1
|
Ostos-Valverde A, Herrera-Solís A, Ruiz-Contreras AE, Méndez-Díaz M, Prospéro-García OE. Sleep debt-induced anxiety and addiction to substances of abuse: A narrative review. Pharmacol Biochem Behav 2024; 245:173874. [PMID: 39260592 DOI: 10.1016/j.pbb.2024.173874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Substance Use Disorder (SUD) has been conceptualized as an outcome of a dysregulated reward system. However, individuals with SUD suffer from anxiety with an intensity depending on the abstinence period length. This review discusses the role of anxiety as a major contributor to the initiation and perpetuation of SUD, and its dependence on an up-regulated defense-antireward system. In addition, it is discussed that sleep debt, and its psychosocial consequences, promote anxiety, contributing to SUD generation and maintenance. Healthy sleep patterns can be disrupted by diverse medical conditions and negative psychosocial interactions, resulting in accumulated sleep debt and anxiety. Within this narrative review, we discuss the interplay between the motivation-reward and defense-antireward systems, framing the progression from recreational drug use to addiction. This interplay is nuanced by sleep debt-induced anxiety and its psychosocial consequences as contributory vulnerability factors in the genesis of addiction.
Collapse
Affiliation(s)
- Aline Ostos-Valverde
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Andrea Herrera-Solís
- Grupo de Neurociencias: Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Secretaría de Salud, Mexico
| | - Alejandra E Ruiz-Contreras
- Grupo de Neurociencias: Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicofisiología y Neurociencias, Facultad de Psicología, UNAM, Mexico
| | - Mónica Méndez-Díaz
- Grupo de Neurociencias: Laboratorio de Ontogenia y Adicciones, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico
| | - Oscar E Prospéro-García
- Grupo de Neurociencias: Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
2
|
Parvez S, Dzupina A, Fatima G, Fedacko J, Magomedova A, Mehdi AA. Unveiling the Role of Human PER3 Gene Polymorphism (rs57875989) as a Potential Risk Factor in Fibromyalgia Syndrome Patients. Cureus 2024; 16:e75210. [PMID: 39759625 PMCID: PMC11700474 DOI: 10.7759/cureus.75210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose Fibromyalgia syndrome (FMS) presents a chronic pain condition affecting muscles and joints. Investigating circadian rhythms' disruption, integral to physiological responses, this study delves into the potential impact of PER3 CLOCK gene polymorphism (rs57875989) on FMS pathogenesis. Methods In this study, we investigated PER3 gene polymorphism in 100 FMS patients and an equal number of control individuals. The genotyping of the PER3 gene polymorphism was conducted using polymerase chain reaction (PCR) methodology. Subsequently, we evaluated the association between PER3 gene polymorphism and FMS susceptibility using odds ratios (ORs) and 95% confidence intervals (CIs) by comparing the genotype and allele frequencies of the PER3 gene polymorphism between FMS patients and controls. Results The PER3 gene revealed three genotypes: 4/4, 4/5, and 5/5, with allele frequencies showing significant associations between FMS patients and controls (p<0.05). Notably, PER3 gene polymorphism was linked to FMS development, particularly the 4/4 genotype versus the combined 4/5 and 5/5 genotypes (OR=2.85; 95% CI, 1.35-6.0; p=0.008). These findings suggest a potential role of PER3 gene variation as a genetic risk factor for FMS. Conclusion These findings reported a potential association between PER3 gene polymorphism and FMS, illuminating novel pathways for comprehending and addressing this complex condition. This study holds promise for advancing our understanding of FMS etiology and may inform the development of innovative management strategies tailored to individual genetic profiles, potentially leading to more effective treatments and improved outcomes for patients grappling with FMS.
Collapse
Affiliation(s)
- Sidrah Parvez
- Department of Biotechnology, Era University, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Andrej Dzupina
- Department of Cardiology and Angiology, National Institute of Cardiovascular Diseases, Bratislava, SVK
| | - Ghizal Fatima
- Department of Biotechnology, Era University, Era's Lucknow Medical College and Hospital, lucknow, IND
| | - Jan Fedacko
- Department of Cardiology, Pavol Jozef Šafárik University, Kosice, SVK
| | - Aminat Magomedova
- Department of Population, Lomonosov Moscow State University, Moscow, RUS
| | - Abbas A Mehdi
- Department of Biochemistry, Era University, Era's Lucknow Medical College and Hospital, Lucknow, IND
| |
Collapse
|
3
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Cherasse Y, Taira Y, Rassu AL, Barateau L, Evangelista E, Muratani M, Funato H, Yanagisawa M, Dauvilliers Y. Association between idiopathic hypersomnia and a genetic variant in the PER3 gene. J Sleep Res 2024; 33:e14146. [PMID: 38253863 DOI: 10.1111/jsr.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
We aim to identify genetic markers associated with idiopathic hypersomnia, a disabling orphan central nervous system disorder of hypersomnolence that is still poorly understood. In our study, DNA was extracted from 79 unrelated patients diagnosed with idiopathic hypersomnia with long sleep time at the National Reference Center for Narcolepsy-France according to very stringent diagnostic criteria. Whole exome sequencing on the first 30 patients with idiopathic hypersomnia (25 females and 5 males) allowed the single nucleotide variants to be compared with a control population of 574 healthy subjects from the French Exome project database. We focused on the identification of genetic variants among 182 genes related to the regulation of sleep and circadian rhythm. Candidate variants obtained by exome sequencing analysis were then validated in a second sample of 49 patients with idiopathic hypersomnia (37 females and 12 males). Our study characterised seven variants from six genes significantly associated with idiopathic hypersomnia compared with controls. A targeted sequencing analysis of these seven variants on 49 other patients with idiopathic hypersomnia confirmed the relative over-representation of the A➔C variant of rs2859390, located in a potential splicing-site of PER3 gene. Our findings support a genetic predisposition and identify pathways involved in the pathogeny of idiopathic hypersomnia. A variant of the PER3 gene may predispose to idiopathic hypersomnia with long sleep time.
Collapse
Affiliation(s)
- Yoan Cherasse
- Institute of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuki Taira
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Anna Laura Rassu
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Lucie Barateau
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| | - Elisa Evangelista
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
- INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University Montpellier, Montpellier, France
| |
Collapse
|
5
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Stone RA, Tobias JW, Wei W, Carlstedt X, Zhang L, Iuvone PM, Nickla DL. Diurnal gene expression patterns in retina and choroid distinguish myopia progression from myopia onset. PLoS One 2024; 19:e0307091. [PMID: 39028695 PMCID: PMC11259283 DOI: 10.1371/journal.pone.0307091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/30/2024] [Indexed: 07/21/2024] Open
Abstract
The world-wide prevalence of myopia (nearsightedness) is increasing, but its pathogenesis is incompletely understood. Among many putative mechanisms, laboratory and clinical findings have implicated circadian biology in the etiology of myopia. Consistent with a circadian hypothesis, we recently reported a marked variability in diurnal patterns of gene expression in two crucial tissues controlling post-natal refractive development - the retina and choroid-at the onset of form-deprivation myopia in chick, a widely studied and validated model. To extend these observations, we assayed gene expression by RNA-Seq in retina and choroid during the progression of established unilateral form-deprivation myopia of chick. We assayed gene expression every 4 hours during a single day from myopic and contralateral control eyes. Retinal and choroidal gene expression in myopic vs. control eyes during myopia progression differed strikingly at discrete times during the day. Very few differentially expressed genes occurred at more than one time in either tissue during progressing myopia. Similarly, Gene Set Enrichment Analysis pathways varied markedly by time during the day. Some of the differentially expressed genes in progressing myopia coincided with candidate genes for human myopia, but only partially corresponded with genes previously identified at myopia onset. Considering other laboratory findings and human genetics and epidemiology, these results further link circadian biology to the pathogenesis of myopia; but they also point to important mechanistic differences between the onset of myopia and the progression of established myopia. Future laboratory and clinical investigations should systematically incorporate circadian mechanisms in studying the etiology of myopia and in seeking more effective treatments to normalize eye growth in children.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xia Carlstedt
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - Lixin Zhang
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology & Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Debora L. Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Barlattani T, Soltmann B, D'Amelio C, Socci V, Pacitti F, Pompili M, Ritter P. The influence of PER3 VNTR genotypes on the age of onset in a group of bipolar I disorder patients: an exploratory study. Int J Bipolar Disord 2024; 12:25. [PMID: 38992306 PMCID: PMC11239620 DOI: 10.1186/s40345-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND PER3 is a circadian gene that contains a variable number of tandem repeats (VNTR) which codifies for three genotypes: 4/4; 4/5; and 5/5 and is involved in non-visual response to light, a critical process associated with bipolar disorder onset. Benedetti et al. (Neurosci Lett 445(2):184-7) related this VNTR with bipolar disorder age of onset and linked genotype 5/5 with an earlier onset. In this study, we aimed to investigate these associations of PER3 VNTR genotypes with age of onset in a homogenous sample of German patients with bipolar I disorder through Kaplan-Meier curves. METHODS 45 patients were enrolled and divided into three groups according to PER3 VNTR genotypes. Recognizing common biological features, we built a combined group of -5 allele carriers (4/5 + 5/5). As a primary outcome, Kaplan-Meier analysis was conducted to delineate the three genotypes' influence on age of onset. The secondary Kaplan-Meier analysis aimed to evaluate the relation between the 4/4 homozygotes group and the combined group (4/5 + 5/5) with age of onset. Finally, we proceeded to compare groups through a Log Rank Test and performed an analysis of covariance (ANCOVA). RESULTS The Kaplan-Meier analysis with three separate genotypes didn't replicate the findings of Benedetti's study. The analysis comparing genotype 4/4 with the combined group showed the influence of PER3 VNTR variants on the age of onset and relates genotype 4/4 to an earlier onset. ANCOVA between the combined and the 4/4 genotype groups, correlated genotype 4/4 with an increased number of depressive episodes. CONCLUSION This study showed no significant effect of PER3 VNTR genotypes on the age of onset and in linking genotype 5/5 with an earlier onset age. Contrasting results may arise from intrinsic differences between the two studies but also shed light on hypothetically different levels of functioning of PER3 VNTR genotypes in the context of bipolar pathology. Further studies will require bigger and more homogeneous clinical samples.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy.
