1
|
Nduba V, Njagi LN, Murithi W, Mwongera Z, Byers J, Logioia G, Peterson G, Segnitz RM, Fennelly K, Hawn TR, Horne DJ. Mycobacterium tuberculosis cough aerosol culture status associates with host characteristics and inflammatory profiles. Nat Commun 2024; 15:7604. [PMID: 39217183 PMCID: PMC11365933 DOI: 10.1038/s41467-024-52122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Interrupting transmission events is critical to tuberculosis control. Cough-generated aerosol cultures predict tuberculosis transmission better than microbiological or clinical markers. We hypothesize that highly infectious individuals with pulmonary tuberculosis (positive for cough aerosol cultures) have elevated inflammatory markers and unique transcriptional profiles compared to less infectious individuals. We performed a prospective, longitudinal study using cough aerosol sampling system. We enrolled 142 participants with treatment-naïve pulmonary tuberculosis in Kenya and assessed the association of clinical, microbiologic, and immunologic characteristics with Mycobacterium tuberculosis aerosolization and transmission in 129 household members. Contacts of the forty-three aerosol culture-positive participants (30%) are more likely to have a positive interferon-gamma release assay (85% vs 53%, P = 0.006) and higher median IFNγ level (P < 0.001, 4.28 IU/ml (1.77-5.91) vs. 0.71 (0.01-3.56)) compared to aerosol culture-negative individuals. We find that higher bacillary burden, younger age, larger mean upper arm circumference, and host inflammatory profiles, including elevated serum C-reactive protein and lower plasma TNF levels, associate with positive cough aerosol cultures. Notably, we find pre-treatment whole blood transcriptional profiles associate with aerosol culture status, independent of bacillary load. These findings suggest that tuberculosis infectiousness is associated with epidemiologic characteristics and inflammatory signatures and that these features may identify highly infectious persons.
Collapse
Affiliation(s)
- Videlis Nduba
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lilian N Njagi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Wilfred Murithi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zipporah Mwongera
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jodi Byers
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Gisella Logioia
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Glenna Peterson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - R Max Segnitz
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin Fennelly
- Division of Intramural Research, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David J Horne
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
3
|
Horne D, Nduba V, Njagi L, Murithi W, Mwongera Z, Logioia G, Peterson G, Segnitz RM, Fennelly K, Hawn T. Tuberculosis Infectiousness is Associated with Distinct Clinical and Inflammatory Profiles. RESEARCH SQUARE 2024:rs.3.rs-3722244. [PMID: 38328225 PMCID: PMC10849670 DOI: 10.21203/rs.3.rs-3722244/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Interrupting transmission events to prevent new acquisition of infection and disease is a critical part of tuberculosis (TB) control efforts. However, knowledge gaps in understanding the biology and determinants of TB transmission, including poor estimates of individual infectiousness and the lack of accurate and convenient biomarkers, undermine efforts to develop interventions. Cough-generated aerosol cultures have been found to predict TB transmission better than any microbiological or clinical markers in cohorts from Uganda and Brazil. We hypothesized that highly infectious individuals with pulmonary TB (defined as positive for cough aerosol cultures) have elevated inflammatory markers and unique transcriptional profiles compared to less infectious individuals (negative for cough aerosol cultures). We performed a prospective, longitudinal study using a cough aerosol sampling system as in other studies. We enrolled 142 participants with treatment-naïve pulmonary TB in Nairobi, Kenya, and assessed the association of clinical, microbiologic, and immunologic characteristics with Mtb aerosolization and transmission in 143 household members. Contacts of the forty-three aerosol culture-positive participants (30%) were more likely to have a positive IGRA (85% vs 53%, P = 0.005) and a higher median IGRA IFNγ level (P < 0.001, median 4.25 IU/ml (0.90-5.91) vs. 0.71 (0.01-3.56)) compared to aerosol culture-negative individuals. We found that higher bacillary burden, younger age, and larger mean upper arm circumference were associated with positive aerosol cultures. In addition, novel host inflammatory profiles, including elevated serum C-reactive protein and sputum cytokines, were associated with aerosol culture status. Notably, we found pre-treatment whole blood transcriptional profiles associated with aerosol culture status, independent of bacillary load. Together, these findings suggest that TB infectiousness is associated with epidemiologic characteristics and inflammatory signatures and that these features may be used to identify highly infectious persons. These results provide new public health tools and insights into TB pathogenesis.
Collapse
Affiliation(s)
| | - Videlis Nduba
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute
| | - Lilian Njagi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute
| | - Wilfred Murithi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute
| | - Zipporah Mwongera
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute
| | | | | | | | - Kevin Fennelly
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH)
| | | |
Collapse
|
4
|
Suresh S, Begum RF, Singh SA, Vellapandian C. An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives. Curr Pharm Biotechnol 2024; 25:1778-1790. [PMID: 38310450 DOI: 10.2174/0113892010246389231012041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 02/05/2024]
Abstract
Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - S Ankul Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
5
|
MicroRNAs as Biomarkers of Active Pulmonary TB Course. Microorganisms 2023; 11:microorganisms11030626. [PMID: 36985200 PMCID: PMC10053298 DOI: 10.3390/microorganisms11030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The spread of drug-resistant forms of TB dictates the need for surgical treatment in the complex of anti-tuberculosis measures in Russia. Most often, surgical intervention is performed in the case of pulmonary tuberculoma or fibrotic cavitary tuberculosis (FCT). This study is devoted to the search for biomarkers that characterize the course of disease in surgical TB patients. It is assumed that such biomarkers will help the surgeon decide on the timing of the planned operation. A number of serum microRNAs, potential regulators of inflammation and fibrosis in TB, selected on the basis of PCR-Array analysis, were considered as biomarkers. Quantitative real time polymerase chain reaction and receiver operating curves (ROC) were used to verify Array data and to estimate the ability of microRNAs (miRNAs) to discriminate between healthy controls, tuberculoma patients, and FCT patients. The study showed that miR-155, miR-191 and miR-223 were differentially expressed in serum of tuberculoma with “decay” and tuberculoma without “decay” patients. Another combination (miR-26a, miR-191, miR-222 and miR-320) forms a set to differentiate between tuberculoma with “decay” and FCT. Patients with tuberculoma without “decay” diagnosis differ from those with FCT in serum expression of miR-26a, miR-155, miR-191, miR-222 and miR-223. Further investigations are required to evaluate these sets on a larger population so as to set cut-off values that could be applied in laboratory diagnosis.
Collapse
|
6
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Systemic Levels of Pro-Inflammatory Cytokines and Post-Treatment Modulation in Tuberculous Lymphadenitis. Trop Med Infect Dis 2023; 8:tropicalmed8030150. [PMID: 36977151 PMCID: PMC10053505 DOI: 10.3390/tropicalmed8030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Pro-inflammatory cytokines are potent stimulators of inflammation and immunity and markers of infection severity and bacteriological burden in pulmonary tuberculosis (PTB). Interferons could have both host-protective and detrimental effects on tuberculosis disease. However, their role has not been studied in tuberculous lymphadenitis (TBL). Thus, we evaluated the systemic pro-inflammatory (interleukin (IL)-12, IL-23, interferon (IFN)α, and IFNβ) cytokine levels in TBL, latent tuberculosis (LTBI), and healthy control (HC) individuals. In addition, we also measured the baseline (BL) and post-treatment (PT) systemic levels in TBL individuals. We demonstrate that TBL individuals are characterized by increased pro-inflammatory (IL-12, IL-23, IFNα, IFNβ) cytokines when compared to LTBI and HC individuals. We also show that after anti-tuberculosis treatment (ATT) completion, the systemic levels of pro-inflammatory cytokines were significantly modulated in TBL individuals. A receiver operating characteristic (ROC) analysis revealed IL-23, IFNα, and IFNβ significantly discriminated TBL disease from LTBI and/or HC individuals. Hence, our study demonstrates the altered systemic levels of pro-inflammatory cytokines and their reversal after ATT, suggesting that they are markers of disease pathogenesis/severity and altered immune regulation in TBL disease.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
- National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Solna, Sweden
- Correspondence:
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai 600 031, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| |
Collapse
|
7
|
Peruhype-Magalhães V, de Araújo FF, de Morais Papini TF, Wendling APB, Campi-Azevedo AC, Coelho-Dos-Reis JG, de Almeida IN, do Valle Antonnelli LR, Amaral LR, de Souza Gomes M, Brito-de-Sousa JP, Elói-Santos SM, Augusto VM, Pretti Dalcolmo MM, Carneiro CM, Teixeira-Carvalho A, Martins-Filho OA. Serum biomarkers in patients with unilateral or bilateral active pulmonary tuberculosis: Immunological networks and promising diagnostic applications. Cytokine 2023; 162:156076. [PMID: 36417816 DOI: 10.1016/j.cyto.2022.156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
The present observational study was designed to characterize the integrative profile of serum soluble mediators to describe the immunological networks associated with clinical findings and identify putative biomarkers for diagnosis and prognosis of active tuberculosis. The study population comprises 163 volunteers, including 84 patients with active pulmonary tuberculosis/(TB), and 79 controls/(C). Soluble mediators were measured by multiplexed assay. Data analysis demonstrated that the levels of CCL3, CCL5, CXCL10, IL-1β, IL-6, IFN-γ, IL-1Ra, IL-4, IL-10, PDGF, VEGF, G-CSF, IL-7 were increased in TB as compared to C. Patients with bilateral pulmonary involvement/(TB-BI) exhibited higher levels of CXCL8, IL-6 and TNF with distinct biomarker signatures (CCL11, CCL2, TNF and IL-10) as compared to patients with unilateral infiltrates/(TB-UNI). Analysis of biomarker networks based in correlation power graph demonstrated small number of strong connections in TB and TB-BI. The search for biomarkers with relevant implications to understand the pathogenetic mechanisms and useful as complementary diagnosis tool of active TB pointed out the excellent performance of single analysis of IL-6 or CXCL10 and the stepwise combination of IL-6 → CXCL10 (Accuracy = 84 %; 80 % and 88 %, respectively). Together, our finding demonstrated that immunological networks of serum soluble biomarkers in TB patients differ according to the unilateral or bilateral pulmonary involvement and may have relevant implications to understand the pathogenetic mechanisms involved in the clinical outcome of Mtb infection.
