1
|
Pang E, Li S, Wu J, Chang Q, Li N, Hu S. Carbon-dot-induced oxygen vacancies in copper vanadate enabling persulfate photoactivation for tetracycline degradation. J Colloid Interface Sci 2025; 683:232-240. [PMID: 39673936 DOI: 10.1016/j.jcis.2024.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Synchronously creating oxygen vacancies (OVs) and an internal electric field (IEF) in photocatalysts could be an ideal strategy to facilitate photogenerated charge separation and surface reactions but remain unexplored for this use. In this work, we report that low-cost and multifunctional CDs can involve in the nucleation reaction of copper vanadates (CuVs) to create OVs and proper IEF at the interface by modulating the valence states of coppers under hydrothermal conditions. Thus, CDs synergistically serve as oxygen vacancy inducer and charge separator in CuVs to extract photogenerated carriers to trigger persulfate (PS) activation for the degradation of tetracycline hydrochloride (TC). It turns out that CDs-modulated CuVs exhibit the expected photocatalytic capacity to activate PS in water and enable TC decomposition efficiency approximately 8 times higher than CDs-free CuVs under visible light irradiation. Our investigations elucidate that the oxidative breakdown of TC is dominated by the active species cooperation of 1O2 with h+ and OH formed in photocatalytic reaction system.
Collapse
Affiliation(s)
- Ernan Pang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Shijia Li
- Institute of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Taiyuan 030051, PR China
| | - Jie Wu
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng 048012, PR China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Ning Li
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
2
|
You Y, Shi X, Huang L, Zhao J, Ji W, Li L, Bu D, Huang S. Construction of organic heterojunctions as metal-free photocatalysts for enhancing water splitting and phenol degradation by regulating charge flow. MATERIALS HORIZONS 2025. [PMID: 39866028 DOI: 10.1039/d4mh01596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation. Experimental and theoretical results revealed that the charge transfer mechanism transformed from type II in the physical mixture to a Z-scheme in the covalently bonded composite, resulting from the interfacial electric field formed at the interface between a β-ketoenamine-linked covalent organic framework (TP-COF) and a urea linked perylene diimide (PDI) semiconductor (UP) linked by amide bonds. The Z-scheme charge transfer route not only improved charge separation but also preserved the high redox ability of both semiconductors. Moreover, more active catalytic sites were created owing to the net charge transfer from the UP to TP-COFs with the amide bonds, contributing to improved photocatalytic performance. As a result, high HER, OER and phenol degradation rates of 613.30 μmol g-1 h-1, 1169.36 μmol g-1 h-1, and 0.81 h-1 were achieved, respectively. This work provides a new strategy to develop metal-free photocatalysts with simultaneously improved charge separation efficiency and catalytic site activity.
Collapse
Affiliation(s)
- Yang You
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Xiaoyu Shi
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Liang Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jie Zhao
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wen Ji
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Prov Key Lab Green Chem Prod Technol, South China University of Technology, Guangzhou 510640, P. R. China
| | - Donglei Bu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
| |
Collapse
|
3
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
4
|
Qi K, Imparato C, Almjasheva O, Khataee A, Zheng W. TiO 2-based photocatalysts from type-II to S-scheme heterojunction and their applications. J Colloid Interface Sci 2024; 675:150-191. [PMID: 38968635 DOI: 10.1016/j.jcis.2024.06.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Photocatalysis is a promising sustainable technology to remove organic pollution and convert solar energy into chemical energy. Titanium dioxide has drawn extensive attention in this field owing to its high activity under UV light, good chemical stability, large availability, low price and low toxicity. However, the poor quantum efficiency derived from fast electron/hole recombination, the limited utilization of sunlight, and a weak reducing ability still hinder its practical application. Among the modification strategies of TiO2 to enhance its performance, the construction of heterojunctions with other semiconductors is a powerful and versatile way to maximise the separation of photogenerated charge carriers and steer their transport toward enhanced efficiency and selectivity. Here, the research progress and current status of TiO2 modification are reviewed, focusing on heterojunctions. A rapid evolution of the understanding of the different charge transfer mechanisms is witnessed from traditional type II to the recently conceptualised S-scheme. Particular attention is paid to different synthetic approaches and interface engineering methods designed to improve and control the interfacial charge transfer, and several cases of TiO2 heterostructures with metal oxides, metal sulfides and carbon nitride are discussed. The application hotspots of TiO2-based photocatalysts are summarized, including hydrogen generation by water splitting, solar fuel production by CO2 conversion, and the degradation of organic water pollutants. Hints about less studied and emerging processes are also provided. Finally, the main issues and challenges related to the sustainability and scalability of photocatalytic technologies in view of their commercialization are highlighted, outlining future directions of development.
Collapse
Affiliation(s)
- Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Claudio Imparato
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Oksana Almjasheva
- Department of Physical Chemistry, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, 197022, Russia
| | - Alireza Khataee
- Department of Chemical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, Tianjin, China.
| |
Collapse
|
5
|
Li Y, Liu S, Feng F, Li Y, Han Y, Tong X, Gao X. Preparation and Characterization of Graphene Oxide/Carbon Nanotube/Polyaniline Composite and Conductive and Anticorrosive Properties of Its Waterborne Epoxy Composite Coatings. Polymers (Basel) 2024; 16:2641. [PMID: 39339105 PMCID: PMC11435755 DOI: 10.3390/polym16182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Shibo Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yahui Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xinyang Tong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| |
Collapse
|
6
|
Luo X, Zhu P, Zeng J, Liang T, Qiu Q. Enhanced Photocatalytic Degradation by the Preparation of a Stable La-Doped FeTiO 3 Photocatalyst: Experimental and DFT Study. Inorg Chem 2024; 63:14425-14437. [PMID: 39058345 DOI: 10.1021/acs.inorgchem.4c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid photocarrier recombination limits the photocatalytic activity of iron titanate (FeTiO3) to be further improved. Developing novel approaches to inhibit the rapid recombination rate of the FeTiO3 photocatalysts is crucial for efficiently degrading pollutants in wastewater. Rare earth ions, with unique electron dispositions and large ion radii, could effectively inhibit photocarrier recombination. Herein, novel lanthanum (La)-doped FeTiO3 photocatalysts were designed and successfully synthesized. The photocatalytic performance of the 12 mol % La/FeTiO3 photocatalyst was superior in degrading tetracycline hydrochloride (TCH), methylene blue (MB), and brilliant blue (BB). These degradation rate constants (k) were 0.12358, 0.01357, and 0.03064 L mg-1 min-1, respectively, which were 12.83, 1.61, and 7.78 times that of pure FeTiO3. The photoelectronic tests and density functional theory (DFT) calculations revealed that the La 4f orbital forms an impurity energy level in the conduction band of FeTiO3. This level narrows the bandgap and acts as an electron acceptor, capturing photoexcited electrons and inhibiting the rapid recombination of photoexcited electron-hole pairs in FeTiO3. This work enhances the potential of FeTiO3 in the photocatalysis field and provides important insights into the efficient degradation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Xingrui Luo
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, People's Republic of China
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Peng Zhu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, People's Republic of China
| | - Jinming Zeng
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, People's Republic of China
| | - Tongxiang Liang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, People's Republic of China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, People's Republic of China
| |
Collapse
|
7
|
Xu Y, Cheng L, Wang Y, Jia H. Facile Synthesis of Novel Magnetic Janus Graphene Oxide for Efficient and Recyclable Demulsification of Crude Oil-in-Water Emulsion. Molecules 2024; 29:3307. [PMID: 39064886 PMCID: PMC11279671 DOI: 10.3390/molecules29143307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Nanoparticles have been widely applied to treat emulsion-containing wastewater in the form of chemical demulsifiers, such as SiO2, Fe3O4, and graphene oxide (GO). Owing to their asymmetric structures and selective adsorption, Janus nanoparticles show greater application potential in many fields. In the present work, the novel magnetic Janus graphene oxide (MJGO) nanoparticle was successfully prepared by grafting magnetic Fe3O4 to the surface of the JGO, and its demulsifying ability to treat a crude oil-in-water emulsion was evaluated. The MJGO structure and its magnetic intensity were verified by Fourier-transform infrared spectra (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and magnetization saturation (MS) tests. Compared with GO and JGO, MJGO displayed the superior efficiency (>96%) to demulsify the crude oil-in-water emulsion, which can be attributed to the reduced electrostatic repulsion between MJGO and the emulsion droplets. Furthermore, the effects of pH and temperature on the demulsification performance of MJGO were also studied. Lastly, the recyclability of MJGO largely reduced the cost of demulsifiers in separating crude oil and water. The current research presents an efficient and recyclable demulsifier, which provides a new perspective for the structural design of nanomaterials and their application in the field of demulsification.
Collapse
Affiliation(s)
- Yingbiao Xu
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (Y.X.); (H.J.)
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
| | - Li Cheng
- School of Petroleum Engineering, Yangtze University, Wuhan 430100, China;
| | - Yefei Wang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (Y.X.); (H.J.)