| | - Bettina Soltmann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Chiara D'Amelio
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Valentina Socci
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Francesca Pacitti
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Unit of Psychiatry, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Luo H, Cheng J, Zhang Z, Zhang Y, Wang X, Hu R, Li J, Guo Y, Luo Q. Seasonal patterns in Chinese population: Validating the seasonal pattern assessment questionnaire and exploring associations with psychiatric diagnoses and biological rhythms. Chronobiol Int 2024; 41:609-620. [PMID: 38644696 DOI: 10.1080/07420528.2024.2337875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Seasonal patterns (SP) exert a notable influence on the course and prognosis of patients with affective disorders, serving as a specifier in diagnosis. However, there is limited exploration of seasonality among psychotic patients, and the distinctions in seasonality among psychiatric patients remain unclear. In this study, we enrolled 198 psychiatric patients with anxiety and depressive disorders (A&D), bipolar disorder (BD), and schizophrenia (SZ), as well as healthy college students. Online questionnaires, including the Seasonal Pattern Assessment Questionnaire (SPAQ) for seasonality, the Morningness and Eveningness Questionnaire-5 (MEQ-5) for chronotypes, and the Pittsburgh Sleep Quality Index (PSQI), were administered. The validity and reliability of the Chinese version of the SPAQ were thoroughly analyzed, revealing a Cronbach's alpha of 0.896 with a two-factor structure. Results indicated that higher seasonality was correlated with poorer sleep quality and a more delayed chronotype (p < 0.05). Significant monthly variations were particularly evident in BD, specifically in mood, appetite, weight, social activities, and sleep dimensions (p < 0.001). In summary, the Chinese version of SPAQ is validated, demonstrating moderate correlations between seasonality, chronotype, and sleep quality. BD patients exhibited the strongest seasonality, while mood disorder patients displayed more delayed chronotypes than SZ.
Collapse
Affiliation(s)
- Huirong Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Cheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, Nanchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinlin Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Children and Adolescents, Chongqing Mental Health Center, Chongqing, China
| | - Xueqian Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- School of Psychology, Army Military Medical University, Chongqing, China
| | - Renqin Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanwei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Fink AM. Shift Work Sleep Disorder and Mental Health: An Integrative Review of Neurobiological, Sociological, and Psychological Perspectives With Public Policy Implications. Policy Polit Nurs Pract 2024; 25:94-102. [PMID: 38509807 DOI: 10.1177/15271544241238752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Shift workers support critical 24-hr operations; their health can be impaired by disrupted circadian rhythms and dysfunctional sleep. Shift work sleep disorder (SWSD) is a prevalent condition with significant psychological consequences. Nurse leaders have not yet implemented effective policies to prevent SWSD and optimize shift workers' mental health. The purpose of this integrative review was to examine research about SWSD within the context of neurobiological, sociological, and psychological perspectives that can inform policy changes. The Centers for Disease Control and Prevention Policy Analytic Framework was used to determine the priority recommendations. A search of three databases provided 19 research articles about SWSD and mental health, which illustrated how SWSD is common around the world in many occupations. Backward-rotating schedules and quick returns were risk factors for SWSD. In addition, SWSD was associated with circadian languidity, sleep reactivity, depressive symptoms, and anxiety. Collectively, the studies lacked objective measures of sleep and circadian rhythms, which has hindered the ability to devise interventions that will target the neurobiological causes of SWSD. The research also lacked attention to important sociological factors, such as workers' pay and benefits. Using these findings, nurse leaders can contribute to public policy reforms that increase funding for more rigorous SWSD research. Lawmakers should be advised by nurse leaders to enforce new regulations that provide incentives for employers to create healthier workplaces, such as prohibiting the overuse of schedules that make employees vulnerable to SWSD and providing funds for interventions to prevent SWSD and support mental health.
Collapse
Affiliation(s)
- Anne M Fink
- Department of Biobehavioral Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, USA
| |
Collapse
|
10
|
Tagaya H. Chronotype as risk factors: is it genetically defined or results of behavior? Sleep Biol Rhythms 2024; 22:159-160. [PMID: 38524172 PMCID: PMC10959903 DOI: 10.1007/s41105-024-00514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- Hirokuni Tagaya
- Department of Mental Health, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
11
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
12
|
Wang Q, Liu H, Wang Z, Chen Y, Zhou S, Hu X, Xu Y, Zhang X, Wang Y, Gao Y, Li S. Circadian gene Per3 promotes astroblastoma progression through the P53/BCL2/BAX signalling pathway. Gene 2024; 895:147978. [PMID: 37951372 DOI: 10.1016/j.gene.2023.147978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
The key circadian genes, Period1(Per1), Period2(Per2), and Period3(Per3), constitute the mammalian Period gene family. The abnormal expression of Per1 and Per2 is closely related to tumor development, but there are few reports on Per3 and tumorigenesis. This study was conducted to determine whether the abnormal expression of Per3 could influence the progression of astroblastoma. The results indicated that the expression level of Per3 was increased in astroblastoma cells, and the high expression of Per3 was correlated with the poor overall survival time of glioma patients. The role of Per3 in astroblastoma cells was then investigated using two approaches: interference and overexpression. The interference of Per3 inhibited astroblastoma cell proliferation by inducing the cell cycle at the S phase. The interference of Per3 inhibited the migration and invasion of astroblastoma cells, while promoted the astroblastoma cell apoptosis and the expression of the apoptosis genes Cleaved-CASP3, P53, and BAX. The overexpression of Per3 promoted proliferation by affecting the S phase distribution of the astroblastoma cell cycle. The overexpression of Per3 promoted the migration and invasion of astroblastoma cells, while inhibited the astroblastoma cell apoptosis and the expression of apoptosis genes Cleaved-CASP3, P53, and BAX. RNA-seq analysis showed that the interference of Per3 in astrocytoma cells resulted in significant changes in the expression levels of 764 genes. Among the differentially expressed genes enriched in apoptosis-related pathways, the interference of Per3 resulted in significant upregulation of MARCKSL1 expression, in contrast to significant downregulation of SFRP4, EPB41L3, and GPC5 expression. Taken together, our results suggest that Per3 appears to be a pro-cancer gene by altering the proliferation, migration, invasion, and apoptosis of astroblastoma cells. As a result, the Per3 gene may be a promising therapeutic target in the treatment of astroblastoma.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Zhiheng Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yuxin Chen
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Shujing Zhou
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Xinyi Hu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yangfei Xu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Xinxin Zhang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China.
| | - Shujing Li
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China.
| |
Collapse
|
13
|
Xie X, Xu H, Shu R, Sun L, Zhang M, Hu Q, Zhu K, Li Z, Wu F. Clock gene Per3 deficiency disrupts circadian alterations of gut microbiota in mice. Acta Biochim Biophys Sin (Shanghai) 2023; 55:2004-2007. [PMID: 37964605 PMCID: PMC10753358 DOI: 10.3724/abbs.2023257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
- Shanghai Mental Health CenterShanghai Jiao Tong UniversitySchool of MedicineShanghai201109China
- Department of PharmacologyUniversity of OxfordMansfield RoadOX1 3QT OxfordUK
| | - Haoshen Xu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Ruonan Shu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lei Sun
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Mengya Zhang
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Qinglian Hu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Kai Zhu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Zezhi Li
- Department of Psychiatrythe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhou510370China
| | - Fengchun Wu
- Department of Psychiatrythe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhou510370China
| |
Collapse
|
14
|
Ma H, Sheng X, Chen W, He H, Liu J, He Y, Huang F. PER2 regulates odontoblastic differentiation of dental papilla cells in vitro via intracellular ATP content and reactive oxygen species levels. PeerJ 2023; 11:e16489. [PMID: 38084142 PMCID: PMC10710777 DOI: 10.7717/peerj.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Background Dental papilla cells (DPCs) are one of the key stem cells for tooth development, eventually forming dentin and pulp. Previous studies have reported that PER2 is expressed in a 24-hour oscillatory pattern in DPCs in vitro. In vivo, PER2 is highly expressed in odontoblasts (which are differentiated from DPCs). However, whether PER2 modulates the odontogenic differentiation of DPCs is uncertain. This research was to identify the function of PER2 in the odontogenic differentiation of DPCs and preliminarily explore its mechanisms. Methods We monitored the expression of PER2 in DPCs differentiated in vivo. We used PER2 overexpression and knockdown studies to assess the role of PER2 in DPC differentiation and performed intracellular ATP content and reactive oxygen species (ROS) assays to further investigate the mechanism. Results PER2 expression was considerably elevated throughout the odontoblastic differentiation of DPCs in vivo. Overexpressing Per2 boosted levels of odontogenic differentiation markers, such as dentin sialophosphoprotein (Dspp), dentin matrix protein 1 (Dmp1), and alkaline phosphatase (Alp), and enhanced mineralized nodule formation in DPCs. Conversely, the downregulation of Per2 inhibited the differentiation of DPCs. Additionally, downregulating Per2 further affected intracellular ATP content and ROS levels during DPC differentiation. Conclusion Overall, we demonstrated that PER2 positively regulates the odontogenic differentiation of DPCs, and the mechanism may be related to mitochondrial function as shown by intracellular ATP content and ROS levels.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Sheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wanting Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Mishra HK, Wei H, Rohr KE, Ko I, Nievergelt CM, Maihofer AX, Shilling PD, Alda M, Berrettini WH, Brennand KJ, Calabrese JR, Coryell WH, Frye M, Gage F, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Contributions of circadian clock genes to cell survival in fibroblast models of lithium-responsive bipolar disorder. Eur Neuropsychopharmacol 2023; 74:1-14. [PMID: 37126998 DOI: 10.1016/j.euroneuro.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.
