1
|
Arosio B, Picca A. The biological roots of the sex-frailty paradox. Exp Gerontol 2024; 198:112619. [PMID: 39490699 DOI: 10.1016/j.exger.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a dynamic process that requires a continuous response and adaptation to internal and external stimuli over the life course. This eventually results in people aging differently and women aging differently than men. The "gender paradox" describes how women experience greater longevity than men, although linked with higher rates of disability and poor health status. Recently, the concept of frailty has been incorporated into this paradox giving rise to the "sex-frailty paradox" which describes how women are frailer because they manifest worse health status but, at the same time, appear less susceptible to death than men of the same age. However, very little is known about the biological roots of this sex-related difference in frailty. Inflamm-aging, the chronic low-grade inflammatory state associated with age, plays a key pathophysiological role in several age-related diseases/conditions, including Alzheimer's disease (AD), for which women have a higher lifetime risk than men. Interestingly, inflamm-aging develops at a different rate in women compared to men, with features that could play a critical role in the development of AD in women. According to this view, a continuum between aging and age-related diseases that probably lacks clear boundaries can be envisioned in which several shared biological mechanisms that progress at different pace may lead to different aging trajectories in women than in men. It, therefore, becomes urgent to consider a holistic approach in the study of aging, and decline it from a gender medicine perspective also considering the biological roots of the sex-frailty paradox.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
2
|
Ginefra P, Hope HC, Lorusso G, D'Amelio P, Vannini N. The immunometabolic roots of aging. Curr Opin Immunol 2024; 91:102498. [PMID: 39461330 DOI: 10.1016/j.coi.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Aging is one of the greatest risk factors for several chronic diseases and is accompanied by a progressive decline of cellular and organ function. Recent studies have highlighted the changes in metabolism as one of the main drivers of organism dysfunctions during aging and how that strongly deteriorate immune cell performance and function. Indeed, a dysfunctional immune system has been shown to have a pleiotropic impact on the organism, accelerating the overall aging process of an individual. Intrinsic and extrinsic factors are responsible for such metabolic alterations. Understanding the contribution, regulation, and connection of these different factors is fundamental to comprehend the process of aging and develop approaches to mitigate age-related immune decline. Here, we describe metabolic perturbations occurring at cellular and systemic levels. Particularly, we emphasize the interplay between metabolism and immunosenescence and describe novel interventions to protect immune function and promote health span.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Helen C Hope
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Girieca Lorusso
- Service of Geriatric Medicine, Department of Internal Medicine, CHUV University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Patrizia D'Amelio
- Service of Geriatric Medicine, Department of Internal Medicine, CHUV University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
3
|
Jin Z, Xing Y, Duan P, Bi Y, Li X, Feng W, Zhang B. Revealing the molecular links between coronary heart disease and cognitive impairment: the role of aging-related genes and therapeutic potential of stellate ganglion block. Biogerontology 2024; 26:16. [PMID: 39609308 PMCID: PMC11604741 DOI: 10.1007/s10522-024-10159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Coronary heart disease (CHD) and cognitive impairment frequently co-occur in aging populations, yet the molecular mechanisms linking these conditions remain unclear. This study aims to elucidate the roles of key aging-related genes (ARGs), specifically FKBP5 and DDIT3, in the pathophysiology of CHD and cognitive impairment, and to evaluate the therapeutic potential of stellate ganglion block (SGB). Using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) data, we identified FKBP5 and DDIT3 as pivotal genes upregulated in both conditions. Experimental findings show that SGB effectively modulates these ARG-related pathways through autonomic regulation, specifically suppressing estrogen and NF-κB signaling pathways, thereby reducing the expression of pro-inflammatory cytokines such as SRC, MMP2, FKBP5, IRAK1, and MYD88, while upregulating the vasodilation-related gene NOS3. This modulation improved endothelial and cardiac function and enhanced cerebral blood flow (CBF), leading to cognitive improvement. Behavioral assessments, including novel object recognition (NOR) and Morris water maze (MWM) tests, demonstrated that SGB-treated rats outperformed untreated MI rats, with significant cognitive recovery over time. Further support from laser Doppler flowmetry (LDF) and electroencephalogram (EEG) analyses revealed increased left frontal blood flow and stabilized neural activity, indicating a favorable neurophysiological environment for cognitive rehabilitation. Our findings suggest that left stellate ganglion block (LSGB) provides both cardiac and cognitive benefits through targeted gene modulation, establishing its therapeutic potential for addressing the intersecting pathologies of CHD and cognitive impairment.
Collapse
Affiliation(s)
- Zhehao Jin
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yuling Xing
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Pengyu Duan
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China
| | - Yonghong Bi
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Xiaoyan Li
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Weiyu Feng
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Bing Zhang
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Yin Z, Tian L, Kou W, Cao G, Wang L, Xia Y, Lin Y, Tang S, Zhang J, Yang H. Xiyangshen Sanqi Danshen granules attenuated D-gal-induced C57BL/6J mouse aging through the AMPK/SIRT1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156213. [PMID: 39603038 DOI: 10.1016/j.phymed.2024.156213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Aging is a pressing global concern and is frequently accompanied by the emergence of many chronic diseases. Xiyangshen Sanqi Danshen granules (XSD) have antioxidant, anti-inflammatory and anti-fatigue functions, but the mechanism of their anti-aging effects is not clear. METHODS This study elucidated the anti-aging mechanism and potentially active ingredients of XSD by performing transcriptomic analysis and network pharmacological analysis in a D-galactose (D-gal)-induced C57BL/6J mouse aging model. RESULTS XSD improved learning and memory abilities while enhanced motor function in D-gal-induced aging mice, as shown by Morris water maze, passive avoidance test, and rotating rod test results. Additionally, XSD significantly increased the vascular pulse wave velocity (PWV), β-stiffness index and pressure strain elastic coefficient (EP), decreased carotid distensibility (CD) and decreased the expression levels of P53 and 8-OHdG in the common carotid arteries of D-gal mice. Transcriptome sequencing analysis identified that the AMPK/SIRT1 signaling pathway is the potential mechanism by which XSD attenuates aging. XSD also increased the protein levels of Ki67, AMPK, SIRT1 and the nuclear translocation of Nrf2 while decreased the protein levels of P21, P53, IL-18, 8-OHdG, nitrotyrosine, and COX-2 and the nuclear translocation of NF-κB p65 in the brains of D-gal-induced mice. The administration of the AMPK inhibitor and SIRT1 inhibitor hindered the anti-aging effect of XSD, as indicated by an elevation of 8-OHdG, COX-2, and nuclear translocation of NF-κB p65 ; and a decrease of Ki67 and the nuclear translocation of Nrf2. Network pharmacological analysis revealed that the potential active ingredients of XSD were quercetin, kaempferol, tanshinone IIA, isorhamnetin, ginsenoside F2, and cryptotanshinone. CONCLUSION Collectively, XSD mitigated D-gal-induced aging in C57BL/6J mice through enhancing the AMPK/SIRT1 signaling pathway. This research provides potential drugs for anti-aging and also promotes the usage of the anti-aging effect of XSD.
