1
|
Wang Q, Wang B, Hou T, Ma F, Chang H, Dong Z, Wan Y. Screening estimates of bioaccumulation factors for 4950 per- and polyfluoroalkyl substances in aquatic species. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137672. [PMID: 40010215 DOI: 10.1016/j.jhazmat.2025.137672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The considerable variability in bioaccumulation factors (BAFs) of per- and polyfluoroalkyl substances (PFAS) across aquatic species, driven by the diversity of PFAS, complex water conditions, and species differences, underscores the resource-intensive nature of relying on experimental data. To develop a robust and effective approach for predicting BAFs, a predictive framework using a three-level stacking deep ensemble learning model was established. Initially, we compiled a substantial dataset of BAFs, encompassing a wide variety of PFAS across both marine and freshwater species. The stacking model demonstrated strong performance, achieving R-squared (R2) values of 0.94 and 0.89, and root-mean-square errors (RMSE) of 0.88 and 1.17 for training and testing, respectively. External validation revealed that 60 % and 90 % of predictions fell within 2-fold and 4-fold differences, respectively, from the observed values. Using this model, we predicted BAFs for 4950 PFAS in 54 global edible fish species, with the predicted median BAF values ranging from 22 L/kg to 477.09 L/kg. The results indicated that PFAS with multiple functional groups (e.g., benzene rings and ketones) exhibited higher BAFs. Finally, an accessible online tool (https://pfasbaf.hhra.net/) was launched to facilitate BAF predictions. This newly released application promises to offer valuable support for environmental risk management and policymaking efforts.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bixuan Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ting Hou
- The Bureau of Ecology and Environment of the Wulanchabu, Wuluanchabu 012000, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Zhaomin Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; School of Public Health, Southeast University, Nanjing 210000, China.
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Soares LOS, de Araujo GF, Gomes TB, Júnior SFS, Cuprys AK, Soares RM, Saggioro EM. Antioxidant system alterations and oxidative stress caused by polyfluoroalkyl substances (PFAS) in exposed biota: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179395. [PMID: 40245819 DOI: 10.1016/j.scitotenv.2025.179395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Contamination of aquatic and terrestrial organisms by Perfluoroalkyl substances (PFAS), emerging contaminants, is widespread, as these compounds are present in water, soil, air, and food, owing to their environmental persistence. PFAS exposure induces biochemical process alterations associated with the disruption of the antioxidant defense system in several species. This review aims to discuss how PFAS-induced antioxidant system alterations lead to changes in biochemical processes in different organisms exposed to these pollutants. This disruption, then leads to an imbalance in antioxidant defense systems, contributing to the formation of reactive oxidative species (ROS), which, in turn, can be exacerbate oxidative stress, induce cellular damage, enhance lipid peroxidation, destabilize lysosomal membranes, and cause genotoxic effects, ultimately compromising DNA integrity. In acute tests, PFAS have led to mortality, growth inhibition, diminished behavioral and locomotor abilities, and reproductive impairment. PFAS-induced effects differ with varying species or types of substances, and further bioaccumulation through food chains exacerbates environmental contamination, carrying considerable risks. These findings demonstrate the complex and enduring impact of PFAS on environmental health, emphasizing the importance of this review in corroborating studies on sub-lethal toxicity in exposed organisms and how these effects reflect on the environment.
Collapse
Affiliation(s)
- Lorena Oliveira Souza Soares
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Gabriel Farias de Araujo
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Thais Braga Gomes
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Agnieszka Katarzyna Cuprys
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Raquel Moraes Soares
- Post-Graduate Program in Environmental Technology and Water Resources, Department of Civil and Environmental Engineering - FT, University of Brasília, Darcy Ribeiro Campus, Via L3 Norte, 70910-900 Brasília, DF, Brazil
| | - Enrico Mendes Saggioro
- Laboratory of Environmental Health Assessment and Promotion, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Public Health and Environment, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Heath C, Castaneda A, Ornstein E, de Navarro MG, McNamee B, Najera S, Calzadilla D, Quinete N. Per- and Polyfluoroalkyl Substances (PFAS) Composition and Distribution in Surface Water of the Miccosukee Indian Reservation, Everglades and Tributaries in the Coastal Environment of Miami, Florida. ENVIRONMENTAL RESEARCH 2025:121627. [PMID: 40246267 DOI: 10.1016/j.envres.2025.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
PFAS have a well-documented history of adverse human health effects and have been detected in both urban environments and remote rural areas. In this study, PFAS concentrations were monitored in canals discharging into Biscayne Bay (Miami, FL) and compared to the surface water in canals and marshes within the Miccosukee Indian Reservation of Everglades National Park to assess PFAS contamination levels in urban and rural environments. Solid phase extraction was performed on 250 mL water samples using Strata-AW-XL cartridges, followed by liquid chromatography tandem mass spectrometry. The sum of PFAS concentrations ranged between 33.37 - 209.1 ng/L along the Miami canals. PFAS have been detected for the first time in the Miccosukee Indian Reservation, with levels ranging from 25.62 - 124.8 ng/L. The most abundant compounds were perfluorooctanesulfonate (PFOS) with a mean concentration of 17.66 ± 8.24 ng/L, perfluoro-n-pentanoic acid (PFPeA, mean= 11.36 ± 6.96 ng/L), perfluoro-n-butanoic acid (PFBA, mean=10.33 ± 8.56 ng/L), and perfluoro-n-hexanoic acid (PFHxA, mean=8.37 ± 4.36 ng/L). In the Everglades samples, 46% of the total compounds identified were PFBA and 19% was PFOS, while in the canals, 25% was PFOS, 16% PFPeA, and 15% PFBA. The land uses of the area that could be contributing to PFAS concentrations are the production of textiles and stain resistant products, metal plating and finishing facilities, aqueous film forming foams, and various wastewater entering the watershed.
Collapse
Affiliation(s)
- Courtney Heath
- Institute of Environment, Florida International University, 11200 SW 8(th) Street, Maidique Campus, Miami, FL, 33199, USA; Florida International University, Department of Chemistry and Biochemistry, 3000 NE 151(St)St., Biscayne Bay Campus, North Miami, 33181, USA
| | - Amy Castaneda
- Miccosukee Tribe, Department of Water Resources, Miccosukee Indian Federal Reservation
| | - Edward Ornstein
- Miccosukee Tribe, Department of Water Resources, Miccosukee Indian Federal Reservation
| | - Maria Guerra de Navarro
- Institute of Environment, Florida International University, 11200 SW 8(th) Street, Maidique Campus, Miami, FL, 33199, USA; Florida International University, Department of Chemistry and Biochemistry, 3000 NE 151(St)St., Biscayne Bay Campus, North Miami, 33181, USA
| | - Brendan McNamee
- Miccosukee Tribe, Department of Water Resources, Miccosukee Indian Federal Reservation
| | - Sergio Najera
- Miccosukee Tribe, Department of Water Resources, Miccosukee Indian Federal Reservation
| | - Daniel Calzadilla
- Miccosukee Tribe, Department of Water Resources, Miccosukee Indian Federal Reservation
| | - Natalia Quinete
- Institute of Environment, Florida International University, 11200 SW 8(th) Street, Maidique Campus, Miami, FL, 33199, USA; Florida International University, Department of Chemistry and Biochemistry, 3000 NE 151(St)St., Biscayne Bay Campus, North Miami, 33181, USA.
| |
Collapse
|
4
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5202-5213. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
6
|
Hwang S, Kim S, Jeon M, Cho Y. Perfluoroalkyl and Polyfluoroalkyl Substance Detection in Brewed Capsule Coffee. Foods 2025; 14:980. [PMID: 40231986 PMCID: PMC11941020 DOI: 10.3390/foods14060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
As food packaging materials are in direct contact with the food we eat and cook under heat or pressure, consumers are apprehensive of their adverse effects on the food products. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are often used in food packaging because of their hydrophobic properties; however, some PFASs are carcinogens, thus prompting further studies on their effects. In this study, a pretreatment method of 31 PFASs in coffee was established using the QuEChERS extraction method and analyzed by liquid chromatography-tandem mass spectrometry. We brewed 32 types of capsule coffee distributed in Korea, analyzed them for PFASs, and evaluated their safety. The results show that perfluorooctanoic acid and 8:2 fluorotelomer sulfonate levels are higher in machine-brewed capsule coffee than in capsule coffees brewed manually through a paper filter. However, the hazard quotient and excess cancer risk for all coffee samples are lower than the World Health Organization standards, and therefore, these samples are considered safe. The results of this study may aid in expanding the existing literature on PFAS detection in relation to human health.
Collapse
Affiliation(s)
| | | | | | - Yongsun Cho
- Food Analysis Center, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (S.H.); (S.K.); (M.J.)
| |
Collapse
|
7
|
Anik AH, Basir MS, Sultan MB, Alam M, Rahman MM, Tareq SM. Unveiling the emerging concern of per- and polyfluoroalkyl substances (PFAS) and their potential impacts on estuarine ecosystems. MARINE POLLUTION BULLETIN 2025; 212:117554. [PMID: 39837172 DOI: 10.1016/j.marpolbul.2025.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous chemicals that pose potentially serious threats to both human health and the integrity of the ecosystem. This review compiles current knowledge on PFAS contamination in estuaries, focusing on sources, abundance, distribution, fate, and toxic mechanisms. It also addresses the health risks associated with these compounds and identifies research gaps, offering recommendations for future studies. Estuaries are essential for maintaining biodiversity and serve as protective natural buffers against pollution flowing from land to sea. However, PFAS, known for their persistence and bioaccumulation potential, are detected in estuarine waters, sediments, and biota worldwide, with varying concentrations based on geographic locations and environmental matrices. Sources of PFAS in estuaries include routine items like nonstick kitchenware, industrial emissions, landfill sites, civilian and military airfields, and runoff from firefighting activities. The fate of PFAS in estuarine ecosystems is influenced by hydrology, biogeochemical interactions, and proximity to pollution sources.
