1
|
Hashempour Y, Mortezazadeh F, Rezaei S, Salehipour M, Gholami-Borujeni F, Ebrahimnejad P, Mogharabi-Manzari M. Co-immobilization of laccase and zinc oxide nanoparticles onto bacterial cellulose to achieve synergistic effect of photo and enzymatic catalysis for biodegradation of favipiravir. Int J Biol Macromol 2024:139288. [PMID: 39736296 DOI: 10.1016/j.ijbiomac.2024.139288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste. The optimal conditions for achieving maximum yield and efficiency of immobilization were investigated and the successful preparation of the composite was confirmed using infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The immobilized laccase showed Km and Vmax values of 0.68 ± 0.23 mM and 5.4 ± 0.86 μmol/min/l, respectively. The prepared composite was efficiently applied for degradation of favipiravir under optimum conditions including pH, temperature, and incubation time values of 4.0, 50 °C, and 90 min, respectively. The presence of ZnO nanoparticles in the structure of the photobiocatalyst significantly decreased the time of removal in comparison with both free and immobilized laccases. Although 80 ± 5.5 % of the enzyme activity was kept after 10 runs, the prepared photobiocatalyst retained 50 ± 4.6 % of its initial activity after 10 independent cycles. The study showed that the synergistic effects of laccase and ZnO nanoparticles possess the potentials to enhance degradation efficiency through combined light-driven and enzymatic approaches.
Collapse
Affiliation(s)
- Yalda Hashempour
- Department of Environmental Health Engineering, Health Sciences Research Center, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mortezazadeh
- Department of Environmental Health Engineering, Health Sciences Research Center, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahla Rezaei
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Masoud Salehipour
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Fathollah Gholami-Borujeni
- Department of Environmental Health Engineering, Health Sciences Research Center, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran
| | - Mehdi Mogharabi-Manzari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Ribeiro Trisotto LF, Figueredo CC, Gomes MP. Rivers at risks: The interplay of "COVID kit" medication misuse and urban waterway contaminants. CHEMOSPHERE 2024; 370:143933. [PMID: 39672345 DOI: 10.1016/j.chemosphere.2024.143933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
This study investigates the environmental impact of the widespread use of "COVID Kit" drugs-azithromycin (AZI), ivermectin (IVE), and hydroxychloroquine (HCQ)-in urban rivers of Curitiba in Brazil, during and after the COVID-19 pandemic. The research focuses on the occurrence and concentrations of these pharmaceuticals in water and sediment samples collected from key urban rivers. Concentrations of AZI, IVE, and HCQ in water ranged from 326 to 3340 ng/L, 130-3340 ng/L, and 304-3314 ng/L, respectively, while in sediment, they ranged from 18 to 249 ng/g, 21-480 ng/g, and 38-673 ng/g, respectively. Results indicate a significant increase in AZI, IVE, and HCQ concentrations during the pandemic. Concentrations of these drugs peaked in September 2020 and March 2021, declining after the start of Brazil's vaccination campaign. However, the levels of these pharmaceuticals remained elevated in some areas even after the decline in their usage. Environmental risk assessments were conducted to evaluate the potential ecological hazards posed by these pharmaceuticals, revealing the long-term persistence of these drugs in aquatic environments and their potential to contribute to antimicrobial resistance. The findings of this study underscore the critical need for robust regulatory measures and improved wastewater treatment processes to prevent pharmaceutical contamination in urban water systems, particularly during global health crises.
Collapse
Affiliation(s)
- Luiz Felipe Ribeiro Trisotto
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil.
| |
Collapse
|
3
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Nugnes R, Orlo E, Russo C, Lavorgna M, Isidori M. Comprehensive eco-geno-toxicity and environmental risk of common antiviral drugs in aquatic environments post-pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135947. [PMID: 39357352 DOI: 10.1016/j.jhazmat.2024.135947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
The eco-geno-toxicological impacts of the most widely used antiviral drugs against SARS-CoV2 - ribavirin, ritonavir, nirmatrelvir and tenofovir - were investigated in freshwater organisms. Ribavirin and tenofovir exhibited the highest acute toxicity in the rotifer Brachionus calyciflorus at concentrations of a few mg/L while ritonavir and nirmatrelvir showed similar effects at tens of mg/L; acute toxicity of ribavirin was also observed in the crustacean Ceriodaphnia dubia at similar concentrations. In contrast, the crustacean Thamnocephalus platyurus showed the lowest sensitivity to the antiviral drugs tested with no sublethal effects. Chronic toxicity tests revelead that these antivirals induced effects in consumers at concentrations of environmental concern (ng-µg/L). Ribavirin showed the highest toxicity to the alga Raphidocelis subcapitata, while ritonavir showed the highest toxicity to B. calyciflorus and C. dubia. DNA damage and oxidative stress were observed in C. dubia at 0.001 µg/L and 0.1 µg/L when exposed to ritonavir and nirmatrelvir respectively, and at 1 µg/L when exposed to ribavirin and tenofovir. Toxic and genotoxic environmental risks were assessed with risk quotients for ritonavir, tenofovir and ribavirin exceeding the threshold of 1, indicating significant environmental concern.
Collapse
Affiliation(s)
- Roberta Nugnes
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
5
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
6
|
Maremane SR, Belle GN, Oberholster PJ, Omotola EO. Occurrence of selected Covid-19 drugs in surface water resources: a review of their sources, pathways, receptors, fate, ecotoxicity, and possible interactions with heavy metals in aquatic ecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:3. [PMID: 39607624 PMCID: PMC11604763 DOI: 10.1007/s10653-024-02293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The outbreak of the coronavirus disease 2019 (Covid-19) led to the high consumption of antibiotics such as azithromycin as well as corticosteroids such as prednisone, prednisolone, and dexamethasone used to treat the disease. Seemingly, the concentrations of these four Covid-19 drugs increased in wastewater effluents and surface water resources. This is due to the failure of traditional wastewater treatment facilities (WWTFs) to eliminate pharmaceuticals from wastewater. Therefore, the objective of the current research was to review the present state of literature on the occurrence of four Covid-19 drugs in water resources, the associated risks and toxicity, their fate, as well as the emergence of combined pollutants of Covid-19 drugs and heavy metals. From late 2019 to date, azithromycin was observed at concentrations of 935 ng/L, prednisone at 433 ng/L, prednisolone at 0.66 ng/L, and dexamethasone at 360 ng/L, respectively, in surface water resources. These concentrations had increased substantially in water resources and were all attributed to pollution by wastewater effluents and the rise in Covid-?19 infections. This phenomenon was also exacerbated by the observation of the pseudo-persistence of Covid-19 drugs, long half-life periods, as well as the excretion of Covid-19 drugs from the human body with about 30?90% of the parent drug. Nonetheless, the aquatic and human health toxicity and risks of Covid-19 drugs in water resources are unknown as the concentrations are deemed too low; thus, neglecting the possible long-term effects. Also, the accumulation of Covid-19 drugs in water resources presents the possible development of combined pollutants of Covid-19 drugs and heavy metals that are yet to be investigated. The risks and toxicity of the combined pollutants, including the fate of the Covid-19 drugs in water resources remains a research gap that undoubtably needs to be investigated.