Collapse
Affiliation(s)
- Himanshu K Mishra
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Heather Wei
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Kayla E Rohr
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Insu Ko
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Paul D Shilling
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University Halifax, Canada
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen J Brennand
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mt Sinai, USA
| | - Joseph R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Frye
- Department of Psychiatry, Mayo Clinic Rochester, MN, USA
| | - Fred Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elliot Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA
| | - Ketil J Oedegaard
- Section for Psychiatry, University of Bergen and Norment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry Haukeland University Hospital, Bergen, Norway
| | - Peter P Zandi
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Unver S, Yigit S, Tural E, Yigit E, Atan T. Evaluation of a circadian rhythm gene (PER3) VNTR variant in Turkish athletes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:173-183. [PMID: 37610137 DOI: 10.1080/15257770.2023.2248198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Circadian rhythmicity has been shown to contribute to the regulation of key physiological and cognitive processes related to performance. The period homolog 3 (PER3) is expressed in a circadian pattern in the suprachiasmatic nucleus. Therefore, in this study, we aimed to evaluate the role of the variable tandem repeat (VNTR) variant of the PER3 gene in athletic performance in the Turkish population. METHODS This study included 223 subjects, which consisted of 123 athletes and 100 sedentary controls. Blood samples were drawn from all subjects. DNA was extracted from whole-blood samples. The PER3 VNTR variant was genotyped using the polymerase chain reaction-restriction method (PCR). The results of the analyses were evaluated for statistical significance. RESULTS The mean ages of athletes and controls were 22 ± 2.814 and 23 ± 3.561, respectively. Endurance athletes in the group were 21.1%, and sprint athletes were 78.9%. There was no statistical significance in terms of PER3 VNTR genotype distribution or allele frequency. In the recessive model, a statistically significant association was observed when the athletes were compared with the controls according to 4/4 + 4/5 versus 5/5 genotype (p = 0.020). CONCLUSION In this case-control study, for the first time in our country, we obtained findings suggesting that the PER3 VNTR variant may affect sports performance in the Turkish population. Results need to be replicated in different ethnic and larger samples.
Collapse
Affiliation(s)
- Saban Unver
- Department of Coaching Education, Faculty of Sports Science, University of Ondokuz Mayis, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary, Ondokuz Mayıs University, Samsun, Turkey
- Department of Medical Biology, Graduate Institute, Ondokuz Mayıs University, Samsun, Turkey
| | - Ercan Tural
- Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Ercument Yigit
- Department of Sports Management, School of Physical Education and Sports, Halic University, Istanbul, Turkey
| | - Tulin Atan
- Department of Coaching Education, Faculty of Sports Science, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
17
|
Lo YJ, Mishra VK, Lo HY, Dubey NK, Lo WC. Clinical Spectrum and Trajectory of Innovative Therapeutic Interventions for Insomnia: A Perspective. Aging Dis 2023; 14:1038-1069. [PMID: 37163444 PMCID: PMC10389812 DOI: 10.14336/ad.2022.1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/03/2022] [Indexed: 05/12/2023] Open
Abstract
Increasing incidences of insomnia in adults, as well as the aging population, have been reported for their negative impact on the quality of life. Insomnia episodes may be associated with neurocognitive, musculoskeletal, cardiovascular, gastrointestinal, renal, hepatic, and metabolic disorders. Epidemiological evidence also revealed the association of insomnia with oncologic and asthmatic complications, which has been indicated as bidirectional. Two therapeutic approaches including cognitive behavioral therapy (CBT) and drugs-based therapies are being practiced for a long time. However, the adverse events associated with drugs limit their wide and long-term application. Further, Traditional Chinese medicine, acupressure, and pulsed magnetic field therapy may also provide therapeutic relief. Notably, the recently introduced cryotherapy has been demonstrated as a potential candidate for insomnia which could reduce pain, by suppressing oxidative stress and inflammation. It seems that the synergistic therapeutic approach of cryotherapy and the above-mentioned approaches might offer promising prospects to further improve efficacy and safety. Considering these facts, this perspective presents a comprehensive summary of recent advances in pathological aetiologies of insomnia including COVID-19, and its therapeutic management with a greater emphasis on cryotherapy.
Collapse
Affiliation(s)
| | | | | | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan.
- ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan.
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
18
|
Chauhan S, Norbury R, Faßbender KC, Ettinger U, Kumari V. Beyond sleep: A multidimensional model of chronotype. Neurosci Biobehav Rev 2023; 148:105114. [PMID: 36868368 DOI: 10.1016/j.neubiorev.2023.105114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Chronotype can be defined as an expression or proxy for circadian rhythms of varied mechanisms, for example in body temperature, cortisol secretion, cognitive functions, eating and sleeping patterns. It is influenced by a range of internal (e.g., genetics) and external factors (e.g., light exposure), and has implications for health and well-being. Here, we present a critical review and synthesis of existing models of chronotype. Our observations reveal that most existing models and, as a consequence, associated measures of chronotype have focused solely or primarily on the sleep dimension, and typically have not incorporated social and environmental influences on chronotype. We propose a multidimensional model of chronotype, integrating individual (biological and psychological), environmental and social factors that appear to interact to determine an individual's true chronotype with potential feedback loops between these factors. This model could be beneficial not only from a basic science perspective but also in the context of understanding health and clinical implications of certain chronotypes as well as designing preventive and therapeutic approaches for related illnesses.
Collapse
Affiliation(s)
- Satyam Chauhan
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| | - Ray Norbury
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | | | | | - Veena Kumari
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| |
Collapse
|
19
|
Fafrowicz M, Ceglarek A, Olszewska J, Sobczak A, Bohaterewicz B, Ostrogorska M, Reuter-Lorenz P, Lewandowska K, Sikora-Wachowicz B, Oginska H, Hubalewska-Mazgaj M, Marek T. Dynamics of working memory process revealed by independent component analysis in an fMRI study. Sci Rep 2023; 13:2900. [PMID: 36808174 PMCID: PMC9938907 DOI: 10.1038/s41598-023-29869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
Human memory is prone to errors in many everyday activities but also when cultivating hobbies such as traveling and/or learning a new language. For instance, while visiting foreign countries, people erroneously recall foreign language words that are meaningless to them. Our research simulated such errors in a modified Deese-Roediger-McDermott paradigm for short-term memory with phonologically related stimuli aimed at uncovering behavioral and neuronal indices of false memory formation with regard to time-of-day, a variable known to influence memory. Fifty-eight participants were tested in a magnetic resonance (MR) scanner twice. The results of an Independent Component Analysis revealed encoding-related activity of the medial visual network preceding correct recognition of positive probes and correct rejection of lure probes. The engagement of this network preceding false alarms was not observed. We also explored if diurnal rhythmicity influences working memory processes. Diurnal differences were seen in the default mode network and the medial visual network with lower deactivation in the evening hours. The GLM results showed greater activation of the right lingual gyrus, part of the visual cortex and the left cerebellum in the evening. The study offers new insight into the mechanisms associated with false memories, suggesting that deficient engagement of the medial visual network during the memorization phase of a task results in short-term memory distortions. The results shed new light on the dynamics of working memory processes by taking into account the effect of time-of-day on memory performance.
Collapse
Affiliation(s)
- Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Justyna Olszewska
- grid.267474.40000 0001 0674 4543Department of Psychology, University of Wisconsin-Oshkosh, Oshkosh, WI USA
| | - Anna Sobczak
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Bartosz Bohaterewicz
- grid.433893.60000 0001 2184 0541Department of Psychology of Individual Differences, Psychological Diagnosis and Psychometrics, Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Monika Ostrogorska
- grid.5522.00000 0001 2162 9631Chair of Radiology, Medical College, Jagiellonian University, Krakow, Poland
| | - Patricia Reuter-Lorenz
- grid.214458.e0000000086837370Department of Psychology, University of Michigan, Ann Arbor, MI USA
| | - Koryna Lewandowska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Barbara Sikora-Wachowicz
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Halszka Oginska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- grid.413454.30000 0001 1958 0162Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tadeusz Marek
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| |
Collapse
|
20
|
Musolf AM, Haarman AEG, Luben RN, Ong JS, Patasova K, Trapero RH, Marsh J, Jain I, Jain R, Wang PZ, Lewis DD, Tedja MS, Iglesias AI, Li H, Cowan CS, Biino G, Klein AP, Duggal P, Mackey DA, Hayward C, Haller T, Metspalu A, Wedenoja J, Pärssinen O, Cheng CY, Saw SM, Stambolian D, Hysi PG, Khawaja AP, Vitart V, Hammond CJ, van Duijn CM, Verhoeven VJM, Klaver CCW, Bailey-Wilson JE. Rare variant analyses across multiethnic cohorts identify novel genes for refractive error. Commun Biol 2023; 6:6. [PMID: 36596879 PMCID: PMC9810640 DOI: 10.1038/s42003-022-04323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.
