1
|
Vafa ZN, Sohrabi Y, Mirzaghaderi G, Heidari G, Rizwan M, Sayyed RZ. Effect of bio-fertilizers and seaweed extract on growth and yield of wheat (Triticum aestivum L.) under different irrigation regimes: Two-year field study. CHEMOSPHERE 2024; 364:143068. [PMID: 39151584 DOI: 10.1016/j.chemosphere.2024.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Wheat productivity is constrained by genetic, agronomic, and climate factors, though it is an important crop for food production worldwide. The present study evaluated the effect of bio-fertilizer consortia and seaweed extracts on the growth and yield of two wheat varieties under different irrigation regimes in a field study. This experiment was conducted in a split-split plot based on a randomized complete block design with four replications in 2018 and 2019. Irrigation treatments were the main factor, wheat variety (Sardari and Sirvan) the sub-factor, and bio-fertilizers the sub-sub-factors. The results showed that irrigation regimes significantly improved leaf width, number of leaves, fresh weight of roots and shoots, osmotic potential, leaf water content, and number of stomata respectively by 57.53, 38.59, 106.65, 135.29, 87.92, 14.22 and 13.77, 88.02 and 96.11 percent compared to dry-land conditions. Applying one- and two-times irrigation increased grain yield by 51% and 79%, respectively, and the response varied in wheat varieties. Sardari variety due to having smaller leaf dimensions (Leaf length and width) and lower fresh and dry weight of roots and shoots, as well as lower leaf and tissue water content, had lower grain yield than the Sirvan variety. All the bio-fertilizers positively impacted the growth and yield of both varieties. However, the highest average grain yield in the first and second years of the experiment (with an average of 5226.25 and 4923.33 kg/ha, respectively) were found under the combined application of Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract. The results of the present study underscore the importance of irrigation regimes and consortia of bio-fertilizers for improving grain yield. This study also highlighted the resilience of the studied wheat varieties and bio-fertilizers to projected climate changes. These findings could provide insights into adaptive strategies for mitigating the impact of climate change on wheat production.
Collapse
Affiliation(s)
- Zahra Najafi Vafa
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Gholamreza Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, 4245409, India
| |
Collapse
|
2
|
Gui G, Zhang Q, Hu W, Liu F. Application of multiomics analysis to plant flooding response. FRONTIERS IN PLANT SCIENCE 2024; 15:1389379. [PMID: 39193215 PMCID: PMC11347887 DOI: 10.3389/fpls.2024.1389379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Flooding, as a natural disaster, plays a pivotal role in constraining the growth and development of plants. Flooding stress, including submergence and waterlogging, not only induces oxygen, light, and nutrient deprivation, but also alters soil properties through prolonged inundation, further impeding plant growth and development. However, hypoxia (or anoxia) is the most serious and direct damage to plants caused by flooding. Moreover, flooding disrupts the structural integrity of plant cell walls and compromises endoplasmic reticulum functionality, while hindering nutrient absorption and shifting metabolic processes from normal aerobic respiration to anaerobic respiration. It can be asserted that flooding exerts comprehensive effects on plants encompassing phenotypic changes, transcriptional alterations, protein dynamics, and metabolic shifts. To adapt to flooding environments, plants employ corresponding adaptive mechanisms at the phenotypic level while modulating transcriptomic profiles, proteomic characteristics, and metabolite levels. Hence, this study provides a comprehensive analysis of transcriptomic, proteomic, and metabolomics investigations conducted on flooding stress on model plants and major crops, elucidating their response mechanisms from diverse omics perspectives.
Collapse
Affiliation(s)
- Guangya Gui
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Qi Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
3
|
Qi J, Mao Y, Cui J, Lu X, Xu J, Liu Y, Zhong H, Yu W, Li C. The role of strigolactones in resistance to environmental stress in plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14419. [PMID: 38973451 DOI: 10.1111/ppl.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Jin Qi
- College of Agriculture, Guangxi University, Nanning, China
| | - Yuanzhi Mao
- College of Agriculture, Guangxi University, Nanning, China
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - Haini Zhong
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Liu W, Yu A, Xie Y, Yao H, Sun C, Gao H, He J, Ao C, Tang D. Drying enhances the antioxidant activity of Allium mongolicum Regel through the phenylpropane and AA-MA pathway as shown by metabolomics. Food Chem X 2024; 22:101436. [PMID: 38742170 PMCID: PMC11089305 DOI: 10.1016/j.fochx.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Fresh Allium mongolicum Regel (FA) and dried A. mongolicum Regel (DA) are significantly different in antioxidant activity. However, the relevant mechanisms have not yet been explored. We evaluated the antioxidant activities of two varieties of FA and DA and characterized their metabolites using targeted metabolomics. The effect of different metabolites on the antioxidant activity of A. mongolicum Regel was investigated by multivariate analysis. A total of 713 metabolites were detected in all samples. Pearson correlation analysis demonstrated that the key primary metabolites were directly and significantly correlated with the total phenolic content (TPC) and total flavonoid content (TFC), while the secondary metabolites were directly correlated with antioxidant activity. The higher antioxidant activity of DA may be mainly attributed to the higher TPC and TFC. This study revealed the potential mechanism by which drying enhances the antioxidant activity of A. mongolicum Regel.
Collapse
Affiliation(s)
- Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Aihuan Yu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Yaodi Xie
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Haibo Yao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Chenxu Sun
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Huixia Gao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Jianjian He
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, People's Republic of China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
5
|
Abu-Ria ME, Elghareeb EM, Shukry WM, Abo-Hamed SA, Ibraheem F. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC PLANT BIOLOGY 2024; 24:514. [PMID: 38849739 PMCID: PMC11157776 DOI: 10.1186/s12870-024-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.