Collapse
Affiliation(s)
- S R Maremane
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - G N Belle
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | - P J Oberholster
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - E O Omotola
- Department of Chemical Sciences, College of Science and Information Technology, Tai Solarin, University of Education, Ijebu-Ode, Lagos, Ogun State, Nigeria
| |
Collapse
|
7
|
Azuma T, Usui M, Hasei T, Hayashi T. Occurrence and environmental fate of anti-influenza drugs in a subcatchment of the Yodo River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176086. [PMID: 39260509 DOI: 10.1016/j.scitotenv.2024.176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
8
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, de Los Ángeles Mier-Quiroga M, Castillo-Suárez LA. Commercial dexamethasone degradation by heterogeneous sono/photo-Fenton process using iron zeolite catalyst by an electrodeposition method. ENVIRONMENTAL TECHNOLOGY 2024:1-18. [PMID: 39581571 DOI: 10.1080/09593330.2024.2430801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Dexamethasone (DXM) was the first drug used to treat COVID-19, only a small part is metabolized and has been identified in wastewater and surface water, conventional treatments do not remove these compounds, therefore new technologies must be developed. A commercially injectable solution containing dexamethasone (DXM) was removed by heterogeneous sono/photo-Fenton (SPF) process using clinoptilolite zeolite (CZ) modified with Fe (CZ-Fe) by an electrodeposition method. The effect of initial concentration (1.2, 3, 5.5, 8, 9.7 mg/L), H2O2 dose (9.8, 15, 22.5, 30, 35.1 mg/L) and hydraulic retention time (HRT, 39.5, 60, 90, 120, 140 min) were evaluated through central composite design (CCD). The frequency of the ultrasound was 140 kHz. The optimal conditions were 5.5 mg/L DXM, 22.5 mg/L H2O2 and 140 min obtaining an 85.4% DXM by UV-Vis, 99% by high-performance liquid chromatography (HPLC) and 76% by chemical oxygen demand (COD) removal. The systems generated 12, 25, 40.5 and 45.5 mg/L of total oxidant at 20, 60, 100 and 140 kHz, respectively. In individual effects, UV radiation removed 23.6%, ultrasound 18.1% and H2O2 14% of DXM. In kinetic studies, the best fit was obtained for the Behnajady-Modirshahla-Ghanbery (BMG) model. SPF improved the mass transfer within the reaction media, the oxidation rate and the consumption of H2O2, and no sludge was generated. Finally, another oxidant formed during the process (H•, HO2•, O2-•) contributed to DXM removal.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, México
| | | | - Luis Antonio Castillo-Suárez
- Subdirección de Apoyo y Desarrollo Académico/Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago Tilapa, México
| |
Collapse
|
9
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Hu R, Chen X, Han Y, Li W, Zhang S, Liu Z, Wang J, Lu X, Luo G, Zhang S, Zhen G. KOH-modified biochar enhances nitrogen metabolism of the chloroquine phosphate-disturbed anammox: Physical binding, EPS modulation and versatile metabolic hierarchy. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136467. [PMID: 39579692 DOI: 10.1016/j.jhazmat.2024.136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Chloroquine phosphate (CQ) poses strong biotoxicity on anammox process, and thus detoxifying is essential for the stable operation of anammox in treating CQ-bearing wastewater. Biochar has been proven to simultaneously detoxify pollutant and modulate nitrogen cycle in anammox by its shelter effect and electron exchange capacity (EEC) ability. To further improve the ability of biochar to promote the nitrogen metabolism of anammox, a KOH modification strategy was used to tailor a high-EEC biochar in this work. KOH modified biochar can bind CQ for detoxification driven by hydrogen bond, π-π interaction, and electrostatic interaction. Meanwhile, the EEC of modified biochar increased by 70 % than that of pristine biochar, thus improving nitrogen removal efficiency by 55.6 % and 9.5 % than CQ and BC group, respectively. Besides, the microorganism regulated by modified biochar produced more α-helix configuration, improving EPS barrier ability to CQ and sludge granulation. Lastly, metagenomic analysis revealed that modified biochar can stimulate the Wood-Ljungdahl pathway, increased the relative abundance of CODH from 0.74 % in CQ to 1.00 % in modified BC group. It favored the proliferation of autotrophic microorganisms, especially increased the relative abundance of anammox bacteria by 86.8 % than CQ group. This work will shed the light on integrating high-EEC biochar into anammox to cope with the micropollutants stress.
Collapse
Affiliation(s)
- Rui Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Shuting Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jiandong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
11
|
Zheng J, Chen C, Huang Y, Fang S, Guo P, Liu S, Ouyang G. A fast solid-phase microextraction scheme for in vivo monitoring of bio-accumulation and bio-transformation of arbidol in living plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177175. [PMID: 39461518 DOI: 10.1016/j.scitotenv.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Large quantity of the antiviral drug arbidol is used for resisting virus infection like the Corona Virus Disease 2019 and influenza, resulting in unanticipated environmental pollution. Herein, to investigate the environmental risks of the unanticipated arbidol contamination, a novel in vivo sampling probe was developed based on a bromo-substituted porous organic polymer (Br-POP) and then adopted for tracking the bio-accumulation and bio-transformation of arbidol in living plants by coupling with a nano-electrospray ionization fourier-transform ion cyclotron resonance mass spectrometry (Nano-ESI-FT-ICR-MS) method. The established method showed good extraction performance towards arbidol with limit of detection (LOD) of 0.48 ng g-1, and relative standard deviation (RSD) of single-and multiple- probe of 2.2 and 14 %. Owing to the interactions between the Br-POP and the target analytes, as well as the fast analysis process of Nano-ESI-FT-ICR-MS, <6 min was cost for total sampling and analysis duration, achieving hourly tracking of arbidol and its metabolites in this work. During 21-d in vivo tracking, the concentration of arbidol in living plant stems increased rapidly within 6 h and peaked at 413.93 ± 47.09 ng g-1. Meanwhile, it was found that dissolved organic matters (DOM) had significant effect on arbidol behaviors in living plants, resulting in a decrease of the maximum concentration of arbidol in plant stems (152.70 ± 42.44 ng g-1) and the change of dominant metabolite of arbidol that the S-oxidation rather than N-demethylation product of arbidol was dominant with DOM participation. Additionally, the plant root secretion was found to be significantly altered by arbidol exposure. To summarized, the combination of in vivo SPME and the FT-ICR-MS analysis provide new and important information regarding arbidol contamination and related alternation of plant root metabolism.
Collapse
Affiliation(s)
- Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuting Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
12
|
Jia N, Shi Y, Qi J, Yang W, Bu Q, Zhao R, Yang L, Tang J. Effects of dissolved organic matter from different sources on ritonavir photolysis. CHEMOSPHERE 2024; 367:143685. [PMID: 39505073 DOI: 10.1016/j.chemosphere.2024.143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
With the misuse of antiviral drugs, the residual levels of ritonavir (RTV) in aquatic environments continue to increase, potentially posing threats to ecosystems and human health. However, the current understanding of the photochemical behavior of RTV in water, especially the mechanism by which dissolved organic matter (DOM) from different sources affects the indirect photolysis of RTV, remains limited. This study systematically investigated the effects of DOM from different sources (including sludge, algae, dustfall, and soil, namely SL-DOM, AL-DOM, DF-DOM, and SO-DOM, respectively) on the photodegradation of RTV for the first time. DOM exhibited a dual role in RTV degradation, with SL-DOM and AL-DOM accelerating the degradation process, while DF-DOM and SO-DOM inhibited it. Direct photolysis accounted for 40-53% of the overall photodegradation, underscoring its significant contribution to the degradation process. Quenching and competitive kinetics experiments revealed that 3DOM⁎ is the dominant contributor to the indirect photolysis of RTV. Exogenous DOM (DF-DOM, SO-DOM) exhibited higher generation rate and steady-state concentraiton of 3DOM⁎, while endogenous DOM (SL-DOM, AL-DOM) exhibited higher quantum yields of 3DOM⁎ and reactivity, leading to distinct mechanisms for the indirect photodegradation of RTV. This study explored the effects of DOM from different sources on the photodegradation of RTV, providing important insights into how DOM affects the photochemical behavior and ecological risk of RTV. It also provides a reference for exploring the photochemical behavior of other drugs.
