1
|
Lu Y, Fu W, Xing W, Wu H, Zhang C, Xu D. Transcriptional regulation mechanism of PARP1 and its application in disease treatment. Epigenetics Chromatin 2024; 17:26. [PMID: 39118189 PMCID: PMC11308664 DOI: 10.1186/s13072-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.
Collapse
Affiliation(s)
- Yu Lu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
- Hebei University, Baoding, Hebei, P.R. China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| |
Collapse
|
2
|
Zheng W, Huang Y, Xie Y, Yang T, Cheng X, Chen H, Li C, Jiang Z, Yu Z, Li Z, Zhang L, Yuan L, Liu Y, Liang Y, Wu Z. Design, Synthesis, and Evaluation of [ 18F]BIBD-300 as a Positron Emission Tomography Tracer for Poly(ADP-Ribose) Polymerase-1. Mol Pharm 2024; 21:2606-2621. [PMID: 38606716 DOI: 10.1021/acs.molpharmaceut.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Compounds 8a-j were designed to adjust the mode of interaction and lipophilicity of FTT by scaffold hopping and changing the length of the alkoxy groups. Compounds 8a, 8d, 8g, and BIBD-300 were screened for high-affinity PARP-1 through enzyme inhibition assays and are worthy of further evaluation. PET imaging of MCF-7 subcutaneous tumors with moderate expression of PARP-1 showed that compared to [18F]FTT, [18F]8a, [18F]8d, and [18F]8g exhibited greater nonspecific uptake, a lower target-to-nontarget ratio, and severe defluorination, while [18F]BIBD-300 exhibited lower nonspecific uptake and a greater target-to-nontarget ratio. PET imaging of 22Rv1 subcutaneous tumors, which highly express PARP-1, confirmed that the uptake of [18F]BIBD-300 in normal organs, such as the liver, muscle, and bone, was lower than that of [18F]FTT, and the ratio of tumor-to-muscle and tumor-to-liver [18F]BIBD-300 was greater than that of [18F]FTT. The biodistribution results in mice with MCF-7 and 22Rv1 subcutaneous tumors further validated the results of PET imaging. Unlike [18F]FTT, which mainly relies on hepatobiliary clearance, [18F]BIBD-300, which has lower lipophilicity, undergoes a partial shift from hepatobiliary to renal clearance, providing the possibility for [18F]BIBD-300 to indicate liver cancer. The difference in the PET imaging results for [18F]FTT, [18F]BIBD-300, and [18F]8j in 22Rv1 mice and the corresponding molecular docking results further confirmed that subtle structural modifications in lipophilicity greatly optimize the properties of the tracer. Cell uptake experiments also demonstrated that [18F]BIBD-300 has a high affinity for PARP-1. Metabolized and unmetabolized [18F]FTT and [18F]BIBD-300 were detected in the brain, indicating that they could not accurately quantify the amount of PARP-1 in the brain. However, PET imaging of glioma showed that both [18F]FTT and [18F]BIBD-300 could accurately localize both in situ to C6 and U87MG tumors. Based on its potential advantages in the diagnosis of breast cancer, prostate cancer, and glioma, as well as liver cancer, [18F]BIBD-300 is a new option for an excellent PARP-1 tracer.