Collapse
Affiliation(s)
- Zhiru Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangliang Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Wenzhuo Kou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liju Wang
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Yufa Xia
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Yidong Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Shihuan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jingjing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Guo H, Cao J, He S, Wei M, Meng D, Yu I, Wang Z, Chang X, Yang G, Wang Z. Quantifying the Enhancement of Sarcopenic Skeletal Muscle Preservation Through a Hybrid Exercise Program: Randomized Controlled Trial. JMIR Aging 2024; 7:e58175. [PMID: 39621937 PMCID: PMC11587998 DOI: 10.2196/58175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Sarcopenia is characterized by the loss of skeletal muscle mass and muscle function with increasing age. The skeletal muscle mass of older people who endure sarcopenia may be improved via the practice of strength training and tai chi. However, it remains unclear if the hybridization of strength exercise training and traditional Chinese exercise will have a better effect. Objective We designed a strength training and tai chi exercise hybrid program to improve sarcopenia in older people. Moreover, explainable artificial intelligence was used to predict postintervention sarcopenic status and quantify the feature contribution. Methods To assess the influence of sarcopenia in the older people group, 93 participated as experimental participants in a 24-week randomized controlled trial and were randomized into 3 intervention groups, namely the tai chi exercise and strength training hybrid group (TCSG; n=33), the strength training group (STG; n=30), and the control group (n=30). Abdominal computed tomography was used to evaluate the skeletal muscle mass at the third lumbar (L3) vertebra. Analysis of demographic characteristics of participants at baseline used 1-way ANOVA and χ2 tests, and repeated-measures ANOVA was used to analyze experimental data. In addition, 10 machine-learning classification models were used to calculate if these participants could reverse the degree of sarcopenia after the intervention. Results A significant interaction effect was found in skeletal muscle density at the L3 vertebra, skeletal muscle area at the L3 vertebra (L3 SMA), grip strength, muscle fat infiltration, and relative skeletal muscle mass index (all P values were <.05). Grip strength, relative skeletal muscle mass index, and L3 SMA were significantly improved after the intervention for participants in the TCSG and STG (all P values were <.05). After post hoc tests, we found that participants in the TCSG experienced a better effect on L3 SMA than those in the STG and participants in the control group. The LightGBM classification model had the greatest performance in accuracy (88.4%), recall score (74%), and F1-score (76.1%). Conclusions The skeletal muscle area of older adults with sarcopenia may be improved by a hybrid exercise program composed of strength training and tai chi. In addition, we identified that the LightGBM classification model had the best performance to predict the reversion of sarcopenia.
Collapse
Affiliation(s)
- Hongzhi Guo
- Graduate School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Jianwei Cao
- AI group, Intelligent Lancet LLC, Sacramento, CA, United States
| | - Shichun He
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| | - Meiqi Wei
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| | - Deyu Meng
- AI group, Intelligent Lancet LLC, Sacramento, CA, United States
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| | - Ichen Yu
- AI group, Intelligent Lancet LLC, Sacramento, CA, United States
- Department of Physical Education, Quanzhou Normal University, Quanzhou, China
| | - Ziyi Wang
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| | - Xinyi Chang
- Department of Industrial Engineering and Economics, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Guang Yang
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| | - Ziheng Wang
- AI group, Intelligent Lancet LLC, Sacramento, CA, United States
- Chinese Center of Exercise Epidemiology, Northeast Normal University, 5502 Renmin Ave, Nanguan District, Changchun, 130024, China, 81 90-6747-0562
| |
Collapse
|
6
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
7
|
Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev 2024; 101:102521. [PMID: 39341508 DOI: 10.1016/j.arr.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The most cutting-edge issue in the research on aging is the quest for biomarkers that transcend molecular and cellular domains to encompass organismal-level implications. We recently hypothesized the role of Autonomic Nervous System (ANS) imbalance in this context. Studies on ANS functions during aging highlighted an imbalance towards heightened sympathetic nervous system (SNS) activity, instigating a proinflammatory milieu, and attenuated parasympathetic nervous system (PNS) function, which exerts anti-inflammatory effects via the cholinergic anti-inflammatory pathway (CAP) and suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This scenario strongly suggests that ANS imbalance can fuel inflammaging, now recognized as one of the most relevant risk factors for age-related disease development. Recent recommendations have increasingly highlighted the need for actionable strategies to improve the quality of life for older adults by identifying biomarkers that can be easily measured, even in asymptomatic individuals. We advocate for considering ANS imbalance as a biomarker of aging and inflammaging. Measures of ANS imbalance, such as heart rate variability (HRV), are relatively affordable, non-invasive, and cost-effective, making this hallmark easily diagnosable. HRV gains renewed significance within the aging research landscape, offering a tangible link between pathophysiological perturbations and age-related health outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo GHC), Castiglione dei Pepoli, Bologna, Italy
| |
Collapse
|
8
|
Tao MH, Lin CH, Lu M, Gordon SC. Accelerated Phenotypic Aging Associated With Hepatitis C Infection: Results From the U.S. National Health and Nutrition Examination Surveys 2015-2018. J Gerontol A Biol Sci Med Sci 2024; 79:glae232. [PMID: 39297494 DOI: 10.1093/gerona/glae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is associated with early onset of chronic diseases and increased risk of chronic disorders. Chronic viral infections have been linked to accelerated biological aging based on epigenetic clocks. In this study, we aimed to investigate the association between HCV infection and clinical measures of biological aging among 8 306 adults participating in the 2015-2018 waves of the National Health and Nutrition Examination Survey (NHANES). METHODS NHANES 2015-2018 participants aged 20 years and older who had complete data on clinical blood markers and HCV-related tests were included in the current study. We estimated biological age using 2 approaches including phenotypic age (PhenoAge) and allostatic load (AL) score based on 9 clinical biomarkers. RESULTS After adjusting for demographic and other confounding factors, HCV antibody-positivity was associated with advanced PhenoAge (β = 2.43, 95% confidence interval: 1.51-3.35), compared with HCV antibody-negativity. Additionally, both active HCV infection (HCV RNA (+)) and resolved infection were associated with greater PhenoAge acceleration. The positive association with the AL score was not statistically significant. We did not observe any significant interactions of potential effect modifiers, including smoking and use of drug/needle injection, with HCV infection on measures of biological aging. CONCLUSIONS Our findings suggest that HCV infection is independently associated with biological aging measured by phenotypic age in the U.S. general population. Further studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Meng-Hua Tao
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, Michigan, USA
| | - Chun-Hui Lin
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, Michigan, USA
| | - Stuart C Gordon
- Division of Gastroenterology and Hepatology, Henry Ford Health, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
9
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
10
|
Zhao Y, Yan H, Liu K, Ma J, Sun W, Lai H, Li H, Gu J, Huang H. Acetylcholine receptor-β inhibition by interleukin-6 in skeletal muscles contributes to modulating neuromuscular junction during aging. Mol Med 2024; 30:171. [PMID: 39390392 PMCID: PMC11468496 DOI: 10.1186/s10020-024-00943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Aging-related strength decline contributes to physiological deterioration and is a good predictor of poor prognosis. However, the mechanisms underlying neuromuscular junction disorders affecting contraction in aging are not well described. We hypothesized that the autocrine effect of interleukin (IL)-6 secreted by skeletal muscle inhibits acetylcholine receptor (AChR) expression, potentially causing aging-related strength decline. Therefore, we investigated IL-6 and AChR β-subunit (AChR-β) expression in the muscles and sera of aging C57BL/6J mice and verified the effect of IL-6 on AChR-β expression. METHODS Animal experiments, in vitro studies, bioinformatics, gene manipulation, dual luciferase reporter gene assays, and chromatin immunoprecipitation experiments were used to explore the role of the transcription cofactor peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) and its interacting transcription factors in the IL-6-mediated regulation of AChR-β expression. RESULTS IL-6 expression gradually increased during aging, inhibiting AChR-β expression, which was reversed by tocilizumab. Both tocilizumab and the PGC1α agonist reversed the inhibiting effect of IL-6 expression on AChR-β. Compared to inhibition of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition suppressed the effects of IL-6 on AChR-β and PGC1α. In aging mouse muscles and myotubes, myocyte enhancer factor 2 C (MEF2C) was recruited by PGC1α, which directly binds to the AChR-β promoter to regulate its expression. CONCLUSIONS This study verifies AChR-β regulation by the IL-6/IL-6R-ERK1/2-PGC1α/MEF2C pathway. Hence, evaluating muscle secretion, myokines, and AChRs at an earlier stage to determine pathological progression is important. Moreover, developing intervention strategies for monitoring, maintaining, and improving muscle structure and function is necessary.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Han Yan
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Ke Liu
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Jiangping Ma
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Wenlan Sun
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongli Li
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Jianbang Gu
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, 202150, P.R. China.
| | - He Huang
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China.