Collapse
Affiliation(s)
- Mohamed E Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Eman M Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa M Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Samy A Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah, 21912, Saudi Arabia
| |
Collapse
|
6
|
Gao P, Qi Y, Li L, Yang S, Guo J, Liu J, Wei H, Huang F, Yu L. Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1334996. [PMID: 38444534 PMCID: PMC10912172 DOI: 10.3389/fpls.2024.1334996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Soft rot of konjac (Amorphophallus spp.) is a devastating disease caused by the bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) with serious adverse effects on plantation development, corm quality and crop yield due to the current lack of effective control measures. The main objective of the present study was to elucidate the mechanisms underlying plant resistance to soft rot disease. A combination of transcriptomic and metabolomic analyses demonstrated significant enrichment of differentially expressed genes (DEG) and differentially accumulated metabolites (DAM) associated with plant hormones, phenylpropanoid biosynthesis and, in particular, alkaloid metabolism, in Amorphophallus muelleri following Pcc infection compared with A. konjac, these data implicate alkaloid metabolism as the dominant mechanism underlying disease resistance of A. muelleri. Quantitative real-time polymerase chain reaction analysis further revealed involvement of PAL, CYP73A16, CCOAOMT1, RBOHD and CDPK20 genes in the response of konjac to Pcc. Analysis of the bacteriostatic activities of total alkaloid from A. muelleri validated the assumption that alkaloid metabolism positively regulates disease resistance of konjac. Our collective results provide a foundation for further research on the resistance mechanisms of konjac against soft rot disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
7
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
8
|
Jampoh EA, Sáfrán E, Babinyec-Czifra D, Kristóf Z, Krárné Péntek B, Fábián A, Barnabás B, Jäger K. Morpho-Anatomical, Physiological and Biochemical Adjustments in Response to Heat and Drought Co-Stress in Winter Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:3907. [PMID: 38005804 PMCID: PMC10674999 DOI: 10.3390/plants12223907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
This study aimed to investigate the combined effect of high temperatures 10 °C above the optimum and water withholding during microgametogenesis on vegetative processes and determine the response of winter barley genotypes with contrasting tolerance. For this purpose, two barley varieties were analyzed to compare the effect of heat and drought co-stress on their phenology, morpho-anatomy, physiological and biochemical responses and yield constituents. Genotypic variation was observed in response to heat and drought co-stress, which was attributed to differences in anatomy, ultrastructure and physiological and metabolic processes. The co-stress-induced reduction in relative water content, total soluble protein and carbohydrate contents, photosynthetic pigment contents and photosynthetic efficiency of the sensitive Spinner variety was significantly greater than the tolerant Lambada genotype. Based on these observations, it has been concluded that the heat-and-drought stress-tolerance of the Lambada variety is related to the lower initial chlorophyll content of the leaves, the relative resistance of photosynthetic pigments towards stress-triggered degradation, retained photosynthetic parameters and better-preserved leaf ultrastructure. Understanding the key factors underlying heat and drought co-stress tolerance in barley may enable breeders to create barley varieties with improved yield stability under a changing climate.
Collapse
Affiliation(s)
- Emmanuel Asante Jampoh
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Horticultural Sciences, MATE Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Eszter Sáfrán
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Dorina Babinyec-Czifra
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zoltán Kristóf
- Department of Plant Anatomy, ELTE Eötvös Loránd University, 1053 Budapest, Hungary;
| | - Barbara Krárné Péntek
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Attila Fábián
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Beáta Barnabás
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Katalin Jäger
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| |
Collapse
|
9
|
Abu-Ria M, Shukry W, Abo-Hamed S, Albaqami M, Almuqadam L, Ibraheem F. Humic Acid Modulates Ionic Homeostasis, Osmolytes Content, and Antioxidant Defense to Improve Salt Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091834. [PMID: 37176891 PMCID: PMC10180778 DOI: 10.3390/plants12091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The sensitivity of rice plants to salinity is a major challenge for rice growth and productivity in the salt-affected lands. Priming rice seeds in biostimulants with stress-alleviating potential is an effective strategy to improve salinity tolerance in rice. However, the mechanisms of action of these compounds are not fully understood. Herein, the impact of priming rice seeds (cv. Giza 179) with 100 mg/L of humic acid on growth and its underlaying physiological processes under increased magnitudes of salinity (EC = 0.55, 3.40, 6.77, 8.00 mS/cm) during the critical reproductive stage was investigated. Our results indicated that salinity significantly reduced Giza 179 growth indices, which were associated with the accumulation of toxic levels of Na+ in shoots and roots, a reduction in the K+ and K+/Na+ ratio in shoots and roots, induced buildup of malondialdehyde, electrolyte leakage, and an accumulation of total soluble sugars, sucrose, proline, and enzymic and non-enzymic antioxidants. Humic acid application significantly increased growth of the Giza 179 plants under non-saline conditions. It also substantially enhanced growth of the salinity-stressed Giza 179 plants even at 8.00 mS/cm. Such humic acid ameliorating effects were associated with maintaining ionic homeostasis, appropriate osmolytes content, and an efficient antioxidant defense system. Our results highlight the potential role of humic acid in enhancing salt tolerance in Giza 179.
Collapse
Affiliation(s)
- Mohamed Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Samy Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed Albaqami
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lolwah Almuqadam
- Biology Department, College of Science, Imam Abdul Rahman Bin Faisal University, Damam 31441, Saudi Arabia
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah 21912, Saudi Arabia
| |
Collapse
|
10
|
Zahedi SM, Hosseini MS, Karimi M, Gholami R, Amini M, Abdelrahman M, Tran LSP. Chitosan-based Schiff base-metal (Fe, Cu, and Zn) complexes mitigate the negative consequences of drought stress on pomegranate fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:952-964. [PMID: 36889234 DOI: 10.1016/j.plaphy.2023.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Drought is one of the major environmental stresses that impairs fruit productivity and quality. The proper management of minerals can, however, assist plant to maintain their growth even under drought incidents, and is considered one of the encouraging approaches to refine the drought tolerance of plants. The beneficial effects of chitosan (CH)-based Schiff base-metal complexes (e.g., CH-Fe, CH-Cu and CH-Zn) in reducing the harmful impacts of different levels of drought stress on the growth and productivity of 'Malase Saveh' pomegranate cultivar were examined. All CH-metal complexes displayed favorable effects on the yield- and growth-related attributes of pomegranate trees cultivated under well-watered and different drought situations, with the best effects were observed with CH-Fe application. Specifically, leaves of CH-Fe-treated pomegranate plants showed higher concentrations of photosynthetic pigments [chlorophyll a (Chl a), Chl b, Chl a+b, and carotenoids by 28.0, 29.5, 28.6 and 85.7%, respectively] and microelements (Fe by 27.3%), along with increased levels of superoxide dismutase (by 35.3%) and ascorbate peroxidase (by 56.0%) enzymatic activities relative to those of CH-Fe-non-treated pomegranate plants under intense drought stress. CH-Fe-treated drought-stressed pomegranate leaves showed high increment of abscisic acid (by 25.1%) and indole-3-acetic acid (by 40.5%) relative to CH-Fe-non-treated pomegranates. The increased contents of total phenolics, ascorbic acid, total anthocyanins, and titratable acidity (by 24.3, 25.8, 9.3 and 30.9%, respectively) in the fruits of CH-Fe-treated drought-stressed pomegranates indicated the advantageousness of CH-Fe on the enhancement of fruit nutritional qualities. Collectively, our results prove the explicit functions of these complexes, particularly CH-Fe, in the control of drought-induced negative effects on pomegranate trees grown in semi-arid and dry areas.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | | | - Mahdieh Karimi
- Horticultural Sector, Ministry of Markazi Province Jihad-e-Agriculture, Khondab, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mostafa Abdelrahman
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala, 43511, Egypt; Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
11
|
Mehmandar MN, Rasouli F, Giglou MT, Zahedi SM, Hassanpouraghdam MB, Aazami MA, Tajaragh RP, Ryant P, Mlcek J. Polyethylene Glycol and Sorbitol-Mediated In Vitro Screening for Drought Stress as an Efficient and Rapid Tool to Reach the Tolerant Cucumis melo L. Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:870. [PMID: 36840218 PMCID: PMC9967323 DOI: 10.3390/plants12040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.