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (Y.X.); (H.J.)
| |
Collapse
|
8
|
Jiang Y, Zhu K, Hou J, Dai Q, Li Y, Li K, Deng Y, Zhu L, Jia H. Unlocking high-efficiency decontamination by building a novel heterogeneous catalytic reduction system of thiourea dioxide/biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134471. [PMID: 38691994 DOI: 10.1016/j.jhazmat.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Herein, we reported a new contaminant purification paradigm, which enabled highly efficient reductive denitration and dechlorination using a green, stable reducing agent thiourea dioxide (TDO) coupled with biochar (BC) over a wide pH range under anoxic conditions. Specifically, BC acted as both activators and electron shuttles for TDO decomposition to achieve complete anoxic degradation of p-nitrophenol (PNP), p-nitroaniline, 4-chlorophenol and 2,4-dichlorophenol within 2 h. During this process, multiple strongly reducing species (i.e., SO22-, SO2•- and e-/H•) were generated in BC/TDO systems, accounting for 13.3%, 9.7% and 75.5% of PNP removal, respectively. While electron transfer between TDO and H+ or contaminants mediated by BC led to H• generation and contaminant reduction. These processes depended on the electron-accepting capacity and electron-conducting domains of biochar. Significantly, the BC/TDO systems were highly efficient at a pH of 2.0-8.0, especially under acidic conditions, which performed robustly in common natural water constituents.
Collapse
Affiliation(s)
- Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Jiayi Hou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qingyang Dai
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yuegen Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
9
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Bogahawatta A, Manuda KRJ, Weerasekera M, Kottegoda N. Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels. ACS OMEGA 2024; 9:26568-26581. [PMID: 38911717 PMCID: PMC11191080 DOI: 10.1021/acsomega.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Postharvest loss is a significant global challenge that needs to be urgently addressed to sustain food systems. This study describes a simple microwave-assisted green synthesis method in developing a nanohybrid material combining natural ilmenite (FeTiO3) and graphene oxide (GO) as a promising antimicrobial fruit peel coating to reduce postharvest loss. The natural ilmenite was calcined in an inert environment and was mixed with GO in a microwave reactor to obtain the nanohybrid. The nanohybrid was then incorporated into an alginate biopolymer to form the fruit coating. Microscopic images revealed successful grafting of FeTiO3 nanoparticles onto the GO sheets. Spectroscopic measurements of Raman, X-ray photoemission, and infrared provided insights into the interactions between the two matrices. The optical band gap calculated from Tauc's relation using UV-vis data showed a significant reduction in the band gap of the hybrid compared to that of natural ilmenite. The antimicrobial activity was assessed using Escherichia coli, which showed a substantial decrease in colony counts. Bananas coated with the nanohybrid showed a doubling in the shelf life compared with uncoated fruits. Consistent with this, the electronic nose (E-nose) measurements and freshness indicator tests revealed less deterioration of the physicochemical properties of the coated bananas. Overall, the results show promising applications for the ilmenite-grafted GO nanohybrid as a food coating capable of minimizing food spoilage due to microbial activity.
Collapse
Affiliation(s)
- Piyumi Kodithuwakku
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Imalka Munaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Instrument
Center, Faculty of Applied Sciences, University
of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Randika Jayasinghe
- Department
of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Nugegoda 10100, Sri Lanka
| | - Tharanga Thoradeniya
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 003000, Sri Lanka
| | - Achala Bogahawatta
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Manjula Weerasekera
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| |
Collapse
|
10
|
Khataee S, Dehghan G, Shaghaghi Z, Khataee A. An enzyme-free sensor based on La-doped CoFe-layered double hydroxide decorated on reduced graphene oxide for sensitive electrochemical detection of urea. Mikrochim Acta 2024; 191:152. [PMID: 38388755 DOI: 10.1007/s00604-024-06221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The successful synthesis of La-doped CoFe LDH@rGO nanocomposite is reported combining the advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear working range of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.
Collapse
Affiliation(s)
- Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Gholamrez Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
11
|
Ahmed MA, Mohamed AA. Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: A review. iScience 2024; 27:108583. [PMID: 38226158 PMCID: PMC10788205 DOI: 10.1016/j.isci.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Water pollution and the global energy crisis are two significant challenges that the world is facing today. Ultrasound-assisted synthesis offers a simple, versatile, and green synthetic tool for nanostructured materials that are often unavailable by traditional synthesis. Furthermore, the integration of ultrasound and photocatalysis has recently received considerable interest due to its potential for environmental remediation as a low-cost, efficient, and environmentally friendly technique. The underlying principles and mechanisms of sonophotocatalysis, including enhanced mass transfer, improved catalyst-pollutant interaction, and reactive species production have been discussed. Various organic pollutants as dyes, pharmaceuticals, pesticides, and emerging organic pollutants are targeted based on their improved sonophotocatalytic degradation efficiency. Additionally, the important factors affecting sonophotocatalytic processes and the advantages and challenges associated with these processes are discussed. Overall, this review provides a comprehensive understanding of sono-assisted synthesis and photocatalytic degradation of organic pollutants and prospects for progress in this field.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
12
|
Ntelane TS, Feleni U, Mthombeni NH, Kuvarega AT. CuFeS 2 supported on dendritic mesoporous silica-titania for persulfate-assisted degradation of sulfamethoxazole under visible light. J Colloid Interface Sci 2024; 654:660-676. [PMID: 37864871 DOI: 10.1016/j.jcis.2023.10.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Sulfamethoxazole (SMX) is a prevalent sulfonamide antibiotic found in the environment, and it has a variety of detrimental effects on environmental sustainability and water safety. Recently, the combination of photocatalysis and sulfate radical-based advanced oxidation processes (SR-AOPs) has attracted a lot of interest as a viable technique for degradation of refractory pollutants. In this study, a visible light active CuFeS2 supported on dendritic mesoporous silica-titania (CuFeS2-DMST) photocatalyst was synthesized to improve the ability of TiO2 to activate persulfate (PS) by introducing CuFeS2 (Fe2+/Fe3+, Cu+/Cu2+ redox cycles). The CuFeS2-DMST/PS/Vis system demonstrated superior SMX degradation efficiency (88.9%, 0.0146 min-1) than TiO2 because of reduced e-/h+ recombination, excellent charge separation and mobility, and a greater surface area than TiO2. Furthermore, after four consecutive photocatalytic cycles, the system demonstrated moderate stability. From chemical quenching tests, O2●-, h+, 1O2, SO4●- and ●OH were found to be the main reactive oxidizing species. The formed intermediates during the degradation process were identified, and degradation mechanisms were proposed. This study proposes a viable technique for activating PS using a low-cost, stable, and high-surface-area TiO2-based photocatalyst, and this concept can be applied to design photocatalysts for water treatment.
Collapse
Affiliation(s)
- Tau S Ntelane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa; Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida, 1710, Johannesburg, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida, 1710, Johannesburg, South Africa; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa.
| |
Collapse
|
13
|
Shoaib M, Naz MY, Shukrullah S, Munir MA, Irfan M, Rahman S, Ghanim AAJ. Dual S-Scheme Heterojunction CdS/TiO 2/g-C 3N 4 Photocatalyst for Hydrogen Production and Dye Degradation Applications. ACS OMEGA 2023; 8:43139-43150. [PMID: 38024725 PMCID: PMC10652378 DOI: 10.1021/acsomega.3c06759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
This study investigated a ternary CdS/TiO2/g-C3N4 heterojunction for degrading synthetic dyes and hydrogen production from aqueous media through visible light-initiated photocatalytic reactions. CdS, TiO2, and g-C3N4 were combined in different mass ratios through a simple hydrothermal method to create CdS/TiO2/g-C3N4 composite photocatalysts. The prepared heterojunction catalysts were investigated by using FTIR, XRD, EDX, SEM, and UV-visible spectroscopy analysis for their crystal structures, functional groups, elemental composition, microtopography, and optical properties. The rhodamine B dye was then degraded by using fully characterized photocatalysts. The maximum dye degradation efficiency of 99.4% was noted in these experiments. The evolution rate of hydrogen from the aqueous solution with the CdS/TiO2/g-C3N4 photocatalyst remained 2910 μmol·h-1·g-1, which is considerably higher than those of g-C3N4, CdS, CdS/g-C3N4, and g-C3N4/TiO2-catalyzed reactions. This study also proposes a photocatalytic activity mechanism for the tested ternary CdS/TiO2/g-C3N4 heterojunctions.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department
of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Yasin Naz
- Department
of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shazia Shukrullah
- Department
of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Munir
- Department
of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 61441, Saudi Arabia
| | - Saifur Rahman
- Electrical
Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 61441, Saudi Arabia
| | | |
Collapse
|
14
|
Li C, Wang X, Wu J, Gao J, Zhao R, Xia S, Yang H, Chen Z, Li L, Wang W. Harnessing ultrasound in photocatalysis: Synthesis and piezo-enhanced effect: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106584. [PMID: 37678068 PMCID: PMC10495625 DOI: 10.1016/j.ultsonch.2023.106584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The photocatalytic technique has drawn far-ranging interests in addressing the current issues; however, its property suffers from the limited visible light response and rapid recombination of carriers. To address these issues, two specific approaches have been proposed to enhance the photocatalytic activity: (1) ultrasound-assisted synthesis has been utilized to prepare photocatalysts, resulting in refined grain size, increased specific surface area, and reduced photogenerated carrier recombination; (2) sonophotocatalysis and piezoelectric enhanced photocatalysis have been developed to accelerate the reaction, which utilizes the synergism between ultrasound and light. On one side, sonophotocatalysis generates cavitation bubbles which induce more reactive radicals for redox reactions. On the other side, ultrasound induces deformation of the piezoelectric material structure, which changes the internal piezoelectric potential and improves the photocatalytic performance. Currently, intensive efforts have been devoted to related research and great progress has been reached with applications in pollutant degradation, new energy production, and other fields. This work starts by elucidating the fundamental concept of ultrasound-assisted photocatalyst synthesis and photocatalysis. Then, the synergistic behavior between ultrasonic and light in ultrasonic-assisted photocatalysis has been thoroughly discussed, including pollutant degradation, water splitting, and bacterial sterilization. Finally, the challenge and outlook are investigated and proposed.