Collapse
Affiliation(s)
- Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Annechien E G Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert N Luben
- MRC Epidemiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Jue-Sheng Ong
- Statistical Genetics Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karina Patasova
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Rolando Hernandez Trapero
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Joseph Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ishika Jain
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Riya Jain
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Paul Zhiping Wang
- Institute for Biomedical Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyana D Lewis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Milly S Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hengtong Li
- Data Science Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Cameron S Cowan
- Institute for Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priya Duggal
- The Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore, Singapore
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore, Singapore
- Myopia Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Anthony P Khawaja
- MRC Epidemiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Christopher J Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Institute for Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Kunorozva L, Rae DE, Roden LC. Dim light melatonin onset following simulated eastward travel is earlier in young males genotyped as PER35/5 than PER34/4. Chronobiol Int 2022; 39:1611-1623. [PMID: 36324294 DOI: 10.1080/07420528.2022.2139184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inter-individual variability exists in recovery from jetlag following travel across time zones. Part of this variation may be due to genetic differences at the variable number tandem repeat (VNTR) polymorphism of the PERIOD3 (PER3) gene as this polymorphism has been associated with chronotype and sleep, as well as sensitivity to blue light on melatonin suppression. To test this hypothesis we conducted a laboratory-based study to compare re-entrainment in males genotyped as PER34/4 (n = 8) and PER35/5 (n = 8) following simulated eastward travel across six time zones. The recovery strategy included morning blue-enriched light exposure and appropriately-timed meals during the first 24 h after simulated travel. Dim light melatonin onset (DLMO), sleep characteristics, perceived sleepiness levels (Stanford Sleepiness Scale), and resting metabolic parameters were measured during constant routine periods before and after simulated travel. While DLMO time was similar between the two groups prior to simulated eastward travel (p = .223), it was earlier in the PER35/5 group (17h23 (17h15; 17h37)) than the PER34/4 group (18h05 (17h53; 18h12)) afterwards (p = .046). During resynchronisation, perceived sleepiness and metabolic parameters were similar to pre-travel in both groups but sleep was more disturbed in the PER35/5 group (total sleep time: p = .008, sleep efficiency: p = .008, wake after sleep onset: p = .023). The PER3 VNTR genotype may influence the efficacy of re-entrainment following trans-meridian travel when blue-enriched light exposure is incorporated into the recovery strategy on the first day following travel.
Collapse
Affiliation(s)
- Lovemore Kunorozva
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, Cape Town, South Africa.,Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dale E Rae
- Health through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, Cape Town, South Africa.,Health through Physical Activity, Lifestyle and Sport Research Centre & Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Centre for Sport, Exercise and Life Sciences/School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
22
|
Patil NP, Gómez-Hernández A, Zhang F, Cancel L, Feng X, Yan L, Xia K, Takematsu E, Yang EY, Le V, Fisher ME, Gonzalez-Rodriguez A, Garcia-Monzon C, Tunnell J, Tarbell J, Linhardt RJ, Baker AB. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials 2022; 291:121865. [DOI: 10.1016/j.biomaterials.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
23
|
Low circadian amplitude and delayed phase are linked to seasonal affective disorder (SAD). JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
24
|
Overton R, Zafar A, Attia Z, Ay A, Ingram KK. Machine Learning Analyses Reveal Circadian Features Predictive of Risk for Sleep Disturbance. Nat Sci Sleep 2022; 14:1887-1900. [PMID: 36304418 PMCID: PMC9595061 DOI: 10.2147/nss.s379888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Sleep disturbances often co-occur with mood disorders, with poor sleep quality affecting over a quarter of the global population. Recent advances in sleep and circadian biology suggest poor sleep quality is linked to disruptions in circadian rhythms, including significant associations between sleep features and circadian clock gene variants. Methods Here, we employ machine learning techniques, combined with statistical approaches, in a deeply phenotyped population to explore associations between clock genotypes, circadian phenotypes (diurnal preference and circadian phase), and risk for sleep disturbance symptoms. Results As found in previous studies, evening chronotypes report high levels of sleep disturbance symptoms. Using molecular chronotyping by measuring circadian phase, we extend these findings and show that individuals with a mismatch between circadian phase and diurnal preference report higher levels of sleep disturbance. We also report novel synergistic interactions in genotype combinations of Period 3, Clock and Cryptochrome variants (PER3B (rs17031614)/ CRY1 (rs228716) and CLOCK3111 (rs1801260)/ CRY2 (rs10838524)) that yield strong associations with sleep disturbance, particularly in males. Conclusion Our results indicate that both direct and indirect mechanisms may impact sleep quality; sex-specific clock genotype combinations predictive of sleep disturbance may represent direct effects of clock gene function on downstream pathways involved in sleep physiology. In addition, the mediation of clock gene effects on sleep disturbance indicates circadian influences on the quality of sleep. Unraveling the complex molecular mechanisms at the intersection of circadian and sleep physiology is vital for understanding how genetic and behavioral factors influencing circadian phenotypes impact sleep quality. Such studies provide potential targets for further study and inform efforts to improve non-invasive therapeutics for sleep disorders.
Collapse
Affiliation(s)
| | - Aziz Zafar
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ziad Attia
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA
| |
Collapse
|
25
|
Webb AJ, Harper E, Rattay T, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, Briers E, Bultijnck R, Chang-Claude J, Choudhury A, Cicchetti A, De Ruysscher D, De Santis MC, Dunning AM, Elliott RM, Fachal L, Gómez-Caamaño A, Gutiérrez-Enríquez S, Johnson K, Lobato-Busto R, Kerns SL, Post G, Rancati T, Reyes V, Rosenstein BS, Seibold P, Seoane A, Sosa-Fajardo P, Sperk E, Taboada-Valladares B, Valdagni R, Vega A, Veldeman L, Ward T, West CM, Symonds RP, Talbot CJ. Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort. EBioMedicine 2022; 84:104269. [PMID: 36130474 PMCID: PMC9486558 DOI: 10.1016/j.ebiom.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort. METHODS Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors. FINDINGS Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype. INTERPRETATION Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally. FUNDING EU-FP7.
Collapse
Affiliation(s)
- Adam J Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Emily Harper
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - David Azria
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Celine Bourgier
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Muriel Brengues
- Institut de Recherche en Cancérologie de Montpellier, Université Montpellier, Inserm U1194, Montpellier, France
| | | | - Renée Bultijnck
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro clinic), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Maria Carmen De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rebecca M Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kerstie Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, New York, NY, United States
| | - Giselle Post
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Victoria Reyes
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Barry S Rosenstein
- Department of Radiation Oncology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alejandro Seoane
- Medical Physics Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paloma Sosa-Fajardo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Elena Sperk
- Department of Radiation Oncology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Begoña Taboada-Valladares
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haematology-Oncology, Universita degli Studi di Milano, Italy
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Tim Ward
- Patient advocate, NCRI CTRad consumer, UK
| | - Catharine M West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - R Paul Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | |
Collapse
|
26
|
Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: A graph-based analysis. Neuroimage 2022; 256:119246. [PMID: 35477020 PMCID: PMC9799965 DOI: 10.1016/j.neuroimage.2022.119246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA,Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA,Corresponding author: Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. (F.V. Farahani)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA,Department of Psychology, University of California, Berkeley, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pamela K. Douglas
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland,Corresponding author. Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland. (M. Fafrowicz)
| |
Collapse
|
27
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
28
|
Nacar MC, Nursal AF, Kuruca N, Yigit S. A circadian rhythm gene (PER3) VNTR variant as possible risk factor in cohort of Turkish females with primary dysmenorrhea. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:900-909. [PMID: 35707903 DOI: 10.1080/15257770.2022.2085743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Primary dysmenorrhea (PDM), which is the most prevalent problem related to the menstrual cycle in women of reproductive age, is due to sleep disorders and negative moods. Circadian rhythms, which are the immediate 24-h processes, enable an organism to adapt the suitable physiological responses to the environmental light-dark changes. Disturbed circadian rhythms are closely associated with several diseases, including sleep disorders. It has been reported that variable number tandem repeat (VNTR) variant in the coding region of circadian rhythm gene PERIOD 3 (PER3) affects sleep. Therefore, in the present study, we investigated the association between PDM and PER3 VNTR variant in Turkish females. A sample of 122 females with PDM and 150 healthy females were included in the study. Genoytyping of PER3 VNTR variant was performed on DNA by polymerase chain reaction (PCR) analysis using specific primers. We evaluated the relation between PER3 VNTR variant and PDM by calculating the odds ratios (ORs) and 95% confidence intervals (CIs). In our analyses of genotype data collected from total 272 subjects, we found that the PER3 VNTR variant was associated with development of PDM [codominant model (5/5 vs. 4/4 + 4/5): OR = 0.664; 95% CI, 0.39-1.10; p = 0.05). The three genotypes of the VNTR variant (4/4, 4/5, and 5/5) and their allelic frequencies showed nonsignificant differences between patients and control group (p > 0.05). In summary, PER3 VNTR variant may be associated with PDM in a Turkish female. However, further studies in different ethnic populations are needed to address the full role of this variant in PDM.