Collapse
Affiliation(s)
- Maryam Nekoee Mehmandar
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Mousa Torabi Giglou
- Department of Horticulture, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Seyed Morteza Zahedi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | | | - Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Rana Panahi Tajaragh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| |
Collapse
|
12
|
Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan DK, Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223158. [PMID: 36432887 PMCID: PMC9699315 DOI: 10.3390/plants11223158] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
- Faculty of Environmental Studies, Dehli School of Journalism, University of Delhi, Delhi 110007, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Noreen Zahra
- Department of Botany, Government College for Women University, Faisalabad 38000, Pakistan
| | - Vaishali Yadav
- Department of Botany, Multanimal Modi College Modinagar, Ghaziabad 201204, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, University of Tehran, Tehran 33916-53755, Iran
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
13
|
Gholami R, Fahadi Hoveizeh N, Zahedi SM, Gholami H, Carillo P. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC PLANT BIOLOGY 2022; 22:477. [PMID: 36203130 PMCID: PMC9540738 DOI: 10.1186/s12870-022-03855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought stress is among the most serious threats jeopardizing the economic yield of crop plants in Iran. In particular, in response to withholding irrigation, the reduction in performance and quality of a precious plant such as the olive tree is remarkable. Therefore, the selection of cultivars that are resistant or tolerant to drought has been recognized as one of the most effective long-term strategies for sustainably alleviating the adverse effects of this stress. In this view, our study evaluated the response of 8 olive cultivars including 4 elite native cultivars (Zard Aliabad, Roughani, Dezful, and Shengeh) and 4 foreign cultivars (Manzanilla, Sevillana, Konservolia, and Mission) to water shortage in the Dallaho Olive Research station of Sarpole-Zahab in Kermanshah province in 2020. Olive trees underwent 3 levels of irrigation treatment including 100% full irrigation (control), 75%, and 50% deficit irrigation. RESULTS Based on the results, 50% deficit irrigation decreased both growth and pomological traits, but determined the highest dry matter percentage. As the severity of drought stress increased, with an accumulation of sodium and malondialdehyde, an incremental increase in osmolytes was observed, as well as an enhancement of the activity of antioxidant enzymes (peroxidase and catalase). In contrast, full irrigation led to an increase in photosynthetic pigments, calcium, and potassium. Dezful and Konservolia cultivars revealed a significantly higher growth rate, correlated in the former to higher levels of chlorophyll, compatible compounds, total phenolic content, relative water content, potassium to sodium ratio, catalase, and peroxidase activities compared with other cultivars. Konservolia showed the best yield parameters under 75% and 100% irrigation regimes, correlated to higher chlorophyll, potassium, and total phenolic content (in particular at 75% ET). CONCLUSIONS Generally, the selection of more resilient or tolerant cultivars to sustain water scarcity stress is a widely operative solution to extend rainfed orchards in semi-arid environments. Our study showed that Dezful and Konservolia had the best adaptive mechanisms to cope with the detrimental effects of drought stress.
Collapse
Affiliation(s)
- Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Hojattollah Gholami
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
14
|
Ha CV, Mostofa MG, Nguyen KH, Tran CD, Watanabe Y, Li W, Osakabe Y, Sato M, Toyooka K, Tanaka M, Seki M, Burritt DJ, Anderson CM, Zhang R, Nguyen HM, Le VP, Bui HT, Mochida K, Tran LSP. The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1732-1752. [PMID: 35883014 DOI: 10.1111/tpj.15920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.
Collapse
Affiliation(s)
- Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Mohammad Golam Mostofa
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, J2-12, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
| | - Huong Mai Nguyen
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Vy Phuong Le
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Hien Thuy Bui
- Division of Plant Science and Technology, Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Keiichi Mochida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| |
Collapse
|
15
|
Da Costa MVJ, Ramegowda V, Ramakrishnan P, Nataraja KN, Sheshshayee MS. Comparative metabolite profiling of rice contrasts reveal combined drought and heat stress signatures in flag leaf and spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111262. [PMID: 35643604 DOI: 10.1016/j.plantsci.2022.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Under semi-irrigated ecosystem, rice is often exposed to a combination of drought and heat stress, especially at the reproductive stage, leading to substantial yield loss. Combined stress studies are very limited in rice partly due to the difficulty in creating heat stress on a larger scale. Here, 24 cultivars with specific stress adaptive traits were phenotyped for spikelet sterility under combined stress using the natural summer temperatures and open drought phenotyping facility, simulating the field conditions. LC-MS/MS based metabolite profiling was performed in flag leaves and spikelets of three cultivars contrasting for spikelet sterility and source (leaf weight) treated to drought, heat and combined stress. Constitutively regulated metabolites, metabolic signatures common to all stresses, cultivars and tissues, metabolites common to both the tissues across the stresses and cultivars and metabolites common to each cultivar across the tissues and stresses were identified. Under combined stress, metabolites differentially accumulated between cultivars contrasting for spikelet sterility but similar for source and cultivars contrasting for both spikelet sterility and source have been identified. These metabolites would serve as markers towards improving combined stress tolerance of rice.
