pubertal onset among a longitudinal cohort of boys. ENVIRONMENTAL RESEARCH 2022; 212:113218. [PMID: 35390299 PMCID: PMC9310051 DOI: 10.1016/j.envres.2022.113218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although phthalate exposures have been associated with adverse effects on male reproductive health, few studies have explored longitudinal associations with male pubertal development. OBJECTIVES We examined the association of prepubertal urinary concentrations of phthalate metabolites with age at pubertal onset in a prospective cohort of Russian boys. METHODS At enrollment at ages 8-9 years, medical history, dietary, and demographic information was collected. At entry and annually, physical examinations and pubertal staging [Genitalia (G), Pubarche (P), and testicular volume (TV, in ml)] were conducted and spot urines were collected. Prepubertal urine samples (defined as either TV = 1, 2 and G = 1, 2 or TV = 3 and G = 1) were pooled for each boy and phthalate metabolite concentrations were quantified using isotope dilution LC-MS/MS at Moscow State University. We measured 15 metabolites including those from anti-androgenic parent phthalates (AAPs) such as di (2-ethylhexyl) (DEHP) and di-isononyl (DiNP) phthalates as well as monobenzyl (MBzP), mono-n-butyl (MnBP), and mono-isobutyl (MiBP) metabolites. We calculated the molar sums of DEHP (∑DEHP), DiNP (∑DiNP), and AAP (∑AAP) metabolites. Separate interval-censored models were used to assess associations of quartiles of prepubertal phthalate metabolites with each pubertal onset indicator, G2+, P2+ and TV > 3 mL, adjusted for covariates and urine specific gravity. RESULTS 304 boys had 752 prepubertal urine samples (median 2, range: 1-6) for pooling. In adjusted models, higher urinary AAPs were consistently associated with later pubertal onset (P2) with mean shifts ranging from 8.4 to 14.2 months for the highest versus lowest quartiles. Significantly later onset for G2 and TV > 3 mL was observed for higher versus lower quartiles of MiBP, MBzP, ∑DEHP and ∑DiNP. CONCLUSIONS On average, boys with higher concentrations of prepubertal urinary AAPs had later pubertal onset by six months to over a year. The impact of AAPs on timing of male puberty may be attributable to disruption of androgen-dependent biological pathways.
Collapse
Affiliation(s)
- Jane S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA.
| | - Oleg Sergeyev
- Group of Epigenetic Epidemiology, Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, 119992, Moscow, Russia; Chapaevsk Medical Association, Meditsinskaya Str., 3a, Chapaevsk, Samara Region, 446100, Russia
| | - Mary M Lee
- Nemours Children's Health, 1600 Rockland Road, Wilmington, 19803, USA; Department of Pediatrics, Sidney Kimmel Medical School, Jefferson University, Philadelphia, PA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, Room 443, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Lidia Mínguez-Alarcón
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - Bora Plaku-Alakbarova
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Epidemiology Division, Optuminsight Life Sciences, Boston, MA, USA
| | - Sergey Sokolov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Sergey Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Russ Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Susan A Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Koelmel JP, Xie H, Price EJ, Lin EZ, Manz KE, Stelben P, Paige MK, Papazian S, Okeme J, Jones DP, Barupal D, Bowden JA, Rostkowski P, Pennell KD, Nikiforov V, Wang T, Hu X, Lai Y, Miller GW, Walker DI, Martin JW, Godri Pollitt KJ. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry. EXPOSOME 2022; 2:osac007. [PMID: 36483216 PMCID: PMC9719826 DOI: 10.1093/exposome/osac007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 04/16/2023]
Abstract
Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Xie
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Elizabeth Z Lin
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | | | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Matthew K Paige
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Stefano Papazian
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Dean P Jones
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dinesh Barupal
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - John A Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | | | - Thanh Wang
- MTM Research Centre, Örebro University, Örebro, Sweden
| | - Xin Hu
- School of Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Yunjia Lai
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Gary W Miller
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
12
|
Ding L, Wang L, Nian L, Tang M, Yuan R, Shi A, Shi M, Han Y, Liu M, Zhang Y, Xu Y. Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155277. [PMID: 35447177 DOI: 10.1016/j.scitotenv.2022.155277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Non-targeted analysis (NTA) was used in identifying volatile organic compounds (VOCs) in a museum in China with the gas chromatograph (GC)-Orbitrap-mass spectrometer (MS). Approximately 230 VOCs were detected, of which 117 were observed at 100% frequency across all sampling sites. Although some were common in indoor environments, most of the detected VOCs were rarely reported in previous studies on museum environments. Some of the detected VOCs were found to be associated with the materials used in furnishings and the chemicals applied in conservation treatment. Spearman's correlation analysis showed that several classes of VOCs were well correlated, suggesting their common sources. Compared with compounds in outdoor air, indoor VOCs had a lower level of unsaturation and more portions of chemically reduced compounds. Hierarchical cluster analysis (HCA) were performed. The results suggested that the sampling adsorbents chosen may have a large impact and that a single type of adsorbent may not be sufficient to cover a wide range of compounds in NTA studies. The MonoTrap adsorbent containing octadecylsilane (ODS) and activated carbon (AC) is suitable for aliphatic polar compounds that contain low levels of oxygen, whereas the MonoTrap ODS and silica gel are good at sampling aliphatic and aromatic hydrocarbons with limited polarity. Principle component analysis (PCA) showed that the indoor VOCs changed significantly at different times in the museum; this may have been caused by the removal of artifacts and refurbishment of the gallery between sampling events. A comparison with compounds identified by chamber emission tests showed that decorative materials may have been one of the main sources of indoor VOCs in the museum. The VOCs identified in the present study are likely to be present in other similar museums; therefore, further examination may be warranted of their potential impacts on cultural heritage artifacts, museum personnel, and visitors.