Collapse
Affiliation(s)
- Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tingyu Yang
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
4
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
5
|
Cheng MZ, Yang BB, Zhan ZT, Lin SM, Fang ZP, Gao Y, Zhou WJ. MACC1 and Gasdermin-E (GSDME) regulate the resistance of colorectal cancer cells to irinotecan. Biochem Biophys Res Commun 2023; 671:236-245. [PMID: 37307707 DOI: 10.1016/j.bbrc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and metastasis of many solid cancer entities. High expression of MACC1 is found in colorectal cancer (CRC) tissues. So far, the role of MACC1 in CRC cell pyroptosis and resistance to irinotecan is unclear. The cleavage of Gasdermin-E (GSDME) is the main executors of activated pyroptosis. We found that GSDME enhanced CRC cell pyroptosis and reduced their resistance to irinotecan, while MACC1 inhibited the cleavage of GSDME and CRC cell pyroptosis, promoted CRC cell proliferation, and enhanced the resistance of CRC cells to irinotecan. Therefore, CRC cells with high MACC1 expression and low GSDME expression had higher resistance to irinotecan, while CRC cells with low MACC1 expression and high GSDME expression had lower resistance to irinotecan. Consistently, by analyzing CRC patients who received FOLFIRI (Fluorouracil + Irinotecan + Leucovorin) in combination with chemotherapy in the GEO database, we found that CRC patients with low MACC1 expression and high GSDME expression had higher survival rate. Our study suggests that the expression of MACC1 and GSDME can be used as detection markers to divide CRC patients into irinotecan resistant and sensitive groups, helping to determine the treatment strategy of patients.
Collapse
Affiliation(s)
- Ming-Zhen Cheng
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo-Bo Yang
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ze-Tao Zhan
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Si-Min Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, China
| | - Zhe-Ping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei-Jie Zhou
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
6
|
Tan A, Younis AZ, Evans A, Creighton JV, Coveny C, Boocock DJ, Sale C, Lavery GG, Coutts AS, Doig CL. PARP1 mediated PARylation contributes to myogenic progression and glucocorticoid transcriptional response. Cell Death Discov 2023; 9:133. [PMID: 37087471 PMCID: PMC10121420 DOI: 10.1038/s41420-023-01420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
The ADP-ribosyltransferase, PARP1 enzymatically generates and applies the post-translational modification, ADP-Ribose (ADPR). PARP1 roles in genome maintenance are well described, but recent work highlights roles in many fundamental processes including cellular identity and energy homeostasis. Herein, we show in both mouse and human skeletal muscle cells that PARP1-mediated PARylation is a regulator of the myogenic program and the muscle transcriptional response to steroid hormones. Chemical PARP1 modulation impacts the expression of major myocellular proteins, including troponins, key in dictating muscle contractile force. Whilst PARP1 in absence of DNA damage is often assumed to be basally inactive, we show PARylation to be acutely sensitive to extracellular glucose concentrations and the steroid hormone class, glucocorticoids which exert considerable authority over muscle tissue mass. Specifically, we find during myogenesis, a transient and significant rise in PAR. This early-stage differentiation event, if blocked with PARP1 inhibition, reduced the abundance of important muscle proteins in the fully differentiated myotubes. This suggests that PAR targets during early-stage differentiation are central to the proper development of the muscle contractile unit. We also show that reduced PARP1 in myoblasts impacts a variety of metabolic pathways in line with the recorded actions of glucocorticoids. Currently, as both regulators of myogenesis and muscle mass loss, glucocorticoids represent a clinical conundrum. Our work goes on to identify that PARP1 influences transcriptional activation by glucocorticoids of a subset of genes critical to human skeletal muscle pathology. These genes may therefore signify a regulatory battery of targets through which selective glucocorticoid modulation could be achieved. Collectively, our data provide clear links between PARP1-mediated PARylation and skeletal muscle homeostatic mechanisms crucial to tissue mass maintenance and endocrine response.
Collapse
Affiliation(s)
- Arnold Tan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander Evans
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jade V Creighton
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Clare Coveny
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, M1 7EL, UK
| | - Gareth G Lavery
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amanda S Coutts
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig L Doig
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
7
|
Karpova Y, Guo D, Tulin AV. Cell-Based Screening for New PARP Inhibitors Utilizing PARG-Mutated Mouse Embryonic Stem Cells. Methods Mol Biol 2022; 2609:375-385. [PMID: 36515848 DOI: 10.1007/978-1-0716-2891-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to the most recent data, cancer is among the leading cause of death in the United States and accounted for more than 600,000 deaths in 2021. Around 30% of these cancer-related deaths were caused by breast, prostate, and ovarian cancers. PARP-1 inhibitors show the most promising results in treatment of these three types of cancers and have found widespread use in the development of novel treatment strategies. A number of PARP inhibitors currently are undergoing phase I/II of FDA approval process for treatment of genetically disposed mutant tumors. Recently, however, a few clinical studies reported setbacks in research on PARP-1 inhibitors. It is likely that these setbacks are caused by tremendous off-target effects. To overcome these problems, it is very important to design new potent PARP-1 inhibitors, which do not kill normal cells. Our newly developed assay is based on the usage of sensitized embryonic stem cells with disrupted PARG gene that significantly increase the base level of pADPr for easy detection. Our approach allows the discovery of that effectively target poly(ADP-ribosyl)ation in cells and allows to select compounds with minimal or no cytotoxic effects on ES cells.