Collapse
Affiliation(s)
- Nan Jia
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Yue Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Jinyuan Qi
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| |
Collapse
|
13
|
Domínguez-García P, Aljabasini O, Barata C, Gómez-Canela C. Environmental risk assessment of pharmaceuticals in wastewaters and reclaimed water from catalan main river basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175020. [PMID: 39069179 DOI: 10.1016/j.scitotenv.2024.175020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Aquatic pollution from pharmaceuticals is a growing environmental concern globally, particularly in Catalonia's primary water bodies, the Llobregat and Besòs rivers. This study investigates pharmaceutical residues in reclaimed water effluents from the Llobregat River and a wastewater treatment plant (WWTP) in the Besòs River, critical contributors to the region's water resources. Employing LC-MS/MS, 85 pharmaceutical residues were monitored, revealing elevated concentrations of tramadol, losartan, and gemfibrozil, commonly prescribed drugs in Catalonia. Surprisingly, downstream concentrations exceeded upstream levels significantly, indicating the adverse impact of reclaimed water on water quality. Furthermore, evaluation of WWTP efficiency displayed varying removal rates, from 10 % to 99.8 %, highlighting treatment inadequacies for certain compounds. Predictive environmental concentrations (PECs) aligned closely with measured values, affirming the utility of predictive models in early-stage research. Risk assessment via the risk quotient (RQ) method identified atorvastatin and chlorpromazine as surpassing toxicity thresholds. This study underscores the urgent need to address pharmaceutical contamination in urban rivers and reclaimed waters in Catalonia. By highlighting treatment inefficacies and potential ecological risks, it contributes to the development of sustainable water management strategies and environmental conservation efforts in the region. Efforts should focus on continuously monitoring specific compounds, evaluating their individual toxicity, and implementing appropriate remediation techniques in WWTPs to safeguard water quality and aquatic ecosystems.
Collapse
Affiliation(s)
- Pol Domínguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ouwais Aljabasini
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
14
|
Eryildiz-Yesir B, Polat E, Altınbaş M, Gul BY, Koyuncu I. Long term study on the fate and environmental risks of favipiravir in wastewater treatment plants and comparison with COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175014. [PMID: 39059667 DOI: 10.1016/j.scitotenv.2024.175014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In recent years especially during COVID-19, the increased usage of antiviral drugs has led to increased interest in monitoring their presence in wastewater worldwide. In this study, it was examined the occurrence, fate and environmental risks of favipiravir which is used for COVID-19 treatment in two wastewater treatment plants (WWTPs) with different treatment processes in Istanbul, Turkey. Favipiravir was measured in WWTPs influent samples, effluent samples and sludge samples with maximum concentrations of 97 μg/L, 64.11 μg/L and 182.47 μg/g, respectively. Favipiravir had removal efficiency below 55 % for both WWTPs. Mass balance analysis showed that favipiravir removal in WWTPs mainly attributed to biodegradation/biotransformation. Statistical analysis revealed a significant correlation between favipiravir concentration and COVID-19 incidence in Istanbul. The microbial distribution analysis indicated that comparison of collected COVID-19 pandemic sludge and post-pandemic period sludge samples, a noteworthy reduction in the Chloroflexi and Actinobacteriota phyla at the phylum level was observed. Environmental risk assessment using risk quotients ranged from 168 to 704, indicating that the presence of this antiviral drug posed significant ecological risks to aquatic organisms. The study concluded that WWTPs were releasing antiviral drugs into the environment, thereby posing risks to both the aquatic ecosystem and public health. The results of this study demonstrate the persistence of favipiravir in WWTPs and offer crucial supporting data for further research into the advancement of wastewater treatment technology. Also, this study shows wastewater based monitoring is supplementary and early warning system for determining the occurrence of antiviral drugs.
Collapse
Affiliation(s)
- Bahriye Eryildiz-Yesir
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ece Polat
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey
| | - Mahmut Altınbaş
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| |
Collapse
|
15
|
Gyraitė G, Kataržytė M, Espinosa RP, Kalvaitienė G, Lastauskienė E. Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics (Basel) 2024; 13:1013. [PMID: 39596708 PMCID: PMC11591088 DOI: 10.3390/antibiotics13111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND the widespread use of antibiotics in human and veterinary medicine has contributed to the global challenge of antimicrobial resistance, posing significant environmental and public health risks. OBJECTIVES this study aimed to examine the microbiome and resistome dynamics across a salinity gradient, analyzing water and sediment samples from the Baltic Sea coast and the Curonian Lagoon between 2017 and 2023. METHODS the composition of the water and sediment bacterial community was determined by Full-Length Amplicon Metagenomics Sequencing, while ARG detection and quantification were performed using the SmartChipTM Real-Time PCR system. RESULTS the observed differences in bacterial community composition between the Baltic Sea coast and the Curonian Lagoon were driven by variations in salinity and chlorophyll a (chl a) concentration. The genera associated with infectious potential were observed in higher abundances in sediment than in water samples. Over 300 genes encoding antibiotic resistance (ARGs), such as aminoglycosides, beta-lactams, and multidrug resistance genes, were identified. Of particular interest were those ARGs that have previously been detected in pathogens and those currently classified as a potential future threat. Furthermore, our findings reveal a higher abundance and a distinct profile of ARGs in sediment samples from the lagoon compared to water. CONCLUSIONS these results suggest that transitional waters such as lagoons may serve as reservoirs for ARGs, and might be influenced by anthropogenic pressures and natural processes such as salinity fluctuation and nutrient cycling.
Collapse
Affiliation(s)
- Greta Gyraitė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| | - Marija Kataržytė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Rafael Picazo Espinosa
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Greta Kalvaitienė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Eglė Lastauskienė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| |
Collapse
|
16
|
Zou Y, Peng P, Zou H, Zhang Y, Chen C, Huang S. Transport and retention of COVID-19-related antiviral drugs in saturated porous media under various hydrochemical conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117028. [PMID: 39276648 DOI: 10.1016/j.ecoenv.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have garnered considerable attention, particularly in the global battle against the COVID-19 pandemic, amid heightened concerns regarding environmentally acquired antiviral resistance. A comprehensive understanding of their transport in subsurface environments is imperative for accurately predicting their environmental fate and risks. This study investigated the mobility and retention characteristics of six COVID-19 antiviral drugs in saturated quartz sand columns. Results showed that the mobility of the drugs was primarily contingent on their hydrophobicity, with ribavirin and favipiravir exhibiting the highest transportability, while arbidol displaying the greatest retention. The transport characteristics of ribavirin and favipiravir remained largely unaffected by pH, whereas the retention of the other four antivirals remained consistently minimal under alkaline conditions. Elevating ionic strength marginally facilitated the transport of these antivirals, while the presence of Ca2+ notably enhanced their retention in quartz sand compared to Na+. Ribavirin and remdesivir warrant particular attention due to their relatively high transportability and propensity for environmentally acquired antiviral resistance. These findings contribute to an enhanced understanding of the leachate potential and transport of COVID-19-related antivirals in sandy porous media, furnishing fundamental data for predicting their environmental fate and associated risks.