Collapse
Affiliation(s)
- Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Figueiredo de Morais Papini
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil; Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Paula Barbosa Wendling
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana Grazziela Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Neves de Almeida
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lis Ribeiro do Valle Antonnelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Rodrigues Amaral
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Matheus de Souza Gomes
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Joaquim Pedro Brito-de-Sousa
- Pós-graduação em Imunologia e Parasitologia Aplicadas (PPIPA), Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Silvana Maria Elói-Santos
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil; Departamento de Propedêutica Complementar, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria Maria Augusto
- Departamento de Propedêutica Complementar, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Margareth Maria Pretti Dalcolmo
- Escola Nacional de Saúde Pública, Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Martins Carneiro
- Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Lin Z, Yang X, Guan L, Qin L, Ding J, Zhou L. The link between ferroptosis and airway inflammatory diseases: A novel target for treatment. Front Mol Biosci 2022; 9:985571. [PMID: 36060261 PMCID: PMC9428508 DOI: 10.3389/fmolb.2022.985571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death characterized by intracellular lipid peroxide accumulation and a redox reaction imbalance. Compared with other modes of cell death, ferroptosis has specific biological and morphological features. The iron-dependent lipid peroxidation accumulation is manifested explicitly in the abnormal metabolism of intracellular lipid oxides catalyzed by excessive iron ions with the production of many reactive oxygen species and over-oxidization of polyunsaturated fatty acids. Recent studies have shown that various diseases, which include intestinal diseases and cancer, are associated with ferroptosis, but few studies are related to airway inflammatory diseases. This review provides a comprehensive analysis of the primary damage mechanisms of ferroptosis and summarizes the relationship between ferroptosis and airway inflammatory diseases. In addition to common acute and chronic airway inflammatory diseases, we also focus on the progress of research on COVID-19 in relation to ferroptosis. New therapeutic approaches and current issues to be addressed in the treatment of inflammatory airway diseases using ferroptosis are further proposed.
Collapse
|
9
|
Activating transcription factor 3 protects alveolar epithelial type II cells from Mycobacterium tuberculosis infection-induced inflammation. Tuberculosis (Edinb) 2022; 135:102227. [DOI: 10.1016/j.tube.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
|
10
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
11
|
Kwon KW, Kim LH, Kang SM, Lee JM, Choi E, Park J, Hong JJ, Shin SJ. Host-directed antimycobacterial activity of colchicine, an anti-gout drug, via strengthened host innate resistance reinforced by the IL-1β/PGE 2 axis. Br J Pharmacol 2022; 179:3951-3969. [PMID: 35301712 DOI: 10.1111/bph.15838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effect. EXPERIMENTAL APPROACH We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg-1 every two days). KEY RESULTS Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1β signalling and Cox-2-regulated PGE2 production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites. CONCLUSIONS AND IMPLICATIONS The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Mi Lee
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Park
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Sivakumar S, Hissar S, Kornfeld H, Babu S. Acute Phase Proteins Are Baseline Predictors of Tuberculosis Treatment Failure. Front Immunol 2021; 12:731878. [PMID: 34867953 PMCID: PMC8634481 DOI: 10.3389/fimmu.2021.731878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic inflammation is a characteristic feature of pulmonary tuberculosis (PTB). Whether systemic inflammation is associated with treatment failure in PTB is not known. Participants, who were newly diagnosed, sputum smear and culture positive individuals with drug-sensitive PTB, were treated with standard anti-tuberculosis treatment and classified as having treatment failure or microbiological cure. The plasma levels of acute phase proteins were assessed at baseline (pre-treatment). Baseline levels of C-reactive protein (CRP), alpha-2 macroglobulin (a2M), Haptoglobin and serum amyloid P (SAP) were significantly higher in treatment failure compared to cured individuals. ROC curve analysis demonstrated the utility of these individual markers in discriminating treatment failure from cure. Finally, combined ROC analysis revealed high sensitivity and specificity of 3 marker signatures comprising of CRP, a2M and SAP in distinguishing treatment failure from cured individuals with a sensitivity of 100%, specificity of 100% and area under the curve of 1. Therefore, acute phase proteins are very accurate baseline predictors of PTB treatment failure. If validated in larger cohorts, these markers hold promise for a rapid prognostic testing for adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- National Institute for Research in Tuberculosis, International Center for Excellence in Research, National Institutes of Health, Chennai, India
| | - Arul Nancy
- National Institute for Research in Tuberculosis, International Center for Excellence in Research, National Institutes of Health, Chennai, India
| | - Vijay Viswanathan
- Department of Diabetology, Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | - Kannan Thiruvengadam
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Shanmugam Sivakumar
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Syed Hissar
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Subash Babu
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics 2021; 13:pharmaceutics13050592. [PMID: 33919204 PMCID: PMC8143172 DOI: 10.3390/pharmaceutics13050592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Control of Mycobacterium tuberculosis infection continues to be an issue, particularly in countries with a high tuberculosis (TB) burden in the tropical and sub-tropical regions. The effort to reduce the catastrophic cost of TB with the WHO’s End TB Strategy in 2035 is still obstructed by the emergence of drug-resistant TB (DR-TB) cases as result of various mutations of the MTB strain. In the approach to combat DR-TB, several potential antitubercular agents were discovered as inhibitors for various existing and novel targets. Host-directed therapy and immunotherapy also gained attention as the drug-susceptibility level of the pathogen can be reduced due to the pathogen’s evolutionary dynamics. This review is focused on the current progress and challenges in DR-TB treatment. We briefly summarized antitubercular compounds that are under development and trials for both DR-TB drug candidates and host-directed therapy. We also highlighted several problems in DR-TB diagnosis, the treatment regimen, and drug discovery that have an impact on treatment adherence and treatment failure.
Collapse
|
14
|
Korol CB, Shallom SJ, Arora K, Boshoff HI, Freeman AF, King A, Agrawal S, Daugherty SC, Jancel T, Kabat J, Ganesan S, Torrero MN, Sampaio EP, Barry C, Holland SM, Tettelin H, Rosenzweig SD, Zelazny AM. Tissue specific diversification, virulence and immune response to Mycobacterium bovis BCG in a patient with an IFN-γ R1 deficiency. Virulence 2020; 11:1656-1673. [PMID: 33356838 PMCID: PMC7781554 DOI: 10.1080/21505594.2020.1848108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.