Collapse
Affiliation(s)
- Chunyan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaozhuo Wang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jianhao Wu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jingyang Gao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Rixu Zhao
- China Construction Ready Mixed Concrete Co., Ltd., Wuhan 430070, China
| | - Sasa Xia
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
15
|
Adenuga DO, Tichapondwa SM, Chirwa EMN. Influence of wastewater matrix on the visible light degradation of phenol using AgCl/Bi 24O 31Cl 10 photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98922-98933. [PMID: 36322360 DOI: 10.1007/s11356-022-23872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A significant amount of research has been conducted on the development and application of photocatalytic materials for the visible light degradation of organic pollutants in wastewater. However, most pollutant degradation studies are conducted using simulated wastewater often prepared using DI water. This is far removed from the realities of environmentally relevant water systems. It is therefore important to investigate the activity of these semiconductor materials with real water samples. In this study, the photocatalytic activity of the photocatalyst was investigated in the secondary effluent of a wastewater treatment plant (WWTP) in Pretoria, South Africa, for the degradation of phenol under visible light irradiation. The experimental design was done using the Taguchi method L16 orthogonal tray with three factors (pH, initial phenol concentration, and photocatalyst dosage) and four levels. The results show that pH is the highest-ranked significant factor influencing the degradation rate, closely followed by the initial concentration of the pollutant. The photocatalyst dosage had the least significant impact on degradation. The effects of individual anion components such as Cl-, NO3-, NO2-, SO42- and cations such as Ca2+, Mg2+, Zn2+, and K+ were investigated. While Cl- did not negatively influence the degradation rate, the results show that NO3- and SO42- inhibit the degradation of phenol. More specifically, the presence of nitrites resulted in total impeding of the degradation process illustrating that nitrite concentrations ≥ 20 ppm should be removed from wastewater prior to photocatalytic degradation. The cations investigated promoted the degradation of phenol. Generally, there was enhanced degradation in the water matrix when compared to DI water, and the results revealed improved degradation efficiency due to the cumulative impact of various components of the wastewater.
Collapse
Affiliation(s)
- Dorcas O Adenuga
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa.
| | - Shepherd M Tichapondwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa
| | - Evans M N Chirwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, 0002, Pretoria, South Africa
| |
Collapse
|
16
|
Maafa IM, Zouli N, Abutaleb A, Yousef A, Qudsieh IY, Matar SM, Adam ASM, El-Halwany MM. Synthesis of Ilmenite Nickel Titanite-Supported Carbon Nanofibers Derived from Polyvinylpyrrolidone as Photocatalyst for H 2 Production from Ammonia Borane Photohydrolysis. Polymers (Basel) 2023; 15:3262. [PMID: 37571156 PMCID: PMC10422570 DOI: 10.3390/polym15153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The present study involves the synthesis of photocatalytic composite nanofibers (NFs) comprising ilmenite nickel titanite-supported carbon nanofibers (NiTiO3/TiO2@CNFs) using an electrospinning process. The photocatalytic composite NFs obtained were utilized in hydrogen (H2) production from the photohydrolysis of ammonia borane (AB). The experimental findings show that the photocatalytic composite NFs with a loading of 25 mg had a good catalytic performance for H2 generation, producing the stoichiometric H2 in 11 min using 1 mmol AB under visible light at 25 °C and 1000 rpm. The increase in catalyst load to 50, 75, and 100 mg leads to a corresponding reduction in the reaction time to 7, 5, and 4 min. The findings from the kinetics investigations suggest that the rate of the photohydrolysis reaction is directly proportional to the amount of catalyst in the reaction system, adhering to a first-order reaction rate. Furthermore, it was observed that the reaction rate remains unaffected by the concentration of AB, thereby suggesting a reaction of zero order. Increasing the reaction temperature results in a decrease in the duration of the photohydrolysis reaction. Furthermore, an estimated activation energy value of 35.19 kJ mol-1 was obtained. The composite nanofibers demonstrated remarkable and consistent effectiveness throughout five consecutive cycles. The results suggest that composite NFs possess the capacity to function as a feasible substitute for costly catalysts in the process of H2 generation from AB.
Collapse
Affiliation(s)
- Ibrahim M. Maafa
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
| | - Nasser Zouli
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
| | - Ahmed Abutaleb
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
| | - Ayman Yousef
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
- Department of Mathematics and Physics Engineering, College of Engineering at Mataria, Helwan University, Cairo 11718, Egypt
| | - Isam Y. Qudsieh
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
| | - Saleh M. Matar
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Abdel Samed M. Adam
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; (N.Z.); (A.A.); (I.Y.Q.); (S.M.M.); (A.S.M.A.)
| | - M. M. El-Halwany
- Department of Mathematics and Physics Engineering, College of Engineering, Mansoura University, El-Mansoura 35516, Egypt;
| |
Collapse
|
17
|
Abdel Maksoud MIA, Kassem SM, Ashour AH, Awed AS. Recycled high-density polyethylene plastic reinforced with ilmenite as a sustainable radiation shielding material. RSC Adv 2023; 13:20698-20708. [PMID: 37435369 PMCID: PMC10332129 DOI: 10.1039/d3ra03757f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
In this work, recycled high-density polyethylene plastic (r-HDPE) reinforced with ilmenite mineral (Ilm) in different ratios (0, 15, 30, and 45 wt%) as a sustainable and flexible radiation shielding material was manufactured using the melt blending method. XRD patterns and FTIR spectra demonstrated that the polymer composite sheets were successfully developed. The morphology and elemental composition were addressed using SEM images and EDX spectra. Moreover, the mechanical characteristics of the prepared sheets were also studied. The gamma-ray attenuation characteristics for established r-HDPE + x% Ilm composite sheets were theoretically computed between 0.015 and 15 MeV using Phy-X/PSD software. Also, the mass attenuation coefficients have been compared to their values by the WinXCOM program. It is also shown that the shielding performance of the r-HDPE + 45% Ilm composite sheet is significantly greater than that of r-HDPE. As a result, the ilmenite-incorporated recycled high-density polyethylene sheets are suited for medical and industrial radiation shielding applications.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Said M Kassem
- Radiation Protection and Dosimetry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A H Ashour
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A S Awed
- Higher Institute for Engineering and Technology at Manzala Egypt
| |
Collapse
|
18
|
Huo J, Zhang Y, Kang W, Shen Y, Li X, Yan Z, Pan Y, Sun W. Synthesis of F-doped materials and applications in catalysis and rechargeable batteries. NANOSCALE ADVANCES 2023; 5:2846-2864. [PMID: 37260486 PMCID: PMC10228368 DOI: 10.1039/d3na00126a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Elemental doping is one of the most essential techniques for material modification. It is well known that fluorine is considered to be a highly efficient and inexpensive dopant in the field of materials. Fluorine is one of the most reactive elements with the highest electronegativity (χ = 3.98). Compared to cationic doping, anionic doping is another valuable method for improving the properties of materials. Many materials have physicochemical limitations that affect their practical application in the field of catalysis and rechargeable ion batteries. Many researchers have demonstrated that F-doping can significantly improve the performance of materials for practical applications. This paper reviews the applications of various F-doped materials in photocatalysis, electrocatalysis, lithium-ion batteries, and sodium-ion batteries, as well as briefly introducing their preparation methods and mechanisms to provide researchers with more ideas and options for material modification.
Collapse
Affiliation(s)
- Jiale Huo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Yaofang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yan Shen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Xiang Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Zirui Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Yingwen Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| | - Wei Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 PR China
- School of Physical Science and Technology, Tiangong University Tianjin 300387 PR China
| |
Collapse
|
19
|
Mouloua D, Lejeune M, Rajput NS, Kaja K, El Marssi M, El Khakani MA, Jouiad M. One-step chemically vapor deposited hybrid 1T-MoS 2/2H-MoS 2 heterostructures towards methylene blue photodegradation. ULTRASONICS SONOCHEMISTRY 2023; 95:106381. [PMID: 37004414 PMCID: PMC10457596 DOI: 10.1016/j.ultsonch.2023.106381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS2) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique. We demonstrate that the 1T-MoS2/2H-MoS2 heterostructures exhibited a narrow bandgap ∼ 1.7 eV, and a very low reflectance (<5%) under visible-light, owing to their particular vertical micro-flower-like structure. We exfoliated the CVD-synthesised 1T-MoS2/2H-MoS2 films to assess their photodegradation properties towards the standard methylene blue dye. Our results showed that the photo-degradation rate-constant of the 1T-MoS2/2H-MoS2 heterostructures is much greater under UV excitation (i.e., 12.5 × 10-3 min-1) than under visible light illumination (i.e., 9.2 × 10-3 min-1). Our findings suggested that the intermixing of the conductive 1T-MoS2 with the semi-conducting 2H-MoS2 phases favors the photogeneration of electron-hole pairs. More importantly, it promotes a higher efficient charge transfer, which accelerates the methylene blue photodegradation process.