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, 202150, P.R. China.
| |
Collapse
|
11
|
Zheng H, Wu J, Feng J, Cheng H. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin Cosmet Investig Dermatol 2024; 17:2243-2259. [PMID: 39399066 PMCID: PMC11471065 DOI: 10.2147/ccid.s403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Background Skin aging is the most obvious feature of human aging, and delaying aging has become a hot and difficult research topic in aesthetic medicine. The accumulation of dysfunctional senescent cells is one of the important mechanisms of skin aging, based on which a series of anti-aging strategies have been generated. In this paper, from the perspective of cellular senescence, we utilize bibliometrics and research review to explore the research hotspots and trends in this field, with a view to providing references for skin health and aesthetic medicine. Methods We obtained literature related to this field from the Web of Science Core Collection database from 1994 to 2024. Bibliometrix packages in R, CiteSpace, VOSviewer, Origin, and Scimago Graphica were utilized for data mining and visualization. Results A total of 2,796 documents were included in the analysis. The overall trend of publications showed a continuous and rapid increase from 2016-2023, but the total citations improved poorly over time. In this field, Journal of Cosmetic Dermatology, Journal of Investigative Dermatology, Experimental Gerontology are core journals. Kim J, Lee JH, Lee S, Rattan SIS, Chung JH and Kim JH are the core authors in this field. Seoul National University is the first in terms of publications. Korea is the country with the most publications, but USA has the most total citations. Top 10 keywords include: gene-expression, skin, cellular senescence, cell, oxidative stress, antioxidants, in vitro, fibroblasts, mechanism, cancer. Current research trends are focused on neurodegeneration, skin rejuvenation, molecular docking, fibrosis, wound healing, SASP, skin barrier, and antioxidants. The core literature and references reflect topics such as the major molecular pathways in the aging process, and the relationship with tumors. Conclusion This field of research has been rapidly rising in recent years. Relevant research hotspots focus on oxidative stress, fibroblasts, and senescence-associated secretory phenotype. Anti-aging strategies targeting cellular senescence hold great promise, including removal of senescent cells or attenuation of SASP factors, corresponding to senolytics and senomorphics therapies, respectively.
Collapse
Affiliation(s)
- Huilan Zheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jinhong Feng
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
12
|
Seo DH, Corr M, Patel S, Lui LY, Cauley JA, Evans D, Mau T, Lane NE. Chemokine CXCL9, a marker of inflammaging, is associated with changes of muscle strength and mortality in older men. Osteoporos Int 2024; 35:1789-1796. [PMID: 38965121 PMCID: PMC11427528 DOI: 10.1007/s00198-024-07160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Our study examined associations of the CXC motif chemokine ligand 9 (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with musculoskeletal function in elderly men. We found in certain outcomes both cross-sectional and longitudinal significant associations of CXCL9 with poorer musculoskeletal function and increased mortality in older men. This requires further investigation. PURPOSE We aim to determine the relationship of (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with both cross-sectional and longitudinal musculoskeletal outcomes and mortality in older men. METHODS A random sample from the Osteoporotic Fractures in Men (MrOS) Study cohort (N = 300) was chosen for study subjects that had attended the third and fourth clinic visits, and data was available for major musculoskeletal outcomes (6 m walking speed, chair stands), hip bone mineral density (BMD), major osteoporotic fracture, mortality, and serum inflammatory markers. Serum levels of CXCL9 were measured by ELISA, and the associations with musculoskeletal outcomes were assessed by linear regression and fractures and mortality with Cox proportional hazards models. RESULTS The mean CXCL9 level of study participants (79.1 ± 5.3 years) was 196.9 ± 135.2 pg/ml. There were significant differences for 6 m walking speed, chair stands, physical activity scores, and history of falls in the past year across the quartiles of CXCL9. However, higher CXCL9 was only significantly associated with changes in chair stands (β = - 1.098, p < 0.001) even after adjustment for multiple covariates. No significant associations were observed between CXCL9 and major osteoporotic fracture or hip BMD changes. The risk of mortality increased with increasing CXCL9 (hazard ratio quartile (Q)4 vs Q1 1.98, 95% confidence interval 1.25-3.14; p for trend < 0.001). CONCLUSIONS Greater serum levels of CXCL9 were significantly associated with a decline in chair stands and increased mortality. Additional studies with a larger sample size are needed to confirm our findings.
Collapse
Affiliation(s)
- Da Hea Seo
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, USA
| | - Sheena Patel
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Evans
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Nancy E Lane
- Department of Medicine and Rheumatology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Han KS, Sander IB, Kumer J, Resnick E, Booth C, Cheng G, Im Y, Starich B, Kiemen AL, Phillip JM, Reddy S, Joshu CE, Sunshine JC, Walston JD, Wirtz D, Wu PH. qMAP enabled microanatomical mapping of human skin aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588011. [PMID: 39005293 PMCID: PMC11244916 DOI: 10.1101/2024.04.03.588011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Aging is a major driver of diseases in humans. Identifying features associated with aging is essential for designing robust intervention strategies and discovering novel biomarkers of aging. Extensive studies at both the molecular and organ/whole-body physiological scales have helped determined features associated with aging. However, the lack of meso-scale studies, particularly at the tissue level, limits the ability to translate findings made at molecular scale to impaired tissue functions associated with aging. In this work, we established a tissue image analysis workflow - quantitative micro-anatomical phenotyping (qMAP) - that leverages deep learning and machine vision to fully label tissue and cellular compartments in tissue sections. The fully mapped tissue images address the challenges of finding an interpretable feature set to quantitatively profile age-related microanatomic changes. We optimized qMAP for skin tissues and applied it to a cohort of 99 donors aged 14 to 92. We extracted 914 microanatomic features and found that a broad spectrum of these features, represented by 10 cores processes, are strongly associated with aging. Our analysis shows that microanatomical features of the skin can predict aging with a mean absolute error (MAE) of 7.7 years, comparable to state-of-the-art epigenetic clocks. Our study demonstrates that tissue-level architectural changes are strongly associated with aging and represent a novel category of aging biomarkers that complement molecular markers. Our results highlight the complex and underexplored multi-scale relationship between molecular and tissue microanatomic scales.
Collapse
Affiliation(s)
- Kyu Sang Han
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Inbal B Sander
- Department of Dermatology, Johns Hopkins University, Baltimore, MD
| | - Jacqueline Kumer
- Department of Illustration Practice, Maryland Institute College of Art, Baltimore, MD
| | - Eric Resnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Clare Booth
- Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Guoqing Cheng
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Yebin Im
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Bartholomew Starich
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Ashley L Kiemen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jude M Phillip
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sashank Reddy
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Corrine E Joshu
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Joel C Sunshine
- Department of Dermatology, Johns Hopkins University, Baltimore, MD
| | - Jeremy D Walston
- Department of Medicine, Division of Geriatrics and Gerontology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
- The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
15
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
16
|
Bailón-Cuenca JA, Cortés-Sarabia K, Legorreta-Soberanis J, Alvarado-Castro VM, Juárez-Baltazar U, Sánchez-Gervacio BM, Vences-Velázquez A, Leyva-Vázquez MA, Del Moral-Hernández O, Illades-Aguiar B. Detection of IgG antibodies against the receptor binding domain of the spike protein and nucleocapsid of SARS-CoV-2 at university students from Southern Mexico: a cross-sectional study. BMC Infect Dis 2024; 24:584. [PMID: 38867165 PMCID: PMC11170790 DOI: 10.1186/s12879-024-09435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Natural infection and vaccination against SARS-CoV-2 is associated with the development of immunity against the structural proteins of the virus. Specifically, the two most immunogenic are the S (spike) and N (nucleocapsid) proteins. Seroprevalence studies performed in university students provide information to estimate the number of infected patients (symptomatic or asymptomatic) and generate knowledge about the viral spread, vaccine efficacy, and epidemiological control. Which, the aim of this study was to evaluate IgG antibodies against the S and N proteins of SARS-CoV-2 at university students from Southern Mexico. METHODS A total of 1418 serum samples were collected from eighteen work centers of the Autonomous University of Guerrero. Antibodies were detected by Indirect ELISA using as antigen peptides derived from the S and N proteins. RESULTS We reported a total seroprevalence of 39.9% anti-S/N (positive to both antigens), 14.1% anti-S and 0.5% anti-N. The highest seroprevalence was reported in the work centers from Costa Grande, Acapulco and Centro. Seroprevalence was associated with age, COVID-19, contact with infected patients, and vaccination. CONCLUSION University students could play an essential role in disseminating SARS-CoV-2. We reported a seroprevalence of 54.5% against the S and N proteins, which could be due to the high population rate and cultural resistance to safety measures against COVID-19 in the different regions of the state.