Collapse
Affiliation(s)
- Mehmet Can Nacar
- Department of Obstetrics and Gynecology, Adıyaman University School of Medicine, Adıyaman, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Nilufer Kuruca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
29
|
Adan A, Navarro JF. Protocol for Characterization of Addiction and Dual Disorders: Effectiveness of Coadjuvant Chronotherapy in Patients with Partial Response. J Clin Med 2022; 11:1846. [PMID: 35407454 PMCID: PMC8999756 DOI: 10.3390/jcm11071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
This protocol aims to characterize patients with dual disorders (DD; comorbid major depression and schizophrenia) compared with patients with only a diagnosis of substance use disorder (SUD) and those with only a diagnosis of severe mental illness (SMI; major depression and schizophrenia), evaluating clinical and personality characteristics, circadian rhythmic functioning, genetic polymorphism and neuropsychological performance in order to obtain a clinical endophenotype of differential vulnerability for these diagnostic entities. Patients will be divided into three groups: DD (45 men with comorbid schizophrenia, 45 men and 30 women with major depression), SUD (n = 90, with a minimum of 30 women) and SMI males (45 with schizophrenia, 45 with major depression). All patients will be under treatment, with at least three months of SUD abstinence and/or with SMI in remission or with stabilized symptoms. Outpatients of both sexes with insufficient restoration of circadian rhythmicity with SUD (n = 30) and dual depression (n = 30) will be asked to participate in a second two-month study, being alternately assigned to the condition of the chronobiological adjuvant approach to the treatment of regular hour habits and exposure to light or to the usual treatment (control). The effect of the intervention and patient compliance will be monitored with a Kronowise KW6® ambulatory device during the first two weeks of treatment and again at weeks 4 and 8 weeks. After completing the evaluation, follow-up of the clinical evolution will be carried out at 3, 6 and 12 months. This project will allow us to analyze the functional impact of DD comorbidity and to develop the first study of chronobiological therapy in the treatment of SUD and dual depression, with results transferable to the clinical setting with cost-effective recommendations for a personalized approach.
Collapse
Affiliation(s)
- Ana Adan
- Department of Clinical Psychology and Psychobiology, School of Psychology, University of Barcelona, Passeig de la Vall d’Hebrón 171, 08035 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| | - José Francisco Navarro
- Department of Psychobiology, School of Psychology, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain;
| | | |
Collapse
|
30
|
Minami Y, Yuan Y, Ueda HR. High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics. J Biol Rhythms 2022; 37:135-151. [PMID: 35137623 DOI: 10.1177/07487304221075002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal models are essential tools for modern scientists to conduct biological experiments and investigate their hypotheses in vivo. However, for the past decade, raising the throughput of such animal experiments has been a great challenge. Conventionally, in vivo high-throughput assay was achieved through large-scale mutagen-driven forward genetic screening, which took years to find causal genes. In contrast, reverse genetics accelerated the causal gene identification process, but its throughput was also limited by 2 barriers, that is, the genome modification step and the time-consuming crossing step. Defined as genetics without crossing, next-generation genetics is able to produce gene-modified animals that can be analyzed at the founder generation (F0). This method is or can be accomplished through recent technological advances in gene editing and virus-based efficient gene modifications. Notably, next-generation genetics has accelerated the process of cross-species studies, and it will be a useful technique during animal experiments as it can provide genetic perturbation at an individual level without crossing. In this review, we begin by introducing the history of animal-based high-throughput analysis, with a specific focus on chronobiology. We then describe ways that gene modification efficiency during animal experiments was enhanced and why crossing remained a barrier to reaching higher efficiency. Moreover, we mention the Triple CRISPR as a critical technique for achieving next-generation genetics. Finally, we discuss the potential applications and limitations of next-generation mammalian genetics.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yufei Yuan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| |
Collapse
|
31
|
Labour classified by cervical dilatation & fetal membrane rupture demonstrates differential impact on RNA-seq data for human myometrium tissues. PLoS One 2021; 16:e0260119. [PMID: 34797869 PMCID: PMC8604334 DOI: 10.1371/journal.pone.0260119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing has previously identified differentially expressed genes (DEGs) and enriched signalling networks in human myometrium for term (≥37 weeks) gestation labour, when defined as a singular state of activity at comparison to the non-labouring state. However, transcriptome changes that occur during transition from early to established labour (defined as ≤3 and >3 cm cervical dilatation, respectively) and potentially altered by fetal membrane rupture (ROM), when adapting from onset to completion of childbirth, remained to be defined. In the present study, we assessed whether differences for these two clinically observable factors of labour are associated with different myometrial transcriptome profiles. Analysis of our tissue (‘bulk’) RNA-seq data (NCBI Gene Expression Omnibus: GSE80172) with classification of labour into four groups, each compared to the same non-labour group, identified more DEGs for early than established labour; ROM was the strongest up-regulator of DEGs. We propose that lower DEGs frequency for early labour and/or ROM negative myometrium was attributed to bulk RNA-seq limitations associated with tissue heterogeneity, as well as the possibility that processes other than gene transcription are of more importance at labour onset. Integrative analysis with future data from additional samples, which have at least equivalent refined clinical classification for labour status, and alternative omics approaches will help to explain what truly contributes to transcriptomic changes that are critical for labour onset. Lastly, we identified five DEGs common to all labour groupings; two of which (AREG and PER3) were validated by qPCR and not differentially expressed in placenta and choriodecidua.
Collapse
|
32
|
Brain Clocks, Sleep, and Mood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34773227 DOI: 10.1007/978-3-030-81147-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The suprachiasmatic nucleus houses the master clock, but the genes which encode the circadian clock components are also expressed throughout the brain. Here, we review how circadian clock transcription factors regulate neuromodulator systems such as histamine, dopamine, and orexin that promote arousal. These circadian transcription factors all lead to repression of the histamine, dopamine, and orexin systems during the sleep period, so ensuring integration with the ecology of the animal. If these transcription factors are deleted or mutated, in addition to the global disturbances in circadian rhythms, this causes a chronic up-regulation of neuromodulators leading to hyperactivity, elevated mood, and reduced sleep, which have been suggested to be states resembling mania.
Collapse
|
33
|
Tsekmekidou X, Tsetsos F, Koufakis T, Georgitsi M, Papanas N, Papazoglou D, Roumeliotis A, Panagoutsos S, Thodis E, Theodoridis M, Passadakis P, Maltezos E, Paschou P, Kotsa K. Variants in clock genes could be associated with lower risk of type 2 diabetes in an elderly Greek population. Maturitas 2021; 152:20-25. [PMID: 34674804 DOI: 10.1016/j.maturitas.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent evidence has linked circadian rhythm dysregulation to an increased risk of metabolic disorders. This study explores a potential association between variation in genes regulating the endogenous circadian timing system (clock genes) and the risk of type 2 diabetes (T2D) in a sample of Greek elderly people. STUDY DESIGN Variants within and upstream or downstream of PPARA, PPARD, CLOCK/TMEM165, PER1, PER2 and PER3 genes were genotyped in 716 individuals with T2D (A) and 569 normoglycemic controls (B), and allele frequencies were compared between the groups in a case control study design. MAIN OUTCOME MEASURES Samples were genotyped on Illumina Human PsychArray. Permutation test analysis was implemented to determine statistical significance. To avoid the possibility of subjects with prediabetes being included in the control group, people with HbA1c <5.7% and fasting glucose <100 mg/dl comprised group C (n = 393), for whom a separate analysis was performed (secondary analysis). RESULTS A protective role against T2D was identified for 14 variants in the PPARA gene. The rs7291444, rs36125344, rs6008384 in PKDREJ, located upstream of PPARA, and rs2859389 in UTS2, located upstream of PER3, demonstrated a protective role against T2D in both analyses. In contrast, rs6744132, located between HES6 and PER2, was positively correlated with T2D risk. Only in the secondary analysis, rs2278637 in VAMP2, located downstream of PER1, and rs11943456 in CLOCK/TMEM165 were found to confer protection against T2D. In a recessive model analysis of all groups, PPARD variants exhibited a protective role against disease. CONCLUSIONS Our findings suggest a possible implication of clock genes in T2D susceptibility. Further studies are needed to clarify the mechanisms that connect circadian rhythm dysfunction and T2D pathogenesis.
Collapse
Affiliation(s)
- Xanthippi Tsekmekidou
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Marianthi Georgitsi
- 1st Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Roumeliotis
- Division of Nephrology and Hypertension, First Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Stylianos Panagoutsos
- Department of Nephrology, Alexandroupolis University General Hospital, Democritus University of Thrace School of Health Sciences
| | - Elias Thodis
- Department of Nephrology, Alexandroupolis University General Hospital, Democritus University of Thrace School of Health Sciences
| | - Marios Theodoridis
- Department of Nephrology, Alexandroupolis University General Hospital, Democritus University of Thrace School of Health Sciences
| | - Ploumis Passadakis
- Department of Nephrology, Alexandroupolis University General Hospital, Democritus University of Thrace School of Health Sciences
| | - Efstratios Maltezos
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
34
|
PER Gene Family Polymorphisms in Relation to Cluster Headache and Circadian Rhythm in Sweden. Brain Sci 2021; 11:brainsci11081108. [PMID: 34439727 PMCID: PMC8393578 DOI: 10.3390/brainsci11081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.