Collapse
Affiliation(s)
- D Mouloua
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France; Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada
| | - M Lejeune
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - N S Rajput
- Advanced Materials Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - K Kaja
- Laboratoire National de métrologie et d'essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France
| | - M El Marssi
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | - M A El Khakani
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC J3X-1P7, Canada.
| | - M Jouiad
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France.
| |
Collapse
|
20
|
Zhang J, Li Z, Lei Q, Zhong D, Ke Y, Liu W, Yang L. Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-A under visible light irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161804. [PMID: 36731546 DOI: 10.1016/j.scitotenv.2023.161804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The practical application of bismuth-based photocatalysts in the field of micropollutant photodegradation is limited due to their weak light absorption and rapid charge recombination. Herein, we have developed a novel carbon quantum dots-modified N-BiOCl (CDs-N-BiOCl) photocatalyst to activate persulfate (PS) for the complete elimination of endocrine-disruptor bisphenol A (BPA) under visible light irradiation. The photoelectric properties characterization shows that N atoms could replace Cl atoms or adsorb on Bi atoms to form local N 1s states in the BiOCl lattice, accompanied by the introduction of doping energy levels that shorten the electron migration distance. Meanwhile, the decorated CDs could effectively accept the photoinduced electrons from N-BiOCl conduction band to facilitate the charge separation. Thus, the 7%CDs-N-BiOCl (7CNB) nanocomposite synergistically activated PS realized rapid and effective degradation of BPA within 20 min (degradation efficiency and mineralization reached 100 % and 66.4 % respectively). Moreover, the 7CNB/PS system displayed favorable adaptability, durability, and interference resistance. Furthermore, the biotoxicity experiments demonstrated that the photodegradation intermediates promoted the growth of Escherichia coli which indicates its eco-friendliness for practical application. Finally, the electron transfer mechanism and the formation of reactive oxygen species in the photodegradation process were interpreted. In short, this work will present a promising strategy for bismuth-based photocatalysts to be used for the efficient treatment of real water bodies under visible light irradiation.
Collapse
Affiliation(s)
- Jianqiao Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Luohu District Urban Management and Comprehensive Law Enforcement Bureau, Shenzhen 518003, China
| | - Zhiyang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qian Lei
- China Railway NO.1 GROUP Co., LTD., Xi'an 710000, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - YiXin Ke
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - WenJie Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
21
|
Yang Z, Wang J. Enhanced Photocatalytic Degradation of Emerging Contaminants Using Ti 3C 2T x MXene-Supported CdS Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4179-4189. [PMID: 36888917 DOI: 10.1021/acs.langmuir.3c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synthesis of efficient and stable catalysts for photocatalytic reactions is still a challenge. In this study, a new photocatalyst composed of two-dimensional titanium carbide (Ti3C2Tx) and CdS quantum dots (QDs) was fabricated, in which CdS QDs were intimately anchored on the Ti3C2Tx sheet surface. Due to the specific interface characteristics of CdS QDs/Ti3C2Tx, Ti3C2Tx can considerably facilitate the generation of photogenerated charge carriers, their separation, and their transfer from CdS. As expected, the obtained CdS QDs/Ti3C2Tx exhibit outstanding photocatalytic performance for carbamazepine (CBZ) degradation. Moreover, the quenching experiments demonstrated that superoxide radicals (•O2-), H2O2, 1O2, and •OH are the reactive species involved in CBZ degradation, while •O2- made a major contribution. In addition, the sunlight-driven CdS QDs/Ti3C2Tx photocatalytic system is widely suitable for the elimination of different emerging pollutants in various water matrices, suggesting its potential practical environmental applications.
Collapse
Affiliation(s)
- Zhao Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
22
|
Self-assembled monolayer-assisted label-free electrochemical genosensor for specific point-of-care determination of Haemophilus influenzae. Mikrochim Acta 2023; 190:112. [PMID: 36869922 PMCID: PMC9985083 DOI: 10.1007/s00604-023-05687-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
For sensitive detection of the L-fuculokinase genome related to the Haemophilus influenzae (H. influenzae), this research work demonstrates the label-free electrochemical-based oligonucleotide genosensing assay relying on the performing hybridization process. To enhance the electrochemical responses, multiple electrochemical modifier-tagged agents were effectively utilized. For attaining this goal, NiCr-layered double hydroxide (NiCr LDH) has been synthesized and combined with biochar (BC) to create an efficient electrochemical signal amplifier that has been immobilized on the surface of the bare Au electrode. Low detection and quantification limits (LOD and LOQ) associated with the designed genosensing bio-platform to detect L-fuculokinase have been achieved to 6.14 fM and 11 fM, respectively. Moreover, the wide linear range of 0.1 to 1000 pM demonstrates the capability of the designed platform. Investigated were the 1-, 2-, and 3-base mismatched sequences, and the negative control samples clarified the high selectivity and better performance of the engineered assay. The values of 96.6-104% and 2.3-3.4% have been obtained for the recoveries and RSDs, respectively. Furthermore, the repeatability and reproducibility of the associated bio-assay have been studied. Consequently, the novel method is appropriate for rapidly and quantitatively detecting H. influenzae, and is considered a better candidate for advanced tests on biological samples such as urine samples.
Collapse
|
23
|
Zhang W, Li X, Shen J, Sun Z, Zhou X, Li F, Ma F, Gu Q. Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130401. [PMID: 36403451 DOI: 10.1016/j.jhazmat.2022.130401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In-situ thermal desorption (ISTD) has attracted increasing attention owing to the efficient removal of organic contaminants from contaminated sites. However, it is poorly understood that whether and to what extent contamination degradation occurs upon oxygenation of reduced Fe-bearing clay minerals (RFC) in the subsurface during ISTD. In this study, we evaluated the mechanism of contaminant degradation upon oxygenation of reduced clay minerals during the ISTD. Reduced nontronite (rNAu-2) and montmorillonite (rSWy-3) were selected as RFC models. Results showed that thermal treatment during ISTD could significantly enhance phenol degradation, which increased from 25.8 % at 10 °C to 74.4 % at 70 °C in rNAu-2 and from 17.7 % at 10 °C to 49.8 % at 70 °C in rSWy-3. Correspondingly, the cumulative •OH at steady-state ([•OH]ss) increased by 3.7 and 1.5 times, respectively. The acceleration of Fe(II) oxidation with increasing temperature could be mainly responsible for [•OH]ss generation, which degrades phenol. Moreover, thermal treatment improved the fast oxidation of trioctahedral entities Fe(II)Fe(II)Fe(II) (TOF) and the slow oxidation of dioctahedral entities Fe(II)Fe(II) (DTF1), AlFe(II) (DAF1), and Fe(II)Fe(III) (DTF2). Our study suggests that the overlooked degradation progress of phenol by oxygenation of RFC during ISTD, and it could be favorable for contaminant degradation during remediation.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jialun Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qingbao Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
24
|
Keskin CS, Eren B, Özdemir A. Photocatalytic degradation of caffeine using metal ion-modified pillared interlayered clays and H 2O 2 under UV radiation. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2177539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Can Serkan Keskin
- Faculty of Sciences, Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - Beytullah Eren
- Faculty of Engineering, Department of Environmental Chemistry, Sakarya University, Sakarya, Turkey
| | - Abdil Özdemir
- Faculty of Sciences, Department of Chemistry, Sakarya University, Sakarya, Turkey
| |
Collapse
|
25
|
Zhou J, Zhu B, Wang L, Bao Y, Guan G. Novel CdS/CeO2/g-C3N4 nanocomposite for efficient phenol photodegradation under visible light. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Xue Y, Kamali M, Zhang X, Askari N, De Preter C, Appels L, Dewil R. Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology - advances and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120549. [PMID: 36336185 DOI: 10.1016/j.envpol.2022.120549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis has been considered a promising technology for the elimination of a wide range of pollutants in water. Various types of photocatalysts (i.e., homojunction, heterojunction, dual Z-scheme photocatalyst) have been developed in recent years to address the drawbacks of conventional photocatalysts, such as the large energy band gap and rapid recombination rate of photogenerated electrons and holes. However, there are still challenges in the design of photocatalytic reactors that limit their wider application for real (waste)water treatment, such as difficulties in their recovery and reuse from treated (waste)waters. 3D printing technologies have been introduced very recently for the immobilization of materials in novel photocatalytic reactor designs. The present review aims to summarize and discuss the advances and challenges in the application of various 3D printing technologies (i.e., stereolithography, inkjet printing, and direct ink writing) for the fabrication of stable photocatalytic materials for (waste)water treatment purposes. Furthermore, the limitations in the implementation of these technologies to design future generations of photocatalytic reactors have been critically discussed, and recommendations for future studies have been presented.