Collapse
Affiliation(s)
- Cecilia B. Korol
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | | | - Kriti Arora
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Helena I. Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alejandra King
- Department of Pediatric Immunology, Hospital Luis Calvo MacKenna, Universidad De, Chile, Chile
| | - Sonia Agrawal
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Timothy Jancel
- Department of Pharmacy, Clinical Center, NIH, Bethesda, USA
| | - Juraj Kabat
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Sundar Ganesan
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Marina N. Torrero
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Clifton Barry
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| |
Collapse
|
15
|
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF- κB Pathway. Mediators Inflamm 2020; 2020:8528901. [PMID: 33100904 PMCID: PMC7569438 DOI: 10.1155/2020/8528901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis , could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1β (IL-1β ), tumor necrosis factor-α (TNF-α ), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κ B) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κ B and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.
Collapse
Affiliation(s)
- Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
16
|
He W, Sun J, Zhang Q, Li Y, Fu Y, Zheng Y, Jiang X. Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-κB axis. J Leukoc Biol 2020; 108:1747-1764. [PMID: 32991757 DOI: 10.1002/jlb.3ma1119-584rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a serious public health problem aggravated by the slow progress in the development of new anti-tuberculosis drugs. The hyper-reactive TB patients have suffered from chronic inflammation which could cause deleterious effects on their bodies. Therefore, it is imperative to develop an adjunctive therapy based on inflammatory modulation during Mycobacterium tuberculosis (Mtb) infection. The present study aims to investigate the immune regulatory effects of Andrographolide (Andro) on Mtb-infected macrophages and its underlying mechanisms. The results showed that Andro inhibits the production of IL-1β and other inflammatory cytokines in a dose-dependent manner. The down-regulation of IL-1β expression causes the declining expression of IL-8 and MCP-1 in lung epithelial cells which were co-cultured with Mtb-infected macrophages. The inhibition of the activation of NF-κB pathway, but not the inhibition of MAPK signaling pathway, accounts for the anti-inflammatory role of Andro. Further studies elucidated that Andro could evoke the activation of autophagy to degrade NLRP3, which ultimately inhibited inflammasome activation and subsequent IL-1β production. Finally, the relevant results demonstrated that Andro inhibited the Notch1 pathway to down-regulate the phosphorylation of Akt/mTOR and NF-κB p65 subunit. Taken together, Andro has been found to suppress the Notch1/Akt/NF-κB signaling pathway. Both Akt inhibition-induced autophagy and inhibition of the NF-κB pathway contributed to restraining the activation of NLRP3 inflammasome and subsequent IL-1β production. Then, the decreased production of IL-1β influenced chemokine expression in lung epithelial cells. Based on these results, anti-inflammatory effect of Andro in TB infection is merit further investigation.
Collapse
Affiliation(s)
- Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Department of Inspection and Quarantine, School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P.R. China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| |
Collapse
|
17
|
Abdalla AE, Yan S, Zeng J, Deng W, Xie L, Xie J. Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens 2020; 9:pathogens9060454. [PMID: 32521796 PMCID: PMC7350357 DOI: 10.3390/pathogens9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis represents an ancient deadly human pathogen that can survive and multiply within macrophages. The effectors are key players for the successful pathogenesis of this bacterium. M. tuberculosis open reading frame (ORF) Rv0341, a pathogenic mycobacteria-specific gene, was found to be upregulated in macrophages isolated from human tuberculosis granuloma and inside the macrophages during in vitro infection by M. tuberculosis. To understand the exact role of this gene, we expressed the Rv0341 gene in M. smegmatis, which is a non-pathogenic Mycobacterium. We found that Rv0341 expression can alter colony morphology, reduce the sliding capability, and decrease the cell wall permeability of M. smegmatis. Furthermore, Rv0341 remarkably enhanced M. smegmatis survival within macrophages and under multiple in vitro stress conditions when compared with the control strain. Ms_Rv0341 significantly induced expression of TNF-α, IL-1β, and IL-10 compared with M. smegmatis harboring an empty vector. In summary, these data suggest that Rv0341 is one of the M. tuberculosis virulence determinants that can promote bacilli survival in harsh conditions and inside macrophages.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Shuangquan Yan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Correspondence: ; Tel.: +86-135-9439-2126
| |
Collapse
|
18
|
Winchell CG, Mishra BB, Phuah JY, Saqib M, Nelson SJ, Maiello P, Causgrove CM, Ameel CL, Stein B, Borish HJ, White AG, Klein EC, Zimmerman MD, Dartois V, Lin PL, Sassetti CM, Flynn JL. Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Front Immunol 2020; 11:891. [PMID: 32477361 PMCID: PMC7235418 DOI: 10.3389/fimmu.2020.00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However, total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.
Collapse
Affiliation(s)
- Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bibhuti B. Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jia Yao Phuah
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chelsea M. Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brianne Stein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of the University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Kathamuthu GR, Sridhar R, Baskaran D, Babu S. Low body mass index has minimal impact on plasma levels of cytokines and chemokines in tuberculous lymphadenitis. J Clin Tuberc Other Mycobact Dis 2020; 20:100163. [PMID: 32420460 PMCID: PMC7218292 DOI: 10.1016/j.jctube.2020.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malnutrition, due to low body mass index (LBMI), is considered to be one of the key risk factors for tuberculosis (TB) development. The link between pro and anti-inflammatory cytokines and BMI has been studied in active pulmonary TB. However, the association of BMI with cytokines and chemokines in TB lymphadenitis (TBL) has not been examined. Hence, we wanted to examine the plasma levels of different cytokines and chemokines in TBL individuals with LBMI, normal BMI (NBMI) and high BMI (HBMI). LBMI with TBL disease is associated with enhanced systemic levels of type 1 (tumor necrosis factor alpha [TNFα], interleukin-2 [IL-2]) and type 2 (IL-4, IL-13) cytokines in comparison with NBMI and/or HBMI. However, other pro-inflammatory (IFNγ, IL-1β, IL-17A, IL-6, IL-7, IL-12, G-CSF, and GM-CSF) and anti-inflammatory (IL-5 and IL-10) cytokines were not significantly different among the TBL individuals with different BMI status. Likewise, no significant differences were observed in the CC (CCL-1, CCL-2/MCP-1, CCL3/MIP1α, CCL4/MIP-1β, CCL11/eotaxin) and CXC (CXCL-1/GRO-⍺, CXCL2/GRO-β, CXCL9/MIG, CXCL10/IP-10, CXCL11/ITAC 1) chemokine profile among the TBL individuals with different BMI. Hence, our data implies that TBL individuals with LBMI are characterized by minimal effects on plasma cytokines and chemokines in TBL.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
21
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Natarajan M, Kornfeld H, Babu S. Heterogeneity in the cytokine profile of tuberculosis - diabetes co-morbidity. Cytokine 2019; 125:154824. [PMID: 31472402 DOI: 10.1016/j.cyto.2019.154824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023]
Abstract
Tuberculosis - diabetes (TB-DM) co-morbidity is characterized by heterogeneity in clinical and biochemical parameters between newly diagnosed diabetic individuals with TB (TB-NDM) and known diabetic individuals at incident TB (TB-KDM). However, the immunological profile underlying this heterogeneity is not explored. To identify the cytokine profiles in TB-NDM and TB-KDM individuals, we examined the plasma cytokine levels as well as TB-antigen stimulated levels of pro-inflammatory cytokines. TB-KDM individuals exhibit significantly higher levels of IFNγ, IL-2, TNFα, IL-17A, IL-1α, IL-1β and IL-6 in comparison to TB-NDM, TB alone and DM alone individuals. TB-NDM individuals are characterized by significantly lower levels of blood glucose and glycated hemoglobin in comparison to TB-KDM with both groups exhibiting a significant lowering of glycated hemoglobin levels at 6 months of anti-tuberculosis therapy (ATT). TB-NDM individuals are characterized by significantly diminished - unstimulated levels of IFNγ, IL-2, TNFα, IL-17A, IL-1α, IL-1β and IL-12 at pre-treatment, of IFNγ, IL-2 and IL-1α at 2 months of ATT and IL-2 at post-treatment in comparison to TB-KDM. TB-NDM individuals are also characterized by significantly diminished TB-antigen stimulated levels of IFNγ, IL-2, TNFα, IL-17A, IL-17F, IL-1α, IL-1β and/or IL-6 at pre-treatment and at 2 months of ATT and IFNγ, IL-2, IL-1α and IL-1β at post-treatment. In addition, TB-NDM individuals are characterized by significantly diminished mitogen - stimulated levels of IL-17F and IL-6 at pre-treatment and IL-6 alone at 6 months of ATT. Therefore, our data reveal considerable heterogeneity in the immunological underpinnings of TB-DM co-morbidity. Our data also suggest that TB-NDM exhibits a characteristic profile, which is both biochemically and immunologically distinct from TB-KDM.