Collapse
Affiliation(s)
- Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
8
|
Ramos T, Parekh M, Meleady P, O’Sullivan F, Stewart RMK, Kaye SB, Hamill K, Ahmad S. Specific decellularized extracellular matrix promotes the plasticity of human ocular surface epithelial cells. Front Med (Lausanne) 2022; 9:974212. [PMID: 36457571 PMCID: PMC9705355 DOI: 10.3389/fmed.2022.974212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2023] Open
Abstract
The ocular surface is composed of two phenotypically and functionally different epithelial cell types: corneal and the conjunctival epithelium. Upon injury or disease, ocular surface homeostasis is impaired resulting in migration of conjunctival epithelium on to the corneal surface. This can lead to incomplete transdifferentiation toward corneal epithelial-like cells in response to corneal basement membrane cues. We show that corneal extracellular matrix (ECM) proteins induce conjunctival epithelial cells to express corneal associated markers losing their conjunctival associated phenotype at both, mRNA and protein level. Corneal epithelial cells behave the same in the presence of conjunctival ECM proteins, expressing markers associated with conjunctival epithelium. This process of differentiation is accompanied by an intermediate step of cell de-differentiation as an up-regulation in the expression of epithelial stem cell markers is observed. In addition, analysis of ECM proteins by laminin screening assays showed that epithelial cell response is laminin-type dependent, and cells cultured on laminin-511 showed lower levels of lineage commitment. The phosphorylation and proteolysis levels of proteins mainly involved in cell growth and differentiation showed lower modifications in cells with lower lineage commitment. These observations showed that the ECM proteins may serve as tools to induce cell differentiation, which may have potential applications for the treatment of ocular surface injuries.
Collapse
Affiliation(s)
- Tiago Ramos
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Mohit Parekh
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Paula Meleady
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Finbarr O’Sullivan
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Rosalind M. K. Stewart
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Department of Ophthalmology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Stephen B. Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Kevin Hamill
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
| | - Sajjad Ahmad
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- External Eye Disease Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
9
|
Upregulation of PARG in prostate cancer cells suppresses their malignant behavior and downregulates tumor-promoting genes. Biomed Pharmacother 2022; 153:113504. [PMID: 36076593 DOI: 10.1016/j.biopha.2022.113504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/03/2023] Open
Abstract
Post-translational modification of nuclear proteins through the addition of poly(ADP-ribose) (pADPr) moieties is upregulated in many metastatic cancers, where the high levels of pADPr have often been associated with poor cancer prognosis. Although the inhibitors of poly(ADP-ribose) polymerases (PARPs) have been utilized as potent anti-cancer agents, their efficacy in clinical trials varied among patient groups and has often been unpredictable. Such outcome cannot be interpreted solely by the inability to keep PARP-driven DNA repair in check. The focus of studies on PARP-driven tumorigenesis have recently been shifted toward PARP-dependent regulation of transcription. Here we utilized the controlled overexpression of poly(ADP-ribose) glycohydrolase (PARG), a sole pADPr-degrading enzyme, to investigate pADPr-dependent gene regulation in prostate cancer PC-3 cells. We demonstrated that PARG upregulation reduces pADPr levels and inhibits the expression of genes in key tumor-promoted pathways, including TNFα/NF-kB, IL6/STAT3, MYC, and KRAS signaling, the genes involved in inflammation response, especially chemokines, and endothelial-mesenchymal transition. The observed effect of PARG on transcription was consistent across all tested prostate cancer cell lines and correlates with PARG-induced reduction of clonogenic potential of PC-3 cells in vitro and a significant growth inhibition of PC-3-derived tumors in nude mice in vivo.