Collapse
Affiliation(s)
- Jesús Adolfo Bailón-Cuenca
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - José Legorreta-Soberanis
- Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | | | - Ulises Juárez-Baltazar
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | | | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Chilpancingo de los Bravo, Guerrero, México.
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México.
| |
Collapse
|
17
|
Xie H, Wei L, Ruan G, Zhang H, Shi H. Inflammaging score as a potential prognostic tool for cancer: A population-based cohort study. Mech Ageing Dev 2024; 219:111939. [PMID: 38744412 DOI: 10.1016/j.mad.2024.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to develop a clinically applicable inflammaging score by combining the inflammatory status and age of patients. Kaplan-Meier analysis was used to compare survival differences among patients with different grades of inflammation scores. Cox proportional hazard regression analysis was used to explore the relationship between the inflammaging score and survival. As the age of patients increased, their levels of systemic inflammation gradually increased. A unique inverse relationship was found between the level of inflammation and cancer prognosis during the ageing process. Mediation analysis indicated that systemic inflammation mediates 10.1%-17.8% of the association between ageing and poor prognosis. With an increase in the inflammaging score from grades I to V, the survival rate showed a gradient decline. The inflammation score could effectively stratify the prognosis of patients with lung, bronchial, gastrointestinal, and other types of cancers. Compared with grade I, the hazard ratios for grades II-V were 1.239, 1.604, 1.724, and 2.348, respectively. In the external validation cohort, the inflammaging score remained an independent factor affecting the prognosis of patients with cancer. The inflammaging score, which combines ageing and inflammation, is a robust prognostic assessment tool for cancer patients.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Lishuang Wei
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China; Laboratory for Clinical Medicine,Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Al-Kuraishy HM, Mazhar Ashour MH, Saad HM, Batiha GES. COVID-19 and β-thalassemia: in lieu of evidence and vague nexus. Ann Hematol 2024; 103:1423-1433. [PMID: 37405444 DOI: 10.1007/s00277-023-05346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. β-thalassemia (β-T) is an autosomal recessive disorder leading to the development of anemia. β-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. β-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between β-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the β-T patients with COVID-19 revealed mild to moderate clinical features, and β-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent β-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend β-T(NTDT), preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyiah University, Box 14132, Baghdad, Iraq
| | | | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt
| |
Collapse
|
19
|
Patel R, Cosentino S, Zheng EZ, Schupf N, Barral S, Feitosa M, Andersen SL, Sebastiani P, Ukraintseva S, Christensen K, Zmuda J, Thyagarajan B, Gu Y. Systemic inflammation in relation to exceptional memory in the Long Life Family Study (LLFS). Brain Behav Immun Health 2024; 37:100746. [PMID: 38476338 PMCID: PMC10925922 DOI: 10.1016/j.bbih.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Background and objectives We previously found a substantial familial aggregation of healthy aging phenotypes, including exceptional memory (EM) in long-lived persons. In the current study, we aim to assess whether long-lived families with EM and without EM (non-EM) differ in systemic inflammation status and trajectory. Methods The current study included 4333 participants of the multi-center Long Life Family Study (LLFS). LLFS families were classified as EM (556 individuals from 28 families) or non-EM (3777 individuals from 416 families), with 2 or more offspring exhibiting exceptional memory performance (i.e. having baseline composite z-score representing immediate and delayed story memory being 1.5 SD above the mean in the nondemented offspring sample) considered as EM. Blood samples from baseline were used to measure inflammatory biomarkers including total white blood cell (WBC) and its subtypes (neutrophils, lymphocytes, monocytes) count, platelet count, high sensitivity C-reactive protein, and interleukin-6. Generalized linear models were used to examine cross-sectional differences in inflammatory biomarkers at baseline. In a sub-sample of 2227 participants (338 subjects from 24 EM families and 1889 from 328 non-EM families) with repeated measures of immune cell counts, we examined whether the rate of biomarker change differed between EM and non-EM families. All models were adjusted for family size, relatedness, age, sex, education, field center, APOE genotype, and body mass index. Results LLFS participants from EM families had a marginally higher monocyte count at baseline (b = 0.028, SE = 0.0110, p = 0.010) after adjusting for age, sex, education, and field site, particularly in men (p < 0.0001) but not in women (p = 0.493) (p-interaction = 0.003). Over time, monocyte counts increased (p < 0.0001) in both EM and non-EM families, while lymphocytes and platelet counts decreased over time in the non-EM families (p < 0.0001) but not in the EM families. After adjusting for multiple variables, there was no significant difference in biomarker change over time between the EM and non-EM families. Discussion Compared with non-EM families, EM families had significantly higher monocyte count at baseline but had similar change over time. Our study suggests that differences in monocyte counts may be a pathway through which EM emerges in some long-lived families, especially among men.
Collapse
Affiliation(s)
- Ruhee Patel
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Stephanie Cosentino
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Esther Zhiwei Zheng
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nicole Schupf
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sandra Barral
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mary Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stacy L. Andersen
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA
| | | | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230, Odense, Denmark
| | - Joseph Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yian Gu
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Long Life Family Study (LLFS)
- Cognitive Neuroscience Division, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA
- Social Sciences Research Institute, Duke University, Durham, NC, 27705, USA
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230, Odense, Denmark
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
20
|
Calcaterra V, Verduci E, Milanta C, Agostinelli M, Bona F, Croce S, Valsecchi C, Avanzini MA, Zuccotti G. The Benefits of the Mediterranean Diet on Inflamm-Aging in Childhood Obesity. Nutrients 2024; 16:1286. [PMID: 38732533 PMCID: PMC11085692 DOI: 10.3390/nu16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Numerous elements of the Mediterranean diet (MD) have antioxidant and anti-inflammatory qualities. (2) Methods: We present a narrative review of the potential benefits of the Mediterranean dietary pattern (MD) in mitigating aging-related inflammation (inflamm-aging) associated with childhood obesity. The mechanisms underlying chronic inflammation in obesity are also discussed. A total of 130 papers were included after screening abstracts and full texts. (3) Results: A complex interplay between obesity, chronic inflammation, and related comorbidities is documented. The MD emerges as a promising dietary pattern for mitigating inflammation. Studies suggest that the MD may contribute to weight control, improved lipid profiles, insulin sensitivity, and endothelial function, thereby reducing the risk of metabolic syndrome in children and adolescents with obesity. (4) Conclusions: While evidence supporting the anti-inflammatory effects of the MD in pediatric obesity is still evolving, the existing literature underscores its potential as a preventive and therapeutic strategy. However, MD adherence remains low among children and adolescents, necessitating targeted interventions to promote healthier dietary habits. Future high-quality intervention studies are necessary to elucidate the specific impact of the MD on inflammation in diverse pediatric populations with obesity and associated comorbidities.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Elvira Verduci
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Health Sciences, University of Milano, 20142 Milan, Italy
| | - Chiara Milanta
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Marta Agostinelli
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Federica Bona
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
21
|