Collapse
Affiliation(s)
| | - Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India.
| | - Padma Ramakrishnan
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, GKVK, Bangalore 560065 India
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| | - M Sreeman Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| |
Collapse
|
16
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
17
|
Genome Wide Association Study Uncovers the QTLome for Osmotic Adjustment and Related Drought Adaptive Traits in Durum Wheat. Genes (Basel) 2022; 13:genes13020293. [PMID: 35205338 PMCID: PMC8871942 DOI: 10.3390/genes13020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
Osmotic adjustment (OA) is a major component of drought resistance in crops. The genetic basis of OA in wheat and other crops remains largely unknown. In this study, 248 field-grown durum wheat elite accessions grown under well-watered conditions, underwent a progressively severe drought treatment started at heading. Leaf samples were collected at heading and 17 days later. The following traits were considered: flowering time (FT), leaf relative water content (RWC), osmotic potential (ψs), OA, chlorophyll content (SPAD), and leaf rolling (LR). The high variability (3.89-fold) in OA among drought-stressed accessions resulted in high repeatability of the trait (h2 = 72.3%). Notably, a high positive correlation (r = 0.78) between OA and RWC was found under severe drought conditions. A genome-wide association study (GWAS) revealed 15 significant QTLs (Quantitative Trait Loci) for OA (global R2 = 63.6%), as well as eight major QTL hotspots/clusters on chromosome arms 1BL, 2BL, 4AL, 5AL, 6AL, 6BL, and 7BS, where a higher OA capacity was positively associated with RWC and/or SPAD, and negatively with LR, indicating a beneficial effect of OA on the water status of the plant. The comparative analysis with the results of 15 previous field trials conducted under varying water regimes showed concurrent effects of five OA QTL cluster hotspots on normalized difference vegetation index (NDVI), thousand-kernel weight (TKW), and/or grain yield (GY). Gene content analysis of the cluster regions revealed the presence of several candidate genes, including bidirectional sugar transporter SWEET, rhomboid-like protein, and S-adenosyl-L-methionine-dependent methyltransferases superfamily protein, as well as DREB1. Our results support OA as a valuable proxy for marker-assisted selection (MAS) aimed at enhancing drought resistance in wheat.
Collapse
|
18
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|
19
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
20
|
Zhao H, Wang C, Lan H. A bHLH transcription factor from Chenopodium glaucum confers drought tolerance to transgenic maize by positive regulation of morphological and physiological performances and stress-responsive genes' expressions. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:74. [PMID: 37309519 PMCID: PMC10236094 DOI: 10.1007/s11032-021-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor has been shown to play an important role in various physiological processes. However, its functions and mechanisms in drought tolerance still remain poorly understood. Here, we reported a bHLH transcription factor - CgbHLH001 - from Chenopodium glaucum, which was able to confer drought tolerance in maize. CgbHLH001-overexpressed maize lines exhibited drought-tolerant phenotype and improved ear traits by accumulating the contents of soluble sugar and proline and elevating the activities of antioxidant enzymes (SOD, POD, and CAT) under drought stress, accompanying with the upregulation of some stress-related genes, which may balance the redox and osmotic homeostasis compared with the non-transgenic and CgbHLH001-RNAi plants. These findings suggest that CgbHLH001 can confer drought tolerance and has the potential for utilization in improving drought resistance in maize breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01267-4.
Collapse
Affiliation(s)
- Haiju Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Changhai Wang
- Join Hope Seeds Industry Co., Ltd., Changji, 831199 China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| |
Collapse
|
21
|
Zahedi SM, Hosseini MS, Fahadi Hoveizeh N, Gholami R, Abdelrahman M, Tran LSP. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. PHYSIOLOGIA PLANTARUM 2021; 173:1682-1694. [PMID: 34716914 DOI: 10.1111/ppl.13589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
Melatonin (MEL) is a ubiquitous molecule with pleiotropic roles in plant adaption to stress. In this study, we investigated the effects of foliar spray of 100 and 200 μM MEL on the biochemical and physiological traits linked with the growth performance of olive seedlings exposed to moderate (45 mM NaCl) and severe (90 mM NaCl) salinity. Both salt stress conditions caused a considerable reduction in leaf relative water content and the contents of photosynthetic pigments (carotenoids, chlorophylls a and b, and total chlorophylls), K+ and Ca+2 , while the contents of Na+ and the activities of antioxidant enzymes increased. In addition, salt-stressed olive seedlings showed high accumulations of hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and electrolyte leakage (EL), indicating that olive seedlings suffered from salinity-induced oxidative damage. In contrast, MEL application revived the growth of olive seedlings, including shoot height, root length and biomass under salt stress conditions. MEL protected the photosynthetic pigments and decreased the Na+ /K+ ratio under both moderate and severe salt stresses. Furthermore, MEL induced the accumulations of proline, total soluble sugars, glycine betaine, abscisic acid, and indole acetic acid in salt-stressed olive seedlings, which showed a positive correlation with improved leaf water status and biomass. MEL application also increased the activities of catalase, superoxide dismutase, ascorbate peroxidase, and peroxidase in salt-stressed seedlings, resulting in lower levels of H2 O2 , MDA, and EL in these plants. Taken together, MEL mitigates salinity through its roles in various biochemical and physiological processes, thereby representing a promising agent for application in crop protection.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Rahmatollah Gholami
- Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
- Faculty of Science, Galala University, Suze, Galala, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
22
|
Zhou X, Lyu J, Sun L, Dong J, Xu H. Metabolic programming of Rhododendron chrysanthum leaves following exposure to UVB irradiation. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1175-1185. [PMID: 34600596 DOI: 10.1071/fp20386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Excessive UVB reaching the earth is a cause for concern. To decipher the mechanism concerning UVB resistance of plants, we studied the effects of UVB radiation on photosynthesis and metabolic profiling of Rhododendron chrysanthum Pall. by applying 2.3Wm-2 of UVB radiation for 2days. Results showed that maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (φPSII) decreased by 7.95% and 8.36%, respectively, following UVB exposure. Twenty five known metabolites were identified as most important by two different methods, including univariate and multivariate statistical analyses. Treatment of R. chrysanthum with UVB increased the abundance of flavonoids, organic acids, and amino acids by 62%, 22%, and 5%, respectively. UVB irradiation also induced about 1.18-fold increase in 11 top-ranked metabolites identified: five organic acids (d-2,3-dihydroxypropanoic acid, maleic acid, glyceric acid, fumaric acid and suberic acid), four amino acids (l-norleucine, 3-oxoalanine, l-serine and glycine), and two fatty acids (pelargonic acid and myristoleic acid). In addition, UVB irradiation increased the intermediate products of arginine biosynthesis and the TCA cycle. Taken together, the accumulation of flavonoids, organic acids, amino acids and fatty acids, accompanied by enhancement of TCA cycle and arginine biosynthesis, may protect R. chrysanthum plants against UVB deleterious effects.
