1
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
3
|
Matias RS, Monteiro M, Sousa V, Pinho B, Guilhermino L, Valente LMP, Gomes S. A multiple biomarker approach to understand the effects of microplastics on the health status of European seabass farmed in earthen ponds on the NE Atlantic coast. ENVIRONMENTAL RESEARCH 2024; 263:120208. [PMID: 39442660 DOI: 10.1016/j.envres.2024.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The occurrence of microplastics (MPs) in aquaculture environments is a growing concern due to their potential negative effects on fish health and, ultimately, on seafood safety. Earthen pond aquaculture, a prevalent aquaculture system worldwide, is typically located in coastal and estuarine areas thus vulnerable to MP contamination. The present study investigated the possible relation between MP levels of European seabass (Dicentrarchus labrax) farmed in an earthen pond and its health status. More precisely, two groups of fish were established based on the lowest and highest number of MPs found collectively in their gastrointestinal tract (GIT), liver, and dorsal muscle: fish with ≤2 MP/g and fish with ≥4 MP/g. The intestinal integrity and oxidative stress biomarkers in the liver and dorsal muscle were evaluated in the established groups. No significant differences in the biometric and organosomatic parameters between groups were observed. The results indicated a significant increase in the number of acid goblet cells (GC) in the rectum of fish with higher MP levels (p = 0.016). Increased acid GC number may constitute a first defence strategy against foreign particles to protect the intestinal epithelium. No significant differences in oxidative stress biomarkers between the two fish groups were observed, namely in the activity of superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase in the liver, or in lipid peroxidation levels in the liver and dorsal muscle. The overall results suggest that MP levels were possibly related to an intestinal response but its potential implications on the health status of pond-farmed seabass warrant further investigation. Monitoring MP occurrence across stages of aquaculture production could help to elucidate the potential threats of MPs to fish health.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Marta Monteiro
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bia Pinho
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Lin ZY, Luo Z, Li ZF, Fu ZQ, Han FL, Li EC. Combined exposure effects: Multilevel impact analysis of cycloxaprid and microplastics on Penaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110107. [PMID: 39647643 DOI: 10.1016/j.cbpc.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In real environments, multiple pollutants often coexist, so studying the impact of a single pollutant does not fully reflect the actual situation. Cycloxaprid, a new neonicotinoid pesticide, poses significant ecological risks due to its unique mechanism and widespread distribution in aquatic environments. Additionally, the ecological effects of microplastics, another common environmental pollutant, cannot be overlooked. This study explored the ecotoxicological effects of cycloxaprid and microplastics, both alone and in combination, on Penaeus vannamei over 28 days. The results revealed significant physiological impacts, with notable changes in the shrimp immune system and hepatopancreatic energy and lipid metabolism. Key findings include alterations in hemocyanin, nitric oxide, and phenol oxidase levels, along with disturbances in Na+/K+-, Ca2+-, and Mg2+-ATPase activities. Additionally, neural signaling disruptions were evidenced by fluctuations in acetylcholine, dopamine, and acetylcholinesterase levels. Transcriptomic analysis revealed the profound influence of these pollutants on gene expression and metabolic processes in the hepatopancreas and nervous system. This comprehensive assessment underlines the potential growth impacts on shrimp and underscores the ecological risks of cycloxaprid and microplastics, offering insights for future risk assessments and biomarker identification.