Ramini D, Giuliani A, Kwiatkowska KM, Guescini M, Storci G, Mensà E, Recchioni R, Xumerle L, Zago E, Sabbatinelli J, Santi S, Garagnani P, Bonafè M, Olivieri F. Replicative senescence and high glucose induce the accrual of self-derived cytosolic nucleic acids in human endothelial cells. Cell Death Discov 2024; 10:184. [PMID: 38643201 PMCID: PMC11032409 DOI: 10.1038/s41420-024-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Recent literature shows that loss of replicative ability and acquisition of a proinflammatory secretory phenotype in senescent cells is coupled with the build-in of nucleic acids in the cytoplasm. Its implication in human age-related diseases is under scrutiny. In human endothelial cells (ECs), we assessed the accumulation of intracellular nucleic acids during in vitro replicative senescence and after exposure to high glucose concentrations, which mimic an in vivo condition of hyperglycemia. We showed that exposure to high glucose induces senescent-like features in ECs, including telomere shortening and proinflammatory cytokine release, coupled with the accrual in the cytoplasm of telomeres, double-stranded DNA and RNA (dsDNA, dsRNA), as well as RNA:DNA hybrid molecules. Senescent ECs showed an activation of the dsRNA sensors RIG-I and MDA5 and of the DNA sensor TLR9, which was not paralleled by the involvement of the canonical (cGAS) and non-canonical (IFI16) activation of the STING pathway. Under high glucose conditions, only a sustained activation of TLR9 was observed. Notably, senescent cells exhibit increased proinflammatory cytokine (IL-1β, IL-6, IL-8) production without a detectable secretion of type I interferon (IFN), a phenomenon that can be explained, at least in part, by the accumulation of methyl-adenosine containing RNAs. At variance, exposure to exogenous nucleic acids enhances both IL-6 and IFN-β1 expression in senescent cells. This study highlights the accrual of cytoplasmic nucleic acids as a marker of senescence-related endothelial dysfunction, that may play a role in dysmetabolic age-related diseases.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | | | - Michele Guescini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | | | - Jacopo Sabbatinelli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
22
|
Li J, Li Y, Zhou L, Li C, Liu J, Liu D, Fu Y, Wang Y, Tang J, Zhou L, Tan S, Wang L. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications. Microbiol Res 2024; 281:127596. [PMID: 38215640 DOI: 10.1016/j.micres.2023.127596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
The research of the human microbiome in the preceding decade has yielded novel perspectives on human health and diseases. Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly males, which negatively affects the life quality. Existing evidence has indicated that the human microbiome, including urinary, intra-prostate, gut, oral and blood microbiome may exert a significant impact on the natural progression of BPH. The dysbiosis of the microbiome may induce inflammation at either a local or systemic level, thereby affecting the BPH. Moreover, metabolic syndrome (MetS) caused by the microbiome can also be involved in the development of BPH. Additionally, alterations in the microbiome composition during the senility process may serve as another cause of the BPH. Here, we summarize the influence of human microbiome on BPH and explore how the microbiome is linked to BPH through inflammation, MetS, and senility. In addition, we propose promising areas of investigation and discuss the implications for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
23
|
Giunta S, Giordani C, De Luca M, Olivieri F. Long-COVID-19 autonomic dysfunction: An integrated view in the framework of inflammaging. Mech Ageing Dev 2024; 218:111915. [PMID: 38354789 DOI: 10.1016/j.mad.2024.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The recently identified syndrome known as Long COVID (LC) is characterized by a constellation of debilitating conditions that impair both physical and cognitive functions, thus reducing the quality of life and increasing the risk of developing the most common age-related diseases. These conditions are linked to the presence of symptoms of autonomic dysfunction, in association with low cortisol levels, suggestive of reduced hypothalamic-pituitary-adrenal (HPA) axis activity, and with increased pro-inflammatory condition. Alterations of dopamine and serotonin neurotransmitter levels were also recently observed in LC. Interestingly, at least some of the proposed mechanisms of LC development overlap with mechanisms of Autonomic Nervous System (ANS) imbalance, previously detailed in the framework of the aging process. ANS imbalance is characterized by a proinflammatory sympathetic overdrive, and a concomitant decreased anti-inflammatory vagal parasympathetic activity, associated with reduced anti-inflammatory effects of the HPA axis and cholinergic anti-inflammatory pathway (CAP). These neuro-immune-endocrine system imbalanced activities fuel the vicious circle of chronic inflammation, i.e. inflammaging. Here, we refine our original hypothesis that ANS dysfunction fuels inflammaging and propose that biomarkers of ANS imbalance could also be considered biomarkers of inflammaging, recognized as the main risk factor for developing age-related diseases and the sequelae of viral infections, i.e. LC.
Collapse
Affiliation(s)
- Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo (GHC) Castiglione dei Pepoli -Bologna), Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Abbatecola AM, Giuliani A, Biscetti L, Scisciola L, Battista P, Barbieri M, Sabbatinelli J, Olivieri F. Circulating biomarkers of inflammaging and Alzheimer's disease to track age-related trajectories of dementia: Can we develop a clinically relevant composite combination? Ageing Res Rev 2024; 96:102257. [PMID: 38437884 DOI: 10.1016/j.arr.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.
Collapse
Affiliation(s)
- Angela Marie Abbatecola
- Alzheimer's Disease Day Clinic, Azienda Sanitaria Locale, Frosinone, Italy; Univesità degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Scienze Umane, Sociali e della Salute, Cassino, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Italy.
| | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Bari Institute, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
25
|
Kundura L, Cezar R, Gimenez S, Pastore M, Reynes C, Sotto A, Reynes J, Allavena C, Meyer L, Makinson A, Corbeau P. Immune profiles of pre-frail people living with HIV-1: a prospective longitudinal study. Immun Ageing 2024; 21:20. [PMID: 38481213 PMCID: PMC10935995 DOI: 10.1186/s12979-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND People living with HIV (PLWH) are at risk of frailty, which is predictive for death. As an overactivity of the immune system is thought to fuel frailty, we characterized the immune activation profiles linked to frailty. METHODS We quantified twenty-seven activation markers in forty-six virological responders (four females and forty-two males; median age, 74 years; median duration of infection, 24 years; median duration of undetectability, 13 years), whose frailty was determined according to the Fried criteria. T cell and NK cell activation was evaluated by flow cytometry, using a panel of cell surface markers. Soluble markers of inflammation, and monocyte activation and endothelial activation were measured by ELISA. The participants' immune activation was profiled by an unsupervised double hierarchical clustering analysis. We used ANOVA p-values to rank immunomarkers most related to Fried score. A Linear Discriminant Analysis (LDA) was performed to link immune activation markers to frailty. RESULTS 41% of the participants were pre-frail, including 24% with a Fried score of 1, and 17% with a Fried score of 2. ANOVA identified the 14 markers of T cell, monocyte, NK cell, endothelial activation, and inflammation the most linked to Fried 3 classes. The LDA performed with these 14 markers was capable of discriminating volunteers according to their Fried score. Two out of the 5 immune activation profiles revealed by the hierarchical clustering were linked to and predictive of pre-frailty. These two profiles were characterized by a low percentage of CD4 T cells and a high percentage of CD8 T cells, activated CD4 T cells, CD8 T cells, and NK cells, and inflammation. CONCLUSIONS We identified a particular immune activation profile associated with pre-frailty in PLWH. Profiling participants at risk of developing frailty might help to tailor the screening and prevention of medical complications fueled by loss of robustness. Further studies will indicate whether this frailty signature is specific or not of HIV infection, and whether it also precedes frailty in the general population.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, CNRS-Montpellier University UMR9002, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital, Place du Pr Debré, Nîmes, 30029, France
| | - Sandrine Gimenez
- Institute of Human Genetics, CNRS-Montpellier University UMR9002, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Manuela Pastore
- Institute of Functional Genomics UMR5203 and BCM, CNRS-INSERM-Montpellier University, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Christelle Reynes
- Institute of Functional Genomics UMR5203 and BCM, CNRS-INSERM-Montpellier University, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Albert Sotto
- Infectious and Tropical Diseases Department, Nîmes University Hospital, Nîmes, France
- Montpellier University, Montpellier, France
| | - Jacques Reynes
- Montpellier University, Montpellier, France
- Infectious and Tropical Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Clotilde Allavena
- Service de Maladies Infectieuses, CHU de Nantes, Université de Nantes, Nantes, UE, 1413, France
| | - Laurence Meyer
- INSERM CESP U1018, Le Kremlin Bicêtre, France
- Department of Public Health and Epidemiology, Bicêtre Hospital, AP-HP, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Alain Makinson
- Montpellier University, Montpellier, France
- Infectious and Tropical Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Pierre Corbeau
- Institute of Human Genetics, CNRS-Montpellier University UMR9002, 141 rue de la Cardonille, Montpellier, 34396, France.