Collapse
Affiliation(s)
- Nathella P Kumar
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India
| | - Kadar Moideen
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India
| | - Arul Nancy
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India; Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | | | - Mohan Natarajan
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institutes of Health-NIRT- International Center for Excellence in Research, Chennai, India; University of Massachusetts Medical School, Worcester, MA, USA; LPD, NIAID, NIH, MD, USA.
| |
Collapse
|
22
|
Hwang SA, Byerly CD, Actor JK. Mycobacterial trehalose 6,6'-dimycolate induced vascular occlusion is accompanied by subendothelial inflammation. Tuberculosis (Edinb) 2019; 116S:S118-S122. [PMID: 31072690 DOI: 10.1016/j.tube.2019.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 10/26/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that infects and kills millions yearly. The mycobacterium's cell wall glycolipid trehalose 6,6'-dimycolate (TDM) has been used historically to model MTB induced inflammation and granuloma formation. Alterations to the model can significantly influence the induced pathology. One such method incorporates intraperitoneal pre-exposure, after which the intravenous injection of TDM generates pathological damage effectively mimicking the hypercoagulation, thrombus formation, and tissue remodeling apparent in lungs of infected individuals. The purpose of these experiments is to examine the histological inflammation involved in the TDM mouse model that induces development of the hemorrhagic response. TDM induced lungs of C57BL/6 mice to undergo granulomatous inflammation. Further histological examination of the peak response demonstrated tissue remodeling consistent with hypercoagulation. The observed vascular occlusion indicates that obstruction likely occurs due to subendothelial localized activity leading to restriction of blood vessel lumens. Trichrome staining revealed that associated damage in the hypercoagulation model is consistent with intra endothelial cell accumulation of innate cells, bordered by collagen deposition in the underlying parenchyma. Overall, the hypercoagulation model represents a comparative pathological instrument for understanding mechanisms underlying development of hemorrhage and vascular occlusion seen during MTB infection.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Caitlan D Byerly
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
23
|
Chapagain A, Yaqoob MM. Tuberculosis in the 21st century: A narrative review. Nephrol Ther 2019; 15 Suppl 1:S33-S35. [PMID: 30981393 DOI: 10.1016/j.nephro.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Sadly, despite the discovery of the tuberculosis bacillus over a century ago by Robert Koch, tuberculosis remains a major killer and modern day plague. Progress in the eradication of tuberculosis has been very slow and will require determined efforts on multiple fronts to make substantial inroads to lower the currently stagnant incidence of around 2% globally.
Collapse
Affiliation(s)
- Ananda Chapagain
- Barts Health NHS Trust, Royal London Hospital, Whitechapel, E1 1BB London, UK
| | | |
Collapse
|
24
|
Wolf B, Krasselt M, de Fallois J, von Braun A, Stepan H. Tuberculosis in Pregnancy - a Summary. Geburtshilfe Frauenheilkd 2019; 79:358-365. [PMID: 31000880 PMCID: PMC6461468 DOI: 10.1055/a-0774-7924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/21/2023] Open
Abstract
In recent years, the incidence of tuberculosis in pregnancy in the industrialised countries has increased. Tuberculosis in pregnancy is associated with an increased risk for the mother and child. Even if no figures are available for Germany, an increase in the number of tuberculosis cases among pregnant women can be assumed due to the migratory flows; current data from the USA, for example, also show an increasing incidence of tuberculosis in pregnant women in recent years. The physiological and immunological changes that occur during pregnancy are likely to have a negative impact on the course of the disease and may make it more difficult to confirm the diagnosis. There are no internationally standardised recommendations for diagnosing latent tuberculosis infections. When screening for TB is performed in specific risk populations, an Interferon-γ Release Assay (IGRA) should preferably be carried out according to the current study data. If corresponding symptoms are present and an IGRA test is positive, further diagnostics are indicated, also in pregnancy. If tuberculosis is confirmed, the fact that a woman is pregnant must not delay the initiation of anti-tuberculosis therapy, as an early start of therapy is associated with a more favourable outcome for both mother and child. The common first-line therapeutic drugs may also be used during pregnancy and are considered safe. The treatment of latent tuberculosis during pregnancy is disputed.
Collapse
Affiliation(s)
- Benjamin Wolf
- Abteilung für Geburtsmedizin, Universitätsfrauenklinik Leipzig, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Marco Krasselt
- Sektion Rheumatologie, Klinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Jonathan de Fallois
- Interdisziplinäre Internistische Intensiveinheit, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Amrei von Braun
- Fachbereich Infektions- und Tropenmedizin, Klinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Holger Stepan
- Abteilung für Geburtsmedizin, Universitätsfrauenklinik Leipzig, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| |
Collapse
|
25
|
Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Sci Rep 2019; 9:4293. [PMID: 30862785 PMCID: PMC6414686 DOI: 10.1038/s41598-019-40223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
In assessing the potential of predatory bacteria, such as Bdellovibrio bacteriovorus, to become live therapeutic agents against bacterial infections, it is crucial to understand and quantify Bdellovibrio host cell interactions at a molecular level. Here, we quantify the interactions of live B. bacteriovorus with human phagocytic cells, determining the uptake mechanisms, persistence, associated cytokine responses and intracellular trafficking of the non-growing B. bacteriovorus in PMA-differentiated U937 cells. B. bacteriovorus are engulfed by U937 cells and persist for 24 h without affecting host cell viability and can be observed microscopically and recovered and cultured post-uptake. The uptake of predators is passive and depends on the dynamics of the host cell cytoskeleton; the engulfed predators are eventually trafficked through the phagolysosomal pathway of degradation. We have also studied the prevalence of B. bacteriovorus specific antibodies in the general human population. Together, these results quantify a period of viable persistence and the ultimate fate of B. bacteriovorus inside phagocytic cells. They provide new knowledge on predator availability inside hosts, plus potential longevity and therefore potential efficacy as a treatment in humans and open up future fields of work testing if predators can prey on host-engulfed pathogenic bacteria.
Collapse
|
26
|
Ong CWM, Fox K, Ettorre A, Elkington PT, Friedland JS. Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis. Sci Rep 2018; 8:11475. [PMID: 30065292 PMCID: PMC6068197 DOI: 10.1038/s41598-018-29659-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
The importance of neutrophils in the pathology of tuberculosis (TB) has been recently established. We demonstrated that TB lesions in man are hypoxic, but how neutrophils in hypoxia influence lung tissue damage is unknown. We investigated the effect of hypoxia on neutrophil-derived enzymes and tissue destruction in TB. Human neutrophils were stimulated with M. tuberculosis (M.tb) or conditioned media from M.tb-infected monocytes (CoMTB). Neutrophil matrix metalloproteinase-8/-9 and elastase secretion were analysed by luminex array and gelatin zymography, gene expression by qPCR and cell viability by flow cytometry. Matrix destruction was investigated by confocal microscopy and functional assays and neutrophil extracellular traps (NETs) by fluorescence assay. In hypoxia, neutrophil MMP-8 secretion and gene expression were up-regulated by CoMTB. MMP-9 activity and neutrophil elastase (NE) secretion were also increased in hypoxia. Hypoxia inhibited NET formation and both neutrophil apoptosis and necrosis after direct stimulation by M.tb. Hypoxia increased TB-dependent neutrophil-mediated matrix destruction of Type I collagen, gelatin and elastin, the main structural proteins of the human lung. Dimethyloxalylglycin (DMOG), which stabilizes hypoxia-inducible factor-1α, increased neutrophil MMP-8 and -9 secretion. Hypoxia in our cellular model of TB up-regulated pathways that increase neutrophil secretion of MMPs that are implicated in matrix destruction.