Collapse
Affiliation(s)
- Xiaofu Zhou
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Jie Lyu
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou 014030, China
| | - Li Sun
- Faculty of Siping Central People's Hospital, Siping 136000, China
| | - Jiawei Dong
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Hongwei Xu
- Faculty of Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
23
|
Ra CK, Hébert ET, Alexander A, Kendzor DE, Suchting R, Businelle MS. Unsheltered homeless and unstably housed adults have higher levels of stress and more health risk factors than sheltered homeless adults. JOURNAL OF SOCIAL DISTRESS AND THE HOMELESS 2021; 32:42-50. [PMID: 37346936 PMCID: PMC10281693 DOI: 10.1080/10530789.2021.1961990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 07/18/2021] [Indexed: 06/23/2023]
Abstract
In the United States, approximately 580,000 individuals were homeless on a single night in 2020. Homelessness can be categorized into three subgroups: sheltered homeless, unsheltered homeless, and unstably housed. Few studies have examined the relations between homelessness subtypes, shelter service utilization, levels of stress experienced, and health risk factors. This study aimed to empirically examine whether shelter status the previous night was related to current stress, recent utilization of shelter-based mental health services, and current health risk factors. Data were collected at multiple homeless shelters in 2016 in the Oklahoma City area (N=575). All participants completed assessments of demographic characteristics, including age, sex, race, marital status, years of education, and incarceration history and victimization. Multiple linear and logistic regression analyses were conducted to examine relations between homelessness subgroups and outcomes (shelter-based service utilization, health risk factors, and stressors). Results indicated that the sheltered group was younger and more likely to be White than the unsheltered group, had higher levels of education, and reported more lifetime months in jail than the unstably housed group. In addition, unsheltered homeless and unstably housed adults used fewer shelter-based health services, exhibited more health risk factors, experienced greater levels of stress, and had higher levels of food insecurity than sheltered homeless adults. Homeless adults who reside at shelters benefit most from available shelter services. The development of policies and programs targeted toward increasing sheltering options for unsheltered and unstably housed adults is needed.
Collapse
Affiliation(s)
- Chaelin K. Ra
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK
| | - Emily T. Hébert
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Adam Alexander
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK
| | - Darla E. Kendzor
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Robert Suchting
- UTHealth McGovern Medical School, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Michael S. Businelle
- Oklahoma Tobacco Research Center, Stephenson Cancer Center, Oklahoma City, OK
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
24
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
25
|
Villate A, San Nicolas M, Gallastegi M, Aulas PA, Olivares M, Usobiaga A, Etxebarria N, Aizpurua-Olaizola O. Review: Metabolomics as a prediction tool for plants performance under environmental stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110789. [PMID: 33487364 DOI: 10.1016/j.plantsci.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 12/05/2020] [Indexed: 05/05/2023]
Abstract
Metabolomics as a diagnosis tool for plant performance has shown good features for breeding and crop improvement. Additionally, due to limitations in land area and the increasing climate changes, breeding projects focusing on abiotic stress tolerance are becoming essential. Nowadays no universal method is available to identify predictive metabolic markers. As a result, research aims must dictate the best method or combination of methods. To this end, we will introduce the key aspects to consider regarding growth scenarios and sampling strategies and discuss major analytical and data treatment approaches that are available to find metabolic markers of plant performance.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Markel San Nicolas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Mara Gallastegi
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Pierre-Antoine Aulas
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Oier Aizpurua-Olaizola
- Dinafem Seeds (Pot Sistemak S.L.), 20018, San Sebastian, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain.
| |
Collapse
|
26
|
Echeverria A, Larrainzar E, Li W, Watanabe Y, Sato M, Tran CD, Moler JA, Hirai MY, Sawada Y, Tran LSP, Gonzalez EM. Medicago sativa and Medicago truncatula Show Contrasting Root Metabolic Responses to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:652143. [PMID: 33968107 PMCID: PMC8097159 DOI: 10.3389/fpls.2021.652143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Drought is an environmental stressor that affects crop yield worldwide. Understanding plant physiological responses to stress conditions is needed to secure food in future climate conditions. In this study, we applied a combination of plant physiology and metabolomic techniques to understand plant responses to progressive water deficit focusing on the root system. We chose two legume plants with contrasting tolerance to drought, the widely cultivated alfalfa Medicago sativa (Ms) and the model legume Medicago truncatula (Mt) for comparative analysis. Ms taproot (tapR) and Mt fibrous root (fibR) biomass increased during drought, while a progressive decline in water content was observed in both species. Metabolomic analysis allowed the identification of key metabolites in the different tissues tested. Under drought, carbohydrates, abscisic acid, and proline predominantly accumulated in leaves and tapRs, whereas flavonoids increased in fibRs in both species. Raffinose-family related metabolites accumulated during drought. Along with an accumulation of root sucrose in plants subjected to drought, both species showed a decrease in sucrose synthase (SUS) activity related to a reduction in the transcript level of SUS1, the main SUS gene. This study highlights the relevance of root carbon metabolism during drought conditions and provides evidence on the specific accumulation of metabolites throughout the root system.