Collapse
Affiliation(s)
- Yongtao Xue
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Xi Zhang
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Clem De Preter
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
27
|
Maafa IM, Ali MA. Enhanced Organic Pollutant Removal Efficiency of Electrospun NiTiO 3/TiO 2-Decorated Carbon Nanofibers. Polymers (Basel) 2022; 15:polym15010109. [PMID: 36616458 PMCID: PMC9824639 DOI: 10.3390/polym15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
A nanocomposite comprised of nickel titanate/titania nanoparticles decorated with carbon nanofibers (NiTiO3/TiO2-decorated CNFs) is successfully synthesized via electrospinning and further utilized for methylene blue (MB) photodegradation. The morphology, phase, structural and chemical composition of the nanocomposite is investigated via scanning electron microscope, X-ray diffraction and transmission electron microscope equipped with energy dispersive X-ray. A mathematical model is developed to predict the photocatalytic activity of the produced nanocomposite by considering parameters such as initial dye concentration, light intensity, reaction temperature, and catalyst dosage. The reaction rate constant K1 decreased from 0.0153 to 0.0044 min-1 with an increase in the MB concentration from 5 to 15 mg L-1, while K2, K3, and K4 were found to increase with the increase in reaction temperature (0.0153 to 0.0222 min-1), light intensity (0.0153 to 0.0228 min-1) and catalyst dose concentration (0.0153 to 0.0324 min-1), respectively. The results obtained are found to be in good agreement with the modeling results and showed effective photodegradation activity. The performance of our catalyst is found to be better compared to other catalysts previously reported in the literature. The recyclability data of the synthesized NiTiO3/TiO2-decorated CNFs catalyst for four runs show that the catalyst is quite stable and recyclable. This nanocomposite photocatalyst offers a low-cost solution for wastewater pollution problems and opens new avenues to further explore the electrospinning method for the synthesis of nanocomposites.
Collapse
|
28
|
Bateni A, Valizadeh K, Salahshour Y, Behroozi AH, Maleki A. Fabrication and characterization of pectin-graphene oxide-magnesium ferrite-zinc oxide nanocomposite for photocatalytic degradation of diclofenac in an aqueous solution under visible light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116358. [PMID: 36179472 DOI: 10.1016/j.jenvman.2022.116358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wastewater containing pharmaceutical contaminants has become a critical environmental concern due to rising population and drug consumption caused by increased life expectancy. Diclofenac (DCF) is one of the most applicable drugs for veterinary and human health purposes, polluting surface waters in different ways. This work aims to synthesize a novel pectin-graphene oxide (GO)-magnesium ferrite (MgFe2O4)-zinc oxide (ZnO) nanocomposite (PGMZ) for photocatalytic degradation of DCF in an aquatic environment under visible light irradiation. The single and synthesized nanocomposites were characterized by several analyses, confirming the successful synthesis of the nanocomposite. Effects of four operation conditions, including nanocomposite dosage (1-1.25 g/L), nanocomposite type, initial contaminant concentration (35-55 mg/L), and solution pH (3-11), were investigated on the degradation performance. From the kinetic study, the effect of mixing two composites, i.e., synergy percentage, was 38.7% when ZnO-MgFe2O4 particles were added to the GO-pectin structure. By examining the effect of different free radical enhancers and scavenging compounds on the DCF photodegradation, the most influential scavenging components were in the following order; NaCl > Na2CO3 > Na2SO4, while K2S2O8 was a better enhancer than H2O2 at their optimal concentration. Finally, the PGMZ photocatalyst was reused six times with a reduction of about 20% in its removal efficiency, indicating excellent reusability and stability.
Collapse
Affiliation(s)
- Amir Bateni
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kamran Valizadeh
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yasin Salahshour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
29
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
30
|
Subha N, Mahalakshmi M, Monika S, Senthil Kumar P, Preethi V, Vaishnavi G, Rajabhuvaneswari A. Heterostructured γ-Fe 2O 3/FeTiO 3 magnetic nanocomposite: An efficient visible-light-driven photocatalyst for the degradation of organic dye. CHEMOSPHERE 2022; 306:135631. [PMID: 35810869 DOI: 10.1016/j.chemosphere.2022.135631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The catalyst recovery is the major concern in commercialization of photocatalysts for the industrial effluent treatment process. To overcome this major issue, Fe2O3 based magnetic photocatalytic heterostructure ɣ-Fe2O3/FeTiO3 nanocomposite was synthesized by hydrothermal method. Fe2O3 is the cheapest visible active magnetic photocatalytic material, but it has the limitation of fast e-/h + recombination. Titanium (Ti) was loaded on γ-Fe2O3 to overcome this issue. The loaded Ti has grown as FeTiO3 on the surface of ɣ-Fe2O3 nanocrystals and emerged as heterostructure ɣ- Fe2O3/FeTiO3 nanocomposites, which was confirmed by XRD and TEM results. The loading concentration of Ti on γ-Fe2O3 was optimized to achieve the maximum photocatalytic efficiency without compromising the magnetic property of γ-Fe2O3 to facilitate the magnetic separation. DRS-UV spectra revealed the strong visible light response of γ- Fe2O3/FeTiO3 nanocomposite. The photocatalytic efficiencies of the synthesized materials were evaluated using methylene blue (MB) as a model pollutant under sunlight. The built-in electric field between p-n junction between FeTiO3 and Fe2O3 and type II charge transfer mechanism extended the lifetime of the charge carriers at the heterojunction of γ- Fe2O3/FeTiO3, which was confirmed by PL spectra. The vibrating sample magnetometer (VSM) study revealed the decreasing magnetization, coercivity (Hc), and retentivity (Mr) of γ-Fe2O3 with increasing concentration of Ti. 92% of the used-up 20 wt% Ti loaded γ-Fe2O3/FeTiO3 magnetic nanocomposite was recovered from the treated wastewater using an electromagnet. Both magnetic properties and efficiency of the nanocomposite increased up to 20 wt% of Ti loading, beyond that decreased due to the increasing composition of antiferromagnetic FeTiO3 and the increasing number of defect sites as recombination centers. Hence, 20 wt% loading of Ti was concluded as the optimum to enhance the efficiency and to retain the magnetic properties. This work aims the commercialization of magnetic photocatalytic materials for the industrial effluent treatment.
Collapse
Affiliation(s)
- N Subha
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - M Mahalakshmi
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Monika
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - V Preethi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - G Vaishnavi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - A Rajabhuvaneswari
- Department of Chemistry, Sri Sairam Institute of Technology, West Tambaram, Chennai-44, India
| |
Collapse
|
31
|
Facile Synthesis of ZnSe/Co3O4 Heterostructure Nanocomposites for the Photocatalytic Degradation of Congo Red Dye. Catalysts 2022. [DOI: 10.3390/catal12101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present paper, simple hydrothermal and solid-state methods are reported for the synthesis of metal chalcogenide (ZnSe), metal oxide (Co3O4) and their nano-heterostructure (ZnSe/Co3O4 3:1, 1:1 and 1:3 ratios by weight), while their photocatalytic efficiencies are also investigated. The X-ray diffraction results corroborate the good crystallinity and purity of all synthesized products, i.e., ZnSe, Co3O4 and their nanocomposites. The scanning electron micro-images of ZnSe show a mixed morphology of nanoparticles (≈16 nm), including spherical and distorted cubes, while Co3O4 has a worm-like morphology (≈20 × 50 nm). The EDX results show that all the elements are present in accordance with their anticipated amounts in the products. The UV/visible absorption spectrum of ZnSe depicts a sharp absorption at around 480 nm, while Co3O4 demonstrates two prominent peaks, 510 nm and 684 nm. The prepared samples were employed for the photocatalytic degradation of Congo red dye and the nano-heterostructure (ZnSe/Co3O4 3:1) shows an exceptional photocatalytic degradation efficiency of 96%. This enhanced photocatalytic activity was due to the synergic effect of ZnSe and Co3O4 that reduced the electron/hole recombination and caused suitable bandgap alignment.
Collapse
|
32
|
Chen X, Zhan Y, Sun A, Feng Q, Yang W, Dong H, Chen Y, Zhang Y. Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Abdullah TAT, Kamaroddin MFA, Setiabudi HD. An intriguing Z-scheme titania loaded on fibrous silica ceria for accelerated visible-light-driven photocatalytic degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2022; 211:113069. [PMID: 35300961 DOI: 10.1016/j.envres.2022.113069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A novel Z-scheme titania loaded on fibrous silica ceria (Ti-FSC) was triumphantly fabricated via hydrothermal followed by electrolysis method and evaluated for the visible-light degradation of ciprofloxacin (CIP). Noticeably, Ti-FSC exhibits as an efficient photocatalyst for CIP photodegradation with 95% as followed by titania loaded on fibrous silica (Ti-FS) (68%), Ti-CeO2 (35%), FSC (47%), FS (22%), and CeO2 (17%). The combination of the inherent merits of Ti loaded on FSC is able to realize the crucial role of Ce in harnessing the high dispersion of Ti, which could beneficial for improving the performance proven by XRD, FESEM, TEM and FTIR. Consequently, high dispersion of Ti on FSC has worthwhile towards the interaction of the Si-O-Ti, Ce-O-Ti, and Si-O-Ti, which could enhance the CIP photodegradation by providing more surface defects, narrowing the band gap, improving electron-hole separation and suppressing electron-hole recombination that revealed by XPS, UV-vis/DRS, Nyquist plots and PL studies, respectively. The scavenger study revealed that the controlling species in the system was hydroxyl radical and holes. A potential Z-scheme heterojunction mechanism for Ti-FSC was deduced from the band structure analysis. The possible photodegradation pathway was proposed based on GCMS analysis. Besides, the acceptable reusability, which exceeded 90% of degradation indicated the great application potential of Z-scheme Ti-FSC in wastewater treatment and others application.