Collapse
|
10
|
Singh M, Mansuri MS, Dwivedi M, Kadam A, Mayatra JM, Laddha N, Shah C, Shah GM, Begum R. Suppression of oxidative-stress induced melanocyte death: Role of poly(ADP-ribose) polymerase in vitiligo pathogenesis. Indian J Dermatol Venereol Leprol 2022; 88:413-415. [PMID: 35389013 DOI: 10.25259/ijdvl_290_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Jay M Mayatra
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Naresh Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Chandni Shah
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Girish M Shah
- CRCHU-Q: Quebec University Hospital Research Centre of Quebec of Laval University (CHUL Site), Quebec City (QC) G1V 4G2, Canada
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
11
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
12
|
Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie 2022; 202:2-14. [PMID: 35007648 DOI: 10.1016/j.biochi.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) and diabetes-related complications are amongst the leading causes of mortality worldwide. The international diabetes federation (IDF) has estimated 592 million people to suffer from DM by 2035. Hence, finding a novel biomolecule that can effectively aid diabetes management is vital, as other existing drugs have numerous side effects. Melatonin, a pineal hormone having antioxidative and anti-inflammatory properties, has been implicated in circadian dysrhythmia-linked DM. Reduced levels of melatonin and a functional link between melatonin and insulin are implicated in the pathogenesis of type 2 diabetes (T2D) Additionally, genomic studies revealed that rare variants in melatonin receptor 1b (MTNR1B) are also associated with impaired glucose tolerance and increased risk of T2D. Moreover, exogenous melatonin treatment in cell lines, rodent models, and diabetic patients has shown a potent effect in alleviating diabetes and other related complications. This highlights the role of melatonin in glucose homeostasis. However, there are also contradictory reports on the effects of melatonin supplementation. Thus, it is essential to explore if melatonin can be taken from bench to bedside for diabetes management. This review summarizes the therapeutic potential of melatonin in various diabetic models and whether it can be considered a safe drug for managing diabetic complications and diabetic manifestations like oxidative stress, inflammation, ER stress, mitochondrial dysfunction, metabolic dysregulation, etc.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
13
|
Nelson MM, Hoff JD, Zeese ML, Corfas G. Poly (ADP-Ribose) Polymerase 1 Regulates Cajal-Retzius Cell Development and Neural Precursor Cell Adhesion. Front Cell Dev Biol 2021; 9:693595. [PMID: 34708032 PMCID: PMC8542860 DOI: 10.3389/fcell.2021.693595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a ubiquitously expressed enzyme that regulates DNA damage repair, cell death, inflammation, and transcription. PARP1 functions by adding ADP-ribose polymers (PAR) to proteins including itself, using NAD+ as a donor. This post-translational modification known as PARylation results in changes in the activity of PARP1 and its substrate proteins and has been linked to the pathogenesis of various neurological diseases. PARP1 KO mice display schizophrenia-like behaviors, have impaired memory formation, and have defects in neuronal proliferation and survival, while mutations in genes that affect PARylation have been associated with intellectual disability, psychosis, neurodegeneration, and stroke in humans. Yet, the roles of PARP1 in brain development have not been extensively studied. We now find that loss of PARP1 leads to defects in brain development and increased neuronal density at birth. We further demonstrate that PARP1 loss increases the expression levels of genes associated with neuronal migration and adhesion in the E15.5 cerebral cortex, including Reln. This correlates with an increased number of Cajal–Retzius (CR) cells in vivo and in cultures of embryonic neural progenitor cells (NPCs) derived from the PARP1 KO cortex. Furthermore, PARP1 loss leads to increased NPC adhesion to N-cadherin, like that induced by experimental exposure to Reelin. Taken together, these results uncover a novel role for PARP1 in brain development, i.e., regulation of CR cells, neuronal density, and cell adhesion.