Collapse
Affiliation(s)
- Yefeng Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Peng Peng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yun Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Rilievo G, Boscolo S, Pettenuzzo S, Matozzo V, Fabrello J, Roverso M, Bogialli S. From a validated targeted method to a retrospective UHPLC-HRMS non-targeted analysis unveiling COVID-19-related contaminants in clams. Have we bias in marine model organisms for ecotoxicological studies? CHEMOSPHERE 2024; 364:142994. [PMID: 39098345 DOI: 10.1016/j.chemosphere.2024.142994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
This study explores a retrospective non-targeted analysis (NTA), based on Ultra High-Performance Liquid Chromatography coupled to High-Resolution Mass Spectrometry (UHPLC-HRMS), to assess hidden chemicals of emerging concern (CECs) in marine model organisms. Conventional ecotoxicological studies do not include evaluating the natural habitats of the collected organisms, missing the possibility of highlighting unexpected pollutants, and thus compromising the correctness and reliability of the experimental results. In this paper we reprocessed samples previously collected from the Venice Lagoon for ecotoxicological studies and used for targeted analysis of three bisphenols-related compounds (i.e. BPS, BPF and BPAF) on seawater and specimens of the clam Ruditapes philippinarum. Results from the validation were the following: accuracy, expressed as percentage recoveries (R%), in the range 80%
Collapse
Affiliation(s)
- Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Samuele Boscolo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Silvia Pettenuzzo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy; Department of Civil, Environmental and Architectural Engineering, University of Padova, via Marzolo 9, 35135, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
18
|
Behera JK, Mishra P, Jena AK, Bhattacharya M, Behera B. Understanding of environmental pollution and its anthropogenic impacts on biological resources during the COVID-19 period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54147-54162. [PMID: 36580239 PMCID: PMC9797902 DOI: 10.1007/s11356-022-24789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The global outbreak of the COVID-19 pandemic has given rise to a significant health emergency to adverse impact on environment, and human society. The COVID-19 post-pandemic not only affects human beings but also creates pollution crisis in environment. The post-pandemic situation has shown a drastic change in nature due to biomedical waste load and other components. The inadequate segregation of untreated healthcare wastes, chemical disinfectants, and single-use plastics leads to contamination of the water, air, and agricultural fields. These materials allow the growth of disease-causing agents and transmission. Particularly, the COVID-19 outbreak has posed a severe environmental and health concern in many developing countries for infectious waste. In 2030, plastic enhances a transboundary menace to natural ecological communities and public health. This review provides a complete overview of the COVID-19 pandemic on environmental pollution and its anthropogenic impacts to public health and natural ecosystem considering short- and long-term scenarios. The review thoroughly assesses the impacts on ecosystem in the terrestrial, marine, and atmospheric realms. The information from this evaluation can be utilized to assess the short-term and long-term solutions for minimizing any unfavorable effects. Especially, this topic focuses on the excessive use of plastics and their products, subsequently with the involvement of the scientific community, and policymakers will develop the proper management plan for the upcoming generation. This article also provides crucial research gap knowledge to boost national disaster preparedness in future perspectives.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India.
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
19
|
Sanchez-Aceves LM, Pérez-Alvarez I, Onofre-Camarena DB, Gutiérrez-Noya VM, Rosales-Pérez KE, Orozco-Hernández JM, Hernández-Navarro MD, Flores HI, Gómez-Olivan LM. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Daniorerio. CHEMOSPHERE 2024; 364:143012. [PMID: 39103101 DOI: 10.1016/j.chemosphere.2024.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to its extensive use as a painkiller, anti-inflammatory, and immune modulatory agent, as well as its effectiveness in treating severe COVID-19, dexamethasone, a synthetic glucocorticoid, has gained attention not only for its impact on public health but also for its environmental implications. Various studies have reported its presence in aquatic environments, including urban waters, surface samples, sediments, drinking water, and wastewater effluents. However, limited information is available regarding its toxic effects on nontarget aquatic organisms. Therefore, this study aimed to investigate the mechanism of toxicity underlying dexamethasone-induced brain damage in the bioindicator Danio rerio following long-term exposure. Adult zebrafish were treated with environmentally relevant concentrations of dexamethasone (20, 40, and 60 ng L-1) for 28 days. To elucidate the possible mechanisms involved in the toxicity of the pharmaceutical compound, we conducted a behavioral test battery (Novel Tank and Light and Dark tests), oxidative stress biomarkers, acetylcholinesterase enzyme activity quantification, histopathological analysis, and gene expression analysis using qRT-PCR (p53, bcl-2, bax, caspase-3, nrf1, and nrf2).The results revealed that the pharmaceutical compound could produce anxiety-like symptoms, increase the oxidative-induced stress response, decrease the activity of acetylcholinesterase enzyme, and cause histopathological alterations, including perineuronal vacuolization, granular and molecular layers deterioration, cell swallowing and intracellular spaces. The expression of genes involved in the apoptotic process (p53, bax, and casp-3) and antioxidant defense (nrf1 and nrf2) was upregulated in response to oxidative damage, while the expression of the anti-apoptotic gene bcl-2 was down-regulated indicating that the environmental presence of dexamethasone may pose a threat to wildlife and human health.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México. Paseo Tollocan /Jesús Carranza s/n. Toluca, 50120, Toluca, Estado de México, Mexico
| | - Diana Belén Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
20
|
Arreguin-Rebolledo U, Morales-Romero LA, Arzate-Cárdenas MA, Páez-Osuna F, Betancourt-Lozano M, Rico-Martínez R. Contrasting toxicity response to a mixture of azithromycin and ivermectin between a freshwater and a euryhaline rotifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49905-49915. [PMID: 39085690 DOI: 10.1007/s11356-024-34406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
Organisms are usually exposed to mixtures of emerging pollutants in aquatic environments. Due to their widespread use and environmental relevance, the individual and combined effects of the drugs azithromycin (AZT) and ivermectin (IVM) on the freshwater rotifer Lecane papuana and the euryhaline rotifer Proales similis were investigated. Rotifers showed greater sensitivity to IVM compared to AZT. The LC50 values of IVM and AZT for L. papuana and P. similis were 0.163 and 0.172 mg/L, and 13.52 and 20.00 mg/L, respectively. Population growth rates, assessed in chronic toxicity assays, responded negatively to increasing concentrations of both toxicants, either individually or in combination. Our results revealed two distinct combined toxicity responses: a strong synergistic effect in the freshwater rotifer and a marked antagonistic impact of the AZT-IVM mixtures in the euryhaline rotifer.
Collapse
Affiliation(s)
- Uriel Arreguin-Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mazatlán, Mexico
| | - Levi Asher Morales-Romero
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México
| | - Mario Alberto Arzate-Cárdenas
- Investigadoras E Investigadores Por México, CONAHCYT, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, México
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mazatlán, Mexico
| | | | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México.
| |
Collapse
|
21
|
Dela Cruz J, Lammel D, Kim SW, Bi M, Rillig M. COVID-19 pandemic-related drugs and microplastics from mask fibers jointly affect soil functions and processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50630-50641. [PMID: 39102138 PMCID: PMC11364614 DOI: 10.1007/s11356-024-34587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic has led to an unprecedented increase in pharmaceutical drug consumption and plastic waste disposal from personal protective equipment. Most drugs consumed during the COVID-19 pandemic were used to treat other human and animal diseases. Hence, their nearly ubiquitous presence in the soil and the sharp increase in the last 3 years led us to investigate their potential impact on the environment. Similarly, the compulsory use of face masks has led to an enormous amount of plastic waste. Our study aims to investigate the combined effects of COVID-19 drugs and microplastics from FFP2 face masks on important soil processes using soil microcosm experiments. We used three null models (additive, multiplicative, and dominative models) to indicate potential interactions among different pharmaceutical drugs and mask MP. We found that the multiple-factor treatments tend to affect soil respiration and FDA hydrolysis more strongly than the individual treatments. We also found that mask microplastics when combined with pharmaceuticals caused greater negative effects on soil. Additionally, null model predictions show that combinations of high concentrations of pharmaceuticals and mask MP have antagonistic interactions on soil enzyme activities, while the joint effects of low concentrations of pharmaceuticals (with or without MP) on soil enzyme activities are mostly explained by null model predictions. Our study underscores the need for more attention on the environmental side effects of pharmaceutical contamination and their potential interactions with other anthropogenic global change factors.