Collapse
Affiliation(s)
- Catherine W M Ong
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Katharine Fox
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
| | - Anna Ettorre
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
| | - Paul T Elkington
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
- NIHR Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jon S Friedland
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK.
| |
Collapse
|
27
|
Ordonez AA, Pokkali S, Kim S, Carr B, Klunk MH, Tong L, Saini V, Chang YS, McKevitt M, Smith V, Gossage DL, Jain SK. Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. PLoS One 2018; 13:e0197474. [PMID: 29758082 PMCID: PMC5951562 DOI: 10.1371/journal.pone.0197474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 01/30/2023] Open
Abstract
Matrix metalloproteinase (MMP)-9 is a zinc-dependent protease associated with early immune responses to Mycobacterium tuberculosis infection, macrophage recruitment and granuloma formation. We evaluated whether adjunctive inhibition of MMP-9 could improve the response to standard TB treatment in a mouse model that develops necrotic lesions. Six weeks after an aerosol infection with M. tuberculosis, C3HeB/FeJ mice received standard TB treatment (12 weeks) comprising rifampin, isoniazid and pyrazinamide alone or in combination with either anti-MMP-9 antibody, etanercept (positive control) or isotype antibody (negative control) for 6 weeks. Anti-MMP-9 and the isotype control had comparable high serum exposures and expected terminal half-life. The relapse rate in mice receiving standard TB treatment was 46.6%. Compared to the standard TB treatment, relapse rates in animals that received adjunctive treatments with anti-MMP-9 antibody or etanercept were significantly decreased to 25.9% (P = 0.006) and 29.8% (P = 0.019) respectively, but were not different from the arm that received the isotype control antibody (25.9%). Immunostaining demonstrated localization of MMP-9 primarily in macrophages in both murine and human lung tissues infected with M. tuberculosis, suggesting the importance of MMP-9 in TB pathogenesis. These data suggest that the relapse rates in M. tuberculosis-infected mice may be non-specifically improved by administration of antibodies in conjunction with standard TB treatments. Future studies are needed to evaluate the mechanism(s) leading to improved outcomes with adjunctive antibody treatments.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Supriya Pokkali
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sunhwa Kim
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian Carr
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Mariah H. Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leah Tong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Vikram Saini
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yong S. Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew McKevitt
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Victoria Smith
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - David L. Gossage
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Moyo D, Beattie L, Andrews PS, Moore JWJ, Timmis J, Sawtell A, Hoehme S, Sampson AT, Kaye PM. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling. Front Immunol 2018; 9:637. [PMID: 29636754 PMCID: PMC5880939 DOI: 10.3389/fimmu.2018.00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.
Collapse
Affiliation(s)
- Daniel Moyo
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom.,Department of Computer Science, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Paul S Andrews
- Department of Electronics, University of York, York, United Kingdom.,SimOmics Ltd., York, United Kingdom
| | - John W J Moore
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Jon Timmis
- Department of Electronics, University of York, York, United Kingdom.,SimOmics Ltd., York, United Kingdom
| | - Amy Sawtell
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Stefan Hoehme
- Institute for Computer Science, University of Leipzig, Leipzig, Germany
| | - Adam T Sampson
- Division of Computing and Mathematics, Abertay University, Dundee, United Kingdom
| | - Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
29
|
Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT, Nalpas NC, Browne JA, Smyth A, Gormley E, Aebersold R, MacHugh DE, Gordon SV. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli. Microb Genom 2018; 4:e000163. [PMID: 29557774 PMCID: PMC5885015 DOI: 10.1099/mgen.0.000163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023] Open
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.
Collapse
Affiliation(s)
- Kerri M. Malone
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kévin Rue-Albrecht
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - David A. Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin Conlon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Olga T. Schubert
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
- Present address: Department of Human Genetics, University of California, Los Angeles, USA
| | - Nicolas C. Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Quantitative Proteomics and Proteome Centre Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alicia Smyth
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
30
|
Liu QY, Han F, Pan LP, Jia HY, Li Q, Zhang ZD. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit. Exp Ther Med 2018; 15:2719-2726. [PMID: 29456674 PMCID: PMC5795479 DOI: 10.3892/etm.2018.5775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 08/18/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU.
Collapse
Affiliation(s)
- Qiu-Yue Liu
- Department of Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Fen Han
- Intensive Care Unit, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Ping Pan
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Hong-Yan Jia
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Qi Li
- Department of Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Zong-De Zhang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
31
|
Parlato S, Chiacchio T, Salerno D, Petrone L, Castiello L, Romagnoli G, Canini I, Goletti D, Gabriele L. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis. PLoS One 2018; 13:e0189477. [PMID: 29320502 PMCID: PMC5761858 DOI: 10.1371/journal.pone.0189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Chiacchio
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | - Debora Salerno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | | | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
- * E-mail: (LG); (DG)
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LG); (DG)
| |
Collapse
|
32
|
Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front Immunol 2018; 8:1895. [PMID: 29354120 PMCID: PMC5758551 DOI: 10.3389/fimmu.2017.01895] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, macrophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. The inflammatory environment in solid tumors as well as infectious foci with persistent pathogens promotes the development and recruitment of MRC. These cells help to resolve inflammation and establish host immune homeostasis by restricting T lymphocyte function, inducing regulatory T cells and releasing immune suppressive cytokines and enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and persistence, while exerting localized suppressive activity. Here, we summarize molecular pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved inflammation and immunopathology. We focus on the roles of M-MDSC in infections, including opportunistic extracellular bacteria and fungi as well as persistent intracellular pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC biology in chronic infections and their role in antimicrobial immunity, will advance development of novel, more effective and broad-range anti-infective therapies.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
33
|
Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol 2017; 37:3-19. [PMID: 29193992 DOI: 10.1080/08830185.2017.1397656] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immune system provides the first line of defense against pathogenic organisms. It has a varied and large collection of molecules known as pattern recognition receptors (PRRs) which can tackle the pathogens promptly and effectively. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are members of the PRR family that recognize pathogen associated molecular patterns (PAMPs) and play pivotal roles to mediate defense against infections from bacteria, fungi, virus and various other pathogens. In this review, we discuss the critical roles of TLRs and NLRs in the regulation of host immune-effector functions such as cytokine production, phagosome-lysosome fusion, inflammasome activation, autophagy, antigen presentation, and B and T cell immune responses that are known to be essential for mounting a protective immune response against the pathogens. This review may be helpful to design TLRs/NLRs based immunotherapeutics to control various infections and pathophysiological disorders.
Collapse
Affiliation(s)
- Komal Dolasia
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Manoj K Bisht
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Gourango Pradhan
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Atul Udgata
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| |
Collapse
|
34
|
Zhang Q, Sun J, Wang Y, He W, Wang L, Zheng Y, Wu J, Zhang Y, Jiang X. Antimycobacterial and Anti-inflammatory Mechanisms of Baicalin via Induced Autophagy in Macrophages Infected with Mycobacterium tuberculosis. Front Microbiol 2017; 8:2142. [PMID: 29163427 PMCID: PMC5673628 DOI: 10.3389/fmicb.2017.02142] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a leading killer worldwide among infectious diseases and the effective control of TB is still challenging. Autophagy is an intracellular self-digestion process which has been increasingly recognized as a major host immune defense mechanism against intracellular microorganisms like Mycobacterium tuberculosis (Mtb) and serves as a key negative regulator of inflammation. Clinically, chronic inflammation surrounding Mtb can persist for decades leading to lung injury that can remain even after successful treatment. Adjunct host-directed therapy (HDT) based on both antimycobacterial and anti-inflammatory interventions could be exploited to improve treatment efficacy and outcome. Autophagy occurring in the host macrophages represents a logical host target. Here, we show that herbal medicine, baicalin, could induce autophagy in macrophage cell line Raw264.7 and caused increased killing of intracellular Mtb. Further, baicalin inhibited Mtb-induced NLRP3 inflammasome activation and subsequent inflammasome-derived IL-1β. To investigate the molecular mechanisms of baicalin, the signaling pathways associated with autophagy were examined. Results indicated that baicalin decreased the levels of phosphorylated protein kinase B (p-Akt) and phosphorylated mammalian target of rapamycin (p-mTOR) at Ser473 and Ser2448, respectively, but did not alter the phosphorylation of p38, JNK, or ERK both in Raw264.7 and primary peritoneal macrophages. Moreover, baicalin exerted an obvious inhibitory effect on nuclear factor-kappa B (NF-κB) activity. Finally, immunofluorescence studies demonstrated that baicalin promoted the co-localization of inflammasome with autophagosome may serve as the underlying mechanism of autophagic degradative effect on reducing inflammasome activation. Together, baicalin definitely induces the activation of autophagy on the Mtb-infected macrophages through PI3K/Akt/mTOR pathway instead of MAPK pathway. Furthermore, baicalin inhibited the PI3K/Akt/NF-κB signal pathway, and both autophagy induction and NF-κB inhibition contribute to limiting the NLRP3 inflammasome as well as subsequent production of pro-inflammatory cytokine IL-1β. Based on these results, we conclude that baicalin is a promising antimycobacterial and anti-inflammatory agent which can be a novel candidate for the development of new adjunct drugs targeting HDT for possible improved treatment.