Collapse
|
35
|
Wrist actigraphic approach in primary, secondary and tertiary care based on the principles of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:349-363. [PMID: 34377218 PMCID: PMC8342270 DOI: 10.1007/s13167-021-00250-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Abstract Sleep quality and duration as well as activity-rest-cycles at individual level are crucial for maintaining physical and mental health. Although several methods do exist to monitor these parameters, optimal approaches are still under consideration and technological development. Wrist actigraphy is a non-invasive electro-physical method validated in the field of chronobiology to record movements and to allow for monitoring human activity-rest-cycles. Based on the continuous recording of motor activity and light exposure, actigraphy provides valuable information about the quality and quantity of the sleep–wake rhythm and about the amount of motor activity at day and night that is highly relevant for predicting a potential disease and its targeted prevention as well as personalisation of medical services provided to individuals in suboptimal health conditions and patients. Being generally used in the field of sleep medicine, actigraphy demonstrates a great potential to be successfully implemented in primary, secondary and tertiary care, psychiatry, oncology, and intensive care, military and sports medicines as well as epidemiological monitoring of behavioural habits as well as well-being medical support, amongst others. Prediction of disease development and individual outcomes Activity-rest-cycles have been demonstrated to be an important predictor for many diseases including but not restricted to the development of metabolic, psychiatric and malignant pathologies. Moreover, activity-rest-cycles directly impact individual outcomes in corresponding patient cohorts. Targeted prevention Data acquired by actigraphy are instrumental for the evidence-based targeted prevention by analysing individualised patient profiles including light exposure, sleep duration and quality, activity-rest-cycles, intensity and structure of motion pattern. Personalised therapy Wrist actigraphic approach is increasingly used in clinical care. Personalised measurements of sedation/agitation rhythms are useful for ICU patients, for evaluation of motor fatigue in oncologic patients, for an individual enhancement of performance in military and sport medicine. In the framework of personalised therapy intervention, patients can be encouraged to optimise their behavioural habits improving recovery and activity patterns. This opens excellent perspectives for the sleep-inducing medication and stimulants replacement as well as for increasing the role of participatory medicine by visualising and encouraging optimal behavioural patterns of the individual.
Collapse
|
36
|
Atomoxetine and circadian gene expression in human dermal fibroblasts from study participants with a diagnosis of attention-deficit hyperactivity disorder. J Neural Transm (Vienna) 2021; 128:1121-1133. [PMID: 34273025 PMCID: PMC8295110 DOI: 10.1007/s00702-021-02373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022]
Abstract
Atomoxetine (ATO) is a second line medication for attention-deficit hyperactivity disorder (ADHD). We proposed that part of the therapeutic profile of ATO may be through circadian rhythm modulation. Thus, the aim of this study was to investigate the circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after ATO exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with a diagnosis of ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different ATO concentrations in HDF cultures, the rhythmicity of circadian gene expression was analyzed via qRT-PCR. No statistical significant effect of both groups (healthy controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, sleep WASO and total number of wake bouts was observed. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with ADHD displayed both definitive and moderate evening preferences. ATO induced the rhythmicity of Clock in the ADHD group. This effect, however, was not observed in HDF cultures of healthy controls. Bmal1 and Per2 expression showed a significant ZT × group interaction via mixed ANOVA. Strong positive correlations for chronotype and circadian genes were observed for Bmal1, Cry1 and Per3 among the study participants. Statistical significant different Clock, Bmal1 and Per3 expressions were observed in HDFs exposed to ATO collected from ADHD participants exhibiting neutral and moderate evening preference, as well as healthy participants with morning preferences. The results of the present study illustrate that ATO impacts on circadian function, particularly on Clock, Bmal1 and Per2 gene expression.
Collapse
|
37
|
Azevedo PGD, Miranda LR, Nicolau ES, Alves RB, Bicalho MAC, Couto PP, Ramos AV, Souza RPD, Longhi R, Friedman E, Marco LD, Bastos-Rodrigues L. Genetic association of the PERIOD3 (PER3) Clock gene with extreme obesity. Obes Res Clin Pract 2021; 15:334-338. [PMID: 34215556 DOI: 10.1016/j.orcp.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Obesity has reached epidemic proportions worldwide, affecting life quality and span. Susceptibility to obesity is partly mediated by genetic differences. Indeed, several genes from the clock gene family have already been shown to be intimately associated with obesity in diverse ethnic groups. In the present study, an association between BMI and the rs707467, rs228697 and rs228729 PER3 (Period Circadian Clock 3) polymorphisms in subjects with class II (BMI ≥ 35.0-39.9 kg/m2) and class III obesity (>40 kg/m2, extreme obesity) were carried out using TaqMan real-time PCR. Overall, 259 Brazilian adults were genotyped, of whom 122 had class II or III obesity (BMI ≥ 35.0 kg/m2) and 137 were controls having normal weight (BMI > 18.5 and <24.9 kg/m2). RESULTS PER3 tag SNP (rs228729) shows a significant association with extreme obesity (1000 permutation p = 0.03 and p = 0.04), for genotype and allele frequency respectively) and a haplotype among the three assessed SNPs (alleles G/T/A, rs228697, rs228729, and rs707467, respectively, 1000 permutation p = 0.03) was significantly more prevalent in the group with obesity. CONCLUSION This exploratory association study suggests that PER3 rs228729 may be associated with extreme obesity in Brazilian adults, however, replication is needed.
Collapse
Affiliation(s)
- Pedro Guimarães de Azevedo
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Luana Reis Miranda
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Eduardo Souza Nicolau
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rayane Benfica Alves
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | | | - Patrícia Pereira Couto
- Centro de Tecnologia em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | | | - Renan Pedra de Souza
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Longhi
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, MG 35010-177, Brazil
| | - Eitan Friedman
- The Suzanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel Hashomer, the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Bastos-Rodrigues
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, MG 35010-177, Brazil.
| |
Collapse
|
38
|
Ceglarek A, Hubalewska-Mazgaj M, Lewandowska K, Sikora-Wachowicz B, Marek T, Fafrowicz M. Time-of-day effects on objective and subjective short-term memory task performance. Chronobiol Int 2021; 38:1330-1343. [PMID: 34121547 DOI: 10.1080/07420528.2021.1929279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The time-of-day along with the synchrony effect (better performance at optimal times of the day according to the chronotype) on the cognitive performance has been well established in previous research. This influence is mediated by both circadian and homeostatic processes consistent with the Borbély two-process model. This experiment focused on the objective and subjective performance of the visual short-term memory task requiring holistic processing. Sixty-five young, healthy participants including 40 females were divided into morning and evening types and performed a given task in two sessions - in the morning and in the evening. Type division was made according to the chronotype questionnaire and polymorphism of the PER3 clock gene. The task was a modified version of Deese-Roediger-McDermott paradigm adjusted to study short-term memory, in which visual, abstract stimuli were used. The analysis was based on an exploratory approach investigating the influence of circadian and individual (sex) factors on execution of memory task. Evening types were more accurate in the task compared to morning types, regardless of the part of the day. The time-of-day effect was revealed on objective measures (reaction times for hits and false alarms) and subjective effort put into the performance. The reaction times were slower in the morning unlike the effort that was greater in the evening. The time-of-day × sex interaction was observed in the case of subjective effort: men described the task as more demanding in the evening. The results could be explained by differences in hemispheric dominance depending on the time-of-day. The report provides new patterns of behavioral data analysis, investigating sex aspects and use of self-assessment scales of performance.
Collapse
Affiliation(s)
- Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
39
|
Richter K, Kellner S, Hillemacher T, Golubnitschaja O. Sleep quality and COVID-19 outcomes: the evidence-based lessons in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:221-241. [PMID: 34122671 PMCID: PMC8185312 DOI: 10.1007/s13167-021-00245-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Sleep quality and duration play a pivotal role in maintaining physical and mental health. In turn, sleep shortage, deprivation and disorders are per evidence the risk factors and facilitators of a broad spectrum of disorders, amongst others including depression, stroke, chronic inflammation, cancers, immune defence insufficiency and individual predisposition to infection diseases with poor outcomes, for example, related to the COVID-19 pandemic. Keeping in mind that COVID-19-related global infection distribution is neither the first nor the last pandemic severely affecting societies around the globe to the costs of human lives accompanied with enormous economic burden, lessons by predictive, preventive and personalised (3P) medical approach are essential to learn and to follow being better prepared to defend against global pandemics. To this end, under extreme conditions such as the current COVID-19 pandemic, the reciprocal interrelationship between the sleep quality and individual outcomes becomes evident, namely, at the levels of disease predisposition, severe versus mild disease progression, development of disease complications, poor outcomes and related mortality for both - population and healthcare givers. The latter is the prominent example clearly demonstrating the causality of severe outcomes, when the long-lasting work overload and shift work rhythm evidently lead to the sleep shortage and/or deprivation that in turn causes immune response insufficiency and strong predisposition to the acute infection with complications. This article highlights and provides an in-depth analysis of the concerted risk factors related to the sleep disturbances under the COVID-19 pandemic followed by the evidence-based recommendations in the framework of predictive, preventive and personalised medical approach.