Collapse
Affiliation(s)
- Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh.
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Md Mostafizur Rahman
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Shafi M Tareq
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
8
|
Shaffer KW, Ye X, Lee CS, Shipley ON, McDonough CA, Venkatesan AK, Gobler CJ. Accumulation and trophic transfer of per- and polyfluoroalkyl substances (PFAS) in estuarine organisms determined via stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178742. [PMID: 39946876 DOI: 10.1016/j.scitotenv.2025.178742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants in estuaries. In this study, 19 PFAS were quantified in surface waters, sediments, marine invertebrates (aquatic worms, Eastern oysters, and blue crab), and forage fish (Atlantic silverside, four-spine stickleback, mummichog, sheepshead minnow, and rainwater killifish) in an aqueous film forming foam (AFFF)-contaminated estuary, Georgica Pond (NY, USA). Carbon and nitrogen stable isotopes (δ13C and δ15N) were used to determine trophic position of organisms and to identify modes of PFAS exposure. The influence of salinity (8 to 26 practical salinity units, PSU) on the relative and absolute abundance of PFAS in all matrices was also investigated. Eleven long- and short-chain perfluoroalkyl acids (PFAAs) were found to have bioaccumulation potential (bioaccumulation factor, BAF; biota-sediment accumulation factor, BSAF) and were positively correlated with relative trophic position. Among these, long-chain PFAAs (perfluorohexanesulfonic acid, PFHxS; perfluorooctane sulfonic acid, PFOS; perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA) were the greatest contributors to total body burden and bioaccumulated in all organisms, with PFOS (log BAF = 3.55 ± 0.83) and PFNA (log BAF = 3.17 ± 0.46) having the highest mean values of all compounds. PFOS was present in all biota samples and concentrations significantly increased with food web trophic position (ranging from 0.18 to 777 μg kg-1). Perfluorobutane sulfonic acid (PFBS) was also ubiquitous among all organisms, bioaccumulating in both invertebrate and vertebrate species. Total PFAS concentrations in aquatic worms were significantly higher in lower salinity water while the PFAS profile of Eastern oysters shifted from predominately perfluorocarboxylic acids (66 % of total composition) to perfluorosulfonic acids (62 %) as the ecosystem transitioned from low (9 PSU) to high (25 PSU) salinity. Collectively, this study demonstrates the utility of applying δ13C and δ15N to determine bioaccumulation patterns of both legacy PFAS and short-chain replacement compounds and underscores how shifts in salinity can alter the concentration and speciation of PFAS in estuaries.
Collapse
Affiliation(s)
- Kevin W Shaffer
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States
| | - Xiayan Ye
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States; Research Center for Environmental Changes, Academia Sinica, Taipei 115201, Taiwan
| | - Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Carrie A McDonough
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, United States
| | - Arjun K Venkatesan
- New Jersey Institute of Technology, Department of Civil and Environmental Engineering, Newark, NJ, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
9
|
Balgooyen S, Scott M, Blackwell BR, Pulster EL, Mahon MB, Lepak RF, Backe WJ. A High Efficiency Method for the Extraction and Quantitative Analysis of 45 PFAS in Whole Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3759-3770. [PMID: 39954005 DOI: 10.1021/acs.est.4c10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
This study describes and validates a new method for extracting perfluoroalkyl and polyfluoroalkyl substances (PFAS) from whole-body fish tissue, demonstrates that freeze-dry preservation of tissue conserves bioaccumulative PFAS, and details a method demonstration on Lake Michigan fish. While fish filets are more commonly analyzed for their significance to human health, whole fish are useful to determine ecological impacts, but published methods such as EPA 1633 do not produce reliable results for this more challenging matrix. Here we show that lipid removal technology produces clean extracts without the need for solid-phase extraction or evaporative concentration, which often lead to loss of some PFAS. This method achieves an accuracy of 96 ± 9% for the detection of 45 PFAS while also offering benefits of a simple procedure, reduced processing time, and decreased waste generation compared to multistep cleanup and concentration methods. A test of freeze-drying demonstrated that compounds detected in Great Lakes fish were retained, but volatile compounds including sulfonamide precursors and ethanols were lost. To demonstrate field performance, the entire method was applied to whole-fish composites from Lake Michigan. Results from these samples reveal that the PFAS concentration was driven by collection location, while the distribution of PFAS was dictated by fish species.
Collapse
Affiliation(s)
- Sarah Balgooyen
- SpecPro Professional Services, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Madelynn Scott
- Oak Ridge Associated Universities, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Erin L Pulster
- U.S. Geological Survey Columbia Environmental Research Center, 4200 East New Haven Road, Columbia, Missouri 65201, United States
| | - Michael B Mahon
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Ryan F Lepak
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Will J Backe
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| |
Collapse
|
10
|
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates-A Review. TOXICS 2025; 13:47. [PMID: 39853045 PMCID: PMC11769487 DOI: 10.3390/toxics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity and toxicity to reproduction and development are summarized. This provides a reference to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their alternatives, promotes further research on PFASs in invertebrates, and provides valuable recommendations for the use and regulation of alternatives to PFASs.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| |
Collapse
|
11
|
Flinders C, Barnhart B, Ragsdale R. Quantifying sources of variability in fish bioaccumulation factor estimates for perfluoro-n-octane sulfonic acid: study design effects and implications for water quality criteria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:260-269. [PMID: 39887275 PMCID: PMC11790207 DOI: 10.1093/etojnl/vgae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 02/01/2025]
Abstract
Numeric water quality criteria development approaches for the protection of aquatic life and human health incorporate bioaccumulation factors (BAFs) as key exposure pathways. These are typically derived from field-collected tissue and ambient water concentration data, and are often highly variable within and across species. Existing guidance for conducting BAF field studies is necessarily general to accommodate research objectives, ecosystem characteristics, and the chemicals and species of interest. However, the direction on evaluating study quality and understanding of the relative influence of study design components on BAFs is limited. We used a large, publicly available dataset of perfluoro-n-octane sulfonic acid (PFOS) concentrations in water and fish tissue to (1) evaluate overall patterns and drivers of water and fish tissue PFOS concentrations and derived BAFs, and (2) quantify how biological, environmental, and study design factors regarding water and tissue samples affect derived BAFs. PFOS tissue concentrations and BAFs differed significantly with species and, although variable, there was a significant positive relationship between PFOS water and fish tissue concentrations. Using biological, environmental, and study design variables, boosted regression tree analyses showed that spatial proximity between water and fish tissue sampling locations was the primary driver of BAF variability owing to large differences in water concentrations across hydraulically connected sites. Other variables, including temporal proximity between samples and biological and environmental factors, were less influential relative to spatial proximity. Our findings demonstrate that BAF study design decisions can have significant implications for key water quality criteria derivation components and highlight the need for sampling regimes that accurately characterize exposure to improve the quality of BAFs used in risk assessment and the development of regulatory standards.
Collapse
|
12
|
Zhang H, Shui J, Li C, Ma J, He F, Zhao D. Diversity, composition, and assembly processes of bacterial communities within per- and polyfluoroalkyl substances (PFAS)-contained urban lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177625. [PMID: 39566639 DOI: 10.1016/j.scitotenv.2024.177625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread, highly persistent, and bio-accumulative compounds that are increasingly found in the sediments of aquatic systems. Given this accumulation and concerns regarding the environmental impacts of PFAS, their influence on sedimentary bacterial communities remains inadequately studied. Here, we investigated the concentrations of 17 PFAS in sediments from six urban lakes in Nanjing, China, and assessed their effects on the diversity, composition, potential interactions, and assembly mechanisms of sedimentary bacterial communities. Sediment concentrations of PFAS ranged from 4.70 to 5.28 ng·g-1 dry weight. The high concentrations of the short-chain perfluorobutanesulfonic acid (PFBS) suggested its substitution for the long-chain perfluorooctanesulfonic acid (PFOS). As alternatives to long-chain PFAS, short-chain PFAS had similar effects on bacterial communities. The short-chain perfluoropentanoic acid (PFPeA) and the long-chain perfluorotridecanoic acid (PFTrDA) were the most important PFAS related to the ecological patterns of the co-occurrence network and may alter the composition of the sedimentary bacterial communities in the urban lakes. The Anaerolineaceae family represented as keystone bacteria within the PFAS-affected bacterial co-occurrence network. Deterministic processes (65.9 %), particularly homogeneous selection (63.2 %), were the dominant process driving bacterial community assembly. PFAS promoted the phylogenetic clustering and influenced the community dispersal capabilities to shape bacterial community assembly. This study provides a comprehensive analysis of PFAS distribution in sediments across six urban lakes in Nanjing and provides novel insights into the effects of PFAS on sedimentary bacterial communities. Further research is required to elucidate the mechanisms underlying the impacts of PFAS on microbial communities and to evaluate their broader ecological consequences.