Collapse
Affiliation(s)
- Qingwen Zhang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxia Sun
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuli Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weigang He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Xin Jiang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Zhou Y, Du J, Hou HY, Lu YF, Yu J, Mao LY, Wang F, Sun ZY. Application of ImmunoScore Model for the Differentiation between Active Tuberculosis and Latent Tuberculosis Infection as Well as Monitoring Anti-tuberculosis Therapy. Front Cell Infect Microbiol 2017; 7:457. [PMID: 29164066 PMCID: PMC5670161 DOI: 10.3389/fcimb.2017.00457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) is a leading global public health problem. To achieve the end TB strategy, non-invasive markers for diagnosis and treatment monitoring of TB disease are urgently needed, especially in high-endemic countries such as China. Interferon-gamma release assays (IGRAs) and tuberculin skin test (TST), frequently used immunological methods for TB detection, are intrinsically unable to discriminate active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Thus, the specificity of these methods in the diagnosis of ATB is dependent upon the local prevalence of LTBI. The pathogen-detecting methods such as acid-fast staining and culture, all have limitations in clinical application. ImmunoScore (IS) is a new promising prognostic tool which was commonly used in tumor. However, the importance of host immunity has also been demonstrated in TB pathogenesis, which implies the possibility of using IS model for ATB diagnosis and therapy monitoring. In the present study, we focused on the performance of IS model in the differentiation between ATB and LTBI and in treatment monitoring of TB disease. We have totally screened five immunological markers (four non-specific markers and one TB-specific marker) and successfully established IS model by using Lasso logistic regression analysis. As expected, the IS model can effectively distinguish ATB from LTBI (with a sensitivity of 95.7% and a specificity of 92.1%) and also has potential value in the treatment monitoring of TB disease.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Hong-Yan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Fang Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Yan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Yong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 2017; 17:35-56. [PMID: 28935918 PMCID: PMC7097079 DOI: 10.1038/nrd.2017.162] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host-directed therapy (HDT) is a novel approach in the field of anti-infectives for overcoming antimicrobial resistance. HDT aims to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. HDTs encompassing the 'shock and kill' strategy or the delivery of recombinant interferons are possible approaches to treat HIV infections. HDTs that suppress the cytokine storm that is induced by some acute viral infections represent a promising concept. In tuberculosis, HDT aims to enhance the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. HDTs also curtail inflammation through interference with soluble (such as eicosanoids or cytokines) or cellular (co-stimulatory molecules) factors and modulate granulomas to allow the access of antimicrobials or to restrict tissue damage. Numerous parallels between the immunological abnormalities that occur in sepsis and cancer indicate that the HDTs that are effective in oncology may also hold promise in sepsis. Advances in immune phenotyping, genetic screening and biosignatures will help to guide drug therapy to optimize the host response. Combinations of canonical pathogen-directed drugs and novel HDTs will become indispensable in treating emerging infections and diseases caused by drug-resistant pathogens.
Host-directed therapy (HDT) aims to interfere with host cell factors that are required by a pathogen for replication or persistence. In this Review, Kaufmannet al. describe recent progress in the development of HDTs for the treatment of viral and bacterial infections and the challenges in bringing these approaches to the clinic. Despite the recent increase in the development of antivirals and antibiotics, antimicrobial resistance and the lack of broad-spectrum virus-targeting drugs are still important issues and additional alternative approaches to treat infectious diseases are urgently needed. Host-directed therapy (HDT) is an emerging approach in the field of anti-infectives. The strategy behind HDT is to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. Although HDTs encompassing interferons are well established for the treatment of chronic viral hepatitis, novel strategies aimed at the functional cure of persistent viral infections and the development of broad-spectrum antivirals against emerging viruses seem to be crucial. In chronic bacterial infections, such as tuberculosis, HDT strategies aim to enhance the antimicrobial activities of phagocytes and to curtail inflammation through interference with soluble factors (such as eicosanoids and cytokines) or cellular factors (such as co-stimulatory molecules). This Review describes current progress in the development of HDTs for viral and bacterial infections, including sepsis, and the challenges in bringing these new approaches to the clinic.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Richard S Hotchkiss
- Departments of Anesthesiology, Medicine, and Surgery, Washington University School of Medicine, St Louis, 660 S. Euclid, St Louis, Missouri 63110, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Abstract
Immunology is a central theme when it comes to tuberculosis (TB). The outcome of human infection with Mycobacterium tuberculosis is dependent on the ability of the immune response to clear or contain the infection. In cases where this fails, the bacterium replicates, disseminates within the host, and elicits a pathologic inflammatory response, and disease ensues. Clinical presentation of TB disease is remarkably heterogeneous, and the disease phenotype is largely dependent on host immune status. Onward transmission of M. tuberculosis to new susceptible hosts is thought to depend on an excessive inflammatory response causing a breakdown of the lung matrix and formation of lung cavities. But this varies in cases of underlying immunological dysfunction: for example, HIV-1 infection is associated with less cavitation, while diabetes mellitus comorbidity is associated with increased cavitation and risk of transmission. In compliance with the central theme of immunology in tuberculosis, we rely on detection of an adaptive immune response, in the form of interferon-gamma release assays or tuberculin skin tests, to diagnose infection with M. tuberculosis. Here we review the immunology of TB in the human host, focusing on cellular and humoral adaptive immunity as well as key features of innate immune responses and the underlying immunological dysfunction which associates with human TB risk factors. Our review is restricted to human immunology, and we highlight distinctions from the immunological dogma originating from animal models of TB, which pervade the field.
Collapse
|
38
|
Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J. Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 2017; 19:515-526. [PMID: 28689009 DOI: 10.1016/j.micinf.2017.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/31/2017] [Accepted: 06/27/2017] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.
Collapse
Affiliation(s)
| | - Hannelie Korf
- Scientific Institute of Public Health (WIV-ISP (Site Ukkel)), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Ashima Singla
- National Center for Biological Sciences, GKVK, Bellary Road, Bengaluru, India
| | - Nicole Scherr
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, LC 4860, Cleveland, OH, USA
| | - Giorgio Ferrari
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | - Regine Landmann
- Department of Biomedicine, University Hospital, Hebelstrasse 20, 4056, Basel, Switzerland
| | - Kris Huygen
- Scientific Institute of Public Health (WIV-ISP (Site Ukkel)), Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| |
Collapse
|
39
|
The introduction of mesenchymal stromal cells induces different immunological responses in the lungs of healthy and M. tuberculosis infected mice. PLoS One 2017; 12:e0178983. [PMID: 28594940 PMCID: PMC5464766 DOI: 10.1371/journal.pone.0178983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have strong immunomodulatory properties and therefore can be used to control inflammation and tissue damage. It was suggested recently that MSC injections can be used to treat multi-drug resistant tuberculosis (TB). However, MSC trafficking and immunomodulatory effects of MSC injections during Mycobacterium tuberculosis (Mtb) infection have not been studied. To address this issue we have analyzed MSC distribution in tissues and local immunological effects of MSC injections in Mtb infected and uninfected mice. After intravenous injection, MSC accumulated preferentially in the lungs where they were located as cell aggregates in the alveolar walls. Immunological analysis of MSC effects included detection of activated, IFN-γ and IL-4 producing CD4+ lymphocytes, the frequency analysis of dendritic cells (CD11c+F4/80) and macrophages (CD11c-F4/80+) located in the lungs, the expression of IA/IE and CD11b molecules by these cells, and evaluation of 23 cytokines/chemokines in lung lysates. In the lungs of uninfected mice, MSC transfer markedly increased the percentage of IFN-γ+ CD4+ lymphocytes and dendritic cells, elevated levels of IA/IE expression by dendritic cells and macrophages, augmented local production of type 2 cytokines (IL-4, IL-5, IL-10) and chemokines (CCL2, CCL3, CCL4, CCL5, CXCL1), and downregulated type 1 and hematopoietic cytokines (IL-12p70, IFN-γ, IL-3, IL-6, GM-CSF). Compared to uninfected mice, Mtb infected mice had statistically higher “background” frequency of activated CD69+ and IFN-γ+ CD4+ lymphocytes and dendritic cells, and higher levels of cytokines in the lungs. The injections of MSC to Mtb infected mice did not show statistically significant effects on CD4+ lymphocytes, dendritic cells and macrophages, only slightly shifted cytokine profile, and did not change pathogen load or slow down TB progression. Lung section analysis showed that in Mtb infected mice, MSC could not be found in the proximity of the inflammatory foci. Thus, in healthy recipients, MSC administration dramatically changed T-cell function and cytokine/chemokine milieu in the lungs, most likely, due to capillary blockade. But, during Mtb infection, i.e., in the highly-inflammatory conditions, MSC did not affect T-cell function and the level of inflammation. The findings emphasize the importance of the evaluation of MSC effects locally at the site of their predominant post-injection localization and question MSC usefulness as anti-TB treatment.