Collapse
Affiliation(s)
- Li Ding
- National Museum of China, Beijing, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Luying Nian
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ming Tang
- National Museum of China, Beijing, China
| | - Rui Yuan
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Anmei Shi
- National Museum of China, Beijing, China
| | - Meng Shi
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Han
- National Museum of China, Beijing, China
| | - Min Liu
- National Museum of China, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
13
|
A method based on the conversion and determination of folpet and phthalimide residues in tea by GC-MS/MS and GC-TOF-HRMS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Lebedev AT, Detenchuk EA, Latkin TB, Bavcon Kralj M, Trebše P. Aqueous Chlorination of D-Limonene. Molecules 2022; 27:2988. [PMID: 35566337 PMCID: PMC9099452 DOI: 10.3390/molecules27092988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) is one of the most widespread monocyclic terpenes, being both a natural and industrial compound. It is widely present in the environment, including in water supplies. Therefore, it may be subjected to aqueous chlorination at water treatment stations during drinking water preparation. Besides, being a component of numerous body care and cosmetic products, it may present at high levels in swimming pool waters and could also be subjected to aqueous chlorination. Laboratory experiments with aqueous chlorination of D-limonene demonstrated the prevalence of the conjugated electrophilic addition of HOCl molecule to the double bonds of the parent molecule as the primary reaction. The reaction obeys the Markovnikov rule, as the levels of the corresponding products were higher than those of the alternative ones. Fragmentation pattern in conditions of electron ionization enabled the assigning of the structures for four primary products. The major products of the chlorination are formed by the addition of two HOCl molecules to limonene. The reactions of electrophilic addition are usually accompanied by the reactions of elimination. Thus, the loss of water molecules from the products of various generations results in the reproduction of the double bond, which immediately reacts further. Thus, a cascade of addition-elimination reactions brings the most various isomeric polychlorinated species. At a ratio of limonene/active chlorine higher than 1:10, the final products of aqueous chlorination (haloforms) start forming, while brominated haloforms represent a notable portion of these products due to the presence of bromine impurities in the used NaOCl. It is worth mentioning that the bulk products of aqueous chlorination are less toxic in the bioluminescence test on V. fischeri than the parent limonene.
Collapse
Affiliation(s)
- Albert T. Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
- MASSECO d.o.o., 6230 Postojna, Slovenia
| | - Elena A. Detenchuk
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Tomas B. Latkin
- Core Facility Arktika, Northern Arctic Federal University, 163002 Arkhangelsk, Russia;
| | - Mojca Bavcon Kralj
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| |
Collapse
|
15
|
Detenchuk EA, Mazur DM, Latkin TB, Lebedev AT. Halogen substitution reactions of halobenzenes during water disinfection. CHEMOSPHERE 2022; 295:133866. [PMID: 35134400 DOI: 10.1016/j.chemosphere.2022.133866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Although being successfully applied all over the world for more than 100 years water disinfection by means of chlorination possesses certain drawbacks, first of all formation of hazardous disinfection by-products (DBP). Aromatic halogenated DBPs significantly contribute to the total organic halogen and developmental toxicity of chlorinated water. The present study deals with investigation of possible substitution of one halogen for another in aromatic substrates in conditions of aqueous chlorination/bromination. The reaction showed high yields especially in case of substrates with proper position of an activating group in the aromatic ring. Thus, ipso-substitution of iodine by chlorine is the main process of aqueous chlorination of para-iodoanisole. Oxidation of the eliminating I+ ions into non-reactive IO3- species facilitates the substitution. Oxidation of eliminating Br+ is not so easy while being highly reactive it attacks initial substrates forming polybrominated products. Substitution of iodine and bromine by chlorine may also involve migration of electrophilic species inside the aromatic ring resulting in larger number of isomeric DBPs. Substitution of chlorine by bromine in aromatic substrates during aqueous bromination is not so pronounced as substitution of bromine by chlorine in aqueous chlorination due to higher electronegativity of chlorine atom. However, formation of some chlorine-free polybrominated products proves possibility of that process.