Collapse
Affiliation(s)
- Megan M Nelson
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - J Damon Hoff
- Single Molecule Analysis in Real-Time Center, Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Mya L Zeese
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Shawki MA, Elsayed NS, Mantawy EM, Said RS. Promising drug repurposing approach targeted for cytokine storm implicated in SARS-CoV-2 complications. Immunopharmacol Immunotoxicol 2021; 43:395-409. [PMID: 34057871 PMCID: PMC8171013 DOI: 10.1080/08923973.2021.1931302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
A global threat has emerged in 2019 due to the rapid spread of Coronavirus disease (COVID-19). As of January 2021, the number of cases worldwide reached 103 million cases and 2.22 million deaths which were confirmed as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This global pandemic galvanized the scientific community to study the causative virus (SARS-CoV2) pathogenesis, transmission, and clinical symptoms. Remarkably, the most common complication associated with this disease is the cytokine storm which is responsible for COVID-19 mortality. Thus, targeting the cytokine storm with new medications is needed to hamper COVID-19 complications where the most prominent strategy for the treatment is drug repurposing. Through this strategy, several steps are skipped especially those required for testing drug safety and thus may help in reducing the dissemination of this pandemic. Accordingly, the aim of this review is to outline the pathogenesis, clinical features, and immune complications of SARS-CoV2 in addition to suggesting several repurposed drugs with their plausible mechanism of action for possible management of severe COVID-19 cases.
Collapse
Affiliation(s)
- May Ahmed Shawki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha Salah Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M. Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S. Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
15
|
Kadam A, Abuthakir MHS, Jubin T, Vaishnav J, Garg A, Balaji C, Suthar D, Begum R. Identification and characterization of Poly(ADP-ribose) polymerase-1 interacting proteins during development of Dictyostelium discoideum. Protein Expr Purif 2021; 186:105923. [PMID: 34062238 DOI: 10.1016/j.pep.2021.105923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that is associated with various biological processes like chromatin remodeling, DNA damage, cell death etc. In Dictyostelium discoideum, PARP-1 has also been implicated in cellular differentiation and development. However, its interacting proteins during multicellular development are not yet explored. Hence, the present study aims to identify PARP-1 interacting proteins during multicellular development of D. discoideum. BRCA1 C-terminus (BRCT) domain of PARP-1, which is mainly involved in protein-protein interactions was cloned in pGEX4T1 vector and developmental interactome of PARP-1 were analyzed by affinity purification-mass spectrometry. These interactions were further confirmed by in-silico protein-protein docking analysis, which led to identification of the proteins that show high affinity for BRCT domain. Initially, the protein structures were modeled on SWISS MODEL and PHYRE2 servers, refined by 3Drefine and validated by PROCHECK. Further, interaction sites of BRCT and the conserved regions in all interacting proteins were predicted using cons-PPISP and ConSurf, respectively. Finally, protein-protein docking analysis was done by HADDOCK. Our results identified 19 possible BRCT interacting proteins during D. discoideum development. Furthermore, interacting residues involved in the interactions and functional regions were explored. This is the first report where PARP-1's developmental interactome in D. discoideum is well established. The current findings demonstrate PARP-1's developmental interactome in D. discoideum and provide the groundwork to understand its regulated functions in developmental biology which would undoubtedly extend our perception towards developmental diseases in higher complex organisms and their treatment.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | | | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Jayvadan Vaishnav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Abhishek Garg
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, Maharashtra, India.