Collapse
Affiliation(s)
- Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhi Luo
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China; School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
5
|
Zhou C, Wang Z, Ran M, Liu Y, Song Z. Nano-selenium ameliorates microplastics-induced injury: Histology, antioxidant capacity, immunity and intestinal microbiota of grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117128. [PMID: 39342759 DOI: 10.1016/j.ecoenv.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are pollutants widely distributed in the aquatic environments and causing various degrees of aquatic toxicity to aquatic organisms, which has attracted global attention in recent years. Nano-selenium (NSe) has been shown to have the potential to mitigate the harmful impacts of toxic substances. However, there is currently no reported evidence regarding the protective influence of NSe against the adverse effects of MPs. The aim of this study is to determine whether NSe could ameliorate the polystyrene (PS)-MPs-induced injury in grass carp (Ctenopharyngodon idella). The individuals of grass carp were assigned into three groups: (1) the control group fed with basal diet, (2) the PS group fed with basal diet and exposed to PS-MPs, and (3) the NSe group fed with diet supplemented with NSe and exposed to PS-MPs. Our results indicated that NSe administration significantly alleviated the histological damage caused by the PS-MPs in the liver and intestine with lower goblet cell count and larger villus height in the intestine, and significantly lower damage score in the liver. Moreover, NSe mitigated PS-MPs-induced oxidative stress through restoring the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) except the intestinal CAT activity. Furthermore, NSe supplementation could help fish maintain lower transcriptional level of the immune-related genes (Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88)), inflammation-related genes (major histocompatibility complex class II (MHC-II) and interleukin 8 (IL-8)) and antioxidant enzyme-related genes (nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) and kelch-like ECH-associated protein 1 (Keap-1)) after PS-MPs exposure. Besides, NSe supplementation dramatically helped maintain the intestinal microbial composition, for example, the proportion of Proteobacteria in the grass carp intestine of the NSe group (41 %) was similar to that of the control group (34 %) while 85 % of the PS group. NSe also played a significant protective role in intestinal microbial diversity, effectively resisting the damage on intestinal microbial diversity due to PS-MPs exposure. PS-MPs reduced the beneficial bacteria and increased the pathogenic microorganism like Aeromonas, which was undeniable signs of intestinal dysbiosis. Functional analysis indicated that PS-MPs affected intestinal microbiota functions like inhibition of metabolism, while NSe could significantly alleviate the damage. Our findings suggested that NSe could ameliorate PS-MPs-induced injury, which could contribute to the better understanding of the ecotoxicological effects of MPs on fish and help develop relevant mitigation strategies.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Sun M, Zhang M, Di F, Bai W, Sun J, Zhang M, Sun J, Li M, Liang X. Polystyrene nanoplastics induced learning and memory impairments in mice by damaging the glymphatic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116874. [PMID: 39153278 DOI: 10.1016/j.ecoenv.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The excessive usage of nanoplastics (NPs) has posed a serious threat to the ecological environment and human health, which can enter the brain and then result in neurotoxicity. However, research on the neurotoxic effects of NPs based on different exposure routes and modifications of functional groups is lacking. In this study, the neurotoxicity induced by NPs was studied using polystyrene nanoplastics (PS-NPs) of different modifications (PS, PS-COOH, and PS-NH2). It was found that PS-NH2 through intranasal administration (INA) exposure route exhibited the greatest accumulation in the mice brain after exposure for 7 days. After the mice were exposed to PS-NH2 by INA means for 28 days, the exploratory ability and spatial learning ability were obviously damaged in a dose-dependent manner. Further analysis indicated that these damages induced by PS-NH2 were closely related to the decreased ability of glymphatic system to clear β-amyloid (Aβ) and phosphorylated Tau (P-Tau) proteins, which was ascribed to the loss of aquaporin-4 (AQP4) polarization in the astrocytic endfeet. Moreover, the loss of AQP4 polarization might be regulated by the NF-κB pathway. Our current study establishes the connection between the neurotoxicity induced by PS-NPs and the glymphatic system dysfunction for the first time, which will contribute to future research on the neurotoxicity of NPs.
Collapse
Affiliation(s)
- Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fanglin Di
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weijie Bai
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Mingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jinlong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Xue Liang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
8
|
Chen YT, Xu RQ, Cheng JW, Singhania RR, Chen CW, Dong CD, Hsieh SL. Immunotoxicity and oxidative damage in Litopenaeus vannamei induced by polyethylene microplastics and copper co-exposure. MARINE POLLUTION BULLETIN 2024; 205:116683. [PMID: 38972218 DOI: 10.1016/j.marpolbul.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This study examines the combined effects of polyethylene microplastics (PE-MP) and copper (Cu2+) on the immune and oxidative response of Litopenaeus vannamei. PE-MP adsorbed with Cu2+ at 2.3, 6.8, and 16.8 ng (g shrimp)-1) were injected into L. vannamei. Over 14 days, survival rates were monitored, and immune and oxidative stress parameters were assessed. The results showed that combined exposure to PE-MP and Cu2+ significantly reduced the survival rate and decreased total haemocyte count. Immune-related parameters (phagocytic rate, phenoloxidase and superoxide dismutase (SOD)) and antioxidant-related parameters (SOD, catalase and glutathione peroxidase mRNA and enzyme) also decreased, while respiratory burst activity significantly increased, indicating immune and antioxidant system disruption. Additionally, there was a significant increase in oxidative stress, as measured by malondialdehyde levels. Histopathological analysis revealed severe muscle, hepatopancreas, and gill damage. These results suggest that simultaneous exposure to PE-MP and Cu2+ poses greater health risks to white shrimp.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jia-Wei Cheng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
9
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
König Kardgar A, Doyle D, Warwas N, Hjelleset T, Sundh H, Carney Almroth B. Microplastics in aquaculture - Potential impacts on inflammatory processes in Nile tilapia. Heliyon 2024; 10:e30403. [PMID: 38726173 PMCID: PMC11079099 DOI: 10.1016/j.heliyon.2024.e30403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Darragh Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Warwas
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Terese Hjelleset
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Zhao Y, Ma C, Wei W, Wang Y, Cao H, Cui N, Liu Y, Liang H. Effects of single and combined exposure of virgin or aged polyethylene microplastics and penthiopyrad on zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171160. [PMID: 38395170 DOI: 10.1016/j.scitotenv.2024.171160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China.