Collapse
Affiliation(s)
- Kneginja Richter
- Outpatient Clinic for Sleep Disorders, University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, 90419 Nuremberg, Germany
- Faculty for Social Work, Technical University of Applied Sciences Nuremberg Georg Simon Ohm, 90489 Nuremberg, Germany
- Faculty for Medical Sciences, University Goce Delcev Stip, 2000 Stip, North Macedonia
| | - Stefanie Kellner
- Faculty for Social Work, Technical University of Applied Sciences Nuremberg Georg Simon Ohm, 90489 Nuremberg, Germany
| | - Thomas Hillemacher
- Outpatient Clinic for Sleep Disorders, University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, 90419 Nuremberg, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
40
|
Peng X, Li J, Han B, Zhu Y, Cheng D, Li Q, Du J. Association of occupational stress, period circadian regulator 3 (PER3) gene polymorphism and their interaction with poor sleep quality. J Sleep Res 2021; 31:e13390. [PMID: 34060156 DOI: 10.1111/jsr.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Occupational stress is associated with sleep quality among workers and the human variable number tandem repeat (VNTR) polymorphism of the period circadian regulator 3 (PER3) gene relates to sleep-wake regulation. The main aims of the present study were to examine the effects of PER3 VNTR genotypes, occupational stress, and their interactions on sleep quality. A cross-sectional study was conducted and 729 workers were recruited in Sichuan. Sleep quality were assessed using the Pittsburgh Sleep Quality Index. Occupational stress was measured using the Generic Job Stress Questionnaire. PER3 genotypes were determined with polymerase chain reaction. High and medium occupational stress were linked to a higher risk of poor sleep quality than low levels. Unconditional logistic regression indicated that PER3 genotype was significantly associated with sleep quality, and an increased risk of poor sleep of >1.5-times was observed in those with the allele 5 compared to allele 4. The 5/5 genotype was associated with both sleep latency and sleep duration. Crossover analysis showed an occupational stress × PER3 interaction. Compared to subjects with both low and medium occupational stress and 4/4 + 4/5 genotype, those with both high occupational stress and 5/5 genotype had a higher risk of poor sleep quality. Stratified logistic analyses found that compared with low and medium occupational stress, high occupational stress increased the risk of poor sleep by more than five-times in 5/5 genotype carriers. Occupational stress and PER3 genotype had both separate and combined effects on poor sleep quality of workers. The results suggest that occupational stress may increase the risk of poor sleep quality through interaction with the PER3 gene polymorphism.
Collapse
Affiliation(s)
- Xiaoli Peng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Ju Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yanfeng Zhu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Daomei Cheng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Qiyu Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Jingchang Du
- School of Public Health, Chengdu Medical College, Chengdu, China
| |
Collapse
|
41
|
Erblang M, Sauvet F, Drogou C, Quiquempoix M, Van Beers P, Guillard M, Rabat A, Trignol A, Bourrilhon C, Erkel MC, Léger D, Thomas C, Gomez-Merino D, Chennaoui M. Genetic Determinants of Neurobehavioral Responses to Caffeine Administration during Sleep Deprivation: A Randomized, Cross Over Study (NCT03859882). Genes (Basel) 2021; 12:555. [PMID: 33920292 PMCID: PMC8069049 DOI: 10.3390/genes12040555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigated whether four single nucleotide polymorphisms (SNPs) moderated caffeine effects on vigilance and performance in a double-blind and crossover total sleep deprivation (TSD) protocol in 37 subjects. In caffeine (2 × 2.5 mg/kg/24 h) or placebo-controlled condition, subjects performed a psychomotor vigilance test (PVT) and reported sleepiness every six hours (Karolinska sleepiness scale (KSS)) during TSD. EEG was also analyzed during the 09:15 PVT. Carriers of the TNF-α SNP A allele appear to be more sensitive than homozygote G/G genotype to an attenuating effect of caffeine on PVT lapses during sleep deprivation only because they seem more degraded, but they do not perform better as a result. The A allele carriers of COMT were also more degraded and sensitive to caffeine than G/G genotype after 20 h of sleep deprivation, but not after 26 and 32 h. Regarding PVT reaction time, ADORA2A influences the TSD effect but not caffeine, and PER3 modulates only the caffeine effect. Higher EEG theta activity related to sleep deprivation was observed in mutated TNF-α, PER3, and COMT carriers, in the placebo condition particularly. In conclusion, there are genetic influences on neurobehavioral impairments related to TSD that appear to be attenuated by caffeine administration. (NCT03859882).
Collapse
Affiliation(s)
- Mégane Erblang
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Fabien Sauvet
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Catherine Drogou
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Michaël Quiquempoix
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Pascal Van Beers
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mathias Guillard
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Arnaud Rabat
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Aurélie Trignol
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Marie-Claire Erkel
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Damien Léger
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
- APHP, Hôtel-Dieu, Centre du sommeil et de la Vigilance, 75004 Paris, France
| | - Claire Thomas
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France;
| | - Danielle Gomez-Merino
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| | - Mounir Chennaoui
- Institut de Recherche Biomédicale des Armées (IRBA), 91190 Brétigny sur Orge, France; (M.E.); (C.D.); (M.Q.); (P.V.B.); (M.G.); (A.R.); (A.T.); (C.B.); (M.-C.E.); (D.G.-M.); (M.C.)
- EA VIFASOM (EA 7330 Vigilance, Fatigue, Sommeil et Santé Publique), Université de Paris, 75004 Paris, France;
| |
Collapse
|
42
|
Wan X, Zhu L, Zhao L, Peng L, Xiong J, Yang W, Yuan J, Liang F, Zhang K, Chen K. hPER3 promotes adipogenesis via hHSP90AA1-mediated inhibition of Notch1 pathway. Cell Death Dis 2021; 12:301. [PMID: 33741899 PMCID: PMC7979882 DOI: 10.1038/s41419-021-03584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The period circadian regulator 3 (PER3) has been reported to play a negative role in human immortalized bone marrow-derived Scp-1 cells (iBMSCs) and patient adipose-derived stromal cells (PASCs) or a negative/positive role in mice adipogenesis. However, human PER3 (hPER3) was identified as a positive regulator of human adipose tissue-derived stromal cells (hADSCs) adipogenesis in this study. Silencing or overexpression of hPER3 in hADSCs inhibited and promoted adipogenesis in vitro. In vivo, the overexpression of hPER3 increased high-fat diet-induced inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) forms, increasing systemic glucose intolerance and insulin resistance. Molecularly, hPER3 does not interact with hPPARγ, but represses Notch1 signaling pathway to enhance adipogenesis by interacting with hHSP90AA1, which is able to combine with the promoter of hNotch1 and inactivate its expression. Thus, our study revealed hPER3 as a critical positive regulator of hADSCs adipogenesis, which was different from the other types of cells, providing a critical role of it in treating obesity.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liyong Zhu
- Department of Bariatric and Metabolic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingjing Yuan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Keke Zhang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Chen
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
43
|
Lewis P, Morfeld P, Mohren J, Hellmich M, Erren TC. Perinatal photoperiod associations with diabetes and chronotype prevalence in a cross-sectional study of the UK Biobank. Chronobiol Int 2021; 38:343-359. [PMID: 33435754 DOI: 10.1080/07420528.2020.1849254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Experimental studies indicate that perinatal light may imprint the circadian timing system, subsequently affect later life physiology, and possibly disease risk. We combined individual time-of-year of birth and corresponding latitude to determine perinatal photoperiod characteristics for UK Biobank participants (n = 460,761) and tested for associations with diabetes mellitus (DM, the pathophysiology of which is often linked with circadian disruption) and chronotype (a trait co-governed by the circadian timing system) prevalence in a cross-sectional investigation. The UK Biobank is a population-based cohort with a 5.5% participation rate (~9.2 million individuals were invited into the study between 2006 and 2010). We defined three groups based on photoperiods experienced in the 3rd trimester of pregnancy and first 3 months post-birth time windows: (1) those who exclusively experienced non-extreme photoperiods (NEP, 8-16 hours), (2) those who experienced at least one extreme short photoperiod (ESP, <8 hours), and those who experienced at least one extreme long photoperiod (ELP, >16 hours). For individuals in each group and time window, mean daily photoperiod and relative photoperiod range (relative = relative to the mean) were calculated. Inclusion of relative photoperiod range adds dispersion information (relative change of photoperiods) to statistical models. Multivariable and multinomial logistic regression analyses were used to estimate odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Increased 3rd trimester relative range was associated with decreased odds of DM (OR 0.63 95%CI 0.49-0.81) in the NEP group, but increased odds of DM were detected for the ESP (OR 1.34, 95%CI 0.96-1.86) and ELP groups (OR 1.32, 95%CI 0.78-2.22). Increased 3rd trimester relative range was associated with increased odds of being a "Morning" (OR 1.20, 95%CI 1.02-1.41) or "Evening" (OR 1.43, 95%CI 1.21-1.69) chronotype in the NEP group, but this was not observed in other groups. Additionally, different effect sizes and directions of association with DM were observed in different strata of ethnicity and chronotype and statistically significant odds ratio modifications were detected. In conclusion, perinatal photoperiod associations with DM and chronotype prevalence are detected in the UK Biobank. NEP, ESP, and ELP differences are speculated to be caused by a non-linear dose-response to photoperiods from 0-24 hours or by confounding due to artificial light playing a dominant role in ESP individuals and seeking darkness in ELP individuals. Ethnicity and chronotype may be important effect modifiers of perinatal photoperiod associations with DM. Potential for selection biases due to low UK Biobank participation rate disallows stating conclusions too strongly. Overall, further studies are needed to confirm different perinatal photoperiod associations with DM and chronotype. Further investigations into the hypothesized imprinting mechanism are also warranted.