Collapse
Affiliation(s)
- Hongjie Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Jian Shui
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Chaoran Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China; Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Cojoc L, de Castro-Català N, de Guzmán I, González J, Arroita M, Besolí-Mestres N, Cadena I, Freixa A, Gutiérrez O, Larrañaga A, Muñoz I, Elosegi A, Petrovic M, Sabater S. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. CHEMOSPHERE 2024; 369:143806. [PMID: 39603359 DOI: 10.1016/j.chemosphere.2024.143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Urban runoff effluents transport multiple pollutants collected from urban surfaces. which ultimately reach freshwater ecosystems. We here collect the existing scientific evidence on the urban runoff impacts on aquatic organisms and ecosystem functions, assessed the potential toxicity of the most common pollutants present in urban runoff, and characterized the ecotoxicological risk for freshwaters. We used the Toxic Units models to estimate the toxicity of individual chemicals to freshwater biota and observed that the highest ecotoxicological risk of urban runoff was associated to metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides and, in a few cases, to phthalates. The potential risk was highest for copper and zinc, as well as for anthracene, fluoranthene, Di(2-ethylhexyl) phthlate (DEHP), imidacloprid, cadmium, mercury, and chromium. These pollutants had contrasting effects on freshwater biological groups, though the risk overall decreased from basal to upper trophic levels. Our analysis evidenced a lack of data on ecotoxicological effects of several pollutants present in urban runoff effluents, caused by lack of toxicity data and by the inadequate representation of biological groups in the ecotoxicological databases. Nevertheless, evidence indicates that urban runoff presents ecotoxicological risk for freshwater biota, which might increase if hydrological patterns become extreme, such as long dry periods and floods. Our study highlights the importance of considering both the acute and chronic toxicity of urban effluent pollutants, as well as recognizing the interplay with other environmental stressors, to design adequate environmental management strategies on urban freshwater ecosystems receiving urban runoff.
Collapse
Affiliation(s)
- Lorena Cojoc
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Núria de Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Julene González
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Neus Besolí-Mestres
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Isabel Cadena
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Oriol Gutiérrez
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Institut d'Ecologia Aquàtica (IEA), Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.
| |
Collapse
|
14
|
Chu K, Ye F, Sereyvatanak KY, Zhang X, Li Q, Lu Y, Liu Y, Zhang G. Fugacity model covering abiotic and biotic matrices to investigate the transfer and fate of perfluoroalkyl acids in a large shallow lake of eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175997. [PMID: 39233071 DOI: 10.1016/j.scitotenv.2024.175997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Solving the challenges faced during the measurement of the cross-interface transfer of perfluoroalkyl acids (PFAAs) in lakes is crucial for clarifying environmental behaviours of these chemicals and their efficient governance. This study developed a multimedia fugacity model based on the quantitative water-air-sediment interaction (QWASI) covering abiotic/biotic matrices to investigate the cross-interface transfer and fate of PFAAs in Luoma Lake, a typical PFAA-contaminated shallow lake in eastern China. The accuracy and reliability of the established model were confirmed using Percent bias and Monte Carlo simulation, respectively. Using the QWASI model, the multimedia transfer of the PFAAs and their accumulation and persistence in different sub-compartments were described and measured, and the differences among individual PFAAs were explored. The simulation results showed that the sedimentation and resuspension of PFAAs were the most intense cross-interfacial transfers, and the sediments served as a chemical sink in the long term. A significant negative correlation of NC-F (the number of CF bonds) with the relative outflow flux (TW·out-ct) but a positive correlation with the relative net transfer across the interface between water and aquatic plants (Tp-ct) was detected, indicating that the PFAA migration capacity decreased but the bioaccumulation potential increased with the CF bond number. The persistence in water (Pw) of individual PFAAs ranged from 19.65d (PFOA) to 32.22d (PFOS), with an average of 26.15d; their persistence in sediment (Ps) ranged from 432d (PFBA) to 3216d (PFOS), with an average of 1524d, increasing linearly with an increase in NC-F. The water advection flows into and out of the lake (QW·in and QW·out), the PFAA concentration of water inflow (CW·in), and bioconcentration factor of aquatic plants (BCFp) were the primary parameters sensitive to PFAAs in all sub-compartments, which are essential indexes for exploring promising remediation pathways for lacustrine PFAA contamination based on the fugacity model simulation.
Collapse
Affiliation(s)
- Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Fuzhu Ye
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | | | - Xu Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qiming Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang 213300, PR China
| | - Yuanyuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Gang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
15
|
Gang D, Jia H, Ji H, Li J, Yu H, Hu C, Qu J. Ecological risk of per-and polyfluorinated alkyl substances in the phytoremediation process: a case study for ecologically keystone species across two generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174961. [PMID: 39067584 DOI: 10.1016/j.scitotenv.2024.174961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.0 %-73.1 % PFOA was found in sediments and submerged plants, however, 52.5 %-53.0 % of PFPeA and 47.0 %-47.5 % of PFBS remained in the water under different treatments. PFOA was more bioavailable than the other substances, as demonstrated by the bioaccumulation factors (BAF) with ranges exposed to PFPeA and PFBS. Bioaccumulation PFASs induced plant oxidative stress which generates enzymes to suppress superoxide, and disturbed the processes of lysine biosynthesis, in which allysine, meso-2,6-diaminoheptanedioate, and Nsuccinyl-2-amino-6-ketopimelate were downregulated. PFASs were detected in the propagator (turions) of an ecological restoration species, where short-chain PFASs (70.1 % and 45.7 % for 2 or 20 μg/L PFAS exposure, respectively) were found to spread further into new individuals and profoundly influence ecological processes shaping populations. PFASs significantly enhanced the number of microbial species in the sediment, but the degree of differentiation in the microbial community structure was not significantly different. This study enhances our understanding of the ecological mechanisms of PFASs in the water-macrophyte-sediment systems and potential threats to the recovery process of macrophytes.
Collapse
Affiliation(s)
- Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - He Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Dimitrakopoulou ME, Karvounis M, Marinos G, Theodorakopoulou Z, Aloizou E, Petsangourakis G, Papakonstantinou M, Stoitsis G. Comprehensive analysis of PFAS presence from environment to plate. NPJ Sci Food 2024; 8:80. [PMID: 39369000 PMCID: PMC11455986 DOI: 10.1038/s41538-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose an emerging environmental risk impacting food products and ecosystems. This study analyzes over 150,000 entries from food safety authorities and scientific publications from 2017 onwards. Our findings show that fish & seafood, and biota have the highest PFAS concentrations due to environmental contamination and bioaccumulation. Surface water samples also frequently contain PFAS, raising concerns about long-term ecological and human health effects. Comprehensive strategies are essential to mitigate these risks.
Collapse
|
17
|
Xu S, Zhu P, Wang C, Zhang D, Zhang M, Pan X. Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135515. [PMID: 39178777 DOI: 10.1016/j.jhazmat.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
18
|
Lintern G, Scarlett AG, Gagnon MM, Leeder J, Amhet A, Lettoof DC, Leshyk VO, Bujak A, Bujak J, Grice K. Phytoremediation Potential of Azolla filiculoides: Uptake and Toxicity of Seven Per- and Polyfluoroalkyl Substances (PFAS) at Environmentally Relevant Water Concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2157-2168. [PMID: 39110072 DOI: 10.1002/etc.5967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024]
Abstract
Environmental contamination of aquatic systems by per- and polyfluoroalkyl substances (PFAS) has generated significant health concerns. Remediation of contaminated sites such as the fire-fighting emergency training grounds that use aqueous film-forming foams is a high priority. Phytoremediation may help play a part in removing PFAS from such contaminated waters. We investigated the potential of the water fern Azolla filiculoides, which is used for phytoremediation of a wide range of contaminants, to uptake seven common PFAS (perfluorobutanoic acid [PFBA], perfluorobutane sulfonic acid [PFBS], perfluoroheptanoic acid [PFHpA], perfluorohexanoic acid [PFHxA], perfluorohexane sulfonic acid [PFHxS], perfluorooctanoic acid [PFOA], and perfluoropentanoic acid [PFPeA]), during a 12-day exposure to environmentally relevant concentrations delivered as equimolar mixtures: low (∑PFAS = 0.0123 ± 1.89 μmol L-1), medium (∑PFAS = 0.123 ± 2.88 μmol L-1), and high (∑PFAS = 1.39 μmol L-1) treatments, equivalent to approximately 5, 50, and 500 µg L-1 total PFAS, respectively. The possible phytotoxic effects of PFAS were measured at 3-day intervals using chlorophyll a content, photosystem II efficiency (Fv/Fm), performance index, and specific growth rate. The PFAS concentrations in plant tissue and water were also measured every 3 days using ultra-high-performance liquid chromatography-tandem mass spectrometry. Treatments with PFAS did not lead to any detectable phytotoxic effects. All seven PFAS were detected in plant tissue, with the greatest uptake occurring during the first 6 days of exposure. After 12 days of exposure, a maximum bioconcentration factor was recorded for PFBA of 1.30 and a minimum of 0.192 for PFBS. Consequently, the application of Azolla spp. as a stand-alone system for phytoremediation of PFAS in aquatic environments is not sufficient to substantially reduce PFAS concentrations. Environ Toxicol Chem 2024;43:2157-2168. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gina Lintern
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Alan G Scarlett
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Marthe Monique Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - John Leeder
- Leeder Analytical, Fairfield, Victoria, Australia
| | - Aydin Amhet
- Leeder Analytical, Fairfield, Victoria, Australia
| | - Damian C Lettoof
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
| | | | - Alexandra Bujak
- Azolla Biosystems and the Azolla Foundation, Blackpool, Lancashire, UK
| | - Jonathan Bujak
- Azolla Biosystems and the Azolla Foundation, Blackpool, Lancashire, UK
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
19
|
Kumar K, Sarkar P, Paul T, Shukla SP, Kumar S. Ecotoxicological effects of triclosan on Lemna minor: bioconcentration, growth inhibition and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56550-56564. [PMID: 39271616 DOI: 10.1007/s11356-024-34944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.