| |
Collapse
|
13
|
Li Q, Tan L, Wang J. Single and combined toxic effects of nCu and nSiO 2 on Dunaliella salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30256-30268. [PMID: 38602639 DOI: 10.1007/s11356-024-33130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Laoshan Campus, Qingdao, 266100, China.
| |
Collapse
|
14
|
Sun Y, Deng Q, Zhang Q, Zhou X, Chen R, Li S, Wu Q, Chen H. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106423. [PMID: 38442589 DOI: 10.1016/j.marenvres.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microplastics (5 mm - 1 μm) have become one of the major pollutants in the environment. Numerous studies have shown that microplastics can have negative impacts on aquatic organisms, affecting their liver function levels. However, the extent of these effects and their potential toxicological mechanisms are largely unknown. In this study, a meta-analysis and systematic review were conducted to assess the effects of microplastics on fish liver function and summarize the potential toxicological mechanisms of microplastic-induced liver toxicity. The meta-analysis results indicate that compared to the control group, exposure to microplastics significantly affects fish liver indicators: aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), alkaline phosphatase (ALP) (p < 0.001), total protein (TP) (p < 0.001), and lactate dehydrogenase (LDH) (p < 0.001), including oxidative stress indicators: superoxide dismutase (SOD) (p < 0.001), glutathione S-transferase (GST) (p < 0.001), glutathione (GSH) (p < 0.001), and malondialdehyde (MDA) (p < 0.001) in fish liver. For fish living in different environments, the potential toxicological mechanisms of microplastics exposure on fish liver may exhibit some differences. For freshwater fish, the mechanism may be that microplastics exposure causes overproduction of reactive oxygen species (ROS) in fish hepatocyte mitochondria. ROS promotes the expression of toll-like receptor 2 (TLR2) and activates downstream molecules myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) of the TLR2 signaling pathway, leading to phosphorylation of NF-κB p65. This leads to the release of inflammatory factors and oxidative stress and inflammation in fish liver. In addition, for seawater fish, the mechanism may be that microplastics exposure can cause damage or death of fish hepatocytes, leading to continuous pathological changes, inflammation, lipid and energy metabolism disorders, thereby causing significant changes in liver function indexes.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
15
|
Zheng Y, Xiaoxian L, Hu J, Sun Y, Zhu H, Xu G. Chlorella alleviates the intestinal damage of tilapia caused by microplastics. CHEMOSPHERE 2024; 353:141644. [PMID: 38442774 DOI: 10.1016/j.chemosphere.2024.141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 μm group (C) and 750 (D) μm group, 75 nm + 7.5 μm+750 μm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| | - Lu Xiaoxian
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Jiawen Hu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Haojun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
16
|
Chen YT, Ding DS, Lim YC, Dong CD, Hsieh SL. Combined toxicity of microplastics and copper on Goniopora columns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123515. [PMID: 38346639 DOI: 10.1016/j.envpol.2024.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
As microplastics (MP) become ubiquitous, their interactions with heavy metals threatens the coral ecosystem. This study aimed to assess the combined toxicity of MP and copper (Cu) in the environment of coral. Goniopora columna was exposed to polyethylene microplastics (PE-MP) combined with Cu2+ at 10, 20, 50, 100, and 300 μg/L for 7 days. Polyp length and adaptability were recorded daily, and coral samples were collected at 1, 3, 5, and 7 days to analyse zooxanthellae density and antioxidant activity. Tissue observations and the analysis of MP and Cu2+ accumulation were conducted on the 7th day. After 1 day of exposure, PE-MP combined with different concentrations of Cu2+ significantly decreased polyp length and adaptability compared with PE-MP alone. Simultaneously, a significant increase in malondialdehyde (MDA) content, lead to coral oxidative stress, which was a combined effect with PE-MP. After 3 days of exposure, PE-MP combined with Cu2+ at >50 μg/L significantly reduced zooxanthellae density, damaging the coral's symbiotic relationship. In antioxidant enzyme activity, superoxide dismutase (SOD) activity decreased significantly after 1 day of exposure. After 3 days of exposure, glutathione peroxidase (GPx) activity significantly increased with Cu2+ at >20 μg/L. After 5 days of exposure, PE-MP combined with different concentrations of Cu2+ significantly reduced catalase (CAT), glutathione (GSH), and glutathione transferase (GST) activity, disrupting the antioxidant enzyme system, and acting antagonistically to PE-MP alone. Tissue observations revealed that the PE-MP combined with Cu2+ at >50 μg/L caused severe mesenteric atrophy, vacuolar, and Cu2+ accumulation in the coral mesenteric compared with PE-MP alone. The results suggest that combined exposure of PE-MP and copper leads to more severe oxidative stress, disruption antioxidant enzyme system, tissue damage, and Cu2+ accumulation, resulting in a significant maladaptation of corals to the environment.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