Collapse
|
40
|
Johnson RM, Bai G, DeMott CM, Banavali NK, Montague CR, Moon C, Shekhtman A, VanderVen B, McDonough KA. Chemical activation of adenylyl cyclase Rv1625c inhibits growth of Mycobacterium tuberculosis on cholesterol and modulates intramacrophage signaling. Mol Microbiol 2017; 105:294-308. [PMID: 28464471 DOI: 10.1111/mmi.13701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) uses a complex 3', 5'-cyclic AMP (cAMP) signaling network to sense and respond to changing environments encountered during infection, so perturbation of cAMP signaling might be leveraged to disrupt Mtb pathogenesis. However, understanding of cAMP signaling pathways is hindered by the presence of at least 15 distinct adenylyl cyclases (ACs). Recently, the small molecule V-58 was shown to inhibit Mtb replication within macrophages and stimulate cAMP production in Mtb. Here we determined that V-58 rapidly and directly activates Mtb AC Rv1625c to produce high levels of cAMP regardless of the bacterial environment or growth medium. Metabolic inhibition by V-58 was carbon source dependent in Mtb and did not occur in Mycobacterium smegmatis, suggesting that V-58-mediated growth inhibition is due to interference with specific Mtb metabolic pathways rather than a generalized cAMP toxicity. Chemical stimulation of cAMP production by Mtb within macrophages also caused down regulation of TNF-α production by the macrophages, indicating a complex role for cAMP in Mtb pathogenesis. Together these studies describe a novel approach for targeted stimulation of cAMP production in Mtb, and provide new insights into the myriad roles of cAMP signaling in Mtb, particularly during Mtb's interactions with macrophages.
Collapse
Affiliation(s)
- Richard M Johnson
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | | | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA.,New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Caroline Moon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Brian VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA.,New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
41
|
Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis. J Infect 2017; 75:132-145. [PMID: 28483404 DOI: 10.1016/j.jinf.2017.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVES A biomarker indicating successful tuberculosis (TB) therapy would assist in determining appropriate length of treatment. This study aimed to determine changes in mycobacteria-specific antigen-induced cytokine biomarkers in patients receiving therapy for latent or active TB, to identify biomarkers potentially correlating with treatment success. METHODS A total of 33 adults with active TB and 36 with latent TB were followed longitudinally over therapy. Whole blood stimulation assays using mycobacteria-specific antigens (CFP-10, ESAT-6, PPD) were done on samples obtained at 0, 1, 3, 6 and 9 months. Cytokine responses (IFN-γ, IL-1ra, IL-2, IL-10, IL-13, IP-10, MIP-1β, and TNF-α) in supernatants were measured by Luminex xMAP immunoassay. RESULTS In active TB cases, median IL-1ra (with CFP-10 and with PPD stimulation), IP-10 (CFP-10, ESAT-6), MIP-1β (ESAT-6, PPD), and TNF-α (ESAT-6) responses declined significantly over the course of therapy. In latent TB cases, median IL-1ra (CFP-10, ESAT-6, PPD), IL-2 (CFP-10, ESAT-6), and IP-10 (CFP-10, ESAT-6) responses declined significantly. CONCLUSIONS Mycobacteria-specific cytokine responses change significantly over the course of therapy, and their kinetics in active TB differ from those observed in latent TB. In particular, mycobacteria-specific IL-1ra responses are potential correlates of successful therapy in both active and latent TB.
Collapse
|
42
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
43
|
Rosser A, Stover C, Pareek M, Mukamolova GV. Resuscitation-promoting factors are important determinants of the pathophysiology in Mycobacterium tuberculosis infection. Crit Rev Microbiol 2017; 43:621-630. [PMID: 28338360 DOI: 10.1080/1040841x.2017.1283485] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resuscitation promoting factors (Rpf) are peptidoglycan-hydrolyzing enzymes that are pivotal in the resuscitation of quiescent actinobacteria including Mycobacterium tuberculosis. From the published data, it is clear that Rpf are required for the resuscitation of non-replicating bacilli and pathogenesis in murine infection model of tuberculosis, although their direct influence on human Mycobacterium tuberculosis infection is ill-defined. In this review, we describe the progress in the understanding of the roles that Rpf play in human tuberculosis pathogenesis and importance of bacilli dependent upon Rpf for growth for the outcome of human tuberculosis. We outline how this research is opening up important opportunities for the diagnosis, treatment and prevention of human disease, progress in which is essential to attain the ultimate goal of tuberculosis eradication.
Collapse
Affiliation(s)
- Andrew Rosser
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK.,b Department of Infection and Tropical Medicine , University Hospitals of Leicester NHS Trust , Leicester , UK
| | - Cordula Stover
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK
| | - Manish Pareek
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK.,b Department of Infection and Tropical Medicine , University Hospitals of Leicester NHS Trust , Leicester , UK
| | - Galina V Mukamolova
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK
| |
Collapse
|
44
|
Torraca V, Otto NA, Tavakoli-Tameh A, Meijer AH. The inflammatory chemokine Cxcl18b exerts neutrophil-specific chemotaxis via the promiscuous chemokine receptor Cxcr2 in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:57-65. [PMID: 27815178 DOI: 10.1016/j.dci.2016.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Cxcl18b is a chemokine found in zebrafish and in other piscine and amphibian species. Cxcl18b is a reliable inflammatory marker; however, its function is yet to be elucidated. Here, we found that Cxcl18b is chemotactic towards neutrophils, similarly to Cxcl8a/Interleukin-8, the best characterised neutrophil chemoattractant in humans and teleosts. Like Cxcl8a, Cxcl18b-dependent recruitment required the chemokine receptor Cxcr2, while it was unaffected by depletion of the other two neutrophil receptors cxcr1 and cxcr4b. To visualise cxcl18b induction, we generated a Tg(cxcl18b:eGFP) reporter line. The transgene is induced locally upon bacterial infection with the fish pathogen Mycobacterium marinum, but strikingly is not directly expressed by infected cells. Instead, cxcl18b is induced by non-phagocytic uninfected cells that compose the stroma of the granulomas, typical inflammatory lesions formed upon mycobacterial infections. Together, these results suggest that Cxcl18b might be an important contributor to neutrophil chemotaxis in the inflammatory microenvironment and indicate that the zebrafish model could be explored to further investigate in vivo the biological relevance of different Cxcl8-like chemokine lineages.
Collapse
Affiliation(s)
| | - Natasja A Otto
- Institute of Biology, Leiden University, The Netherlands
| | | | | |
Collapse
|
45
|
Su H, Zhu S, Zhu L, Huang W, Wang H, Zhang Z, Xu Y. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing. Front Cell Infect Microbiol 2016; 6:147. [PMID: 27917375 PMCID: PMC5114242 DOI: 10.3389/fcimb.2016.00147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
TLR2-dependent cellular signaling in Mycobacterium tuberculosis-infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2−/− mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4+ T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.