Collapse
Affiliation(s)
- Andres Echeverria
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra, Pamplona, Spain
| | - Estíbaliz Larrainzar
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra, Pamplona, Spain
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Muneo Sato
- Metabolic System Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Jose A. Moler
- Department of Statistics, Computing and Mathematics, Public University of Navarra, Pamplona, Spain
| | - Masami Yokota Hirai
- Metabolic System Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuji Sawada
- Metabolic System Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
- Lam-Son Phan Tran,
| | - Esther M. Gonzalez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra, Pamplona, Spain
- *Correspondence: Esther M. Gonzalez,
| |
Collapse
|
27
|
Subbiah V, Zhong B, Nawaz MA, Barrow CJ, Dunshea FR, Suleria HAR. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants (Basel) 2020; 10:E26. [PMID: 33383900 PMCID: PMC7824486 DOI: 10.3390/antiox10010026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022] Open
Abstract
Berries are grown worldwide with the most consumed berries being blackberries (Rubus spp.), blueberries (Vaccinium corymbosum), red raspberries (Rubus idaeus) and strawberries (Fragaria spp.). Berries are either consumed fresh, frozen, or processed into wines, juices, and jams. In recent times, researchers have focused their attention on berries due to their abundance in phenolic compounds. The current study aimed to evaluate the phenolic content and their antioxidant potential followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Blueberries were highest in TPC (2.93 ± 0.07 mg GAE/gf.w.) and TFC (70.31 ± 1.21 µg QE/gf.w.), whereas the blackberries had the highest content in TTC (11.32 ± 0.13 mg CE/gf.w.). Blueberries had the highest radical scavenging capacities for the DPPH (1.69 ± 0.09 mg AAE/gf.w.), FRAP (367.43 ± 3.09 µg AAE/gf.w.), TAC (1.47 ± 0.20 mg AAE/gf.w.) and ABTS was highest in strawberries (3.67 ± 0.14 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS study identified a total of 65 compounds including 42 compounds in strawberries, 30 compounds in raspberries, 28 compounds in blueberries and 21 compounds in blackberries. The HPLC-PDA quantification observed phenolic acid (p-hydroxybenzoic) and flavonoid (quercetin-3-rhamnoside) higher in blueberries compared to other berries. Our study showed the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Vigasini Subbiah
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Biming Zhong
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
| | - Malik A. Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee, VIC 3030, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (V.S.); (B.Z.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| |
Collapse
|
28
|
Abdelrahman M, Ariyanti NA, Sawada Y, Tsuji F, Hirata S, Hang TTM, Okamoto M, Yamada Y, Tsugawa H, Hirai MY, Shigyo M. Metabolome-Based Discrimination Analysis of Shallot Landraces and Bulb Onion Cultivars Associated with Differences in the Amino Acid and Flavonoid Profiles. Molecules 2020; 25:molecules25225300. [PMID: 33202886 PMCID: PMC7697566 DOI: 10.3390/molecules25225300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Shallot landraces and varieties are considered an important genetic resource for Allium breeding due to their high contents of several functional metabolites. Aiming to provide new genetic materials for the development of a novel bulb onion cultivar derived from intraspecific hybrids with useful agronomic traits from shallots, the metabolic profiles in the bulbs of 8 Indonesian shallot landraces and 7 short-day and 3 long-day bulb onion cultivars were established using LC–Q-TOF-MS/MS. Principal component analysis, partial least squares discriminant analysis, and dendrogram clustering analysis showed two major groups; group I contained all shallot landraces and group II contained all bulb onion cultivars, indicating that shallots exhibited a distinct metabolic profile in comparison with bulb onions. Variable importance in the projection and Spearman’s rank correlation indicated that free and conjugated amino acids, flavonoids (especially metabolites having flavonol aglycone), and anthocyanins, as well as organic acids, were among the top metabolite variables that were highly associated with shallot landraces. The absolute quantification of 21 amino acids using conventional HPLC analysis showed high contents in shallots rather than in bulb onions. The present study indicated that shallots reprogrammed their metabolism toward a high accumulation of amino acids and flavonoids as an adaptive mechanism in extremely hot tropical environments.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt;
| | - Nur Aeni Ariyanti
- Department of Biology Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia;
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (Y.S.); (M.O.); (Y.Y.); (H.T.); (M.Y.H.)
| | - Fumitada Tsuji
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., 1-1 Suzukichō, Kawasaki-ku, Kawasaki 210-8681, Kanagawa, Japan;
| | - Sho Hirata
- Laboratory of Agroecology, Faculty of Agriculture, Kyushu University, Kasuya, Fukuoka 811-2307, Japan;
| | - Tran Thi Minh Hang
- Department of Agronomy, Vietnam National University of Agriculture, Trauqui, Gialam, Hanoi 100000, Vietnam;
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (Y.S.); (M.O.); (Y.Y.); (H.T.); (M.Y.H.)
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (Y.S.); (M.O.); (Y.Y.); (H.T.); (M.Y.H.)
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (Y.S.); (M.O.); (Y.Y.); (H.T.); (M.Y.H.)
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (Y.S.); (M.O.); (Y.Y.); (H.T.); (M.Y.H.)
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Yamaguchi City, Yamaguchi 753-8515, Japan
- Correspondence: ; Tel.: +81-839-335-842
| |
Collapse
|
29
|
Transcriptome Analysis of High-NUE (T29) and Low-NUE (T13) Genotypes Identified Different Responsive Patterns Involved in Nitrogen Stress in Ramie ( Boehmeria nivea (L.) Gaudich). PLANTS 2020; 9:plants9060767. [PMID: 32575463 PMCID: PMC7356044 DOI: 10.3390/plants9060767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
Nitrogen-use efficiency (NUE) has significant impacts on plant growth and development. NUE in plants differs substantially in physiological resilience to nitrogen stress; however, the molecular mechanisms underlying enhanced resilience of high-NUE plants to nitrogen deficiency remains unclear. We compared transcriptome-wide gene expression between high-NUE and low-NUE ramie (Boehmeria nivea (L.) Gaudich) genotypes under nitrogen (N)-deficient and normal conditions to identify the transcriptomic expression patterns that contribute to ramie resilience to nitrogen deficiency. Two ramie genotypes with contrasting NUE were used in the study, including T29 (NUE = 46.01%) and T13 (NUE = 15.81%). Our results showed that high-NUE genotypes had higher gene expression under the control condition across 94 genes, including frontloaded genes such as GDSL esterase and lipase, gibberellin, UDP-glycosyltransferase, and omega-6 fatty acid desaturase. Seventeen stress-tolerance genes showed lower expression levels and varied little in response to N-deficiency stress in high-NUE genotypes. In contrast, 170 genes were upregulated under N deficiency in high-NUE genotypes but downregulated in low-NUE genotypes compared with the controls. Furthermore, we identified the potential key genes that enable ramie to maintain physiological resilience under N-deficiency stress, and categorized these genes into three groups based on the transcriptome and their expression patterns. The transcriptomic and clustering analysis of these nitrogen-utilization-related genes could provide insight to better understand the mechanism of linking among the three gene classes that enhance resilience in high-NUE ramie genotypes.