17
|
Jahan I, Chowdhury G, Rafi S, Ashab MA, Sarker M, Chakraborty A, Couetard N, Kabir MA, Hossain MA, Iqbal MM. Assessment of dietary polyvinylchloride, polypropylene and polyethylene terephthalate exposure in Nile tilapia, Oreochromis niloticus: Bioaccumulation, and effects on behaviour, growth, hematology and histology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123548. [PMID: 38355089 DOI: 10.1016/j.envpol.2024.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Microplastics (MPs) have been recognized as emerging aquatic pollutants receiving major concern due to their detrimental effects on aquatic life. Nile Tilapia, Oreochromis niloticus is a model species considered in toxicological studies to address the effects of pollutants in freshwater animals. However, comprehensive knowledge comparing the impacts on fish across various MPs polymers is scarce. Therefore, the overarching aim of the current study was to examine the bioconcentration of MPs polymers: polyvinylchloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET), and their toxic effects on growth, and behavioral responses, hematology, and histology of gills, liver, and intestine in O. niloticus. Fishes were subjected to a 21-day dietary exposure to MPs by assigning them into six treatment groups: T1 (4% of PVC), T2 (4% of PP), T3 (4% of PET), T4 (8% of PVC), T5 (8% of PP), T6 (8% of PET), and control (0% of MPs), to assess the effects on fish across the polymers and dosage. Results showed several abnormalities in anatomical and behavioral parameters, lower growth, and high mortality in MPs-exposed fish, indicating a dose-dependent relationship. The elevated dosage of polymers raised the bioavailability of PVC, PP, and PET in gills and gut tissues. Noteworthy erythrocyte degeneration referred to cytotoxicity and stress imposed by MPs, whereas the alterations in hematological parameters were possibly due to blood cell damage, also indicating mechanisms of defense against MPs toxicity. Histopathological changes in the gills, liver, and intestine confirmed the degree of toxicity and associated dysfunctions in fish. A higher sensitivity of O. niloticus to PET-MPs compared to other polymers is likely due to its chemical properties and species-specific morphological and physiological characteristics. Overall, the present study reveals valuable insights into the emerging threat of MPs toxicity in freshwater species, which could be supportive of future toxicological research.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Saba Rafi
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station, University of the Basque Country (PiE-UPV/EHU), 48620, Plentzia, Bizkaia, Spain.
| | - Md Atique Ashab
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Mukta Sarker
- Department of Coastal and Marine Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Ananya Chakraborty
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650, Banyuls-sur-mer, France.
| | - Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Coastal Marine Ecosystem Research Centre, Central Queensland University, Gladstone, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, QLD 4701, Australia.
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
18
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Ma L, Zhang L, Zhang S, Zhou M, Huang W, Zou X, He Z, Shu L. Soil protists are more resilient to the combined effect of microplastics and heavy metals than bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167645. [PMID: 37806593 DOI: 10.1016/j.scitotenv.2023.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Heavy metals and micro-/nanoplastic pollution seriously threaten the environment and ecosystems. While many studies investigated their effects on diverse microbes, few studies have focused on soil protists, and it is unclear how soil protists respond to the combined effect of micro-/nanoplastics and heavy metals. This study investigated how soil protistan and bacterial communities respond to single or combined copper and micro-/nanoplastics. The bacterial community exhibited an instantaneous response to single copper pollution, whereas the combined pollution resulted in a hysteresis effect on the protistan community. Single and combined pollution inhibited the predation of protists and changed the construction of ecological networks. Though single and combined pollution did not significantly affect the overall community structure, the exposure experiment indicated that combined pollution harmed soil amoeba's fitness. These findings offer valuable new insights into the toxic effects of single and combined pollution of copper and plastics on soil protistan and bacterial communities. Additionally, this study shows that sequencing-based analyses cannot fully reflect pollutants' adverse effects, and both culture-independent and dependent methods are needed to reveal the impact of pollutants on soil microbes.