Collapse
Affiliation(s)
- Kundan Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Pritam Sarkar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, 855107, Bihar, India
| | - Satya Prakash Shukla
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
20
|
Barton KE, Anthamatten PJ, Adgate JL, McKenzie LM, Starling AP, Berg K, Murphy RC, Richardson K. A data-driven approach to identifying PFAS water sampling priorities in Colorado, United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00705-7. [PMID: 39090285 DOI: 10.1038/s41370-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Per and polyfluoroalkyl substances (PFAS), a class of environmentally and biologically persistent chemicals, have been used across many industries since the middle of the 20th century. Some PFAS have been linked to adverse health effects. OBJECTIVE Our objective was to incorporate known and potential PFAS sources, physical characteristics of the environment, and existing PFAS water sampling results into a PFAS risk prediction map that may be used to develop a PFAS water sampling prioritization plan for the Colorado Department of Public Health and Environment (CDPHE). METHODS We used random forest classification to develop a predictive surface of potential groundwater contamination from two PFAS, perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). The model predicted PFAS risk at locations without sampling data into one of three risk categories after being "trained" with existing PFAS water sampling data. We used prediction results, variable importance ranking, and population characteristics to develop recommendations for sampling prioritization. RESULTS Sensitivity and precision ranged from 58% to 90% in the final models, depending on the risk category. The model and prioritization approach identified private wells in specific census blocks, as well as schools, mobile home parks, and public water systems that rely on groundwater as priority sampling locations. We also identified data gaps including areas of the state with limited sampling and potential source types that need further investigation. IMPACT STATEMENT This work uses random forest classification to predict the risk of groundwater contamination from two per- and polyfluoroalkyl substances (PFAS) across the state of Colorado, United States. We developed the prediction model using data on known and potential PFAS sources and physical characteristics of the environment, and "trained" the model using existing PFAS water sampling results. This data-driven approach identifies opportunities for PFAS water sampling prioritization as well as information gaps that, if filled, could improve model predictions. This work provides decision-makers information to effectively use limited resources towards protection of populations most susceptible to the impacts of PFAS exposure.
Collapse
Affiliation(s)
- Kelsey E Barton
- Toxicology and Environmental Epidemiology Office, Colorado Department of Public Health & Environment, Denver, CO, USA.
- Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Peter J Anthamatten
- Department of Geography and Environmental Science, University of Colorado Denver, Denver, CO, USA
| | - John L Adgate
- Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa M McKenzie
- Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Berg
- Toxicology and Environmental Epidemiology Office, Colorado Department of Public Health & Environment, Denver, CO, USA
| | - Robert C Murphy
- Source Water Assessment & Protection Program, Colorado Department of Public Health & Environment, Denver, CO, USA
| | - Kristy Richardson
- Toxicology and Environmental Epidemiology Office, Colorado Department of Public Health & Environment, Denver, CO, USA
| |
Collapse
|
21
|
Pomazal R, Malecki K, Stanton N, Shelton B, Lange M, Irving R, Meiman J, Remucal CK, Cochran A, Schultz AA. Determinants of per- and polyfluoroalkyl substances (PFAS) exposure among Wisconsin residents. ENVIRONMENTAL RESEARCH 2024; 254:119131. [PMID: 38759771 PMCID: PMC11907379 DOI: 10.1016/j.envres.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) include thousands of manufactured compounds with growing public health concerns due to their potential for widespread human exposure and adverse health outcomes. While PFAS contamination remains a significant concern, especially from ingestion of contaminated food and water, determinants of the variability in PFAS exposure among regional and statewide populations in the United States remains unclear. OBJECTIVES The objective of this study was to leverage The Survey of the Health of Wisconsin (SHOW), the only statewide representative cohort in the US, to assess and characterize the variability of PFAS exposure in a general population. METHODS This study sample included a sub-sample of 605 adult participants from the 2014-2016 tri-annual statewide representative sample. Geometric means for PFOS, PFOA, PFNA, PFHxS, PFPeS, PFHpA, and a summed measure of 38 analyzed serum PFAS were presented by demographic, diet, behavioral, and residential characteristics. Multivariate linear regression was used to determine significant predictors of serum PFAS after adjustment. RESULTS Overall, higher serum concentrations of long-chain PFAS were observed compared with short-chain PFAS. Older adults, males, and non-Hispanic White individuals had higher serum PFAS compared to younger adults, females, and non-White individuals. Eating caught fish in the past year was associated with elevated levels of several PFAS. DISCUSSION This is among the first studies to characterize serum PFAS among a representative statewide sample in Wisconsin. Both short- and long-chain serum PFAS were detectable for six prominent PFAS. Age and consumption of great lakes fish were the most significant predictors of serum PFAS. State-level PFAS biomonitoring is important for identifying high risk populations and informing state public health standards and interventions, especially among those not living near known contamination sites.
Collapse
Affiliation(s)
- Rachel Pomazal
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA
| | - Kristen Malecki
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago School of Public Health, Chicago, IL, USA
| | - Noel Stanton
- Wisconsin State Lab of Hygiene, Madison, WI, USA
| | | | - Meshel Lange
- Wisconsin State Lab of Hygiene, Madison, WI, USA
| | - Roy Irving
- Wisconsin Department of Health Services Madison, WI, USA
| | | | - Christina K Remucal
- University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Madison, WI, USA
| | - Amy Cochran
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA
| | - Amy A Schultz
- University of Wisconsin-Madison, Department of Population Health Sciences, Madison, WI, USA.
| |
Collapse
|
22
|
Kommana G, Hupfer M, Woodhouse JN, Grossart HP, Goldhammer T. Reduced greenhouse gas emissions from particulate organic matter degradation in iron-enriched sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1227-1244. [PMID: 38910491 DOI: 10.1039/d4em00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Iron (Fe) plays an important role in the biogeochemical cycling of carbon and nutrients in aquatic systems. Reactive Fe phases can interact with organic carbon and facilitate the removal of carbon from the biogeochemical cycle; however, this important ecosystem function is often strongly controlled by Fe availability. Due to pollution from lignite mining in the Lusatian province in Northeast Germany, large amounts of iron and sulfate are released into the fluvial-lacustrine system of the Spree River. It was hypothesized that the input of freshly precipitated iron oxyhydroxides from mining areas (e.g., ferrihydrite) alter the biodegradation of particulate organic matter (POM) in downstream lacustrine sediments. To investigate the Fe-dependent degradation of POM, slurries mimicking iron-polluted sediments (85 mg Fe per g, 116 mg Fe per g, and 149 mg Fe per g dry weight) were incubated with plankton or leaf POM under anoxic and oxic headspace conditions, and CO2 and CH4 emissions, water chemistry, and stable isotopes of dissolved inorganic carbon were measured. The experiments revealed that (i) with an increasing Fe content, the CO2 and CH4 emissions were gradually reduced, (ii) CO2 and CH4 production was higher during plankton degradation than during leaf decomposition, and (iii) under oxic conditions, CO2 production was higher and CH4 production was lower when compared to the treatments under anoxic conditions. These findings demonstrate that while benthic mineralization of fresh POM typically releases greenhouse gases into the water column, the availability of iron oxyhydroxides can contribute to reduced greenhouse gas emissions from sediments. This is of considerable relevance for future carbon budgets of similar mining-affected, iron-polluted fluvial-lacustrine river systems.
Collapse
Affiliation(s)
- Giulia Kommana
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
- Brandenburg University of Technology Cottbus-Senftenberg, Department of Aquatic Ecology, Seestraße 45, D-15526 Bad Saarow, Germany
| | - Michael Hupfer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
- Brandenburg University of Technology Cottbus-Senftenberg, Department of Aquatic Ecology, Seestraße 45, D-15526 Bad Saarow, Germany
| | - Jason Nicholas Woodhouse
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Tobias Goldhammer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Mueggelseedamm 301, D-12587 Berlin, Germany.