- Immunology Department, Nîmes University Hospital, Place du Pr Debré, Nîmes, 30029, France.
- Montpellier University, Montpellier, France.
| |
Collapse
|
26
|
Wrońska A, Kieżun J, Kmieć Z. High-Dose Fenofibrate Stimulates Multiple Cellular Stress Pathways in the Kidney of Old Rats. Int J Mol Sci 2024; 25:3038. [PMID: 38474282 DOI: 10.3390/ijms25053038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
We investigated the age-related effects of the lipid-lowering drug fenofibrate on renal stress-associated effectors. Young and old rats were fed standard chow with 0.1% or 0.5% fenofibrate. The kidney cortex tissue structure showed typical aging-related changes. In old rats, 0.1% fenofibrate reduced the thickening of basement membranes, but 0.5% fenofibrate exacerbated interstitial fibrosis. The PCR array for stress and toxicity-related targets showed that 0.1% fenofibrate mildly downregulated, whereas 0.5% upregulated multiple genes. In young rats, 0.1% fenofibrate increased some antioxidant genes' expression and decreased the immunoreactivity of oxidative stress marker 4-HNE. However, the activation of cellular antioxidant defenses was impaired in old rats. Fenofibrate modulated the expression of factors involved in hypoxia and osmotic stress signaling similarly in both age groups. Inflammatory response genes were variably modulated in the young rats, whereas old animals presented elevated expression of proinflammatory genes and TNFα immunoreactivity after 0.5% fenofibrate. In old rats, 0.1% fenofibrate more prominently than in young animals induced phospho-AMPK and PGC1α levels, and upregulated fatty acid oxidation genes. Our results show divergent effects of fenofibrate in young and old rat kidneys. The activation of multiple stress-associated effectors by high-dose fenofibrate in the aged kidney warrants caution when applying fenofibrate therapy to the elderly.
Collapse
Affiliation(s)
- Agata Wrońska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Zbigniew Kmieć
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
27
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
28
|
Sharma R. Exploring the emerging bidirectional association between inflamm-aging and cellular senescence in organismal aging and disease. Cell Biochem Funct 2024; 42:e3970. [PMID: 38456500 DOI: 10.1002/cbf.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
29
|
Durand A, Bonilla N, Level T, Ginestet Z, Lombès A, Guichard V, Germain M, Jacques S, Letourneur F, Do Cruzeiro M, Marchiol C, Renault G, Le Gall M, Charvet C, Le Bon A, Martin B, Auffray C, Lucas B. Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice. Nat Commun 2024; 15:1718. [PMID: 38409097 PMCID: PMC10897180 DOI: 10.1038/s41467-024-45984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.
Collapse
Affiliation(s)
- Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Nelly Bonilla
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Zoé Ginestet
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Vincent Guichard
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Sébastien Jacques
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Franck Letourneur
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Marcio Do Cruzeiro
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Carmen Marchiol
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Gilles Renault
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Morgane Le Gall
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Agnès Le Bon
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.
| |
Collapse
|
30
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
31
|
Türk L, Filippov I, Arnold C, Zaugg J, Tserel L, Kisand K, Peterson P. Cytotoxic CD8 + Temra cells show loss of chromatin accessibility at genes associated with T cell activation. Front Immunol 2024; 15:1285798. [PMID: 38370415 PMCID: PMC10870784 DOI: 10.3389/fimmu.2024.1285798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
As humans age, their memory T cell compartment expands due to the lifelong exposure to antigens. This expansion is characterized by terminally differentiated CD8+ T cells (Temra), which possess NK cell-like phenotype and are associated with chronic inflammatory conditions. Temra cells are predominantly driven by the sporadic reactivation of cytomegalovirus (CMV), yet their epigenomic patterns and cellular heterogeneity remain understudied. To address this gap, we correlated their gene expression profiles with chromatin openness and conducted single-cell transcriptome analysis, comparing them to other CD8+ subsets and CMV-responses. We confirmed that Temra cells exhibit high expression of genes associated with cytotoxicity and lower expression of costimulatory and chemokine genes. The data revealed that CMV-responsive CD8+ T cells (Tcmv) were predominantly derived from a mixed population of Temra and memory cells (Tcm/em) and shared their transcriptomic profiles. Using ATAC-seq analysis, we identified 1449 differentially accessible chromatin regions between CD8+ Temra and Tcm/em cells, of which only 127 sites gained chromatin accessibility in Temra cells. We further identified 51 gene loci, including costimulatory CD27, CD28, and ICOS genes, whose chromatin accessibility correlated with their gene expression. The differential chromatin regions Tcm/em cells were enriched in motifs that bind multiple transcriptional activators, such as Jun/Fos, NFkappaB, and STAT, whereas the open regions in Temra cells mainly contained binding sites of T-box transcription factors. Our single-cell analysis of CD8+CCR7loCD45RAhi sorted Temra population showed several subsets of Temra and NKT-like cells and CMC1+ Temra populations in older individuals that were shifted towards decreased cytotoxicity. Among CD8+CCR7loCD45RAhi sorted cells, we found a decreased proportion of IL7R+ Tcm/em-like and MAIT cells in individuals with high levels of CMV antibodies (CMVhi). These results shed new light on the molecular and cellular heterogeneity of CD8+ Temra cells and their relationship to aging and CMV infection.
Collapse
Affiliation(s)
- Lehte Türk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Igor Filippov
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Qiagen Aarhus A/S, Aarhus, Denmark
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Judith Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
32
|
Lukyanova SO, Artemyeva OV, Strazhesko ID, Nasaeva ED, Grechenko VV, Gankovskaya LV. Expression of TLR2, IL-1β, and IL-10 Genes as a Possible Factor of Successful or Pathological Aging in Nonagenarians. Bull Exp Biol Med 2024; 176:505-508. [PMID: 38492105 DOI: 10.1007/s10517-024-06056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 03/18/2024]
Abstract
The expression of the gene of pattern recognition receptor TLR2, proinflammatory cytokine IL-1β, and anti-inflammatory cytokine IL-10 was analyzed in the peripheral blood of nonagenarians (n=219; mean age 92.1 years, 77 men and 142 women) in comparison with healthy young donors (n=24; mean age 22.5 years, 16 women and 8 men). Nonagenarians were interviewed, medical records were analyzed, and a comprehensive geriatric assessment was performed according to the Clinical Guidelines on Frailty. The level of gene expression was determined by real-time PCR. The participation of inflammatory mechanisms in the immunosenescence was revealed. It was shown that increased expression of IL1B and TLR2 genes is associated with the development of frailty in nonagenarians and can be a factor of pathological aging. Increased expression of IL10 gene can be considered as a factor of successful aging in nonagenarians.