Collapse
Affiliation(s)
- E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - T B Latkin
- Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia.
| |
Collapse
|
16
|
Lebedev AT, Richardson SD. Planet Contamination with Chemical Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051621. [PMID: 35268722 PMCID: PMC8911829 DOI: 10.3390/molecules27051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Albert T. Lebedev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
17
|
Mazur DM, Lebedev AT. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77. [PMCID: PMC9924213 DOI: 10.1134/s1061934822140052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The purity of drinking water is an important issue of the human life quality. Water disinfection has saved millions people from the diseases spread with water. However, that procedure has a certain drawback due to formation of toxic organic disinfection products. Establishing the structures of these products and the mechanisms of their formation and diminishing their levels in drinking water represent an important task for chemistry and medicine, while mass spectrometry is the most efficient tool for the corresponding studies. The current review throws light upon natural and anthropogenic sources of the formation of disinfection by-products (DBPs) and the mechanisms of their formation related to the structural peculiarities and the presence of functional groups. In addition to chlorination, bromination is discussed since it is used quite often as an alternative method of disinfection, particularly, for the purification of swimming pool water. The benefits of the contemporary GC/MS and LC/MS methods for the elucidation of DBP structures and study of the mechanisms of their formation are discussed. The reactions characteristic for various functional groups and directions of transformation of certain classes of organic compounds in conditions of aqueous chlorination/bromination are also covered in the review.
Collapse
Affiliation(s)
- D. M. Mazur
- Organic Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. T. Lebedev
- M.V. Lomonosov Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
18
|
Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
20
|
Occurrence of Volatile and Semi-Volatile Organic Pollutants in the Russian Arctic Atmosphere: The International Siberian Shelf Study Expedition (ISSS-2020). ATMOSPHERE 2021. [DOI: 10.3390/atmos12060767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental issues in the Arctic region are of primary importance due to the fragility of the Arctic ecosystem. Mainly persistent organic compounds are monitored in the region by nine stationary laboratories. Information on the volatile (VOC) and semi volatile (SVOC) organic priority pollutants is very limited, especially for the Russian Arctic. Air samples from 16 sites along the Russian Arctic coast from the White Sea to the East Siberian Sea were collected on sorption tubes packed with Tenax, Carbograph, and Carboxen sorbents with different selectivity for a wide range of VOCs and SVOCs in 2020 within the framework of the International Siberian Shelf Study Expedition on the research vessel Akademik Keldysh. Thermal desorption gas chromatography–high-resolution mass spectrometry with Orbitrap was used for the analysis. Eighty-six VOCs and SVOCs were detected in the air samples at ng/m3 levels. The number of quantified compounds varied from 26 to 66 per sample. Benzoic acid was the major constituent, followed by BTEX, phenol, chloroform, bis(2-ethylhexyl) phthalate, and carbon tetrachloride. The study allowed for obtaining the first ever data on the presence of 138 priority pollutants in the air of Russian Arctic, whereas the thorough assessment of their possible sources will be the aim of a next investigation.
Collapse
|
21
|
Lebedev AT, Polyakova OV, Artaev VB, Mednikova MB, Anokhina EA. Comprehensive two-dimensional gas chromatography-high resolution mass spectrometry with complementary ionization methods in the study of 5000-year-old mummy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9058. [PMID: 33496359 DOI: 10.1002/rcm.9058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Mummification is one of the defining customs of ancient Egypt. The nuances of the embalming procedure and the composition of the embalming mixtures have attracted the attention of scientists and laypeople for a long time. Modern analytical tools make mummy studies more efficient. METHODS Comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (GCxGC/HRMS) with complementary ionization methods (electron ionization, positive chemical ionization, and electron capture negative ionization [ECNI]) with a Pegasus GC-HRT+4D instrument was used to identify embalming components in the mummy from the Pushkin Museum of Fine Arts acquired in 1913 in London at the de Rustafjaell sale. The mummy dates back to the late Predynastic period (direct accelerator mass spectrometry-dating 3356-3098 bc), being one of the oldest in the world. RESULTS The results showed the complexity of the embalming mixtures that were already in use 5000 years ago. Several hundred organic compounds were identified in the mummy samples. Various types of hydrocarbons (triterpanes, steranes, isoprenoid, and polycyclic aromatic hydrocarbons) prove the presence of petroleum products. Iodinated compounds detected using ECNI define oils of marine origin, whereas esters of palmitic acid indicate the use of beeswax. The nature of the discovered components of conifer tar proves that the preliminary processing of conifer resins involved heating. GCxGC/HRMS also allowed a number of modern contaminants (phthalates, organophosphates, and even DDT) to be identified. CONCLUSIONS Application of a powerful GCxGC/HRMS technique with complementary ionization methods allowed significant widening of the range of organic compounds used for mummification that could be identified. The complexity of the embalming mixtures supports the hypothesis of the high social status of the child made on the basis of the preliminary study of the mummy.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Polyakova
- Organic Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maria B Mednikova
- Department of Theory and Methods, Institute of Archaeology RAS, Moscow, Russia
| | - Eugenia A Anokhina
- Department of the Ancient Orient, The Pushkin State Museum of Fine Arts, Moscow, Russia
| |
Collapse
|
22
|
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1876-1904. [PMID: 33913946 DOI: 10.1039/d1ay00111f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|