Collapse
Affiliation(s)
- Haibo Su
- CAS Key Laboratory of Regenerative Biology, Joint of School of Life Science, Guangzhou Medical UniversityGuangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China; State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan UniversityShanghai, China; Department of Clinical Laboratory, Second People's Hospital of Guangdong ProvinceGuangzhou, China
| | - Shenglin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Wei Huang
- CAS Key Laboratory of Regenerative Biology, Joint of School of Life Science, Guangzhou Medical UniversityGuangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Zhi Zhang
- Department of Clinical Laboratory, Second People's Hospital of Guangdong Province Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| |
Collapse
|
46
|
Ndlovu H, Marakalala MJ. Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol 2016; 7:434. [PMID: 27822210 PMCID: PMC5075764 DOI: 10.3389/fimmu.2016.00434] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a leading global health problem that is aggravated by emergence of drug-resistant strains, which account for increasing number of treatment-refractory cases. Thus, eradication of this disease will strongly require better therapeutic strategies. Identification of host factors promoting disease progression may accelerate discovery of adjunct host-directed therapies (HDTs) that will boost current treatment protocols. HDTs focus on potentiating key components of host anti-mycobacterial effector mechanisms, and limiting inflammation and pathological damage in the lung. Granulomas represent a pathological hallmark of TB. They are comprised of impressive arrangement of immune cells that serve to contain the invading pathogen. However, granulomas can also undergo changes, developing caseums and cavities that facilitate bacterial spread and disease progression. Here, we review current concepts on the role of granulomas in pathogenesis and protective immunity against TB, drawing from recent clinical studies in humans and animal models. We also discuss therapeutic potential of inflammatory pathways that drive granuloma progression, with a focus on new and existing drugs that will likely improve TB treatment outcomes.
Collapse
Affiliation(s)
- Hlumani Ndlovu
- Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| | - Mohlopheni J Marakalala
- TB Immunopathogenesis Group, Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
47
|
Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, Sisk DM, Jurcic Smith KL, Medvitz NA, Miller SE, Trinh LA, Fraser SE, Madden JF, Turner J, Stout JE, Lee S, Tobin DM. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity 2016; 45:861-876. [PMID: 27760340 PMCID: PMC5268069 DOI: 10.1016/j.immuni.2016.09.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis infection in humans triggers formation of granulomas, which are tightly organized immune cell aggregates that are the central structure of tuberculosis. Infected and uninfected macrophages interdigitate, assuming an altered, flattened appearance. Although pathologists have described these changes for over a century, the molecular and cellular programs underlying this transition are unclear. Here, using the zebrafish-Mycobacterium marinum model, we found that mycobacterial granuloma formation is accompanied by macrophage induction of canonical epithelial molecules and structures. We identified fundamental macrophage reprogramming events that parallel E-cadherin-dependent mesenchymal-epithelial transitions. Macrophage-specific disruption of E-cadherin function resulted in disordered granuloma formation, enhanced immune cell access, decreased bacterial burden, and increased host survival, suggesting that the granuloma can also serve a bacteria-protective role. Granuloma macrophages in humans with tuberculosis were similarly transformed. Thus, during mycobacterial infection, granuloma macrophages are broadly reprogrammed by epithelial modules, and this reprogramming alters the trajectory of infection and the associated immune response.
Collapse
Affiliation(s)
- Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca W Beerman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allison F Rosenberg
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew G Johnson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Neil A Medvitz
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sara E Miller
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Le A Trinh
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Fraser
- Molecular and Computational Biology and Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - John F Madden
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason E Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Anuradha R, Munisankar S, Bhootra Y, Dolla C, Kumaran P, Babu S. High body mass index is associated with heightened systemic and mycobacterial antigen - Specific pro-inflammatory cytokines in latent tuberculosis. Tuberculosis (Edinb) 2016; 101:56-61. [PMID: 27865399 DOI: 10.1016/j.tube.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
High body mass index (HBMI) has been shown to be protective against active tuberculosis (TB), although the biological mechanism underlying this protection is poorly understood. The immunological association between HBMI and latent TB has never been examined. In order to study the association of HBMI with latent TB, we examined the circulating and TB- antigen or mitogen stimulated levels of a large panel of cytokines in individuals with latent TB (LTB) and high or normal body mass index (HBMI or NBMI). HBMI is characterized by heightened circulating levels of pro-inflammatory (IFNγ, TNFα, IL-22, IL-1α, IL-12 and GM-CSF) cytokines but decreased circulating levels of anti-inflammatory cytokines (IL-4, IL-5 and TGFβ). This systemic cytokine profile is associated with elevated TB-antigen and mitogen stimulated levels of IFNγ, TNFα, IL-2 and IL-1α and diminished levels of IL-10 and TGFβ. In addition, we also observed a positive correlation between the circulating levels of IFNγ, TNFα, IL-22, IL-1α with BMI and a negative correlation between the circulating levels of IL-10, TGFβ and BMI. Our data, therefore, suggest the modulation of protective and regulatory cytokines might underlie the protective effect of HBMI against the development of active TB.
Collapse
Affiliation(s)
- Rajamanickam Anuradha
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | - Yukthi Bhootra
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | | | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-International Center for Excellence in Research, Chennai, India.
| |
Collapse
|
49
|
Associations between systemic inflammation, mycobacterial loads in sputum and radiological improvement after treatment initiation in pulmonary TB patients from Brazil: a prospective cohort study. BMC Infect Dis 2016; 16:368. [PMID: 27494953 PMCID: PMC4974760 DOI: 10.1186/s12879-016-1736-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
Background Mycobacterium tuberculosis infection is known to cause inflammation and lung tissue damage in high-risk populations. Nevertheless, direct associations between mycobacterial loads, systemic inflammation and pulmonary lesions upon treatment initiation have not been fully characterized. In the present exploratory study, we prospectively depict the immune profile, microbial clearance and evolution of radiographic lesions in a pulmonary tuberculosis (PTB) patient cohort before and 60 days after anti-tuberculous treatment (ATT) initiation. Methods Circulating levels of cytokines (IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α) and C-reactive protein (CRP), as well as values of erythrocyte sedimentation rate (ESR) were measured in cryopreserved serum samples obtained from 73 PTB patients at pre-ATT and day 60 of treatment. Changes of the immune profile over time were compared with mycobacterial loads in sputum and culture conversion at day 60 of ATT. Additional analyses tested associations between improvement of chest radiographic lesions at day 60 and pre-treatment status of inflammation and mycobacterial loads. Results Within the inflammatory parameters evaluated, values of CRP, IL-2, IL-4, TNF-α and ESR significantly decreased upon treatment initiation. On the converse, IL-10 levels substantially increased at day 60 of ATT, whereas concentrations of IL-6 and IFN-γ remained unchanged. Multidimensional analyses revealed that ESR, IL-2, IL-4 and CRP were the parameters with the highest power to discriminate individuals before and after treatment initiation. We further demonstrated that higher bacterial loads in sputum at pre-ATT were associated with increased systemic inflammation and higher risk for positive M. tuberculosis sputum cultures at day 60 of treatment. Furthermore, we found that pre-ATT mycobacterial loads in sputum and systemic inflammation synergistically associated with the status of radiographic lesions during treatment (Relative risk for chest X-ray improvement: 10.0, 95 % confidence interval: 2.4–40.0, P = 0.002). Conclusions M. tuberculosis loads in sputum are directly associated to the status of systemic inflammation and potentially impact the immune profile, culture conversion and evolution of lung lesions upon ATT initiation. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1736-3) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Coexistent Malnutrition Is Associated with Perturbations in Systemic and Antigen-Specific Cytokine Responses in Latent Tuberculosis Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:339-45. [PMID: 26865593 DOI: 10.1128/cvi.00009-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 11/20/2022]
Abstract
Malnutrition, as defined by low body mass index (BMI), is a major risk factor for the development of active tuberculosis (TB), although the biological basis underlying this susceptibility remains poorly characterized. To verify whether malnutrition affects the systemic and antigen-specific cytokine levels in individuals with latent TB (LTB), we examined circulating and TB antigen-stimulated levels of cytokines in individuals with LTB and low BMI (LBMI) and compared them with those in individuals with LTB and normal BMI (NBMI). Coexistent LBMI with LTB was characterized by diminished circulating levels of type 1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), type 2 (interleukin-4 [IL-4]), type 17 (IL-22), and other proinflammatory (IL-1α, IL-1β, and IL-6) cytokines but elevated levels of other type 2 (IL-5 and IL-13) and regulatory (IL-10 and transforming growth factor beta [TGF-β]) cytokines. In addition, LBMI with LTB was associated with diminished TB antigen-induced IFN-γ, TNF-α, IL-6, IL-1α, and IL-1β levels. Finally, there was a significant positive correlation between BMI values and TNF-α and IL-1β levels and a significant negative correlation between BMI values and IL-2, IL-10, and TGF-β levels in individuals with LTB. Therefore, our data reveal that latent TB with a coexistent low BMI is characterized by diminished protective cytokine responses and heightened regulatory cytokine responses, providing a potential biological mechanism for the increased risk of developing active TB.
Collapse
|