Collapse
Affiliation(s)
- A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - T A T Abdullah
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M F A Kamaroddin
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
34
|
Wang JF, Liu Y, Shao P, Zhu ZY, Ji HD, Du ZX, Wang CC, Liu W, Gao LJ. Efficient ofloxacin degradation via photo-Fenton process over eco-friendly MIL-88A(Fe): Performance, degradation pathways, intermediate library establishment and toxicity evaluation. ENVIRONMENTAL RESEARCH 2022; 210:112937. [PMID: 35157918 DOI: 10.1016/j.envres.2022.112937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The high-throughput production of the eco-friendly MIL-88A(Fe) was achieved under mild reaction conditions with normal pressure and temperature. The as-prepared MIL-88A(Fe) exhibited efficient photo-Fenton catalytic ofloxacin (OFL) degradation upon visible light irradiation with good stability and reusability. The OFL (20.0 mg/L) was completely degraded within 50 min under visible light with the aid of MIL-88A(Fe) (0.25 g/L) and H2O2 (1.0 mL/L) in aqueous solution (pH = 7.0). The hydroxyl radicals (·OH) are the main active species during the photo-Fenton oxidation process. Meanwhile, the degradation intermediates and the corresponding degradation pathways were identified and proposed with the aid of both ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and density functional theory (DFT) calculations. Finally, the degradation product library was firstly established to identify intermediate transformation products (TPs) with their variation of concentration, and their corresponding toxicologic activities were assessed via Toxtree and T.E.S.T software as well. Finally, the MIL-88A is efficient and stable with four cycles' catalysis operations, demonstrating good potential for water treatment.
Collapse
Affiliation(s)
- Jian-Feng Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China; Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, Beijing, 100089, China
| | - Yan Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, Beijing, 100089, China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, Beijing, 100089, China
| | - Zhi-Yuan Zhu
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Dong Ji
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Zhen-Xia Du
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation/Beijing Advanced Innovation Centre for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Li-Juan Gao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing Engineering Research Center of Food Safety Analysis, Beijing, 100089, China
| |
Collapse
|
35
|
Li C, Ding S, Zhang J, Wu J, Yue Y, Qian G. Ball milling transformed electroplating sludges with different components to spinels for stable electrocatalytic ammonia production under ambient conditions. CHEMOSPHERE 2022; 296:134060. [PMID: 35189185 DOI: 10.1016/j.chemosphere.2022.134060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Electroplating sludge is classified as hazardous waste, but it is also a potential raw resource since it contains plenty of transition metals. However, the component of electroplating sludge is unstable, which hinders recycling. This work investigates the possibility to synthesize spinels with stable catalytic performances by different electroplating sludges. The obtained catalysts are used in electrocatalytic N2 reduction to produce ammonia. As a result, CuCr2O4, ZnCr2O4, and NiCr2O4 spinels are successfully synthesized by a ball-milling and calcination method. These spinels result in ammonia yields of 7.30-8.86 μg h-1 mg-1cat. Among the three spinels, CuCr2O4 shows the highest yield of 8.86 μg h-1 mg-1cat at -0.9 V. Its faradaic efficiency reaches 0.57%. In addition, no by-product N2H4 is detected, indicating a high selectivity. The catalytic process is carried out by both distal and alternating pathways, in which metal doping and oxygen vacancy function as binding sites for N2 adsorption and reduction. Above results indicate that electroplating sludges with unstable components are feasible to produce spinels for stable electrocatalytic ammonia production under ambient temperature. This is in favor of high-value-added utilization of hazardous waste, and devotes to circular economy.
Collapse
Affiliation(s)
- Chengyan Li
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Suyan Ding
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China.
| | - Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China.
| |
Collapse
|
36
|
Jeevitha G, Sivaselvam S, Keerthana S, Mangalaraj D, Ponpandian N. Highly effective and stable MWCNT/WO 3 nanocatalyst for ammonia gas sensing, photodegradation of ciprofloxacin and peroxidase mimic activity. CHEMOSPHERE 2022; 297:134023. [PMID: 35227750 DOI: 10.1016/j.chemosphere.2022.134023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The present study discusses the ammonia (NH3) sensing characteristics, photocatalytic degradation of emerging pollutants, and peroxidase mimic activity of multifunctional multi-walled carbon nanotube-tungsten oxide nanocomposite (MWCNT/WO3) prepared by conventional solvothermal method. The prepared MWCNT/WO3 nanocomposites were characterized by various analytical techniques like XRD, Raman, XPS, N2 adsorption, FESEM with elemental analysis and diffuse reflection spectroscopy. The prepared 1% MWCNT/WO3 nanocomposite showed better gas sensing performance for the NH3 vapors at 10-100 ppm than the pristine WO3 and the response and recover time of about 13 and 15s towards 20 ppm of ammonia (NH3) was achieved. The photocatalytic activity of MWCNT/WO3 towards organic dyes such as Rhodamine-B (Rh.B) methylene blue (MB) and pharmaceutical compound ciprofloxacin (CIP) were studied and achieved above 90% degradation at 160 min for CIP and 60 min for MB and Rho-B respectively. The radicle scavenging activity for MWCNT/WO3 nanocomposite showed the predominant formation of hydroxyl (OH•) and superoxide radicle (•O2-). Further, the MWCNT/WO3 nanocomposite showed peroxidase mimic activity and exhibit the limit of detection (LOD) of about 321 nM. From the overall analysis, MWCNT/WO3 hybrid seems to have potential characteristics that can be explored for multiple functional applications.
Collapse
Affiliation(s)
- G Jeevitha
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - S Keerthana
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - D Mangalaraj
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India.
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
37
|
Motamedi M, Yerushalmi L, Haghighat F, Chen Z. Recent developments in photocatalysis of industrial effluents ։ A review and example of phenolic compounds degradation. CHEMOSPHERE 2022; 296:133688. [PMID: 35074327 DOI: 10.1016/j.chemosphere.2022.133688] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Industrial expansion and increased water consumption have created water scarcity concerns. Meanwhile, conventional wastewater purification methods have failed to degrade recalcitrant pollutants efficiently. The present review paper discusses the recent advances and challenges in photocatalytic processes applied for industrial effluents treatment, with respect to phenolic compounds degradation. Key operational parameters including the catalyst loading, light intensity, initial pollutants concentration, pH, and type and concentrations of oxidants are evaluated and discussed. Compared to the other examined controlling parameters, pH has the highest effect on the photo-oxidation of contaminants by means of the photocatalyst ionization degree and surface charge. Furthermore, major phenolic compounds derived from industrial sources are comprehensively presented and the applicability of photocatalytic processes and the barriers in practical applications, including high energy demand, technical challenges, photocatalyst stability, and recyclability have been explored. The importance of energy consumption and operational costs for realistic large-scale processes are also discussed. Finally, research gaps in this area and the suggested direction for improving degradation efficiencies in industrial applications are presented. In the light of these premises, selective degradation processes in real water matrices such as untreated sewage are proposed.
Collapse
Affiliation(s)
- Mahsa Motamedi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Laleh Yerushalmi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| |
Collapse
|
38
|
Tong Y, Li S, Wu Y, Guo J, Zhou B, Zhou Q, Jiang L, Niu J, Zhang Y, Liu H, Yuan S, Huang S, Zhan Y. Graphene oxide modified magnetic polyamidoamide dendrimers based magnetic solid phase extraction for sensitive measurement of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2022; 296:134009. [PMID: 35189186 DOI: 10.1016/j.chemosphere.2022.134009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, graphene oxide modified magnetic polyamidoamine dendrimers (MNPs@PAMAM-G2.0@GO) nanoparticles were successfully prepared by amidation method. The obtained MNPs@PAMAM-G2.0@GO nanocomposites were examined by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM) and transmission electron microscopy (TEM), etc. MNPs@PAMAM-G2.0@GO exhibited excellent adsorption property and was investigated for magnetic solid phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) from water. The detection of extracted PAHs was accomplished by high performance liquid chromatography (HPLC) and gas chromatography tandem mass spectrometry (GC-MS/MS). The target PAHs included anthracene (ANT), pyrene (PYR), fluoranthene (FLT), carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DBT). Important operation parameters for MSPE that could affect the extraction efficiencies of PAHs were investigated in detail. Under optimal parameters, the constructed method demonstrated excellent linear range with 0.001-10 μg L-1 for analytes and low limits of detection within the range of 0.11-0.9 ng L-1. The spiked average recoveries of PAHs in natural water samples ranged from 92.5% to 105.2%. The promising results indicated that MNPs@PAMAM-G2.0@GO could be employed to efficiently extract PAHs from aqueous samples.