| | - Devesh Suthar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| |
Collapse
|
16
|
Luo X, Zhang T, Zhai Y, Wang F, Zhang S, Wang G. Effects of DNA Methylation on TFs in Human Embryonic Stem Cells. Front Genet 2021; 12:639461. [PMID: 33708244 PMCID: PMC7940757 DOI: 10.3389/fgene.2021.639461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism for gene regulation. The conventional view of DNA methylation is that DNA methylation could disrupt protein-DNA interactions and repress gene expression. Several recent studies reported that DNA methylation could alter transcription factors (TFs) binding sequence specificity in vitro. Here, we took advantage of the large sets of ChIP-seq data for TFs and whole-genome bisulfite sequencing data in many cell types to perform a systematic analysis of the protein-DNA methylation in vivo. We observed that many TFs could bind methylated DNA regions, especially in H1-hESC cells. By locating binding sites, we confirmed that some TFs could bind to methylated CpGs directly. The different proportion of CpGs at TF binding specificity motifs in different methylation statuses shows that some TFs are sensitive to methylation and some could bind to the methylated DNA with different motifs, such as CEBPB and CTCF. At the same time, TF binding could interactively alter local DNA methylation. The TF hypermethylation binding sites extensively overlap with enhancers. And we also found that some DNase I hypersensitive sites were specifically hypermethylated in H1-hESC cells. At last, compared with TFs' binding regions in multiple cell types, we observed that CTCF binding to high methylated regions in H1-hESC were not conservative. These pieces of evidence indicate that TFs that bind to hypermethylation DNA in H1-hESC cells may associate with enhancers to regulate special biological functions.
Collapse
Affiliation(s)
- Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tianjiao Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yixiao Zhai
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Fang Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shumei Zhang
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Guohua Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Signaling interplay between PARP1 and ROS regulates stress-induced cell death and developmental changes in Dictyostelium discoideum. Exp Cell Res 2020; 397:112364. [DOI: 10.1016/j.yexcr.2020.112364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
|
18
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
19
|
Poly(ADP-ribose) Polymerase 1 (PARP1) restrains MyoD-dependent gene expression during muscle differentiation. Sci Rep 2020; 10:15086. [PMID: 32934320 PMCID: PMC7493885 DOI: 10.1038/s41598-020-72155-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myogenic factor MyoD regulates skeletal muscle differentiation by interacting with a variety of chromatin-modifying complexes. Although MyoD can induce and maintain chromatin accessibility at its target genes, its binding and trans-activation ability can be limited by some types of not fully characterized epigenetic constraints. In this work we analysed the role of PARP1 in regulating MyoD-dependent gene expression. PARP1 is a chromatin-associated enzyme, playing a well recognized role in DNA repair and that is implicated in transcriptional regulation. PARP1 affects gene expression through multiple mechanisms, often involving the Poly(ADP-ribosyl)ation of chromatin proteins. In line with PARP1 down-regulation during differentiation, we observed that PARP1 depletion boosts the up-regulation of MyoD targets, such as p57, myogenin, Mef2C and p21, while its re-expression reverts this effect. We also found that PARP1 interacts with some MyoD-binding regions and that its presence, independently of the enzymatic activity, interferes with MyoD recruitment and gene induction. We finally suggest a relationship between the binding of PARP1 and the loss of the activating histone modification H3K4me3 at MyoD-binding regions. This work highlights not only a novel player in the epigenetic control of myogenesis, but also a repressive and catalytic-independent mechanisms by which PARP1 regulates transcription.