Collapse
|
30
|
Abdelrahman M, Ishii T, El-Sayed M, Tran LSP. Heat Sensing and Lipid Reprograming as a Signaling Switch for Heat Stress Responses in Wheat. ACTA ACUST UNITED AC 2020; 61:1399-1407. [DOI: 10.1093/pcp/pcaa072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Abstract
Temperature is an essential physical factor that affects the plant life cycle. Almost all plant species have evolved a robust signal transduction system that enables them to sense changes in the surrounding temperature, relay this message and accordingly adjust their metabolism and cellular functions to avoid heat stress-related damage. Wheat (Triticum aestivum), being a cool-season crop, is very sensitive to heat stress. Any increase in the ambient temperature, especially at the reproductive and grain-filling stages, can cause a drastic loss in wheat yield. Heat stress causes lipid peroxidation due to oxidative stress, resulting in the damage of thylakoid membranes and the disruption of their function, which ultimately decreases photosynthesis and crop yield. The cell membrane/plasma membrane plays prominent roles as an interface system that perceives and translates the changes in environmental signals into intracellular responses. Thus, membrane lipid composition is a critical factor in heat stress tolerance or susceptibility in wheat. In this review, we elucidate the possible involvement of calcium influx as an early heat stress-responsive mechanism in wheat plants. In addition, the physiological implications underlying the changes in lipid metabolism under high-temperature stress in wheat and other plant species will be discussed. In-depth knowledge about wheat lipid reprograming can help develop heat-tolerant wheat varieties and provide approaches to solve the impact of global climate change.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045 Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Magdi El-Sayed
- Department of Botany, Faculty of Sciences, Aswan University, Aswan 81528, Egypt
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045 Japan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
31
|
Hou X, Zhang W, Du T, Kang S, Davies WJ. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1249-1264. [PMID: 31750924 PMCID: PMC7242001 DOI: 10.1093/jxb/erz526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/20/2019] [Indexed: 05/10/2023]
Abstract
Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.
Collapse
Affiliation(s)
- Xuemin Hou
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Wendong Zhang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, UK
| |
Collapse
|
32
|
Abdelrahman M, Burritt DJ, Gupta A, Tsujimoto H, Tran LSP. Heat stress effects on source-sink relationships and metabolome dynamics in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:543-554. [PMID: 31232445 DOI: 10.1093/jxb/erz296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/11/2019] [Indexed: 05/21/2023]
Abstract
Crops such as wheat (Triticum spp.) are predicted to face more frequent exposures to heat stress as a result of climate change. Increasing the yield and sustainability of yield under such stressful conditions has long been a major target of wheat breeding, and this goal is becoming increasingly urgent as the global population increases. Exposure of wheat plants in their reproductive or grain-filling stage to high temperature affects the duration and rate of grain filling, and hence has a negative impact on wheat productivity. Therefore, understanding the plasticity of the response to heat stress that exists between wheat genotypes, especially in source-sink relationships at the reproductive and grain-filling stages, is critical for the selection of germplasm that can maintain high yields under heat stress. A broad understanding of metabolic dynamics and the relationships between metabolism and heat tolerance is required in order to achieve this goal. Here, we review the current literature concerning the effects of heat stress on sink-source relationships in a wide range of wheat genotypes, and highlight the current metabolomic approaches that are used to investigate high temperature responses in wheat.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi Yokohama, Japan
| |
Collapse
|
33
|
Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LSP. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:246-258. [PMID: 31319241 DOI: 10.1016/j.envpol.2019.04.078] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 05/14/2023]
Abstract
The present study investigated the beneficial role of selenium-nanoparticles (Se-NPs) in mitigating the adverse effects of soil-salinity on growth and yield of strawberry (Fragaria × ananassa Duch.) plants by maneuvering physiological and biochemical mechanisms. The foliar spray of Se-NPs (10 and 20 mg L-1) improved the growth and yield parameters of strawberry plants grown on non-saline and different saline soils (0, 25, 50 and 75 mM NaCl), which was attributed to their ability to protect photosynthetic pigments. Se-NPs-treated strawberry plants exhibited higher levels of key osmolytes, including total soluble carbohydrates and free proline, compared with untreated plants under saline conditions. Foliar application of Se-NPs improved salinity tolerance in strawberry by reducing stress-induced lipid peroxidation and H2O2 content through enhancing activities of antioxidant enzymes like superoxide dismutase and peroxidase. Additionally, Se-NPs-treated strawberry plants showed accumulation of indole-3-acetic acid and abscisic acid, the vital stress signaling molecules, which are involved in regulating different morphological, physiological and molecular responses of plants to salinity. Moreover, the enhanced levels of organic acids (e.g., malic, citric and succinic acids) and sugars (e.g., glucose, fructose and sucrose) in the fruits of Se-NPs-treated strawberry plants under saline conditions indicated the positive impacts of Se-NPs on the improvement of fruit quality and nutritional values. Our results collectively demonstrate the definite roles of Se-NPs in management of soil salinity-induced adverse effects on not only strawberry plants but also other crops.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan; Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marjan Sadat Hosseini
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz, Iran
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
34
|
Chou Q, Cao T, Ni L, Xie P, Jeppesen E. Leaf Soluble Carbohydrates, Free Amino Acids, Starch, Total Phenolics, Carbon and Nitrogen Stoichiometry of 24 Aquatic Macrophyte Species Along Climate Gradients in China. FRONTIERS IN PLANT SCIENCE 2019; 10:442. [PMID: 31031783 PMCID: PMC6470362 DOI: 10.3389/fpls.2019.00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/22/2019] [Indexed: 05/30/2023]
Abstract
Leaf soluble carbohydrates (SC), free amino acids (FAA), starch, total phenolics (TOPH), carbon (C), and nitrogen (N) stoichiometry of 24 aquatic macrophyte species were studied at 52 selected sites in eastern, 31 sites in southwestern and 6 sites in western China, including 12 submerged, 6 floating-leaved, 4 emergent and 2 free-floating macrophytes. The leaf stoichiometric characteristics differed significantly among the plant species of the four different life forms, the lowest C content occurring in submerged macrophytes and the highest N content in free-floating macrophytes. Overall, though the variance explained by the linear regression models was low, the C and N contents decreased toward the northern latitudes, the C content and the C:N ratios increased with increasing altitude. Multiple regressions revealed that the stoichiometric characteristics of submerged macrophytes varied significantly across the large spatial and climatic gradients and among the species studied. For floating-leaved and emergent macrophytes, no correlation between climate factors and SC, FAA, starch, TOPH, C, and N contents and C:N ratio was observed. For free-floating macrophytes, the TOPH content was markedly positively correlated with latitude and altitude. We conclude that the C and N contents related more closely to latitude, altitude or mean annual air temperature than did the C and N metabolic indicators for the submerged macrophytes, while the relationships with the metabolic indicators turned out to be insignificant for most species of the other life forms. The results helped us to identify species with significant physiological plasticity across geographic and climatic gradients in China, and such information is useful when conducting restoration of lost aquatic plants in different climate regions.