Collapse
Affiliation(s)
- Jeane Dela Cruz
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Daniel Lammel
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Mohan Bi
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Matthias Rillig
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany.
| |
Collapse
|
22
|
Guo Z, He H, Liu K, Li Z, Xi Y, Liao Z, Dao G, Huang B, Pan X. Toxic mechanisms of the antiviral drug arbidol on microalgae in algal bloom water at transcriptomic level. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134678. [PMID: 38781856 DOI: 10.1016/j.jhazmat.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Xi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
23
|
Jiang Y, He Z, Zhang T, Yang J, Fan Y, Lu Z, Cai K, Sun Q, Wang F. Degradation and detoxification of ribavirin by UV/chlorine/Fe(II) process in water treatment system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48164-48174. [PMID: 39017866 DOI: 10.1007/s11356-024-34399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Ribavirin (RBV), which is extensively used to treat viral diseases such as COVID-19, is considered one of the major emerging contaminants due to its long-term existence and health risk in the aqueous environmental system. However, research on effective removal of RBV still remains insufficient. In this study, we investigated the RBV degradation kinetics and mechanism in UV/chlorine/Fe(II) process. The degradation rate constant kobs-RBV of RBV was 2.52 × 10-4 s-1 in UV/chlorine/Fe(II) process, which increased by 1.6 times and 1.3 times than that in chlorine alone and UV/chlorine process, respectively. Notably, trace amount Fe(II) promoted RBV degradation in UV/chlorine system through Fe2+/Fe3+ cycles, enhancing the yield of reactive species such as HO· and certain species reactive chlorine radicals (RCS). The contributions of HO· and RCS toward RBV degradation were 53.91% and 16.11%, respectively. Specifically, Cl·, ClO·, and Cl2·- were responsible for 8.59%, 2.69%, and 4.83% of RBV removal. The RBV degradation pathway indicated that the reactive species preferentially attacked the amide moiety of RBV, which cleaved the ether bond and the hydroxyl group. The toxicity evaluation of RBV degradation products elucidated that UV/chlorine/Fe(II) process was beneficial for RBV detoxification.
Collapse
Affiliation(s)
- Yayin Jiang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhenle He
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Tao Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China
| |
Collapse
|
24
|
Yang J, Fan Y, Lu Z, Guo Y, Huang J, Cai K, Sun Q, Wang F. Positive profile of natural small molecule organic matters on emerging antivirus pharmaceutical elimination in advance reduction process: A deep dive into the photosensitive mechanism of triplet excited state compounds. WATER RESEARCH 2024; 256:121611. [PMID: 38640567 DOI: 10.1016/j.watres.2024.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.
Collapse
Affiliation(s)
- Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yuxin Guo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintao Huang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
25
|
Zhang Z, Zheng H, Liu Y, Ma S, Feng Q, Qu J, Zhu X. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. ENVIRONMENTAL RESEARCH 2024; 249:118466. [PMID: 38354882 DOI: 10.1016/j.envres.2024.118466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 μM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Ying Liu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Shuang Ma
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Qi Feng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
26
|
Kalinski JCJ, Noundou XS, Petras D, Matcher GF, Polyzois A, Aron AT, Gentry EC, Bornman TG, Adams JB, Dorrington RA. Urban and agricultural influences on the coastal dissolved organic matter pool in the Algoa Bay estuaries. CHEMOSPHERE 2024; 355:141782. [PMID: 38548083 DOI: 10.1016/j.chemosphere.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.
Collapse
Affiliation(s)
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Biochemistry, University of California Riverside, Riverside, USA; CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Gwynneth F Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Allegra T Aron
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, United States
| | - Emily C Gentry
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Thomas G Bornman
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Environmental Observation Network SAEON, Elwandle Coastal Node, Gqeberha, South Africa; Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa; Department of Botany, Institute for Coastal and Marine Research CMR, Nelson Mandela University, Gqeberha, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa.
| |
Collapse
|
27
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
28
|
Guo K, Liu Y, Peng J, Qi W, Liu H. Chlorination of antiviral drug ribavirin: Kinetics, nontargeted identification, and concomitant toxicity evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133478. [PMID: 38359766 DOI: 10.1016/j.jhazmat.2024.133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M-1·s-1 (pH 5.8) to 1.53 M-1·s-1 (pH 8.0) due to neutral RBV and ClO- as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.
Collapse
Affiliation(s)
- Kehui Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Xu Y, Liu Y, Liang C, Guo W, Ngo HH, Peng L. Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation. CHEMOSPHERE 2024; 353:141580. [PMID: 38430943 DOI: 10.1016/j.chemosphere.2024.141580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yaxuan Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
30
|
Guo Z, He H, Yang G, Liu K, Xi Y, Li Z, Luo Y, Liao Z, Dao G, Ren X, Huang B, Pan X. The environmental risks of antiviral drug arbidol in eutrophic lake: Interactions with Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133609. [PMID: 38310846 DOI: 10.1016/j.jhazmat.2024.133609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
The environmental risks resulting from the increasing antivirals in water are largely unknown, especially in eutrophic lakes, where the complex interactions between algae and drugs would alter hazards. Herein, the environmental risks of the antiviral drug arbidol towards the growth and metabolism of Microcystis aeruginosa were comprehensively investigated, as well as its biotransformation mechanism by algae. The results indicated that arbidol was toxic to Microcystis aeruginosa within 48 h, which decreased the cell density, chlorophyll-a, and ATP content. The activation of oxidative stress increased the levels of reactive oxygen species, which caused lipid peroxidation and membrane damage. Additionally, the synthesis and release of microcystins were promoted by arbidol. Fortunately, arbidol can be effectively removed by Microcystis aeruginosa mainly through biodegradation (50.5% at 48 h for 1.0 mg/L arbidol), whereas the roles of bioadsorption and bioaccumulation were limited. The biodegradation of arbidol was dominated by algal intracellular P450 enzymes via loss of thiophenol and oxidation, and a higher arbidol concentration facilitated the degradation rate. Interestingly, the toxicity of arbidol was reduced after algal biodegradation, and most of the degradation products exhibited lower toxicity than arbidol. This study revealed the environmental risks and transformation behavior of arbidol in algal bloom waters.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Gui Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Xi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
31
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
32
|
Tao K, Gao B, Li N, El-Sayed MMH, Shoeib T, Yang H. Efficient adsorption of chloroquine phosphate by a novel sodium alginate/tannic acid double-network hydrogel in a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168740. [PMID: 38013102 DOI: 10.1016/j.scitotenv.2023.168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
In this work, a novel double-network composite hydrogel (SA/TA), composed of sodium alginate (SA) and tannic acid (TA), was designed and fabricated by a successive cross-linking method using Ti(IV) and Ca(II) as crosslinkers. SA/TA exhibited reinforced mechanical strength and anti-swelling properties because of the double-network structure. SA/TA was used as an adsorbent for removal of a popular antiviral drug, chloroquine phosphate (CQ), in water. The adsorption performance of SA/TA was systematically investigated, to study various effects including those of TA mass content, solution pH, adsorption time, and initial CQ concentration. Adsorption was also examined in presence of inorganic and organic coexisting substances commonly found in wastewater, and under different actual water samples. Batch experimental results indicated that SA/TA could maintain higher and more stable CQ uptakes within a wide solution pH range from 3.0 to 10.0, compared to its precursor, SA hydrogel, owing to the addition of TA-Ti(IV) coordination network. The maximum experimental CQ uptake exhibited by the 1:1 (by wt) SA/TA (SA/TA2) was as high as 0.699 mmol/g at the initial pH of 9.0. A high concentration of coexisting NaCl evidently reduced the CQ uptakes of SA/TA2 due to the electrostatic shielding effect, moreover, divalent cations including Ca(II) and Mg(II) also inhibited the adsorption of CQ due to competitive adsorption. However, humic acid had little effect on this adsorption. Considering the apparent adsorption performance, the aforementioned effects of various factors and the spectroscopic characterizations, multi-interactions are suggested for adsorption including chelation, electrostatic interactions, π-π electron donor-acceptor interaction and hydrogen bonding. SA/TA showed a slight loss in adsorption capacity toward CQ and sustained physicochemical structural stability, even after six adsorption-desorption cycles. In addition to CQ, SA/TA could be efficiently used for adsorption of two other antivirus drugs, namely, hydroxychloroquine sulfate and oseltamivir phosphate. This work provides an effective strategy for the design and fabrication of novel adsorbents that can effectively adsorb antiviral drugs over a wide pH range.