Collapse
|
20
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
21
|
Kadam A, Jubin T, Roychowdhury R, Garg A, Parmar N, Palit SP, Begum R. Insights into the functional aspects of poly(ADP-ribose) polymerase-1 (PARP-1) in mitochondrial homeostasis in Dictyostelium discoideum. Biol Cell 2020; 112:222-237. [PMID: 32324907 DOI: 10.1111/boc.201900104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) Polymerase-1 (PARP-1) is predominantly a nuclear protein and involved in various cellular processes like DNA repair, cell death, development, chromatin modulation etc. PARP-1 utilizes NAD+ and adds negatively charged PAR moieties on the target proteins. Over-activation of PARP-1 has been shown to cause energy crisis mediated cell death in which mitochondrial homeostasis is also affected. Moreover, the presence of mitochondrial NAD+ pools highlights the role of PARP-1 in mitochondria. The aim of present study is to understand the physiological role of PARP-1 in regulating mitochondrial functioning by varying the levels of PARP-1 in Dictyostelium discoideum. Intra-mitochondrial PARylation was analyzed by indirect immunofluorescence. Further, the effect of altered levels of PARP-1 i.e. overexpression, downregulation, knockout and its chemical inhibition was studied on mitochondrial respiration, reactive oxygen species (ROS) levels, ATP production, mitochondrial fission-fusion, mitochondrial morphology and mitochondrial DNA (mtDNA) content of D. discoideum. RESULTS Our results show intra-mitochondrial PARylation under oxidative stress. Altered levels of PARP-1 caused impairment in the mitochondrial respiratory capacity, leading to elevated ROS levels and reduced ATP production. Moreover, PARP-1 affects the mitochondrial morphology and mtDNA content, alters the mitochondrial fission-fusion processes in lieu of preventing cell death under physiological conditions. CONCLUSION The current study highlights the physiological role of PARP-1 in mitochondrial respiration, its morphology, fission-fusion processes and mtDNA maintenance in D. discoideum. SIGNIFICANCE This study would provide new clues on the PARP-1's crucial role in mitochondrial homeostasis, exploring the therapeutic potential of PARP-1 in various mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Abhishek Garg
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| |
Collapse
|
22
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
23
|
Eisemann T, Pascal JM. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell Mol Life Sci 2020; 77:19-33. [PMID: 31754726 PMCID: PMC11104942 DOI: 10.1007/s00018-019-03366-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023]
Abstract
DNA damage response (DDR) relies on swift and accurate signaling to rapidly identify DNA lesions and initiate repair. A critical DDR signaling and regulatory molecule is the posttranslational modification poly(ADP-ribose) (PAR). PAR is synthesized by a family of structurally and functionally diverse proteins called poly(ADP-ribose) polymerases (PARPs). Although PARPs share a conserved catalytic domain, unique regulatory domains of individual family members endow PARPs with unique properties and cellular functions. Family members PARP-1, PARP-2, and PARP-3 (DDR-PARPs) are catalytically activated in the presence of damaged DNA and act as damage sensors. Family members tankyrase-1 and closely related tankyrase-2 possess SAM and ankyrin repeat domains that regulate their diverse cellular functions. Recent studies have shown that the tankyrases share some overlapping functions with the DDR-PARPs, and even perform novel functions that help preserve genomic integrity. In this review, we briefly touch on DDR-PARP functions, and focus on the emerging roles of tankyrases in genome maintenance. Preservation of genomic integrity thus appears to be a common function of several PARP family members, depicting PAR as a multifaceted guardian of the genome.
Collapse
Affiliation(s)
- Travis Eisemann
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
24
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
25
|
Hopp AK, Grüter P, Hottiger MO. Regulation of Glucose Metabolism by NAD + and ADP-Ribosylation. Cells 2019; 8:cells8080890. [PMID: 31412683 PMCID: PMC6721828 DOI: 10.3390/cells8080890] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
Cells constantly adapt their metabolic pathways to meet their energy needs and respond to nutrient availability. During the last two decades, it has become increasingly clear that NAD+, a coenzyme in redox reactions, also mediates several ubiquitous cell signaling processes. Protein ADP-ribosylation is a post-translational modification that uses NAD+ as a substrate and is best known as part of the genotoxic stress response. However, there is increasing evidence that NAD+-dependent ADP-ribosylation regulates other cellular processes, including metabolic pathways. In this review, we will describe the compartmentalized regulation of NAD+ biosynthesis, consumption, and regeneration with a particular focus on the role of ADP-ribosylation in the regulation of glucose metabolism in different cellular compartments.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, CH-8057 Zurich, Switzerland