Collapse
Affiliation(s)
- Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Liushan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huanhuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
39
|
Amani-Ghadim AR, Arefi-Oskoui S, Mahmoudi R, Sareshkeh AT, Khataee A, Khodam F, Seyed Dorraji MS. Improving photocatalytic activity of the ZnS QDs via lanthanide doping and photosensitizing with GO and g-C 3N 4 for degradation of an azo dye and bisphenol-A under visible light irradiation. CHEMOSPHERE 2022; 295:133917. [PMID: 35157881 DOI: 10.1016/j.chemosphere.2022.133917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/23/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
In this research, insertion of Gd ions (2 wt%) into the crystalline lattice of the ZnS QDs enhanced the photocatalytic activity of the QDs. In addition, the influence of graphene oxide (GO) and graphitic carbon nitride (g-C3N4) was assessed on the photocatalytic activity of the ZnS QDs through degradation of acid red 14 (AR14) and bisphenol-A (BA) under visible light. Higher photocatalytic degradation efficiency (97.1% for AR14 and 67.4% for BA within 180 min) and higher total organic carbon (TOC) removal (67.1% for AR14 and 59.2% for BA within 5 h) was achieved in the presence of ZnS QDs/g-C3N4 compared with ZnS QDs/GO nanocomposite. Finally, the Gd-doped ZnS QDs were hybridized with g-C3N4 as optimal support to fabricate a potent visible-light-driven photocatalyst for the decomposition of organic contaminants. The maximum photocatalytic degradation of 99.1% and 80.5% were achieved for AR14 and BA, respectively, in the presence of Gd-doped ZnS QDs/g-C3N4 nanocomposite. The photosensitization mechanism was suggested for the improved photocatalytic activity of the ZnS QDs/GO, ZnS QDs/g-C3N4, and Gd-doped ZnS QDs/g-C3N4 nanocomposites under visible light.
Collapse
Affiliation(s)
- Ali Reza Amani-Ghadim
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P.O. Box 83714-161, Tabriz, Iran; New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University, P.O. Box 83714-161, Tabriz, Iran.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Robab Mahmoudi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P.O. Box 83714-161, Tabriz, Iran
| | - Abdolreza Tarighati Sareshkeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Fatemeh Khodam
- Research Laboratory of Environmental Protection Technology, Faculty of Chemistry, Department of Applied Chemistry, University of Tabriz, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
40
|
Rout DR, Jena HM. Removal of phenol from aqueous solution using reduced graphene oxide as adsorbent: isotherm, kinetic, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32105-32119. [PMID: 35013972 DOI: 10.1007/s11356-021-17944-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This work focuses on the batch adsorption study of phenol from an aqueous solution. Here, reduced graphene oxide (RGO) is used as an adsorbent. To synthesize reduced graphene oxide from graphene oxide, hydrazine monohydrate is used as a reducing agent. The synthesized samples were characterized using SEM, EDX, XRD, FTIR, BET surface area analyzer, RAMAN spectra, and zeta potential. The effects of solution pH, adsorption time, temperature, adsorbent dosage, and initial phenol concentration on adsorption characteristics were systematically studied. The optimized adsorption parameters were 0.4 g/L of adsorbent dosage, pH of 8.0, adsorption time 75 min, and temperature of 30 °C. The adsorption isotherm data follows the Langmuir isotherm model, and the maximum adsorption capacity (qm) was 602.41 mg/g. The kinetic data of the adsorption follows the pseudo-second-order kinetic model. The Boyd model confirmed that film diffusion was the rate-limiting step in the adsorption process. The thermodynamic study of phenol adsorption using RGO confirms the endothermic nature of the process. The negative values of Gibb's free energy (ΔGo) confirm that the process was spontaneous. The positive value of change in entropy (ΔSo = 346.885 J/K) suggests that the randomness was increased at the solution/solid interface. The most important feature of this adsorbent was it could be easily and efficiently regenerated from phenol-loaded adsorbent with a negligible effect on removal efficiency. This study evidenced an effective use of RGO as an adsorbent for phenol removal.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India.
| |
Collapse
|
41
|
Swain G, Lal Maurya K, Kumar Sonwani R, Sharan Singh R, Prakash Jaiswal R, Rai BN. Effect of mixing intensity on biodegradation of phenol in a moving bed biofilm reactor: Process optimization and external mass transfer study. BIORESOURCE TECHNOLOGY 2022; 351:126921. [PMID: 35240275 DOI: 10.1016/j.biortech.2022.126921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this work, an effort has been made to design the process variables and to analyse the impact of mixing intensity on mass transfer diffusion in a moving bed biofilm reactor (MBBR). A lab-scale MBBR, filled with Bacillus cereus GS2 IIT (BHU) immobilized-polyethylene biocarriers, was employed to optimize the process variables, including mixing intensity (60-140 rpm), phenol concentration (50-200 mg/L), and hydraulic retention time (HRT) (4-24 h) using response surface methodology. The optimum phenol removal of 87.64 % was found at 100 rpm of mixing intensity, 200 mg/L of phenol concentration, and 24 h of HRT. The higher mixing intensity improved the substrate diffusion between the liquid phase and the surface of the biofilm. The external mass transfer coefficients were found in the range of 1.431 × 10-5-1.845 × 10-5 m/s. Moreover, the detection of catechol and 2-hydroxymuconic semialdehyde revealed that the Bacillus sp. followed the meta-cleavage pathway during the biodegradation of phenol.
Collapse
Affiliation(s)
- Ganesh Swain
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kanhaiya Lal Maurya
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - B N Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
42
|
Van KN, Huu HT, Nguyen Thi VN, Thi Le TL, Hoang QD, Dinh QV, Vo V, Tran DL, Vasseghian Y. Construction of S-scheme CdS/g-C 3N 4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. ENVIRONMENTAL RESEARCH 2022; 206:112556. [PMID: 34951992 DOI: 10.1016/j.envres.2021.112556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Within moderate band gap, g-C3N4 and CdS are both promising visible light driven photocatalysts. However, their intrinsic high recombination rate of photo-induced electron-hole pairs along with the poor susceptibility in photocorrosion of CdS is main limitations hindering their practical application. In this study, the CdS/g-C3N4 composites with various weight ratios of CdS to g-C3N4 were solvothermal prepared from the dispersion of components, g-C3N4 and CdS, in ethanol. The physicochemical characterizations demonstrate the success in the fabrication of well-dispersed CdS nanoparticles in the g-C3N4 matrix. The enhanced photocatalytic activity of the g-C3N4/CdS composite over the degradation of methylene blue under visible light was ascribed to the effective photo-induced electron-hole separation via the step scheme (S-scheme) pathway in which the main contribution of high oxidative hydroxyl radicals (•OH) was demonstrated. Furthermore, via S-scheme model, we also clarify the depletion of photo-induced holes on CdS which is ascribed as the reason for improvement in resistance to photocorrosion of composites.
Collapse
Affiliation(s)
- Kim Nguyen Van
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam.
| | - Ha Tran Huu
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam
| | - Viet Nga Nguyen Thi
- Faculty of Education, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam
| | - Thanh-Lieu Thi Le
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam
| | - Quoc Dat Hoang
- Vietnam Ministry of Science and Technology, 113 Tran Duy Hung, Cau Giay, Hanoi, 10000, Viet Nam
| | - Quoc Viet Dinh
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam
| | - Vien Vo
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, 55000, Binh Dinh, Viet Nam.
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
43
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
44
|
Adsorption of catechol on a weak-base anion exchanger prepared by a novel template-induced method: Batch tests. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. CHEMOSPHERE 2022; 291:132921. [PMID: 34798114 DOI: 10.1016/j.chemosphere.2021.132921] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/28/2023]
Abstract
Since the discovery of MXenes at Drexel University in the United States in 2011, there has been extensive research regarding various applications of MXenes including environmental remediation. MXenes with a general formula of Mn+1XnTx are a class of two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with unique chemical and physical characteristics as nanomaterials. MXenes feature characteristics such as high conductivity, hydrophobicity, and large specific surface areas that are attracting attention from researchers in many fields including environmental water engineering such as desalination and wastewater treatment as well as designing and building efficient sensors to detect hazardous pollutants in water. In this study, we review recent developments in MXene-based nanocomposites for electrochemical (bio) sensing with a particular focus on the detection of hazardous pollutants, such as organic components, pesticides, nitrite, and heavy metals. Integration of these 2D materials in electrochemical enzyme-based and affinity-based biosensors for environmental pollutants is also discussed. In addition, a summary of the key challenges and future remarks are presented. Although this field is relatively new, future research on biosensors of MXene-based nanocomposites need to exploit the remarkable properties of these 2D materials.