Collapse
Affiliation(s)
- Koukou Tao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Boqiang Gao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Na Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mayyada M H El-Sayed
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
33
|
Han M, Liang J, Jin B, Wang Z, Wu W, Arp HPH. Machine learning coupled with causal inference to identify COVID-19 related chemicals that pose a high concern to drinking water. iScience 2024; 27:109012. [PMID: 38352231 PMCID: PMC10863329 DOI: 10.1016/j.isci.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Various synthetic substances were utilized in large quantities during the recent coronavirus pandemic, COVID-19. Some of these chemicals could potentially enter drinking water sources. Persistent, mobile, and toxic (PMT) substances have been recognized as a threat to drinking water resources. It has not yet been assessed how many COVID-19 related substances could be considered PMT substances. One reason is the lack of high-quality experimental data for the identification of PMT substances. To solve this problem, we applied a machine learning model to identify the PMT substances among COVID-19 related chemicals. The optimal model achieved an accuracy of 90.6% based on external test data. The model interpretation and causal inference indicated that our approach understood causation between PMT properties and molecular descriptors. Notably, the screening results showed that over 60% of the COVID-19 chemicals considered are candidate PMT substances, which should be prioritized to prevent undue pollution of water resources.
Collapse
Affiliation(s)
- Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jun Liang
- School of Software, South China Normal University, Foshan 528225, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Ziwei Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Wanlu Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
34
|
Wu H, Bin L, Guo P, Zhao Y, Chen C, Chen Z, Tang B. Ecological risk assessment of the typical anti-epidemic drugs in the Pearl River Delta by tracing their source and residual characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132914. [PMID: 37939565 DOI: 10.1016/j.jhazmat.2023.132914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the anti-epidemic drugs have been used in extraordinary quantities with high intensity, and concerns have grown about their potential ecological risks due to their continued release and persistence in the receiving environments. A systematic investigation, covering the samples from hospital wastewater, effluent from wastewater treatment plants and receiving water bodies in the Pearl River Delta Region (PRDR), was carried out and aimed at tracing the sources and fate of 30 typical anti-epidemic in different water matrixes and evaluating their ecological risk. The results showed that these typical anti-epidemic drugs residues were detected in most of the sampling sites, with the highest concentration measured in hospital wastewater, whose concentrations were as high as ppb level, while the highest concentration of the surface water samples in tributaries was lower than ppb level. Anti-epidemic drugs contained in hospital wastewater and effluent from WWTPs were the main sources of drug residues in the surface water of this region. In the surface water of PRDR, although the detected concentration anti-epidemic drugs were basically in the range of 0-10 ng/L. The risk quotient of several anti-epidemic drugs, including Ciprofloxacin (CFX), Ofloxacin (OFX), Erythromycin (ETM), Clindamycin (CLI), and Sulfamethoxazole (SMX), was calculated to be a high value, which indicated that they might cause non-negligible ecological risk to the aquatic environment.
Collapse
Affiliation(s)
- Huazhi Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China.
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zhiliang Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
35
|
Ugolini V, Lai FY. Novel, alternative analytical methodology for determination of antimicrobial chemicals in aquatic environments and public use assessment: Extraction sorbent, microbiological sensitivity, stability, and applicability. Anal Chim Acta 2024; 1286:342029. [PMID: 38049233 DOI: 10.1016/j.aca.2023.342029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Assessing antimicrobial chemicals from wastewater source to recipient water systems is crucial in planning effective, policy-related interventions for antimicrobial resistance (AMR) risk mitigation. However, the capability of related analytical methods for AMR assessment has not been explored previously. There is also a lack of knowledge on the effectiveness of alternative extraction sorbents with ion-exchange functions, and little information on chemical stability from sampling to analysis as well as preservative options. Hence, our study aims to address the clear need for advanced, broad-range and microbiologically-sensitive methodologies, paired with thorough stability assessments. RESULTS Oasis® WCX ion-exchange was for the first time employed in solid-phase extraction (SPE) for antibacterials, antifungals, antivirals and human metabolites in various water matrices. Analysis was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) on a biphenyl analytical column. The optimized and validated method provided satisfactory accuracy, precision, and recovery for 53 compounds via LC-MS/MS direct injection and for up to 35 compounds via SPE-LC-MS/MS. Method quantification limits (MQLs) were determined in groundwater (0.33-54 ng L-1), surface water (0.53-75 ng L-1), effluent wastewater (2.5-470 ng L-1), and influent wastewater (11-650 ng L-1). As a novel approach, MQLs were compared with minimum inhibitory concentrations, to confirm our method's microbiological sensitivity for studying AMR. Stability assessment revealed that most compounds remained stable in standard solution at -80 °C for six months, in various waters at -20 °C for eight weeks, and during 24-h sampling at 4 °C. Sodium azide was a better preservative than sodium metabisulfite. SIGNIFICANCE Our study is an added value to the analytical methodology for water measurements of antimicrobial chemicals, in which it provides a novel, alternative method that is robust and overall more sensitive than others using generic Oasis® HLB sorbents and C18 analytical columns in SPE-LC-MS/MS. Also, the comprehensive data on antimicrobial stability helps reduce methodological uncertainty for future studies. Our method shows sufficient microbiologically-sensitivity and thus is suitable for future (inter)national regulatory water monitoring of AMR.
Collapse
Affiliation(s)
- Valentina Ugolini
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden.
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-75007, Sweden.
| |
Collapse
|
36
|
Hu S, Zhao J, Fang S, Guo K, Qi W, Liu H. Neurotoxic effects of chloroquine and its main transformation product formed after chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168043. [PMID: 37898196 DOI: 10.1016/j.scitotenv.2023.168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Pharmaceutical transformation products (TPs) generated during wastewater treatment have become an environmental concern. However, there is limited understanding regarding the TPs produced from pharmaceuticals during wastewater treatment. In this study, chloroquine (CQ), which was extensively used for treating coronavirus disease-19 (COVID-19) infections during the pandemic, was selected for research. We identified and fractionated the main TP produced from CQ during chlorine disinfection and investigated the neurotoxic effects of CQ and its main TP on zebrafish (Danio rerio) embryos. Halogenated TP353 was observed as one of the main TPs produced from CQ during chlorine disinfection. Zebrafish embryos test revealed that TP353 caused higher neurotoxicity in zebrafish larvae, as compared to the CQ, and that was accompanied by significantly decreased expression levels of the genes related to central nervous system development (e.g., gfap, syn2a, and elavl3), inhibited activity of acetylcholinesterase (AChE), reduced GFP fluorescence intensity of motor neuron axons in transgenic larvae (hb9-GFP), and reduced total swimming distance and swimming velocity of larvae during light-dark transition stimulation. The results of this study can potentially be utilized as a theoretical reference for future evaluations of environmental risks associated with CQ and its related TPs. This work presents a methodology for assessing the environmental hazards linked to the discharge of pharmaceutical TPs after wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kehui Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Saghir S, Xiao Z. Synergistic approach for synthesis of functionalized biochar for efficient adsorption of Lopinavir from polluted water. BIORESOURCE TECHNOLOGY 2024; 391:129916. [PMID: 37898366 DOI: 10.1016/j.biortech.2023.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
The COVID-19 pandemic has led to a significant increase in antibiotic consumption, along with a 70% rise in antiviral drug concentrations in aquatic ecosystems. For the effective adsorption of antibiotics, biochar was modified by incorporating layered double hydroxide (LDH) through hydrothermal method. The results showed that LDH provides additional hydroxyl groups, positive surface charges and ion exchange. Whereas biochar component provides a larger specific surface area (467.8 m2/g). Batch adsorption experiments of biochar @ layered double hydroxide (BC@LDH) showed enhanced adsorption performance (832.9 mg/g), compared to pristine LDH (420.3 mg/g) and unmodified biochar (548.5 mg/g). Adsorption data were best interpreted (R2 = 0.99) by pseudo second order, Freundlich, and Temkin isotherm models. Adsorption was a synergism of LDH and biochar physiochemical properties, whereas pore-filling was the primary mechanism. The recyclability of BC@LDH confirmed its good structural stability. This study introduces a sustainable and efficient method for synthesizing a versatile adsorbent with superior antibiotic removal.