| |
Collapse
|
23
|
Adeogun AO, Ibor OR, Chukwuka AV, Asimakopoulos AG, Zhang J, Arukwe A. Role of niche and micro-habitat preferences in per- and polyfluoroalkyl substances occurrence in the gills of tropical lake fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173245. [PMID: 38754512 DOI: 10.1016/j.scitotenv.2024.173245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The present study has investigated per- and poly-fluoroalkyl substances (PFAS) in the gill tissues of various fish species inhabiting different trophic levels within Eleyele Lake, a tropical freshwater lake in Nigeria. The mean concentrations of PFAS congeners were determined, and their trends and patterns were analyzed across different trophic species. The results revealed variations in congener abundance and species-specific patterns that was influenced by habitat and niche preferences. Multivariate associations using canonical-correlation analysis (CCA) revealed distinct trends in the relationships between gill concentrations of specific PFAS congeners and different trophic groups. The strongest congener relationships were observed in the pelagic omnivore (Oreochromic niloticus: ON) with positive associations for 4:2 FTS, 9CL-PF3ONS, PFTDA, MeFOSA and PFHxS. The differences in congener profiles for the two herbivorous fish (Sarotherodon melanotheron (SM) and Coptodon galilaeus (CG)) reflect possible divergence in microhabitat and niche preferences. Furthermore, the congener overlaps between the herbivore (CG), and benthic omnivore (Clarias gariepinus: ClG) indicate a possible niche and microhabitat overlap. Our study provides valuable insights into the congener dynamics of PFAS at Eleyele Lake. However, the dissimilarity and overlapping PFAS congener profile in fish gills reflects the interplay of species niche preference and microhabitat associations. The present study highlights the need for further research to assess ecological risks and develop effective PFAS management strategies.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | | | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
24
|
Zvekic M, Barrett H, Diamente P, Peng H, Krogh ET. Unique hepatic maternal transfer pattern of trace metals and perfluoroalkyl substances (PFAS) in a bluntnose sixgill shark (Hexanchus griseus). CHEMOSPHERE 2024; 359:142315. [PMID: 38735494 DOI: 10.1016/j.chemosphere.2024.142315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The fate and distribution of environmental contaminants includes bioaccumulation within marine organisms. A deceased 4-m long adult female bluntnose sixgill shark, pregnant with 72 pups, was recovered from Coles Bay on Vancouver Island, BC, Canada in 2019. This specimen provided a unique opportunity to examine maternal transfer of contaminants in a yolk-sac viviparous shark species. Liver subsamples of the adult and offspring were analyzed for 18 targeted inorganic elements by inductively coupled plasma optical emission spectroscopy (ICP-OES) and 21 targeted perfluoroalkyl substances (PFAS) by liquid chromatography-electrospray ionization-high resolution mass spectrometry (LC-ESI-Orbitrap MS). The maternal-offspring transfer efficiencies in liver tissue were subsequently examined for both contaminant classes. Concentrations of all detectable metals apart from calcium and magnesium were found to be higher in the mother compared to the offspring, including substantial levels of toxic cadmium (6 ± 2 mg kg-1 dw) and lead (7 ± 3 mg kg-1 dw). Conversely, high maternal transfer efficiencies were observed for PFAS (i.e., ΣPFAS = 71 ± 9 ng g-1 ww in offspring compared to 13 ± 9 ng g-1 ww in the mother). This study highlighted the unique maternal transfer characteristics of PFAS in bluntnose sixgill sharks depending on the structure of the polar head group, with greater liver-to-liver transfer efficiencies observed for perfluorocarboxylic acids (PFCAs) than perfluorosulfonic acids (PFSAs) of the same fluorocarbon chain length.
Collapse
Affiliation(s)
- Misha Zvekic
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, V9R 5S5, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, V8P 5C2, British Columbia, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Peter Diamente
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, V9R 5S5, British Columbia, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, V9R 5S5, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, V8P 5C2, British Columbia, Canada.
| |
Collapse
|
25
|
Zhu C, Lv W, Hong S, Han M, Song W, Liu C, Yao C, Jiang Q. Gradual effects of gradient concentrations of perfluorooctane sulfonate on the antioxidant ability and gut microbiota of red claw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172962. [PMID: 38705306 DOI: 10.1016/j.scitotenv.2024.172962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 μg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.
Collapse
Affiliation(s)
- Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean university, Shanghai 201306, China
| | - Mingming Han
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
26
|
Ma K, Lu Y, Zhang Y, Zhang Y. Trend of PFAS concentrations and prediction of potential risks in Taihu Lake of China by AQUATOX. ENVIRONMENTAL RESEARCH 2024; 251:118707. [PMID: 38490632 DOI: 10.1016/j.envres.2024.118707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are recognized as emerging environmental pollutants due to their high persistence and toxicities to humans and animals. Understanding the temporal trend of PFAS in the environment is important for their pollution control and making appropriate policies. Many studies have reported the PFAS concentrations in Taihu Lake, the third largest lake in China, while their temporal trend during the years was seldom investigated. This study summarizes the PFAS concentrations in the water, sediment and organisms in Taihu Lake from 2009 to 2020 to depict their temporal trends. Meanwhile, the ecological model of AQUATOX was applied to evaluate and predict the potential risks of PFAS from 2012 to 2030. The results showed that the total PFAS concentrations varied but without distinct increase or decrease in both water and sediment during the years, while PFAS concentrations in organisms significantly decreased. The yearly mean concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in the water were 21.7-25.4 ng/L and 9.7-26.5 ng/L respectively, lower than the Standards for Drinking Water Quality of China and the suggested water quality criteria to protect the aquatic organisms. In sediment, PFOA and PFOS concentrations were 0.16-0.69 ng/g and 0.15-0.82 ng/g respectively, much lower than the recommended sediment quality guideline values. Based on the AQUATOX prediction, there will be no major threats caused by PFAS to the growth of biota in Taihu Lake in the near future, while the biomass of some species (e.g. carp) will be affected under the perturbation of PFAS. Both field investigation and AQUATOX simulation showed that PFOS concentrations in invertebrates and fish descend steadily, while no remarkable decrease in PFOA concentrations was expected. This study suggests a decreasing ecological risk of PFAS in Taihu Lake, while highlights the necessity of continuous monitoring of PFAS contamination.
Collapse
Affiliation(s)
- Kaiyuan Ma
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Yueshu Lu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
27
|
Lin ZW, Wang J, Dyakiv Y, Helbling DE, Dichtel WR. Structural Features of Styrene-Functionalized Cyclodextrin Polymers That Promote the Adsorption of Perfluoroalkyl Acids in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28409-28422. [PMID: 38768313 DOI: 10.1021/acsami.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cross-linked β-cyclodextrin (β-CD) polymers are promising adsorbents for the removal of per- and polyfluoroalkyl substances (PFAS) from contaminated water sources, including contaminated groundwater, drinking water, and wastewater. We previously reported porous, styrene-functionalized β-cyclodextrin (StyDex) polymers derived from radical polymerization with vinyl comonomers. Because of the versatility of these polymerizations, StyDex polymer compositions are tunable, which facilitates efforts to establish structure-adsorption relationships and to discover improved materials. Here, we evaluate the material properties and PFAS adsorption of 20 StyDex derivatives with varied comonomer structure and loading, regiochemistry of styrene placement on the CD monomer, and CD size. A StyDex polymer containing N,N'-dimethylbutyl ammonium ions exhibited the most effective PFAS adsorption in batch experiments. Furthermore, a StyDex polymer containing β-CD exhibited size-selective host-guest interactions with perfluoroalkyl acids (PFAAs) and neutral contaminants in aqueous electrolyte when compared to similar polymers containing either α-CD or γ-CD. Polymers based on β-CD monomers with an average of seven styrene groups randomly positioned over the 21 available hydroxyl groups performed similarly to those based on a β-CD monomer functionalized regiospecifically at each of the seven 6' positions. The former β-CD monomer is prepared in a single step from unmodified β-CD, so the ability to use it without compromising performance demonstrates promise for developing economically competitive adsorbents. These results offered important insights into structure-adsorption properties of StyDex polymers and will inform the design of improved StyDex formulations.
Collapse
Affiliation(s)
- Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yaryna Dyakiv
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Minucci JM, DeLuca NM, Durant JT, Goodwin B, Kowalski P, Scruton K, Thomas K, Cohen Hubal EA. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. ENVIRONMENT INTERNATIONAL 2024; 188:108756. [PMID: 38795657 PMCID: PMC11323284 DOI: 10.1016/j.envint.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.
Collapse
Affiliation(s)
- Jeffrey M Minucci
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States.
| | - Nicole M DeLuca
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - James T Durant
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Bradley Goodwin
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Peter Kowalski
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Karen Scruton
- Agency for Toxic Substances and Disease Registry, Office of Community Health Hazard Assessment, United States
| | - Kent Thomas
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| | - Elaine A Cohen Hubal
- U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, United States
| |
Collapse
|
29
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
30
|
Boatman AK, Chappel JR, Polera ME, Dodds JN, Belcher SM, Baker ES. Assessing Per- and Polyfluoroalkyl Substances (PFAS) in Fish Fillet Using Non-Targeted Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555938. [PMID: 37732276 PMCID: PMC10508736 DOI: 10.1101/2023.09.01.555938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. Fish consumption has been identified as a key route of PFAS exposure for humans. However, routine fish monitoring targets only a handful of PFAS, and non-targeted analyses have largely only evaluated fish from heavily PFAS-impacted waters. Here, we evaluated PFAS in fish fillets from recreational and drinking water sources in central North Carolina to assess whether PFAS are present in these fillets that would not be detected by conventional targeted methods. We used liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to collect full scan feature data, performed suspect screening using an in-house library of 100 PFAS for high confidence feature identification, searched for additional PFAS features using non-targeted data analyses, and quantified perfluorooctane sulfonic acid (PFOS) in the fillet samples. A total of 36 PFAS were detected in the fish fillets, including 19 that would not be detected using common targeted methods, with a minimum of 6 and a maximum of 22 in individual fish. Median fillet PFOS levels were concerningly high at 11.6 to 42.3 ppb, and no significant correlation between PFOS levels and number of PFAS per fish was observed. Future PFAS monitoring in this region should target more of these 36 PFAS, and other regions not considered heavily PFAS contaminated should consider incorporating non-targeted analyses into ongoing fish monitoring studies.