Collapse
Affiliation(s)
- Qingchuan Chou
- Donghu Experimental Station of Lake Ecosystem, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Te Cao
- Donghu Experimental Station of Lake Ecosystem, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Leyi Ni
- Donghu Experimental Station of Lake Ecosystem, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystem, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Widely targeted metabolome and transcriptome landscapes of Allium fistulosum-A. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 2019; 9:3541. [PMID: 30837538 PMCID: PMC6400954 DOI: 10.1038/s41598-019-39856-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Here, we report a comprehensive analysis of the widely targeted metabolome and transcriptome profiles of Allium fistulosum L. (FF) with the single extra chromosome of shallot [A. cepa L. Aggregatum group (AA)] to clarify the novel gene functions in flavonoid biosynthesis. An exhaustive metabolome analysis was performed using the selected reaction monitoring mode of liquid chromatography–tandem quadrupole mass spectrometry, revealing a specific accumulation of quercetin, anthocyanin and flavone glucosides in AA and FF5A. The addition of chromosome 5A from the shallot to A. fistulosum induced flavonoid accumulation in the recipient species, which was associated with the upregulation of several genes including the dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, UDP-glucose flavonoid-3-O-glucosyltransferase, anthocyanin 5-aromatic acyltransferase-like, pleiotropic drug resistance-like ATP binding cassette transporter, and MYB14 transcriptional factor. Additionally, an open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated by using RNA-Seq data from different genetic stocks including the A. fistulosum–A. cepa monosomic addition lines. The functional genomic approach presented here provides an innovative means of targeting the gene responsible for flavonoid biosynthesis in A. cepa. The understanding of flavonoid compounds and biosynthesis-related genes would facilitate the development of noble Allium varieties with unique chemical constituents and, subsequently, improved plant stress tolerance and human health benefits.
Collapse
|
36
|
Alseekh S, Bermudez L, de Haro LA, Fernie AR, Carrari F. Crop metabolomics: from diagnostics to assisted breeding. Metabolomics 2018; 14:148. [PMID: 30830402 DOI: 10.1007/s11306-018-1446-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding. AIM OF REVIEW We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality. KEY SCIENTIFIC CONCEPTS OF REVIEW Translational metabolomics applied to crop breeding programs.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Alejandro de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina.
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LSP. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:31-36. [PMID: 29628199 DOI: 10.1016/j.plaphy.2018.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 05/10/2023]
Abstract
Developing more crops able to sustainably produce high yields when grown under biotic/abiotic stresses is an important goal, if crop production and food security are to be guaranteed in the face of ever-increasing human population and unpredictable global climatic conditions. However, conventional crop improvement, through random mutagenesis or genetic recombination, is time-consuming and cannot keep pace with increasing food demands. Targeted genome editing (GE) technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR)/(CRISPR)-associated protein 9 (Cas9), have great potential to aid in the breeding of crops that are able to produce high yields under conditions of biotic/abiotic stress. This is due to their high efficiency, accuracy and low risk of off-target effects, compared with conventional random mutagenesis methods. The use of CRISPR/Cas9 system has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, modifications, and the activation and repression of target genes. The potential of the GE approach for crop improvement has been clearly demonstrated. However, the regulation and social acceptance of GE crops still remain a challenge. In this review, we evaluate the recent applications of the CRISPR/Cas9-mediated GE, as a means to produce crop plants with greater resilience to the stressors they encounter when grown under increasing stressful environmental conditions.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University, Sendai 9808577, Japan; Department of Botany, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 8, Al Khoud 123, Oman
| | - Alireza Pour-Aboughadareh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
38
|
Abdelrahman M, El-Sayed MA, Hashem A, Abd_Allah EF, Alqarawi AA, Burritt DJ, Tran LSP. Metabolomics and Transcriptomics in Legumes Under Phosphate Deficiency in Relation to Nitrogen Fixation by Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:922. [PMID: 30050543 PMCID: PMC6052890 DOI: 10.3389/fpls.2018.00922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Phosphate (Pi) deficiency is a critical environmental constraint that affects the growth and development of several legume crops that are usually cultivated in semi-arid regions and marginal areas. Pi deficiency is known to be a significant limitation for symbiotic nitrogen (N2) fixation (SNF), and variability in SNF is strongly interlinked with the concentrations of Pi in the nodules. To deal with Pi deficiency, plants trigger various adaptive responses, including the induction and secretion of acid phosphatases, maintenance of Pi homeostasis in nodules and other organs, and improvement of oxygen (O2) consumption per unit of nodule mass. These molecular and physiological responses can be observed in terms of changes in growth, photosynthesis, and respiration. In this mini review, we provide a brief introduction to the problem of Pi deficiency in legume crops. We then summarize the current understanding of how Pi deficiency is regulated in legumes by changes in the transcriptomes and metabolomes found in different plant organs. Finally, we will provide perspectives on future directions for research in this field.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
| | - Magdi A. El-Sayed
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
39
|
Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part. FRONTIERS IN PLANT SCIENCE 2018; 9:247. [PMID: 29556244 PMCID: PMC5844964 DOI: 10.3389/fpls.2018.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
A growing body of evidence demonstrates a significant relationship between cellular redox state and circadian rhythms. Each day these two vital components of plant biology influence one another, dictating the pace for metabolism and physiology. Diverse environmental stressors can disrupt this condition and, although plant scientists have made significant progress in re-constructing functional networks of plant stress responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-connected phenomena such as redox state and metabolism, internal and external environments, cellular homeostasis and rhythms can impede predictive understanding of coordinated regulation of plant stress response. The integration of circadian clock effects into predictive network models is likely to increase final yield and better predict plant responses to stress. To achieve such integrated understanding, it is necessary to consider the internal clock not only as a gatekeeper of environmental responses but also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and high-throughput probe of stress coupled to functional genomics and metabolomics will provide insights on the crosstalk across a wide range of stress severity and duration, including potential insights into oxidative stress response and signaling. We suggest the efficiency of photosystem II in light conditions (Fv'/Fm') to be the most dynamic of the fluorescence variables and therefore the most reliable parameter to follow the stress response from early sensing to mortality.
Collapse
Affiliation(s)
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|