Collapse
Affiliation(s)
- Summaira Saghir
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, People's Republic of China
| | - Zhenggang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
38
|
Dai H, Wang C, Yu W, Han J. Tracing COVID-19 drugs in the environment: Are we focusing on the right environmental compartment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122732. [PMID: 37838316 DOI: 10.1016/j.envpol.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic led to over 770 million confirmed cases, straining public healthcare systems and necessitating extensive and prolonged use of synthetic chemical drugs around the globe for medical treatment and symptom relief. Concerns have arisen regarding the massive release of active pharmaceutical ingredients (APIs) and their metabolites into the environment, particularly through domestic sewage. While discussions surrounding this issue have primarily centered on their discharge into aquatic environments, particularly through treated effluent from municipal wastewater treatment plants (WWTPs), one often overlooked aspect is the terrestrial environment as a significant receptor of pharmaceutical-laden waste. This occurs through the disposal of sewage sludge, for instance, by applying biosolids to land or non-compliant disposal of sewage sludge, in addition to the routine disposal of expired and unused medications in municipal solid wastes. In this article, we surveyed sixteen approved pharmaceuticals for treating COVID-19 and bacterial co-infections, along with their primary metabolites. For this, we delved into their physiochemical properties, ecological toxicities, environmental persistence, and fate within municipal WWTPs. Emphasis was given on lipophilic substances with log Kow >3.0, which are more likely to be found in sewage sludge at significant factions (25.2%-75.0%) of their inputs in raw sewage and subsequently enter the terrestrial environment through land application of biosolids, e.g., 43% in the United States and as high as 96% in Ireland or non-compliant practices of sewage sludge disposal in developing communities, such as open dumping and land application without prior anaerobic digestion. The available evidence underscores the importance of adequately treating and disposing of sewage sludge before its final disposal or land application in an epidemic or pandemic scenario, as mismanaged sewage sludge could be a significant vector for releasing pharmaceutical compounds and their metabolites into the terrestrial environment.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wangyang Yu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
39
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
40
|
Guo Z, He H, Liu K, Yang S, Li Z, Lai C, Liao Z, Ren X, Huang B, Pan X. Sunlight-induced degradation of COVID-19 antivirals arbidol in natural aquatic environments: Mechanisms, pathways and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119113. [PMID: 37769471 DOI: 10.1016/j.jenvman.2023.119113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Insights into COVID-19 antivirals' environmental fate and ecological risk are urgently required due to their increasing concentrations in aquatic environments, which have rarely been studied. Herein, we first investigated the photochemical transformation and the resulting alterations in toxicity of arbidol, an antiviral drug with relatively higher toxicity. The photolysis of arbidol was rapid with a rate constant of 0.106 min-1 due to its superior ultraviolet light absorption, in which the direct photolysis was predominated with a contribution of 91.5%. Despite its substantial photolysis, only 14.45% of arbidol was mineralized after 100 min, implying that arbidol and its products might have a long-term impact on aquatic environment. It was inferred that arbidol was photolyzed mainly via the loss of thiophenol, bromine, and alkylamine, based on twelve photolytic products identified. Notably, the experimental results demonstrated that the photolysis process increased the acute toxicity of arbidol, and the toxicity prediction indicated that the ecotoxicity of two photolytic products was very high with LC50 values below 0.1 mg/L. Due to the co-effect of multiple constituents, the photolytic rate observed in wastewater treatment plant effluent and in river water was comparable to that in ultra-pure water, while it was slightly enhanced in lake water. The presence of dissolved organic matter suppressed arbidol photolysis, while NO3- exhibited a promotion effect. These results would be of great significance to assess the fate and risk of COVID-19 antivirals in natural aquatic environments.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shicheng Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
41
|
Quan X, Yan B. In Situ Generated Dye@MOF/COF Heterostructure for Fluorescence Detection of Chloroquine Phosphate and Folic Acid via Different Luminescent Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54634-54642. [PMID: 37972380 DOI: 10.1021/acsami.3c11298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Metal-organic framework (MOF) and covalent-organic framework (COF) hybrid materials can combine the unique properties of MOF and COF components, and their applications in fluorescence sensing have attracted more and more attention. Herein, ZIF-90 is grown on 3D-COF by a simple in situ growing method in which the 7-amino-4-methylcoumarin (AMC) is encapsulated in ZIF-90 to construct a fluorescent sensor. Chloroquine phosphate (CQP) can coordinate with Zn2+ to decompose the ZIF-90 and release AMC. At 365 nm excitation, the ratiometric fluorescence signal AMC/3D-COF (I430/I598) increases linearly with CQP in a linear range of 4 × 10-5 to 4 × 10-4 M in urine. Under 340 nm excitation, quantitative analysis of CQP in the serum (3 × 10-6 to 4 × 10-5 M) is based on the fluorescence intensity of Zn-CQP/3D-COF (I384/I598). In addition, AMC@ZIF-90/3D-COF (1) exhibits high anti-interference and selectivity in sensing of FA with a "turn off" mode, with a correlation range of 1 × 10-5 to 1 × 10-3 M. The fluorescence color changes triggered by CQP under different excitation conditions, and the different fluorescence responses caused by CQP make it a highly secure anticounterfeiting platform. The synthesized dye@MOF/COF hybrids not only provide a new way to integrate multiple emission to design fluorescent probes for differentiation detection but also offer ideas for the design of anticounterfeiting platforms.
Collapse
Affiliation(s)
- Xueping Quan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
42
|
Chai J, Zheng J, Tong Y, Chai F, Tian M. Construction of the molecularly imprinted adsorbent based on shaddock peel biochar sphere for highly sensitive detection of ribavirin in food and water resources. ENVIRONMENTAL RESEARCH 2023; 236:116756. [PMID: 37507037 DOI: 10.1016/j.envres.2023.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Ribavirin (RBV) that is not metabolically released into the environment can contaminate the environment and even make organisms resistant to it. Therefore, it is of great significance to establish a simple and effective method for adsorbing RBV in the environment. In this study, a novel biochar-based boronate affinity molecularly imprinted polymers (C@H@B-MIPs) were synthesized. This is the first time that shaddock peel biochar sphere was used as a carrier for specific recognition of RBV. The polymerization conditions were optimized and the binding properties of RBV were studied. Benefiting from the synergistic effect of boronate affinity and surface imprinting, the C@H@B-MIPs showed rapid equilibrium kinetics of 15 min, high adsorption capacity of 18.30 mg g-1, and excellent reusability for RBV. The linear range was 0.05-100 mg L-1, and the detection limit was 0.023 mg L-1. This method was triumphant applied to the selective adsorption of RBV in food and water resources with recovery rates of 81.4-97.7%. This study provides a practical platform for the manufacture of efficient biomass-based adsorbents.
Collapse
Affiliation(s)
- Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Junlei Zheng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| |
Collapse
|
43
|
do Nascimento BF, de Araújo CMB, Del Carmen Pinto Osorio D, Silva LFO, Dotto GL, Cavalcanti JVFL, da Motta Sobrinho MA. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85344-85358. [PMID: 37382818 DOI: 10.1007/s11356-023-28242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
Collapse
Affiliation(s)
- Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Faculty of Engineering of the University of Porto, s/n, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | | | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, Av. Prof. Arthur de Sá, S/N, Recife-PE, 50.740-521, Brazil
| |
Collapse
|
44
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
45
|
Guo Z, He H, Liu K, Li Z, Yang S, Liao Z, Lai C, Ren X, Huang B, Pan X. The photolytic behavior of COVID-19 antivirals ribavirin in natural waters and the increased environmental risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131320. [PMID: 37002997 PMCID: PMC10043975 DOI: 10.1016/j.jhazmat.2023.131320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Increasing drug residues in aquatic environments have been caused by the abuse of antivirals since the global spread of the COVID-19 epidemic, whereas research on the photolytic mechanism, pathways and toxicity of these drugs is limited. The concentration of COVID-19 antivirals ribavirin in rivers has been reported to increase after the epidemic. Its photolytic behavior and environmental risk in actual waters such as wastewater treatment plant (WWTP) effluent, river water and lake water were first investigated in this study. Direct photolysis of ribavirin in these media was limited, but indirect photolysis was promoted in WWTP effluent and lake water by dissolved organic matter and NO3-. Identification of photolytic intermediates suggested that ribavirin was photolyzed mainly via C-N bond cleavage, splitting of the furan ring and oxidation of the hydroxyl group. Notably, the acute toxicity was increased after ribavirin photolysis owing to the higher toxicity of most of the products. Additionally, the overall toxicity was greater when ARB photolysis in WWTP effluent and lake water. These findings emphasize the necessity to concern about the toxicity of ribavirin transformation in natural waters, as well as to limit its usage and discharge.