Collapse
Affiliation(s)
- Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Bao R, Cheng Z, Peng L, Mehmood T, Gao L, Zhuo S, Wang L, Su Y. Effects of biodegradable and conventional microplastics on the intestine, intestinal community composition, and metabolic levels in tilapia (Oreochromis mossambicus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106745. [PMID: 37944327 DOI: 10.1016/j.aquatox.2023.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Despite growing interest in conventional microplastics (CMPs) and their toxicological effects on aquatic species, little is known about biodegradable microplastics (BMPs) and their corresponding implications for aquatic life. Here, tilapia (Oreochromis mossambicus) were semi-statically exposed for 14 days to the bio-based plastic polylactic acid (PLA, 100 μg/L, 2.52 ± 0.46 μm) and the petroleum-based plastic polyvinyl chloride (PVC, 100 μg/L, 1.58 ± 0.36 μm). The results showed that ingesting the above two types of microplastics (MPs) led to oxidative stress in the fish gut, and damage to gut tissues and organelles, and PLA resulted in more obvious gut tissue edema than PVC. Furthermore, PLA caused increased levels of gut microbiota dysbiosis and a decrease in the abundance of the genus Cetobacterium, which is linked to vitamin B-12 synthesis, whereas an opposite relationship was observed on PVC. Metabolomic analysis indicated that PVC caused a significant down-regulation of orotic acid, co-metabolite of folic acid with vitamin B-12, while PLA did not affect orotic acid, which may lead to the accumulation of folic acid in fish. The joint analysis found that MPs disturbed gut metabolism homeostasis, implying that abnormal gut microbiota metabolites may be a key mechanism for MPs to induce tissue damage and oxidative stress in the gut. Overall, this study systematically illustrates the differential toxic effects of BMPs and CMPs on tilapia through gut microbiota and metabolite interactions, which will contribute to assessing the risks of BMPs to organismal health.
Collapse
Affiliation(s)
- Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China
| | - Zhiruo Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China.
| | - Tariq Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China
| | - Shengchi Zhuo
- Eternal Materials Co., Ltd. Suzhou, Jiangsu Province 215000, PR China
| | - Li Wang
- Eternal Materials Co., Ltd. Suzhou, Jiangsu Province 215000, PR China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province 570228, PR China
| |
Collapse
|
21
|
Barros J, Kumar S, Seena S. Does functionalised nanoplastics modulate the cellular and physiological responses of aquatic fungi to metals? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122549. [PMID: 37730145 DOI: 10.1016/j.envpol.2023.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Co-contamination of freshwaters by nanoplastics (NPs; ≤ 1 μm) and metals is an emerging concern. Aquatic hyphomycetes play a crucial role as primary decomposers in these ecosystems. However, concurrent impacts of NPs and metals on the cellular and physiological activities of these fungi remain poorly understood. Here, the effects of environmentally realistic concentrations of two types of polystyrene (PS) NPs (bare and -COOH; up to 25 μg L-1) and copper (Cu; up to 50 μg L-1) individually and all possible combinations (NPs types and Cu) on Articulospora tetracladia, a prevalent aquatic hyphomycete, were investigated. Endpoints measured were intracellular reactive oxygen species accumulation, plasma membrane disruption and fungal growth. The results suggest that functionalised (-COOH) NPs enhance Cu adsorption, as revealed by spectroscopic analyses. Notably, NPs, Cu and their co-exposure to A. tetracladia can lead to ROS accumulation and plasma membrane disruption. In most cases, exposure to treatments containing -COOH NPs with Cu showed greater cellular response and suppressed fungal growth. By contrast, exposure to Cu individually showed stimulatory effects on fungal growth. Overall, this study provides novel insight that functionalisation of NPs facilitates metal adsorption, thus modulating the impacts of metals on aquatic fungi.