Collapse
Affiliation(s)
- S O Lukyanova
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O V Artemyeva
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - I D Strazhesko
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E D Nasaeva
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Grechenko
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gankovskaya
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
33
|
Capra BT, Hudson S, Helder M, Laskaridou E, Johnson AL, Gilmore C, Marinik E, Hedrick VE, Savla J, David LA, Davy KP, Davy BM. Ultra-processed food intake, gut microbiome, and glucose homeostasis in mid-life adults: Background, design, and methods of a controlled feeding trial. Contemp Clin Trials 2024; 137:107427. [PMID: 38184104 PMCID: PMC10922925 DOI: 10.1016/j.cct.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Aging is associated with gut dysbiosis, low-grade inflammation, and increased risk of type 2 diabetes (T2D). Prediabetes, which increases T2D and cardiovascular disease risk, is present in 45-50% of mid-life adults. The gut microbiota may link ultra-processed food (UPF) with inflammation and T2D risk. METHODS Following a 2-week standardized lead-in diet (59% UPF), adults aged 40-65 years will be randomly assigned to a 6-week diet emphasizing either UPF (81% total energy) or non-UPF (0% total energy). Measurements of insulin sensitivity, 24-h and postprandial glycemic control, gut microbiota composition/function, fecal short chain fatty acids, intestinal inflammation, inflammatory cytokines, and vascular function will be made before and following the 6-week intervention period. Prior to recruitment, menus were developed in order to match UPF and non-UPF conditions based upon relevant dietary factors. Menus were evaluated for palatability and costs, and the commercial additive content of study diets was quantified to explore potential links with outcomes. RESULTS Overall diet palatability ratings were similar (UPF = 7.6 ± 1.0; Non-UPF = 6.8 ± 1.5; Like Moderately = 7, Like Very Much = 8). Cost analysis (food + labor) of the 2000 kcal menu (7-d average) revealed lower costs for UPF compared to non-UPF diets ($20.97/d and $40.23/d, respectively). Additive exposure assessment of the 2000 kcal UPF diet indicated that soy lecithin (16×/week), citric acid (13×/week), sorbic acid (13×/week), and sodium citrate (12×/week) were the most frequently consumed additives. CONCLUSIONS Whether UPF consumption impairs glucose homeostasis in mid-life adults is unknown. Findings will address this research gap and contribute information on how UPF consumption may influence T2D development.
Collapse
Affiliation(s)
- Bailey T Capra
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America.
| | - Summer Hudson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America
| | - McKenna Helder
- Department of Food Science and Technology, Virginia Tech,United States of America
| | - Eleni Laskaridou
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| | - Aubrey L Johnson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| | - Carson Gilmore
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America
| | - Elaina Marinik
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| | - Valisa E Hedrick
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| | - Jyoti Savla
- Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America; Center for Gerontology, Virginia Tech, United States of America
| | - Lawrence A David
- Department of Molecular Genetics & Microbiology, Duke University, United States of America; Duke Microbiome Center, Duke University, United States of America
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, 229 Wallace Hall, Blacksburg, VA 24061, United States of America; Virginia Tech Translational Obesity Research Interdisciplinary Graduate Education Program, United States of America
| |
Collapse
|
34
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
35
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
36
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Li X, Ma L. From biological aging to functional decline: Insights into chronic inflammation and intrinsic capacity. Ageing Res Rev 2024; 93:102175. [PMID: 38145874 DOI: 10.1016/j.arr.2023.102175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Intrinsic capacity is the sum of an individual's physical and mental capacities, which helps determine functional ability. Intrinsic capacity decline is an important predictor of adverse health outcomes and can identify individuals at higher risk of functional decline. Aging is characterized by a decrease in physiological reserves and functional abilities. Chronic inflammation, a mechanism of aging, is associated with decreased intrinsic capacity, which may mirror the broader relationship between aging and functional ability. Therefore, it is crucial for maintaining functional ability and promoting healthy aging to study the mechanisms of intrinsic capacity decline, identify easily available markers, and make targets for intervention from the perspective of chronic inflammation. We reviewed the current research on chronic inflammation, inflammation-related markers, and intrinsic capacity. To date, there is still no inflammatory markers with high specificity and sensitivity to monitor intrinsic capacity decline. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha may potentially indicate changes in intrinsic capacity, but their results with intrinsic capacity or each intrinsic capacity domain are inconsistent. Considering the variations in individual responses to changes in inflammatory markers, it may be beneficial to explore the use of multiple analytes instead of relying on a single marker. This approach could be valuable in monitoring the decline of intrinsic capacity in the future.
Collapse
Affiliation(s)
- Xiaxia Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
39
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. Aging Cell 2023; 22:e14024. [PMID: 37961030 PMCID: PMC10726832 DOI: 10.1111/acel.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high-throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. For the purpose of identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Our analysis identified lymphoid enhancer binding factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with idiopathic pulmonary fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dysregulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
| | - Khaled Sayed
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Electrical & Computer Engineering and Computer ScienceUniversity of New HavenWest HavenConnecticutUSA
| | - Maria G. Kapetanaki
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| | - William Dion
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Saad Irfan
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eleanor Valenzi
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Robert A. Lafyatis
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Bokai Zhu
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Panayiotis V. Benos
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
40
|
Bach-Faig A, Ferreres Giménez I, Pueyo Alamán MG. [Immunonutrition and (its impact on) health. Micronutrients and debilitating factors]. NUTR HOSP 2023; 40:3-8. [PMID: 37929894 DOI: 10.20960/nh.04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Introduction: the interaction between immunity and nutrition is complex and multifaceted. Micronutrients, including vitamins and minerals, are essential for immune function. In turn, immune function and lifestyle habits can affect nutritional needs and micronutrient utilization, creating an interdependence between nutrition and immunity that can be modulated by both external and internal factors. Objectives: to examine the relationship between micronutrient intake and immune function, and how debilitating factors such as aging, disease, and stress can impact this relationship. Methods: a review of scientific evidence and recommendations from major international scientific societies was conducted to identify the importance of micronutrients in immune function and how debilitating factors can alter their impact. Results: the effect of different micronutrients on immune function is described. Debilitating factors like aging, stress, and chronic diseases can compromise the immune system and make the body more susceptible to infections. However, adequate intake of micronutrients and healthy habits can help to strengthen immunity and mitigate the effects of these debilitating factors. Conclusion: immunonutrition is a critical component for maintaining a strong and healthy immune system. Sufficient intake of micronutrients and healthy lifestyle habits can help improve immunity, especially in the presence of debilitating factors.
Collapse
Affiliation(s)
- Anna Bach-Faig
- Grupo de Investigación FoodLab (2017SGR 83), Estudios de Ciencias de la Salud, Universitat Oberta de Catalunya (UOC), Spain
| | | | | |
Collapse
|
41
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int J Mol Sci 2023; 24:16040. [PMID: 38003230 PMCID: PMC10671211 DOI: 10.3390/ijms242216040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options. MSCs are emerging as potential therapies for severe autoimmune and autoinflammatory diseases. Clinical application of MSCs in rare cases of severe disease in which other existing treatment modalities have failed, have demonstrated potential use in treating multiple diseases, including rheumatoid arthritis, systemic lupus erythematosus, myocardial infarction, liver cirrhosis, spinal cord injury, multiple sclerosis, and COVID-19 pneumonia. This review explores the biological mechanisms behind the role of MSCs in autoimmune and autoinflammatory diseases. It also covers their immunomodulatory capabilities, potential therapeutic applications, and the challenges and risks associated with MSC therapy.
Collapse
Affiliation(s)
- Lina N. Zaripova
- Institute of Fundamental and Applied Medicine, National Scientific Medical Center, 42 Abylai Khan Avenue, Astana 010000, Kazakhstan;
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
| | - Stephen E. Christmas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK;
| | - Michael W. Beresford
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Clare Pain
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Eileen M. Baildam
- Department of Paediatric Rheumatology, The Alexandra Hospital, Mill Lane, Cheadle SK8 2PX, UK;
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
42
|
Muvhulawa N, Mazibuko-Mbeje SE, Ndwandwe D, Silvestri S, Ziqubu K, Moetlediwa MT, Mthembu SXH, Marnewick JL, Van der Westhuizen FH, Nkambule BB, Basson AK, Tiano L, Dludla PV. Sarcopenia in a type 2 diabetic state: Reviewing literature on the pathological consequences of oxidative stress and inflammation beyond the neutralizing effect of intracellular antioxidants. Life Sci 2023; 332:122125. [PMID: 37769808 DOI: 10.1016/j.lfs.2023.122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.