Collapse
Affiliation(s)
- Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine, and Prevention Research, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Peter Morfeld
- Institute and Policlinic for Occupational Medicine, Environmental Medicine, and Prevention Research, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Judith Mohren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine, and Prevention Research, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine, and Prevention Research, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Silva ACPE, Dos Santos MJ, Góes Gitaí DL, de Miranda Coelho JAP, de Andrade TG. Depression and anxiety symptoms correlate with diurnal preference, sleep habits, and Per3 VNTR polymorphism (rs57875989) in a non-clinical sample. J Affect Disord 2020; 277:260-270. [PMID: 32841827 DOI: 10.1016/j.jad.2020.07.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Evidences suggest that alterations in circadian rhythms trigger the development of mental disorders. Eveningness, sleep behavior, and circadian genes polymorphisms have been associated with depression and anxiety symptomatology. However, the mechanism underlying these interactions is not well understood. We investigated the contribution of diurnal preference, sleep habits, and PER3 VNTR polymorphism (rs57875989) to depression and anxiety symptoms in a Northeast sample from the Brazilian population. METHODS Eight hundred and four young adults completed the Morningness-Eveningness (MEQ), Munich Chronotype (MCTQ), Center for Epidemiologic Studies - Depression (CES-D), and Beck Anxiety Inventory (BAI) questionnaires. All participants were genotyped and linear regression was performed to test the interactions between the genetic /behavioral variants and depression/ anxiety symptoms. RESULTS Eveningness and sleep behaviors (bedtime, wake-up time, sleep duration, and midpoint of sleep) were correlated with depression symptomatology, specifically in somatic factors of the CES-D questionnaire. No correlation was found between diurnal preference/sleep habits with anxiety symptoms for both BAI total score and its factors. However, women with PER34/4 genotype showed less interpesonal affect in depression symptomatology and more anxiety symptoms in four factors of the BAI questionnaire. LIMITATIONS Mainly because this study was based on self-report questionnaires and was limited to undergraduate students aging 18 to 30 years old. CONCLUSION These results reinforce a role for sleep and diurnal preference in depression, and PER3 VNTR polymorphism in anxiety symptomatology, particularly in women.
Collapse
Affiliation(s)
| | | | | | | | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Brazil.
| |
Collapse
|
45
|
Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, Park Y, Consortium GTE, Wen X, Im HK. PhenomeXcan: Mapping the genome to the phenome through the transcriptome. SCIENCE ADVANCES 2020; 6:eaba2083. [PMID: 32917697 PMCID: PMC11206444 DOI: 10.1126/sciadv.aba2083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Large-scale genomic and transcriptomic initiatives offer unprecedented insight into complex traits, but clinical translation remains limited by variant-level associations without biological context and lack of analytic resources. Our resource, PhenomeXcan, synthesizes 8.87 million variants from genome-wide association study summary statistics on 4091 traits with transcriptomic data from 49 tissues in Genotype-Tissue Expression v8 into a gene-based, queryable platform including 22,515 genes. We developed a novel Bayesian colocalization method, fast enrichment estimation aided colocalization analysis (fastENLOC), to prioritize likely causal gene-trait associations. We successfully replicate associations from the phenome-wide association studies (PheWAS) catalog Online Mendelian Inheritance in Man, and an evidence-based curated gene list. Using PhenomeXcan results, we provide examples of novel and underreported genome-to-phenome associations, complex gene-trait clusters, shared causal genes between common and rare diseases via further integration of PhenomeXcan with ClinVar, and potential therapeutic targets. PhenomeXcan (phenomexcan.org) provides broad, user-friendly access to complex data for translational researchers.
Collapse
Affiliation(s)
- Milton Pividori
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Padma S Rajagopal
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Alvaro Barbeira
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yanyu Liang
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Owen Melia
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Hae K Im
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Weiss C, Woods K, Filipowicz A, Ingram KK. Sleep Quality, Sleep Structure, and PER3 Genotype Mediate Chronotype Effects on Depressive Symptoms in Young Adults. Front Psychol 2020; 11:2028. [PMID: 32982844 PMCID: PMC7479229 DOI: 10.3389/fpsyg.2020.02028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Depression and its related mood disorders are a major global health issue that disproportionately affects young adults. A number of factors that influence depressive symptoms are particularly relevant to the young adult developmental stage, including sleep loss, poor sleep quality, and the tendency toward eveningness in circadian preferences. However, relatively few studies have examined the relationship between sleep and circadian phenotypes, and their respective influences on mood, or considered potential molecular mechanisms driving these associations. Here, we use a multi-year, cross-sectional study of 806 primarily undergraduates to examine the relationships between sleep-wake chronotype, sleep disturbance, depression and genotypes associated with the PER3 variable number of tandom repeats (VNTR) polymorphism-circadian gene variants associated with both chronotype and sleep homeostatic drive. In addition, we use objective, Fitbit-generated sleep structure data on a subset of these participants (n = 67) to examine the relationships between chronotype, depression scores, actual measures of sleep duration, social jetlag, and the percent of deep and rapid eye movement (REM) sleep per night. In this population, chronotype is weakly associated with depressive symptoms and moderately correlated with self-reported sleep disturbance. Sleep disturbance is significantly associated with depression scores, but objective sleep parameters are not directly correlated with Beck Depression Inventory (BDI-II) scores, with the exceptions of a moderate correlation between social jetlag and depression scores in females and a marginal correlation between sleep duration and depression scores. Multiple regression and path analyses reveal that chronotype effects on depressive symptoms in this population are mediated largely by sleep disturbance. The PER3 VNTR genotype significantly predicts depressive symptoms in a model with objective sleep parameters, but it does not significantly predict depressive symptoms in a model with chronotype or subjective sleep disturbance. Interestingly, PER35,5 genotypes, in males only, are independently related to chronotype and depression scores. Our results support hypotheses linking subjective sleep quality and chronotype and provide a first step in understanding how objective sleep structure may be linked to chronotype and depressive symptoms. Our results also suggest that circadian gene variants may show sex-specific effects linking sleep duration and sleep structure to depression.
Collapse
Affiliation(s)
- Chloe Weiss
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Kerri Woods
- Department of Biology, Colgate University, Hamilton, NY, United States
| | - Allan Filipowicz
- Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca, NY, United States
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY, United States
| |
Collapse
|
47
|
Goncharova ND. The HPA Axis under Stress and Aging: Individual Vulnerability is Associated with Behavioral Patterns and Exposure Time. Bioessays 2020; 42:e2000007. [PMID: 32666621 DOI: 10.1002/bies.202000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Indexed: 12/16/2022]
Abstract
With aging, incidence of severe stress-related diseases increases. However, mechanisms, underlying individual vulnerability to stress and age-related diseases are not clear. The goal of this review is to analyze finding from the recent literature on age-related characteristics of the hypothalamic-pituitary-adrenal (HPA) axis associated with stress reactivity in animals that show behavioral signs of anxiety and depression under mild stress, and in human patients with anxiety disorders and depression with emphasis on the impact of the circadian rhythm and the negative feedback mechanisms involved in the stress response. One can conclude that HPA axis reaction to psycho-emotional stress, at least acute stress, increases in the aged individuals with anxiety and depression behavior. Elevated stress reactivity is associated with disruption of the circadian rhythm and the mineralocorticoid receptor-mediated glucocorticoid negative feedback. The disordered function of the HPA axis in individuals with anxiety and depression behavior can contribute to aging-related pathology.
Collapse
Affiliation(s)
- Nadezhda D Goncharova
- Laboratory of Experimental Endocrinology, Research Institute of Medical Primatology, 177 Mira Street, Veseloye, Adler, Sochi, Krasnodar, 354376, Russia
| |
Collapse
|
48
|
Koh AL, Bonnard C, Lim JY, Liew WK, Thoon KC, Thomas T, Ali NAB, Ng AYJ, Tohari S, Phua KB, Venkatesh B, Reversade B, Jamuar SS. Heterozygous missense variant in EIF6 gene: A novel form of Shwachman-Diamond syndrome? Am J Med Genet A 2020; 182:2010-2020. [PMID: 32657013 DOI: 10.1002/ajmg.a.61758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare multisystem ribosomal biogenesis disorder characterized by exocrine pancreatic insufficiency, hematologic abnormalities and bony abnormalities. About 90% of patients have biallelic mutations in SBDS gene. Three additional genes-EFL1, DNAJC21 and SRP54 have been reported in association with a SDS phenotype. However, the cause remains unknown for ~10% of patients. Herein, we report a 6-year-old Chinese boy, who presented in the neonatal period with pancytopenia, liver transaminitis with hepatosplenomegaly and developmental delay, and subsequently developed pancreatic insufficiency complicated by malabsorption and poor growth. Exome sequencing identified a novel de novo heterozygous variant in EIF6 (c.182G>T, p.Arg61Leu). EIF6 protein inhibits ribosomal maturation and is removed in the late steps of ribosomal maturation by SBDS and EFL1 protein. Given the interaction of EIF6 with SBDS and EFL1, we postulate heterozygous variants in EIF6 as a novel cause of Shwachman-Diamond-like phenotype. We compared the phenotype of our patient with those in patients with mutation in SBDS, EFL1, DNAJC21, and SRP54 genes to support this association. Identification of more cases of this novel phenotype would strengthen the association with the genetic etiology.
Collapse
Affiliation(s)
- Ai Ling Koh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Jiin Ying Lim
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Woei Kang Liew
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore
| | - Koh Cheng Thoon
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Terrence Thomas
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Kong Boo Phua
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Saumya Shekhar Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| |
Collapse
|
49
|
Klerman EB, Rahman SA, St Hilaire MA. What time is it? A tale of three clocks, with implications for personalized medicine. J Pineal Res 2020; 68:e12646. [PMID: 32155668 PMCID: PMC7285860 DOI: 10.1111/jpi.12646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Gao Q, Sheng J, Qin S, Zhang L. Chronotypes and affective disorders: A clock for mood? BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Affective disorders are often accompanied by circadian rhythm disruption and the major symptoms of mental illness occur in a rhythmic manner. Chronotype, also known as circadian preference for rest or activity, is believed to exert a substantial influence on mental health. Here, we review the connection between chronotypes and affective disorders, and discuss the potential underlying mechanisms between these two phenomena.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Juan Sheng
- Jingzhou Mental Health Center, Jingzhou 434000, Hubei, China
| | - Song Qin
- Jingzhou Mental Health Center, Jingzhou 434000, Hubei, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|