Collapse
Affiliation(s)
- Juliana Barros
- Marine and Environmental Sciences Centre (MARE)/Rede de Investigação Aquática (ARNET), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, South Korea; Department of Chemistry, School of Basic & Applied Sciences, Harcourt Butler Technical University, Kanpur 208002 Uttar Pradesh, India
| | - Sahadevan Seena
- Marine and Environmental Sciences Centre (MARE)/Rede de Investigação Aquática (ARNET), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
22
|
Wang Y, Zhao Y, Liang H, Ma C, Cui N, Cao H, Wei W, Liu Y. Single and combined effects of polyethylene microplastics and acetochlor on accumulation and intestinal toxicity of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122089. [PMID: 37364755 DOI: 10.1016/j.envpol.2023.122089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The co-exposure of microplastics (MPs) and other contaminants has aroused extensive attention, but the combined impacts of MPs and pesticides remain poorly understood. Acetochlor (ACT), a widely used chloroacetamide herbicide, has raised concerns for its potential bio-adverse effects. This study evaluated the influences of polyethylene microplastics (PE-MPs) for acute toxicity, bioaccumulation, and intestinal toxicity in zebrafish to ACT. We found that PE-MPs significantly enhanced ACT acute toxicity. Also, PE-MPs increased the accumulation of ACT in zebrafish and aggravate the oxidative stress damage of ACT in intestines. Exposure to PE-MPs or/and ACT causes mild damage to the gut tissue of zebrafish and altered gut microbial composition. In terms of gene transcription, ACT exposure triggered a significant increase in inflammatory response-related gene expressions in the intestines, while some pro-inflammatory factors were found to be inhibited by PE-MPs. This study provides a new perspective on the fate of MPs in the environment and on the assessment of the combined effects of MPs and pesticides on organisms.
Collapse
Affiliation(s)
- Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China.
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| |
Collapse
|
23
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Wei W, Yang Q, Xiang D, Chen X, Wen Z, Wang X, Xu X, Peng C, Yang L, Luo M, Xu J. Combined impacts of microplastics and cadmium on the liver function, immune response, and intestinal microbiota of crucian carp (Carassius carassius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115104. [PMID: 37295303 DOI: 10.1016/j.ecoenv.2023.115104] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and the heavy metal cadmium (Cd) have attracted global attention for their toxicological interactions in aquatic organisms. The purpose of this investigation was evaluating the effect of MPs (1 mg L-1) and Cd (5 mg L-1) on the liver function, immune response of crucian carp (Carassius carassius) after 96 h exposure, and intestinal microbiota after 21 days, respectively. Co-exposure to MPs and Cd significantly enhanced MP accumulation in the liver of the crucian carp compared to the accumulation with exposure to MPs alone. Co-exposure to MPs and Cd triggered notable histopathological alterations accompanied by increased hepatic cell necrosis and inflammation, and was associated with higher aspartate aminotransferase and alanine aminotransferase levels, lower superoxide dismutase and catalase activity levels, but higher malondialdehyde content and total antioxidant capacity in the liver. Moreover, the combined treatment of MPs and Cd led to the up-regulated transcription of genes related to immune response, such as interleukin 8 (il-8), il-10, il-1β, tumor necrosis factor-α, and heat shock protein 70, both in the liver and spleen. Co-exposure to MPs and Cd reduced the variety and abundance of the intestinal microbiota in the crucian carp. Our research indicates that the combined exposure to MPs and Cd may exert synergistic toxic effects on crucian carp, which could impede the sustainable growth of the aquaculture industry and pose potential risks to food safety.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiufeng Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Dan Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
25
|
Chen Q, Zhao H, Liu Y, Jin L, Peng R. Factors Affecting the Adsorption of Heavy Metals by Microplastics and Their Toxic Effects on Fish. TOXICS 2023; 11:490. [PMID: 37368590 DOI: 10.3390/toxics11060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Fish not only constitute an important trophic level in aquatic ecosystems but also serve as an important source of protein for human beings. The health of fish is related to the sustained and healthy development of their entire aquatic ecosystem. Due to the widespread use, mass production, high disposal frequency, and degradation resistance of plastics, these pollutants are released into aquatic environments on a large scale. They have become one of the fastest growing pollutants and have a substantial toxic effect on fish. Microplastics have intrinsic toxicity and can absorb heavy metals discharged into water. The adsorption of heavy metals onto microplastics in aquatic environments is affected by many factors and serves as a convenient way for heavy metals to migrate from the environment to organisms. Fish are exposed to both microplastics and heavy metals. In this paper, the toxic effects of heavy metal adsorption by microplastics on fish are reviewed, and the focus is on the toxic effects at the individual (survival, feeding activity and swimming, energy reserves and respiration, intestinal microorganisms, development and growth, and reproduction), cellular (cytotoxicity, oxidative damage, inflammatory response, neurotoxicity, and metabolism) and molecular (gene expression) levels. This facilitates an assessment of the pollutants' impact on ecotoxicity and contributes to the regulation of these pollutants in the environment.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
26
|