Collapse
|
31
|
Gasparini C, Iori S, Pietropoli E, Bonato M, Giantin M, Barbarossa A, Bardhi A, Pilastro A, Dacasto M, Pauletto M. Sub-acute exposure of male guppies (Poecilia reticulata) to environmentally relevant concentrations of PFOA and GenX induces significant changes in the testis transcriptome and reproductive traits. ENVIRONMENT INTERNATIONAL 2024; 187:108703. [PMID: 38705092 DOI: 10.1016/j.envint.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are frequently detected in the environment and are linked to adverse reproductive health outcomes in humans. Although legacy PFAS have been phased out due to their toxicity, alternative PFAS are increasingly used despite the fact that information on their toxic effects on reproductive traits is particularly scarce. Here, we exposed male guppies (Poecilia reticulata) for a short period (21 days) to an environmentally realistic concentration (1 ppb) of PFOA, a legacy PFAS, and its replacement compound, GenX, to assess their impact on reproductive traits and gene expression. Exposure to PFAS did not impair survival but instead caused sublethal effects. Overall, PFAS exposure caused changes in male sexual behaviour and had detrimental effects on sperm motility. Sublethal variations were also seen at the transcriptional level, with the modulation of genes involved in immune regulation, spermatogenesis, and oxidative stress. We also observed bioaccumulation of PFAS, which was higher for PFOA than for GenX. Our results offer a comprehensive comparison of these two PFAS and shed light on the toxicity of a newly emerging alternative to legacy PFAS. It is therefore evident that even at low concentrations and with short exposure, PFAS can have subtle yet significant effects on behaviour, fertility, and immunity. These findings underscore the potential ramifications of pollution under natural conditions and their impact on fish populations.
Collapse
Affiliation(s)
- C Gasparini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - S Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - E Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Bonato
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - A Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy; Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), Alma Mater Studiorum University of Bologna, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Pilastro
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy.
| |
Collapse
|
32
|
Byns C, Groffen T, Bervoets L. Aquatic macroinvertebrate community responses to pollution of perfluoroalkyl substances (PFAS): Can we define threshold body burdens? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170611. [PMID: 38309351 DOI: 10.1016/j.scitotenv.2024.170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The pollution of per- and polyfluorinated alkyl substances (PFAS) in aquatic environments is a worldwide concern of which the ecological impact is still not well understood. Especially field-based effect studies in aquatic ecosystems are generally lacking, creating a knowledge gap that goes along with monitoring and regulatory challenges. Therefore, this study examined if bioaccumulated PFAS concentrations could be related to ecological responses assessed by changes in the macroinvertebrate community structure. In addition, threshold body burdens that are protective of ecological damage were estimated. Aquatic macroinvertebrates were sampled in 30 streams across Flanders (Belgium) and 28 PFAS target analytes were measured in three resident taxa (Gammarus sp., Asellus sp. and Chironomus sp.) and translocated zebra mussels (Dreissena polymorpha). The macroinvertebrate community structure was assessed by calculating the Multimetric Macroinvertebrate Index Flanders (MMIF). Primarily long-chain perfluorinated carboxylic acids (PFCAs) were detected in both resident taxa (passive biomonitoring) and zebra mussels (active biomonitoring). Based on a 90th quantile regression model, safe threshold body burdens could be calculated for PFTeDA (7.1 ng/g ww) and ΣPFAS (2264 ng/g ww) in Gammarus sp. and for PFOA (5.5 ng/g ww), PFDoDA (1.7 ng/g ww), PFTrDA (0.51 ng/g ww), PFTeDA (2.4 ng/g ww), PFOS (644 ng/g ww) and ΣPFAS (133 ng/g ww) in zebra mussel. An additional threshold value was calculated for most compounds and species using the 95th percentile method. However, although these estimated thresholds are pertinent and indicative, regulatory applicability requires further lines of evidence and validation. Nevertheless, this study offers first-time evidence of associations between accumulated PFAS concentrations in invertebrates and a reduced ecological water quality in terms of macroinvertebrate community structure and highlights the potential of Gammarus sp. and zebra mussels to serve as reliable PFAS biomonitoring species.
Collapse
Affiliation(s)
- Cara Byns
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
33
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Rico A, Crettaz-Minaglia M, García-Astillero A, Bizzotto E, Vighi M. Fate and effects of a new generation fluorosurfactant (cC 6O 4) in freshwater mesocosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106866. [PMID: 38382184 DOI: 10.1016/j.aquatox.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have raised international concerns due to their widespread use, environmental persistence and potential bioaccumulative and ecotoxicological effects. Therefore, the chemical industry has been dedicated to develop new generation fluorosurfactants which are aimed to replace the most concerning PFAS. Here we investigated the fate and effects of cyclic C6O4 (cC6O4), a compound used as alternative to long-chain perfluorocarboxylic acids, in freshwater mesocosms located in the Mediterranean region (Spain) over a period of 90 days. cC6O4 was applied as ammonium salt once at the following nominal concentrations: 0 µg/L (control), 1 µg/L, 20 µg/L, 400 µg/L, and 8,000 µg/L. The study shows that cC6O4 is relatively persistent in water (dissipation: 34-37 % after 90 days), has very low sorption capacity to sediments (sediment-water partition coefficient: 0.18-0.32 L/kg) and very limited bioconcentration (BCF: 0.09-0.94), bioaccumulation (BAF: 0.09-4.06) and biomagnification (BMF: 0.05-0.28) potential. cC6O4 did not result in significant adverse effects on aquatic populations and communities of phytoplankton and zooplankton at the tested concentrations. As for the macroinvertebrate community, the ephemeropteran Cloeon sp. showed a population decline at the highest test concentration on day 60 onwards, and a significant effect on the macroinvertebrate community was identified on the last sampling day at the same exposure level. Therefore, the calculated NOEC for cC6O4 in freshwater mesocosms exposed over a period of 90 days was 400 µg/L, which corresponded to a time weighted average concentration of 611 µg/L, given the water evaporation in the test systems. This concentration is about an order of magnitude higher than the highest exposure concentration monitored in freshwater ecosystems. Therefore, it can be concluded that cC6O4 poses insignificant ecological risks for freshwater plankton and macroinvertebrate communities given the current environmental exposure levels.
Collapse
Affiliation(s)
- Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 28805 Alcalá de Henares, Spain.
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Elisa Bizzotto
- Foundation Ca' Foscari University, Ca' Dolfin, Venice, Italy
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
35
|
Riaz R, Abdur Rehman MY, Junaid M, Iqbal T, Khan JA, Dong Y, Yue L, Chen Y, Xu N, Malik RN. First insights into per-and polyfluoroalkyl substance contamination in edible fish species of the Indus water system of Pakistan. CHEMOSPHERE 2024; 349:140970. [PMID: 38114020 DOI: 10.1016/j.chemosphere.2023.140970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Taimoor Iqbal
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawad Aslam Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yanran Dong
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yupeng Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
36
|
Takdastan A, Babaei AA, Jorfi S, Ahmadi M, Tahmasebi Birgani Y, Jamshidi B. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water and edible fish species of Karun River, Ahvaz, Iran: spatial distribution, human health, and ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:803-814. [PMID: 36709497 DOI: 10.1080/09603123.2023.2168630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmental contaminants with unfavorable impacts on human health and nature. This study aimed to determine the PFOA and PFOS concentration in water and fish samples from Karun, the largest river in Iran. According to the results, the PFOA and PFOS in water samples were 5.81-69.26 ng/L and not detected (n.d.)-35.12 ng/L, respectively. The dry season displayed higher concentrations in water samples than in the wet season. The maximum PFOS concentration measured was related to Barbus barbules sp. (27.89 ng/g). The human health risk assessment indicated minor risks (hazard ratio, HR < 1) from PFOA and PFOS through consuming contaminated drinking water and fish. Only HR value of PFOS in downstream area exceeded slightly 1.0, indicating potential health risk due to consumption of the river fish. Considering the average PFASs concentration, the risk quotients (RQs) showed low ecological risk.
Collapse
Affiliation(s)
- Afshin Takdastan
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Jamshidi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Petroleum Industry Health Organization, NIOC, Ahvaz, Iran
| |
Collapse
|
37
|
Zhao Y, Zhang H, Liu Y, Lan Y, Zhu J, Cai Y, Guo F, Li F, Zhang Y, Zhang T, Kannan K, Xue J, Yang Z. Evidence of strobilurin fungicides and their metabolites in Dongjiang River ecosystem, southern China: Bioaccumulation and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168427. [PMID: 37949138 DOI: 10.1016/j.scitotenv.2023.168427] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Despite the widespread application of strobilurin fungicides (SFs) in agriculture, little is known about their distribution and bioaccumulation in aquatic ecosystems. In this study, the concentrations of 12 SFs and two of their metabolites were determined in abiotic (water and sediment; n = 83) and biotic (plant, algae, zooplankton, and fish; n = 123) samples collected from a subtropical freshwater ecosystem, namely, Dongjiang River wetland, in southern China. Among the 12 SFs measured, azoxystrobin (AZ) was the major fungicide found in surface water (median: 2.20 ng/L) and sediment (0.064 ng/g dry wt.). Azoxystrobin acid (AZ-acid), a metabolite of AZ, was the major analyte in the plant samples and had a median concentration at 0.36 ng/g dry wt. In algae and zooplankton, (Z)-metominostrobin was the predominant fungicide and had median concentrations of 3.52 and 5.55 ng/g dry wt., respectively. In fish muscle, dimoxystrobin (DIMO) was the major SF and had a median concentration of 0.47 ng/g dry wt. The bioconcentration factor (BCF) values of AZ-acid, trifloxystrobin (TFS), and pyraclostrobin (PYR) in algae and zooplankton and AZ-acid, PYR, TFS, TFS-acid, picoxystrobin, and DIMO in fish muscle exceeded 1000 L/kg (algae, zooplankton, and fish concentrations were expressed on a dry weight basis), suggesting that these fungicides can accumulate in biota. A positive association between log BCFs of SFs in fish and logKow of SFs and a negative correlation between log BCFs and the log solubility index were observed. Additionally, the risk quotient (RQ) was calculated to evaluate the potential ecotoxicological risk of SFs to different aquatic organisms (algae, zooplankton, and fish). The PYR and DIMO concentrations at 19 sampling sites had RQ values >0.1, indicating moderate ecotoxicological risks to aquatic organisms. This study is the first to document the widespread occurrence of SFs and their metabolites in aquatic ecosystems and to elucidate the bioaccumulation potential of SFs in aquatic organisms.