Collapse
Affiliation(s)
- Amina Rhouati
- Laboratoire Bioengineering, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, And Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Erim B, Ciğeroğlu Z, Şahin S, Vasseghian Y. Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe 3O 4 under UV-A irradiation. CHEMOSPHERE 2022; 291:132929. [PMID: 34800511 DOI: 10.1016/j.chemosphere.2021.132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 05/27/2023]
Abstract
In this study, SWCNT/ZnO/Fe3O4 heterojunction composite was prepared for enhancing the degradation of β-lactam drugs such as cefixime (CFX) from an aqueous solution. The effects of several factors such as pH, initial concentration of CFX, and photocatalyst dose were investigated. Among them, pH was the most effective parameter for the degradation of CFX. Pareto graph revealed that the degradation process was accelerated at acidic conditions. The surface morphology test such as scanning electron microscopy (SEM) was applied to enlighten the surface of the functionalized SWCNT/ZnO/Fe3O4 photocatalyst. Highly advanced analyzes such as X-ray Photoelectron Spectroscopy (XPS), Energy Dispersive Spectrometry (EDX), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and point of zero charge were included to explain the structure of the photocatalyst. The response surface methodology's results show that the optimum CFX efficiency was fully achieved at 94.19%. The optimal conditions with lower standard error (2.08) were given as pH of 5.93, 22.76 ppm of CFX, and 0.46 g L-1 of the amount of photocatalyst. Besides, the obtained photocatalyst can be easily used many times owing to its high reusability. SWCNT/ZnO/Fe3O4 photocatalyst might be recommended to be used for the mineralizing of drug compounds such as antibiotics in water. Moreover, thiazol-2-ol, N-(dihydroxymethyl)-2-(2-hydroxythiazol-4-yl)acetamide,(S)-N-(2-amino-1-hydroxy-2-oxoethyl)-2-(2 hydroxythiazol-4-yl), and 2-(2-hydroxythiazol-4-yl)-N-((2R,3R)-2-mercapto-4-oxoazetidin-3-yl)acetamide were among the detected intermediates products from the cefixime degradation in the process.
Collapse
Affiliation(s)
- Berna Erim
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey.
| | - Selin Şahin
- Department of Chemical Engineering, Faculty of Engineering, Istanbul-Cerrahpaşa University, 34320, İstanbul, Turkey
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
47
|
Vasseghian Y, Dragoi EN, Almomani F, Golzadeh N, Vo DVN. A global systematic review of the concentrations of Malathion in water matrices: Meta-analysis, and probabilistic risk assessment. CHEMOSPHERE 2022; 291:132789. [PMID: 34742763 DOI: 10.1016/j.chemosphere.2021.132789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide applications and the proximity of land use to water matrices have resulted in discharges of pollutants including Malathion -one of the most widely used organophosphorus pesticides- to water resources such as marine, freshwater, and under groundwater. Exposure to malathion through consumption of contaminated water may cause deleterious health effects on consumers. Determining the amount of pesticides used on farms can play an important role in preventing potential toxicity and pollution of nearby aquatic ecosystems. Therefore, this systematic review and meta-analysis is focused on evaluating the concentrations of Malathion in water resources while considering probabilistic health risk assessment. The international databases of Scopus, Embase, and PubMed were investigated to evaluate the related articles from January 01, 1968 to March 25, 2021. Thirty-four articles containing 206 samples from 15 countries were included. A meta-analysis of carcinogenic and non-carcinogenic risk assessments for Malathion was also performed. To determine uncertainty intervals, a Monte-Carlo simulation was conducted. The results of the meta-analysis showed that the rankings of Malathion pollution (from the most to the least) were: drinking water > surface waters > groundwaters. Moreover, the results of the risk assessments confirm that there is no non-carcinogenic risk for any of the study areas. The carcinogenic risk assessment was within the limit for the countries under this study, except for Ethiopia that was slightly over the limit as well as Iran, and Mexico had high carcinogenic risk.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
48
|
Mechouche MS, Merouane F, Messaad CEH, Golzadeh N, Vasseghian Y, Berkani M. Biosynthesis, characterization, and evaluation of antibacterial and photocatalytic methylene blue dye degradation activities of silver nanoparticles from Streptomyces tuirus strain. ENVIRONMENTAL RESEARCH 2022; 204:112360. [PMID: 34767823 DOI: 10.1016/j.envres.2021.112360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are a promising technology for the design of antimicrobial agents against drug-resistant pathogens. It could also be used for the photocatalytic degradation of dyes used in industries such as methylene blue (MB). In this study, 17 different actinomycetal strains isolated from hydrocarbon-contaminated soils collected from an oil distribution company in Algeria were evaluated for their ability to produce NPs. After a selection process, S16 was the main strain capable of synthesizing AgNPs extracellularly. The strain S16 was determined using molecular identification based on the sequencing of the 16S rDNA gene. Among various techniques used for the synthesis of AgNPS, a technique using a temperature of 30 °C, pH of 7, a metal salt concentration of 1 mM, and a period of 72 h in the dark were found to be more effective in the biosynthesis of the AgNPs. The biosynthesized AgNPs that were analyzed by UV-visible spectroscopy resulted in a specific peak at a wavelength of (λ = 400 nm). The DRX analyses showed characteristic peaks of the AgNPs at (1 1 1), (2 0 0), (2 2 2), and (3 1 1), which validated the presence and crystalline nature of the biosynthesized NPs. Zetasizer analysis showed an average size and zeta potential of 64 nm (-32.3 mV), while the SEM-EDS analysis confirmed the spherical shape of AgNPs and the presence of Ag atoms in the elemental composition. The biosynthesized AgNPs indicated adequate antibacterial activity against 5 out of the 6 strains tested in this study, using minimum inhibitory concentration (MIC) that ranged from 217.18 μg/mL to 1137.5 μg/mL. The AgNPs were combined with commercial antibiotics and the synergistic effect of the combination was also assessed against MRSA which resulted in increased antibacterial activity of AgNPs in the presence of the strain S16. Furthermore, the photocatalytic degradation of the methylene blue (MB) was evaluated under sunlight and UV irradiations using biosynthesized AgNPs. The AgNPs showed photocatalytic decolorization potential of 71.3% for MB dye (20 ppm) under sunlight irradiation within 6 h of incubation, while only 11.25% of the MB dye degraded using UV irradiation.
Collapse
Affiliation(s)
- Meroua Safa Mechouche
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Fateh Merouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Chemes El Houda Messaad
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nasrin Golzadeh
- Science, Technology, Engineering, and Mathematics (STEM) Knowledge Translations Institute, Montreal, Quebec, Canada
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
49
|
Facile Synthesis of Sillén-Aurivillius Layered Oxide Bi7Fe2Ti2O17Cl with Efficient Photocatalytic Performance for Degradation of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of an efficient and environment-friendly photocatalyst for antibiotics degradation is of great significance and still remains a major challenge. Herein, a novel Sillén-Aurivillius layered oxide Bi7Fe2Ti2O17Cl is successfully synthesized via a one-step flux route (noted as F-BFTOC) and solid-state reaction (noted as S-BFTOC). The as-prepared F-BFTOC manifests the enhanced visible-light photocatalytic performance towards tetracycline (TC) degradation compared with Bi4NbO8Cl and its degradation efficiency reaches 90% within 90 min. Additionally, the proposed degradation pathway and photocatalytic mechanism are systematically investigated by liquid chromatography tandem-mass spectrometry (HPLC-MS), active species trapping test, electron spin resonance (ESR) and first-principles calculations. The superior degradation of antibiotics is primarily derived from the photo-generated h+, and radical ·O2− as the dominant active species. More importantly, the F-BFTOC exhibits excellent cycle stability and TC is ultimately transformed into non-toxic open-loop products. Simultaneously, Rhodamine B (RhB) as a typical organic pollutant is further employed to evaluate the photocatalytic activity of F-BFTOC, and 98% of the degradation efficiency is achieved. BFTOC as a multifunctional photocatalyst for pollutant degradation offers a new insight for Sillén-Aurivillius photocatalytic in the field of water purification.
Collapse
|
50
|
Pestovsky YS, Srichana T. Formation of Aggregate-Free Gold Nanoparticles in the Cyclodextrin-Tetrachloroaurate System Follows Finke-Watzky Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:583. [PMID: 35214912 PMCID: PMC8875903 DOI: 10.3390/nano12040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
Cyclodextrin-capped gold nanoparticles are promising drug-delivery vehicles, but the technique of their preparation without trace amounts of aggregates is still lacking, and the size-manipulation possibility is very limited. In the present study, gold nanoparticles were synthesized by means of 0.1% (w/w) tetrachloroauric acid reduction with cyclodextrins at room temperature, at cyclodextrin concentrations of 0.001 M, 0.002 M and 0.004 M, and pH values of 11, 11.5 and 12. The synthesized nanoparticles were characterized by dynamic light scattering in both back-scattering and forward-scattering modes, spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy. These techniques revealed 14.9% Au1+ on their surfaces. The Finke-Watzky kinetics of the reaction was demonstrated, but the actual growth mechanism turned out to be multistage. The synthesis kinetics and the resulting particle-size distribution were pH-dependent. The reaction and centrifugation conditions for the recovery of aggregate-free nanoparticles with different size distributions were determined. The absorbances of the best preparations were 7.6 for α-cyclodextrin, 8.9 for β-cyclodextrin and 7.5 for γ-cyclodextrin. Particle-size distribution by intensity was indicative of the complete absence of aggregates. The resulting preparations were ready to use without the need for concentration, filtration, or further purification. The synthesis meets the requirements of green chemistry.
Collapse
Affiliation(s)
- Yuri Sergeyevich Pestovsky
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato 36824, Mexico
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla 90110, Thailand
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|