Ribeiro F, Pavlaki MD, Loureiro S, Sarmento RA, Soares AMVM, Tourinho PS. Systematic Review of Nano- and Microplastics' (NMP) Influence on the Bioaccumulation of Environmental Contaminants: Part II-Freshwater Organisms. TOXICS 2023; 11:474. [PMID: 37368574 DOI: 10.3390/toxics11060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Nano- and microplastic fragments (NMPs) exist ubiquitously in all environmental compartments. The literature-based evidence suggests that NMPs interact with other environmental contaminants in freshwater ecosystems through sorption mechanisms, thereby playing a vector role. Chemically bound NMPs can translocate throughout the environment, reaching long distances from the contaminant discharge site. In addition, they can be ab/adsorbed by freshwater organisms. Although many studies show that NMPs can increase toxicity towards freshwater biota through the carrier role, little is known regarding their potential to influence the bioaccumulation of environmental contaminants (EC) in freshwater species. This review is part II of a systematic literature review regarding the influence of NMPs on bioaccumulation. Part I deals with terrestrial organisms and part II is devoted to freshwater organisms. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA ScR) was used for the literature search and selection. Only studies that assessed the bioaccumulation of EC in the presence of NMPs and compared this with the bioaccumulation of the isolated EC were considered. Here, we discuss the outcome of 46 papers, considering NMPs that induced an increase, induced a decrease, or caused no effect on bioaccumulation. Lastly, knowledge gaps are identified, and future directives for this area of research are discussed.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria D Pavlaki
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula S Tourinho
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
27
|
Lin X, Wang Y, Yang X, Watson P, Yang F, Liu H. Endocrine disrupting effect and reproductive toxicity of the separate exposure and co-exposure of nano-polystyrene and diethylstilbestrol to zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161100. [PMID: 36566849 DOI: 10.1016/j.scitotenv.2022.161100] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The co-occurrence of nanoplastics and other pollutants in the environment has gotten a lot of attention, but information on the biological toxicity of their co-exposure was limited. This study aims to reveal the endocrine disrupting effect and reproductive toxicity of nano-polystyrene (NPS) and diethylstilbestrol (DES) to zebrafish under separate and combined exposure. Results indicated that NPS and DES exposure in isolation reduced the hepatosomatic index and gonadosomatic index, and altered the cell maturity in gonads in both cases. Even worse, the co-exposure of NPS and DES exacerbated the damage to the liver and gonads of fish. The two pollutants individually inhibited the secretion of sex hormones and vitellogenin. The inhibition effect of DES was especially dose-dependent, while NPS had weaker effect than DES. Their combined action on the secretion of sex hormones and vitellogenin exhibited additive effect. However, NPS did not affect the content of thyroid hormones in fish, and also had no significant effect on the reduction of thyroid hormone caused by DES exposure. Furthermore, their co-exposure decreased the cumulative eggs from 1031 to 306, and the spawning number from 12 to 8. The fertilization rate and hatchability rete of eggs were reduced by 30.9% and 40.4%, respectively. The abnormality rate of embryos was 65.0%, significantly higher than in separate DES and NPS groups (55.7% and 30.8% respectively). The abnormal development of offspring was mainly pericardial cyst, spinal curvature, and growth retardation.
Collapse
Affiliation(s)
- Xinyu Lin
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yuanning Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Peter Watson
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs 06268, CT, United States
| | - Feifei Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs 06268, CT, United States
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
28
|
Sayed AEDH, Hana MN, Hamed M, Abdel-Latif HMR, Lee JS, Soliman HAM. Protective efficacy of dietary natural antioxidants on microplastic particles-induced histopathological lesions in African catfish (Clarias gariepinus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24424-24440. [PMID: 36342605 PMCID: PMC9938831 DOI: 10.1007/s11356-022-23789-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/19/2022] [Indexed: 05/04/2023]
Abstract
Microplastic particles (MPs) are a common environmental pollutant easily ingested by fish in aquaculture. The current study evaluated the protective efficacies of some antioxidant, e.g., lycopene, citric acid, and chlorella, against the toxic effects of MP ingestion by Clarias gariepinus using histopathological biomarkers. Five experimental groups were established, a control group receiving only a standard diet, a group exposed to 500 mg/kg MP concomitant with the standard diet, and three antioxidant groups exposed to MPs plus either lycopene (500 mg/kg), citric acid (30 g/kg), or chlorella (50 g/kg) in the standard diet. After 15 days, fish were sacrificed for histological and histochemical examinations. Histological analysis of the kidney for group 2 (fed 500 mg/kg MPs alone) revealed distributed tissue dissociation, regional glomerular hypertrophy or shrinkage, melanomacrophage accumulation, and expansion of Bowman's space, while liver tissue exhibited dilation and rupture of the central vein wall, hemorrhage, cytoplasmic vacuolation, and cellular necrosis or apoptosis. Fish exposed to MPs also exhibited connective tissue fiber accumulation around renal blood vessels, renal tubules, the central hepatic vein, hepatic blood sinusoids, and serosal, muscle, and submucosal layers of the intestine. In addition, MP exposure reduced carbohydrate (mainly glycogen) contents in the brush borders and basement membranes of renal tubules, glomeruli, and intestinal tissues as well as in the cytoplasm of hepatocytes. These signs of renal, hepatic, and intestinal histopathology were fully or partially reversed by dietary lycopene, chlorella, or citric acid. Enhancing dietary antioxidants is an effective strategy for preventing MP toxicity in Clarias gariepinus in aquaculture.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Faculty of Science, Zoology Department, Assiut University, Assiut, 71516, Egypt.