Collapse
Affiliation(s)
- Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
43
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
44
|
Jiang Y, Yang Z, Wu Q, Cao J, Qiu T. The association between albumin and C-reactive protein in older adults. Medicine (Baltimore) 2023; 102:e34726. [PMID: 37653773 PMCID: PMC10470798 DOI: 10.1097/md.0000000000034726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Albumin had been found to be a marker of inflammation. The purpose of our study was to investigate the relationship between albumin and C-reactive protein (CRP) in 3579 participants aged 60 to 80 years from the National Health and Nutrition Examination Survey (NHANES). In order to evaluate the association between albumin and CRP, We downloaded the analyzed data (2015-2018) from the NHANES in the United States, and the age of study population was limited to 60 to 80 years (n = 4051). After exclusion of subjects with missing albumin (n = 456) and CRP (n = 16) data, 3579 subjects aged 60 to 80 years were reserved for a cross-sectional study. All measures were calculated accounting for NHANES sample weights. We used the weighted χ2 test for categorical variables and the weighted linear regression model for continuous variables to calculate the difference among each group. The subgroup analysis was evaluated through stratified multivariable linear regression models. Fitting smooth curves and generalized additive models were also carried out. We found albumin negatively correlated with CRP after adjusting for other confounders in model 3 (β = -0.37, 95% CI: -0.45, -0.28, P < .0001). After converting albumin from a continuous variable to a categorical variable (quartiles), albumin level was also negatively associated with serum CRP in all groups (P for trend < .001 for each). In the subgroup analysis stratified by gender, race/ethnicity, smoking, high blood pressure, the negative correlation of albumin with CRP was remained. We also found that the level of CRP further decreased in other race (OR: -0.72, 95% CI: -0.96, -0.47 P < .0001) and participants with smoking (OR: -0.61, 95% CI: -0.86, -0.36 P < .0001). Our findings revealed that albumin levels was negatively associated with CRP levels among in USA elderly. Besides, CRP level decreased faster with increasing albumin level in other race and participants with smoking. Considering this association, hypoalbuminemia could provide a potential predictive biomarker for inflammation. Therefore, studying the relationship between albumin and CRP can provide a screening tool for inflammation to guide therapeutic intervention and avoid excessive correction of patients with inflammation.
Collapse
Affiliation(s)
- Yiqian Jiang
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Zhenli Yang
- Department of Gynecology, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Qinghua Wu
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Jianhua Cao
- Department of Radiotherapy, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Tiefeng Qiu
- Department of Radiology, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Vun J, Iqbal N, Jones E, Ganguly P. Anti-Aging Potential of Platelet Rich Plasma (PRP): Evidence from Osteoarthritis (OA) and Applications in Senescence and Inflammaging. Bioengineering (Basel) 2023; 10:987. [PMID: 37627872 PMCID: PMC10451843 DOI: 10.3390/bioengineering10080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Aging and age-related changes impact the quality of life (QOL) in elderly with a decline in movement, cognitive abilities and increased vulnerability towards age-related diseases (ARDs). One of the key contributing factors is cellular senescence, which is triggered majorly by DNA damage response (DDR). Accumulated senescent cells (SCs) release senescence-associated secretory phenotype (SASP), which includes pro-inflammatory cytokines, matrix metalloproteinases (MMPs), lipids and chemokines that are detrimental to the surrounding tissues. Chronic low-grade inflammation in the elderly or inflammaging is also associated with cellular senescence and contributes to ARDs. The literature from the last decade has recorded the use of platelet rich plasma (PRP) to combat senescence and inflammation, alleviate pain as an analgesic, promote tissue regeneration and repair via angiogenesis-all of which are essential in anti-aging and tissue regeneration strategies. In the last few decades, platelet-rich plasma (PRP) has been used as an anti-aging treatment option for dermatological applications and with great interest in tissue regeneration for orthopaedic applications, especially in osteoarthritis (OA). In this exploration, we connect the intricate relationship between aging, ARDs, senescence and inflammation and delve into PRP's properties and potential benefits. We conduct a comparative review of the current literature on PRP treatment strategies, paying particular attention to the instances strongly linked to ARDs. Finally, upon careful consideration of this interconnected information in the context of aging, we suggest a prospective role for PRP in developing anti-aging therapeutic strategies.
Collapse
Affiliation(s)
- James Vun
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS97TF, UK
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
| |
Collapse
|
46
|
Colom Díaz PA, Mistry JJ, Trowbridge JJ. Hematopoietic stem cell aging and leukemia transformation. Blood 2023; 142:533-542. [PMID: 36800569 PMCID: PMC10447482 DOI: 10.1182/blood.2022017933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
With aging, hematopoietic stem cells (HSCs) have an impaired ability to regenerate, differentiate, and produce an entire repertoire of mature blood and immune cells. Owing to dysfunctional hematopoiesis, the incidence of hematologic malignancies increases among elderly individuals. Here, we provide an update on HSC-intrinsic and -extrinsic factors and processes that were recently discovered to contribute to the functional decline of HSCs during aging. In addition, we discuss the targets and timing of intervention approaches to maintain HSC function during aging and the extent to which these same targets may prevent or delay transformation to hematologic malignancies.
Collapse
|
47
|
Mitchell A, Malmgren L, Bartosch P, McGuigan FE, Akesson KE. Pro-Inflammatory Proteins Associated with Frailty and Its Progression-A Longitudinal Study in Community-Dwelling Women. J Bone Miner Res 2023; 38:1076-1091. [PMID: 37254268 DOI: 10.1002/jbmr.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The complex pathophysiology underlying biological aging creates challenges for identifying biomarkers associated with frailty. This longitudinal, nontargeted proteomics study aimed to identify proteins associated with frailty, particularly the change from nonfrail to frail. The population-based Osteoporosis Prospective Risk Assessment cohort includes women all of whom are 75 years old at inclusion (n = 1044) and reassessed at 80 years (n = 715) and 85 years (n = 382). A deficits in health frailty index (FI) and 92 plasma proteins (Olink CVD-II panel) were available at all ages. The identical age facilitated differentiating chronological and biological aging. Bidirectional analyses, performed cross-sectionally and longitudinally, used regression models controlled for false discovery rate (FDR), across 5- and 10-year time windows and longitudinal mixed models. Frailty outcomes were frailty index, frailty status (frail defined as FI ≥ 0.25), change in frailty index, and change in frailty status, together with protein expression or change in protein expression. Elevated levels of 32 proteins were positively associated with the FI, cross-sectionally at all ages (range: β-coefficients 0.22-2.06; FDR 0.021-0.024), of which 18 were also associated with frailty status (range: odds ratios 1.40-5.77; FDR 0.022-0.016). Based on the accrued data, eight core proteins (CD4, FGF23, Gal-9, PAR-1, REN, TNFRSF10A TNFRSF11A, and TNFRSF10B) are proposed. A one-unit change in the FI was additively associated with increased protein expression over 5 and 10 years (range: β-coefficients 0.52-1.59; p < 0.001). Increments in baseline FI consistently associated with a change in protein expression over time (5 years, β-range 0.05-1.35; 10 years, β-range 0.51-1.48; all p < 0.001). A one-unit increase in protein expression was also associated with an increased probability of being frail (FI ≥ 0.25) (β-range: 0.14-0.61). Mirroring the multisystem deterioration that typifies frailty, the proteins and their associated biological pathways reflect pathologies, including the renal system, skeletal homeostasis, and TRAIL-activated apoptotic signaling. The core proteins are compelling candidates for understanding the development and progression of frailty with advancing age, including the intrinsic musculoskeletal component. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adam Mitchell
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Linnea Malmgren
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Patrik Bartosch
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Fiona Elizabeth McGuigan
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
48
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549883. [PMID: 37502913 PMCID: PMC10370160 DOI: 10.1101/2023.07.20.549883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. Methods With the focus on identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Results We identified Lymphoid Enhancer Binding Factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with Idiopathic Pulmonary Fibrosis (IPF), an age-related disease with strong ties to cellular senescence, we demonstrated a stark dysregulation of LEF1. Conclusions Collectively, our results suggest that the LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
| | - Khaled Sayed
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eleanor Valenzi
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Lafyatis
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
50
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|