Collapse
Affiliation(s)
- Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zihui Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shicheng Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
46
|
Aydın S, Ulvi A, Bedük F, Aydın ME. Efficient Removal of Analgesic and Anti-Inflammatory Drugs from Sewage Treatment Plant Effluents Using Magnetite Nanoparticles Synthesized Red Mud. WATER, AIR, AND SOIL POLLUTION 2023; 234:384. [PMID: 37323133 PMCID: PMC10249540 DOI: 10.1007/s11270-023-06404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Due to the COVID-19 epidemic, the consumption of pharmaceuticals, especially paracetamol, has sharply increased on a global scale. The increasing concentration of analgesic and anti-inflammatory drugs (AAIDs) in the aquatic medium is a global problem for human and aquatic life. Therefore, simple and effective treatment options for removing AAIDs from wastewater after the COVID-19 pandemic are needed. The removal of AAIDs (acetaminophen, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from sewage treatment plant (STP) effluents by the prepared magnetite nanoparticles synthesized from red mud (mNPs-RM) is presented for the first time in this study. The removal efficiencies of AAIDs onto mNPs-RM were determined to be between 90% (diclofenac) and 100% (naproxen, codeine, and indomethacin). Acetaminophen (paracetamol) was used as a model compound in kinetic and isotherm model studies. The adsorption of acetaminophen was matched well with the pseudo second order kinetic model. Film diffusion governed its rate mechanism. The Freundlich isotherm model preferably fitted the adsorption data with an adsorption capacity of 370 mg/g at 120 min contact time at pH 7.0 at 25 °C. Furthermore, the regenerated mNPs-RM were used four times without affecting the adsorption capacity and the magnetic separability. mNPs-RM can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Also, low cost adsorbent obtained from industrial waste could be employed to replace the high cost activated carbons for the adsorption of other micro pollutants in STP effluents. Supplementary Information The online version contains supplementary material available at 10.1007/s11270-023-06404-7.
Collapse
Affiliation(s)
- Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Fatma Bedük
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
47
|
Picó Y, Barceló D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: The need of global reconnaissance studies. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100468. [PMID: 37139099 PMCID: PMC10085870 DOI: 10.1016/j.coesh.2023.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Evidence of the increase of emerging contaminants in the environment due to the COVID-19 pandemic, such as personal protective equipment (PPE), disinfectants, pharmaceuticals, etc., has enlarged. Here we explain the variety of pathways of these emerging contaminants to enter the environment, including wastewater treatment plants, improper disposal of PPE, and runoff from surfaces treated with disinfectants. We also discuss the current state-of-art of the toxicological implications of these emerging contaminants. Initial research suggests that they may have harmful effects on aquatic organisms and human health. Future directions are suggested as further research is needed to fully understand the impacts of these contaminants on the environment and humans, as well as to develop effective approaches to mitigate their potential negative effects.
Collapse
Affiliation(s)
- Yolanda Picó
- Food and Environmental Research Group (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-University of Valencia-GV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Valencia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| |
Collapse
|
48
|
Wang R, Luo J, Li C, Chen J, Zhu N. Antiviral drugs in wastewater are on the rise as emerging contaminants: A comprehensive review of spatiotemporal characteristics, removal technologies and environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131694. [PMID: 37269566 DOI: 10.1016/j.jhazmat.2023.131694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Antiviral drugs (ATVs) are widely used to treat illnesses caused by viruses. Particularly, ATVs were consumed in such large quantities during the pandemic that high concentrations were detected in wastewater and aquatic environment. Since ATVs are not fully absorbed by the human or animal body, this results in large amounts of them being discharged into the sewage through urine or feces. Most ATVs can be degraded by microbes at wastewater treatment plants (WWTPs), while some ATVs either require deep treatment to reduce concentration and toxicity. Parent and metabolites residing in effluent posed a varying degree of risk when entering the aquatic environment, while increasing the potential of natural reservoirs for environmentally acquired antiviral drug resistance potential. There is a rising research on the behavior of ATVs in the environment has surged since the pandemic. In the context of multiple viral diseases worldwide, especially during the current COVID-19 pandemic, a comprehensive assessment of the occurrence, removal, and risk of ATVs is urgently needed. This review aims to discuss the fate of ATVs in WWTPs from various regions in the world with wastewater as the main analyzing object. The ultimate goal is to focus on ATVs with high ecological impact and regulate their use or develop advanced treatment technologies to mitigate the risk to the environment.
Collapse
Affiliation(s)
- Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinming Luo
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiamiao Chen
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
49
|
Hu S, Fang S, Zhao J, Wang G, Qi W, Zhang G, Huang C, Qu J, Liu H. Toxicity Evaluation and Effect-Based Identification of Chlorine Disinfection Products of the Anti-COVID-19 Drug Chloroquine Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7913-7923. [PMID: 37188658 DOI: 10.1021/acs.est.2c08260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guowei Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Lopez-Herguedas N, Irazola M, Alvarez-Mora I, Orive G, Lertxundi U, Olivares M, Zuloaga O, Prieto A. Comprehensive micropollutant characterization of wastewater during Covid-19 crisis in 2020: Suspect screening and environmental risk prioritization strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162281. [PMID: 36822422 PMCID: PMC9943555 DOI: 10.1016/j.scitotenv.2023.162281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/04/2023]
Abstract
Micropollutants monitoring in wastewater can serve as a picture of what is consuming society and how it can impact the aquatic environment. In this work, a suspect screening approach was used to detect the known and unknown contaminants in wastewater samples collected from two wastewater treatment plants (WWTPs) located in the Basque Country (Crispijana in Alava, and Galindo in Vizcaya) during two weekly sampling campaigns, which included the months from April to July 2020, part of the confinement period caused by COVID-19. To that aim, high-resolution mass spectrometry was used to collect full-scan data-dependent tandem mass spectra from the water samples using a suspect database containing >40,000 chemical substances. The presence of > 80 contaminants was confirmed (level 1) and quantified in both WWTP samples, while at least 47 compounds were tentatively identified (2a). Among the contaminants of concern, an increase in the occurrence of some compounds used for COVID-19 disease treatment, such as lopinavir and hydroxychloroquine, was observed during the lockdown. A prioritization strategy for environmental risk assessment was carried out considering only the compounds quantified in the effluents of Crispijana and Galindo WWTPs. The compounds were scored based on the removal efficiency, estimated persistency, bioconcentration factor, mobility, toxicity potential and frequency of detection in the samples. With this approach, 33 compounds (e.g. amantadine, clozapine or lopinavir) were found to be considered key contaminants in the analyzed samples based on their concentration, occurrence and potential toxicity. Additionally, antimicrobial (RQ-AR) and antiviral (EDRP) risk of certain compounds was evaluated, where ciprofloxacin and fluconazole represented medium risk for antibiotic resistance (1 > RQ-AR > 0.1) in the aquatic ecosystems. Regarding mixture toxicity, the computed sum of toxic unit values of the different effluents (> 1) suggest that interactions between the compounds need to be considered for future environmental risk assessments.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - M Irazola
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - I Alvarez-Mora
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|