| | - Mervat N Hana
- Faculty of Science, Zoology Department, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Hamed
- Faculty of Science, Zoology Department, Al Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hany M R Abdel-Latif
- Faculty of Veterinary Medicine, Department of Poultry and Fish Diseases, Alexandria University, Alexandria, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hamdy A M Soliman
- Faculty of Science, Zoology Department, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
29
|
Cheng Y, Yang S, Yin L, Pu Y, Liang G. Recent consequences of micro-nanaoplastics (MNPLs) in subcellular/molecular environmental pollution toxicity on human and animals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114385. [PMID: 36508803 DOI: 10.1016/j.ecoenv.2022.114385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Microplastics and Nanoplastics (MNPLs) pollution has been recognized as the important environmental pollution caused by human activities in addition to global warming, ozone layer depletion and ocean acidification. Most of the current studies have focused on the toxic effects caused by plastics and have not actively investigated the mechanisms causing cell death, especially at the subcellular level. The main content of this paper focuses on two aspects, one is a review of the current status of MNPLs contamination and recent advances in toxicological studies, which highlights the possible concentration levels of MNPLs in the environment and the internal exposure of humans. It is also proposed to pay attention to the compound toxicity of MNPLs as carriers of other environmental pollutants and pathogenic factors. Secondly, subcellular toxicity is discussed and the modes of entry and intracellular distribution of smaller-size MNPLs are analyzed, with particular emphasis on the importance of organelle damage to elucidate the mechanism of toxicity. Importantly, MNPLs are a new type of environmental pollutant and researchers need to focus not only on their toxicity, but also work with governments to develop measures to reduce plastic emissions, optimize degradation and control plastic aggression against organisms, especially humans, from multiple perspectives.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
30
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Dong R, Zhou C, Wang S, Yan Y, Jiang Q. Probiotics ameliorate polyethylene microplastics-induced liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:261-272. [PMID: 36122639 DOI: 10.1016/j.fsi.2022.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MPs) are environmental pollutants that can cause varying levels of aquatic toxicity. Probiotics have been shown to reduce the negative effects of toxic substances. However, the protective effect of probiotics against the adverse effects of MPs has yet to be reported. The current study sought to determine the effects of the commercial probiotic AquaStar® Growout on polystyrene (PS)-MPs-mediated hepatic oxidative stress in Nile tilapia (Oreochromis niloticus). Fishes were assigned into four groups: the first group was the control, the second group was exposed to 1 mg/L of 0.5 μm PS-MPs, and the third and fourth groups were exposed to 1 mg/L of 0.5 μm PS-MPs and pre-fed with probiotics at levels of 3 g/kg and 6 g/kg diet, respectively. At the end of the experiment, probiotics administration reversed liver damage caused by the PS-MPs, reducing serum levels of malondialdehyde, aspartate aminotransferase, and alanine aminotransferase, and increasing the total antioxidant capacity. Furthermore, probiotics alleviated PS-MPs-induced oxidative stress by restoring antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase) and reducing oxidized glutathione and enhancing the redox state. Besides, probiotics supplementation decreased the transcriptional level of C-reactive protein and tumor necrosis factor-α following PS-MPs exposure. Furthermore, probiotics counteracted PS-MPs-associated reactive oxygen species production and mitogen-activated protein kinases (MAPKs) phosphorylation status. These findings suggested that probiotics could decrease liver damage caused by PS-MPs through their antioxidant properties and modulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Changlei Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuyue Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
32
|
Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab ( Eriocheir sinensis). Antioxidants (Basel) 2022; 11:antiox11102029. [PMID: 36290752 PMCID: PMC9598082 DOI: 10.3390/antiox11102029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-051085554198
| |
Collapse
|