Collapse
Affiliation(s)
- Yanan Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiamin Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Hopkins KE, McKinney MA, Saini A, Letcher RJ, Karouna-Renier NK, Fernie KJ. Characterizing the Movement of Per- and Polyfluoroalkyl Substances in an Avian Aquatic-Terrestrial Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20249-20260. [PMID: 37999683 DOI: 10.1021/acs.est.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The movement of per- and polyfluoroalkyl substances (PFAS) through linked aquatic-terrestrial food webs is not well understood. Tree swallows (Tachycineta bicolor) in such systems may be exposed to PFAS from multiple abiotic and/or biotic compartments. We show from fatty acid signatures and carbon stable isotopes that tree swallow nestlings in southwestern Ontario fed on both terrestrial and aquatic macroinvertebrates. The PFAS profiles of air, terrestrial invertebrates, and swallows were dominated by perfluorooctanesulfonic acid (PFOS). Short-chain perfluoroalkyl acids (PFAAs) were largely restricted to air, surface water, and sediment, and long-chain PFAAs were mainly found in aquatic invertebrates and tree swallows. PFOS, multiple long-chain perfluorocarboxylic acids [perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorotridecanoic acid (PFTrDA)] and perfluorooctane sulfonamide precursors were estimated to bioaccumulate from air to tree swallows. PFOS bioaccumulated from air to terrestrial invertebrates, and PFOS, PFDA, and perfluorooctane sulfonamidoacetic acids (FOSAAs) bioaccumulated from water to aquatic invertebrates. PFOS showed biomagnification from both terrestrial and aquatic invertebrates to tree swallows, and PFDA and FOSAAs were also biomagnified from aquatic invertebrates to tree swallows. The movement of PFAS through aquatic-terrestrial food webs appears congener- and compartment-specific, challenging the understanding of PFAS exposure routes for multiple species involved in these food webs.
Collapse
Affiliation(s)
- Kailee E Hopkins
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, North York, ON M3H 5T4, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| | - Natalie K Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, 12302 Beech Forest Road, Laurel, Maryland 20708, United States
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
39
|
Capozzi SL, Xia C, Shuwal M, Zaharias Miller G, Gearhart J, Bloom E, Gehrenkemper L, Venier M. From watersheds to dinner plates: Evaluating PFAS exposure through fish consumption in Southeast Michigan. CHEMOSPHERE 2023; 345:140454. [PMID: 37839751 DOI: 10.1016/j.chemosphere.2023.140454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Muscle tissue and organ samples of six different fish species were collected from ten locations in Southeast Michigan's Huron and Rouge watersheds. Per- and polyfluoroalkyl substances (PFAS) were analyzed in 36 samples comprising filets, liver, gut, and eggs using targeted analysis and the direct total oxidizable precursor (dTOP) assay on a subset of six samples. The median concentrations of the ∑PFAS in filets from the Huron and Rouge watersheds were 13 and 6.3 ng/g wet weight (w.w.), respectively. Perfluorooctane sulfonate (PFOS) was the most detected and abundant compound in fish organs, with the liver having the largest overall burden of PFAS. The highest percent increase in targeted PFAS after the dTOP assay was observed in the Catfish filet (552%) while the smallest increase was in the Catfish liver (32%) accounting for 1.3 and 8.1 nMole F/g dry weight (d.w.), respectively. The positive matrix factorization (PMF) analysis revealed three distinct PFAS sources, of which the one attributed to PFOS explained 73% of the data. Results from this work have important implications for fish consumption in Michigan waterways. Among the filet samples analyzed, the calculated daily consumption limit of total PFOS was exceeded in approximately 82% and 91% of samples for adults and children over the age of seven years old, respectively.
Collapse
Affiliation(s)
- Staci L Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States.
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Matthew Shuwal
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | | | | | - Erica Bloom
- Ecology Center, Ann Arbor, MI, 48104, United States
| | - Lennart Gehrenkemper
- Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-WillstätterStraße 11, 12489, Berlin, Germany
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
40
|
Wang N, Jagani R, Nwobodo N, Ma J. Toxicity of environmentally relevant concentration of PFAS chemicals in Lumbriculus variegatus (Oligochaeta, Lumbriculidae) - A multi-bioindicator study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115722. [PMID: 37992644 DOI: 10.1016/j.ecoenv.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
PFAS, or per- and polyfluoroalkyl substances, are a family of man-made chemicals found in a variety of products from non-stick cookware and food wrappers to firefighting foams. PFAS are persistent and widely distributed in the environment, including aquatic environments. In this study we examined the impact of PFAS chemicals on the physiological and behavioral endpoints of Lumbriculus variegatus (i.e., blackworms). Lumbriculus variegatus is a species of freshwater annelid worm that plays key roles in shallow freshwater ecosystems. At an environmentally relevant concentration of 1 μg/L, 12-day aqueous exposure to long chain PFAS, including PFOA, PFOS and PFDA, each markedly slowed the pulse rate of the dorsal blood vessel in L. variegatus, indicating a suppressive effect on blood circulation. The mean pulse rate was reduced from 9.6 beats/minute to 6.2 and 7.0 beats/min in PFOA and PFOS, respectively (P < 0.0001). Further, PFOA, PFOS and PFDA reduced the escape responsiveness of L. variegatus to physical stimulation. The percentage of worms showing normal escape behavior was reduced from 99.0% in control to 90.6% in the PFOS exposed group (P < 0.01). In a chronic (4 week) growth study, exposure to overlying water and sediment spiked with PFOA, PFOS or PFDA reduced the total biomass and the number of worms, indicating a suppressive effect on worm population growth. For instance, PFOA and PFDA reduced the total dry biomass by 26.3% and 28.5%, respectively, compared to the control (P < 0.05). The impact of PFAS on blackworm physiology is accompanied by an increase in lipid peroxidation. The level of malondialdehyde (MDA), an indicator of lipid peroxidation, and catalase, a major antioxidant enzyme, were markedly increased in PFOA, PFOS and PFDA exposed groups. Interestingly, exposure to PFHxA, a short chain PFAS, had no detectable effect on any of the measured endpoints. Our results demonstrate that L. variegatus is highly sensitive to the toxic impact of long chain PFAS chemicals as measured by multiple endpoints including blood circulation, behavior, and population growth. Such toxicity may have a detrimental impact on L. variegatus and the freshwater ecosystems where it resides.
Collapse
Affiliation(s)
| | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,USA
| | - Nigel Nwobodo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
41
|
Liu J, Zhao Z, Li J, Hua X, Zhang B, Tang C, An X, Lin T. Emerging and legacy perfluoroalkyl and polyfluoroalkyl substances (PFAS) in surface water around three international airports in China. CHEMOSPHERE 2023; 344:140360. [PMID: 37816443 DOI: 10.1016/j.chemosphere.2023.140360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large category of crucial environmental contaminants of global concerns. There are limited data on PFAS in surface water around international airports in China. The present study investigated the concentrations, distributions, and sources of emerging and legacy PFAS in surface waters around Beijing Capital International Airport (BC), Shanghai Pudong International Airport (SP), and Guangzhou Baiyun International Airport (GB) in China. Twenty-seven target compounds were quantified. The Σ27PFAS concentrations ranged from 19.0 to 62.8 ng/L (mean 36.1 ng/L) in BC, 25.6-342 ng/L (mean 76.0 ng/L) in SP, 7.35-72.7 ng/L (mean 21.6 ng/L) in GB. The dominant compound was perfluorooctanoic acid (PFOA), which accounted for an average of 27% (5%-65%) of the Σ27PFAS concentrations. The alternatives with -C6F12- group had detection frequencies ranging from 72% to 100%. The partition coefficient results indicate that the longer chain PFAS (C > 8) tend to be more distributed in the particle phase. Fifty suspect and nontarget PFAS were identified. In GB, 44 PFAS were identified, more than SP of 39 and BC of 38. An ultra short-chain (C = 2) precursor, N-methylperfluoroethanesulfonamido acetic acid (MeFEtSAA), was identified and semi-quantified. Domestic wastewater discharges might be the main sources around BC, while industrial and aviation activities might be the main sources around SP and GB.
Collapse
Affiliation(s)
- Jing Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xia Hua
- Handan Ecology and Environment Bureau, Hebei, 056008, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Caijun Tang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyi An
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
42
|
Krebs R, Farrington KE, Johnson GR, Luckarift HR, Diltz RA, Owens JR. Biotechnology to reduce logistics burden and promote environmental stewardship for Air Force civil engineering requirements. Biotechnol Adv 2023; 69:108269. [PMID: 37797730 DOI: 10.1016/j.biotechadv.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
This review provides discussion of advances in biotechnology with specific application to civil engineering requirements for airfield and airbase operations. The broad objectives are soil stabilization, waste management, and environmental protection. The biotechnology focal areas address (1) treatment of soil and sand by biomineralization and biopolymer addition, (2) reduction of solid organic waste by anaerobic digestion, (3) application of microbes and higher plants for biological processing of contaminated wastewater, and (4) use of indigenous materials for airbase construction and repair. The consideration of these methods in military operating scenarios, including austere environments, involves comparison with conventional techniques. All four focal areas potentially reduce logistics burden, increase environmental sustainability, and may provide energy source, or energy-neutral practices that benefit military operations.