| | - Patrick Grüter
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Kalesh K, Lukauskas S, Borg AJ, Snijders AP, Ayyappan V, Leung AKL, Haskard DO, DiMaggio PA. An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation. Sci Rep 2019; 9:6655. [PMID: 31040352 PMCID: PMC6491589 DOI: 10.1038/s41598-019-43154-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
ADP-ribosylation is integral to a diverse range of cellular processes such as DNA repair, chromatin regulation and RNA processing. However, proteome-wide investigation of its cellular functions has been limited due to numerous technical challenges including the complexity of the poly(ADP-ribose) (PAR) chains, low abundance of the modification and lack of sensitive enrichment methods. We herein show that an adenosine analogue with a terminal alkyne functionality at position 2 of the adenine (2-alkyne adenosine or 2YnAd) is suitable for selective enrichment, fluorescence detection and mass spectrometry proteomics analysis of the candidate ADP-ribosylome in mammalian cells. Although similar labelling profiles were observed via fluorescence imaging for 2YnAd and 6YnAd, a previously reported clickable NAD+ precursor, quantitative mass spectrometry analysis of the two probes in MDA-MB-231 breast cancer cells revealed a significant increase in protein coverage of the 2YnAd probe. To facilitate global enrichment of ADP-ribosylated proteins, we developed a dual metabolic labelling approach that involves simultaneous treatment of live cells with both 2YnAd and 6YnAd. By combining this dual metabolic labelling strategy with highly sensitive tandem mass tag (TMT) isobaric mass spectrometry and hierarchical Bayesian analysis, we have quantified the responses of thousands of endogenous proteins to clinical PARP inhibitors Olaparib and Rucaparib.
Collapse
Affiliation(s)
- Karunakaran Kalesh
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Saulius Lukauskas
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aaron J Borg
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Vinay Ayyappan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Dorian O Haskard
- Faculty of Medicine, National Heart & Lung Institute, Vascular Science Section, Hammersmith Campus, London, UK
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Jubin T, Kadam A, Begum R. Poly(ADP-ribose) polymerase-1 (PARP-1) regulates developmental morphogenesis and chemotaxis in Dictyostelium discoideum. Biol Cell 2019; 111:187-197. [PMID: 30866055 DOI: 10.1111/boc.201800056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) polymerase-1 (PARP-1) has been attributed to varied roles in DNA repair, cell cycle, cell death, etc. Our previous reports demonstrate the role of PARP-1 during Dictyostelium discoideum development by its constitutive downregulation as well as by PARP-1 ortholog, ADP ribosyl transferase 1 A (ADPRT1A) overexpression. The current study analyses and strengthens the function of ADPRT1A in multicellular morphogenesis of D. discoideum. ADPRT1A was knocked out, and its effect was studied on cAMP signalling, chemotaxis and development of D. discoideum. RESULTS We report that ADPRT1A is essential in multicellular development of D. discoideum, particularly at the aggregation stage. Genetic alterations of ADPRT1A and chemical inhibition of its activity affects the intracellular and extracellular cAMP levels during aggregation along with chemotaxis. Exogenous cAMP pulses could rescue this defect in the ADPRT1A knockout (ADPRT1A KO). Expression analysis of genes involved in cAMP signalling reveals altered transcript levels of four essential genes (PDSA, REGA, ACAA and CARA). Moreover, ADPRT1A KO affects prespore- and prestalk-specific gene expression and prestalk tendency is favoured in the ADPRT1A KO. CONCLUSION ADPRT1A plays a definite role in regulating developmental morphogenesis via cAMP signalling. SIGNIFICANCE This study helps in understanding the role of PARP-1 in multicellular development and differentiation in higher complex organisms.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
28
|
Jubin T, Kadam A, Saran S, Begum R. Crucial role of poly (ADP‐ribose) polymerase (PARP‐1) in cellular proliferation of
Dictyostelium discoideum. J Cell Physiol 2018; 234:7539-7547. [DOI: 10.1002/jcp.27514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| |
Collapse
|
29
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2017; 175:192-222. [PMID: 28213892 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Constance, Germany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center - University Hospital, University of Florence, Florence, Italy
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Flavio Moroni
- Department of Neuroscience, Università degli Studi di Firenze, Florence, Italy
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue Injury, NIAAA, NIH, Bethesda, USA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francisco Garcia Soriano
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|