Collapse
Affiliation(s)
- Rachel Krebs
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA.
| | - Karen E Farrington
- ARCTOS, LLC, 2601 Mission Point Blvd., Ste. 300, Beavercreek, OH 45431, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Glenn R Johnson
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Heather R Luckarift
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Robert A Diltz
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Jeffery R Owens
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| |
Collapse
|
43
|
Marín-García M, Fàbregas C, Argenté C, Díaz-Ferrero J, Gómez-Canela C. Accumulation and dietary risks of perfluoroalkyl substances in fish and shellfish: A market-based study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 237:117009. [PMID: 37652217 DOI: 10.1016/j.envres.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Since the 1940s, per- and polyfluoroalkyl substances (PFAS) have been widely produced and used in various applications due to their unique properties. Consequently, the principal exposure routes of PFAS have been broadly studied, leading to the conclusion that dietary exposure (more specifically, the consumption of fish and seafood) was one of their main contributors. Thus, developing an analytical method that determines the level of PFAS in fish and seafood has become a relevant subject. In this work, a previous analytical method has been optimized to determine 12 PFAS in fish muscle from salmon, tuna, cod, hake, sardine, anchovy, and sole, as well as in seven different seafood species (i.e., cuttlefish, octopus, squid, shrimp, Norway lobster, prawn, and mussel) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Subsequently, the PFAS profile of the different species was studied to determine if it was consistent with that previously reviewed in the literature and to know the most relevant contribution of PFAS for each species. Finally, human exposure to PFAS through their consumption was estimated by the daily intake for seven different age/gender groups. PFAS were obtained from 0.014 to 0.818 ng g-1 wet weight in fish samples. Sardines, anchovies, and soles presented the highest PFAS levels. However, cod samples also showed some PFAS traces. Regarding seafood, PFAS levels range from 0.03 to 36.7 ng g-1 dry weight for the studied species. A higher concentration of PFAS has been found in the cephalopods' spleens and the crustaceans' heads. PFOS and PFBS were the predominant compounds in each seafood species, respectively. On the other hand, in the case of mussels, which are the less polluted species of the study, contamination by longer-chained PFAS was also observed. Finally, the total intake of PFAS due to fish and shellfish consumption for the Spanish adult population was estimated at 17.82 ng day-1. Nevertheless, none of the analyzed samples exceeded the European Food Safety Authority (EFSA) risk value for the supervised PFAS in any age/gender group reviewed.
Collapse
Affiliation(s)
- Marc Marín-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Céline Fàbregas
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Carla Argenté
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
44
|
Gkika IS, Xie G, van Gestel CAM, Ter Laak TL, Vonk JA, van Wezel AP, Kraak MHS. Research Priorities for the Environmental Risk Assessment of Per- and Polyfluorinated Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2302-2316. [PMID: 37589402 DOI: 10.1002/etc.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ioanna S Gkika
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ge Xie
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas L Ter Laak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - J Arie Vonk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie P van Wezel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Lin Y, Zhao Y, Liu Y, Lan Y, Zhu J, Cai Y, Guo F, Li F, Zhang Y, Xu Z, Xue J. Occurrence and bioaccumulation of parabens and their metabolites in the biota from a subtropical freshwater river ecosystem: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 240:117530. [PMID: 39491101 DOI: 10.1016/j.envres.2023.117530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Widespread occurrence of parabens in the environment has been documented, whereas little information is available about the occurrence and bioaccumulation of parabens in the aquatic biota. In this study, plants (n = 14), plankton (n = 20), and fish muscle (n = 89) samples were collected from Dongjiang River Basin and analyzed for nine parabens and two of their metabolites using ultra-high performance liquid chromatogram-tandem mass spectrometry. All the samples contained notable concentrations of parabens and the metabolites, and the total concentrations of parabens (Σp-PBs; sum of nine parent compounds) ranged from 0.40 to 776 ng/g dry wt. MeP, EtP, and PrP were the predominant parent compounds in both plankton and fish, while in plants, MeP, BzP and EtP were the top three abundant chemicals. As the predominant metabolite, 4-HB was detected in 99% aquatic biota samples analyzed with the highest concentration (24800 ng/g, dry wt) detected in an alga. Significantly positively correlations among the concentrations of MeP, BzP, EtP and 4-HB in the fish muscle were found. Based on dry weight, bioaccumulation potentials of these chemical substances were estimated with bioaccumulation factor (BAF) values greater than 2000 L/kg, suggestive of bioaccumulative in aquatic biota. Based on the concentrations measured, the daily intake (EDI) of parabens through fish consumption was estimated with the mean EDIs as 4.20, 2.41, and 1.93 ng/kg bw/day for toddlers, children, and adults in urban, respectively. This study provides baseline information about the occurrence and fate of parabens in the aquatic environment.
Collapse
Affiliation(s)
- Yiling Lin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiamin Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihao Xu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
46
|
Spyrakis F, Dragani TA. The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. TOXICS 2023; 11:721. [PMID: 37755732 PMCID: PMC10536631 DOI: 10.3390/toxics11090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | | |
Collapse
|
47
|
Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, Khoo KS, Garba ZN, Usman F, Zango MU, Lim JW. An overview on human exposure, toxicity, solid-phase microextraction and adsorptive removal of perfluoroalkyl carboxylic acids (PFCAs) from water matrices. ENVIRONMENTAL RESEARCH 2023; 231:116102. [PMID: 37196688 DOI: 10.1016/j.envres.2023.116102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia; Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC), Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | | | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | | | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
48
|
M F Coêlho AC, Cioni L, Van Dreunen W, Berg V, Rylander C, Urbarova I, Herzke D, Sandanger TM. Legacy perfluoroalkyl acids and their oxidizable precursors in plasma samples of Norwegian women. ENVIRONMENT INTERNATIONAL 2023; 178:108026. [PMID: 37356307 DOI: 10.1016/j.envint.2023.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Humans are exposed to perfluoroalkyl acids (PFAA) mainly through direct pathways, such as diet and drinking water, but indirect exposure also occurs when PFAA precursors break down to form legacy PFAA. Exposure to PFAA precursors raises particular concern, as neither the exposure nor the precursors themselves have been well described. In the present study, we aimed to assess the indirect contribution of oxidizable PFAA precursors to the total per- and polyfluoroalkyl substances (PFAS) burden in human plasma following the voluntary phase-out of production of long-chain PFAS. In addition, multiple logistic regression was used to explore associations between selected lifestyle and dietary factors and the oxidizable PFAA precursors fraction. This study included 302 cancer-free participants of the Norwegian Women and Cancer postgenome cohort. PFAS analyses were performed in plasma samples to determine PFAS concentrations before and after oxidation with the Total Oxidizable Precursor (TOP) assay. In pre-TOP analyses, perfluorooctane sulfonic acid (PFOS) was the dominant compound, followed by perfluorooctanoic acid (PFOA).The vast majority (98%) of the study population had increased post-TOP concentrations for at least one PFAA. The formation of PFAA accounted for 12% of the total PFAS burden, with seven PFAA observed post-TOP in at least 30% of study participants. PFHpA, br- PFOA, and PFDA were only detected in post-TOP analyses and showed the highest increase in concentrations. Of the PFAA with increased concentrations, we noted significant associations for year of birth, parity, BMI, and some dietary factors, although they were not consistent between the different PFAA. These results indicate that while the TOP assay might not provide a complete assessment of total PFAS burden in humans, it offers comprehensive assessment of unknown PFAA precursors that might be present in plasma, and it could therefore be implemented as an auxiliary tool in this regard.
Collapse
Affiliation(s)
- Ana Carolina M F Coêlho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Lara Cioni
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Wendy Van Dreunen
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway; Department for Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| |
Collapse
|
49
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
50
|
Novak PA, Hoeksema SD, Thompson SN, Trayler KM. Per- and polyfluoroalkyl substances (PFAS) contamination in a microtidal urban estuary: Sources and sinks. MARINE POLLUTION BULLETIN 2023; 193:115215. [PMID: 37392593 DOI: 10.1016/j.marpolbul.2023.115215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
This study evaluates PFAS contamination and determines the major drainage sources to a temperate microtidal estuary, the Swan Canning Estuary, in Perth Western Australia. We describe how variability in these sources influences PFAS concentrations within this urban estuary. Surface water samples were collected from 20 estuary sites and 32 catchment sites in June and December from 2016 to 2018. Modelled catchment discharge was used to estimate PFAS load over the study period. Three major catchment sources of elevated PFAS were identified with contamination likely resulting from historical AFFF use on a commercial airport and defence base. Estuary PFAS concentration and composition varied significantly with season and spatially with the two different estuary arms responding differently to winter and summer conditions. This study has found that the influence of multiple PFAS sources on an estuary depend on the historical usage timeframe, groundwater interactions and surface water discharge.
Collapse
Affiliation(s)
- P A Novak
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia.
| | - S D Hoeksema
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - S N Thompson
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - K M Trayler
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|