1
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Jiang C, Zhou Q, Yi K, Yuan Y, Xie X. Colorectal cancer initiation: Understanding early-stage disease for intervention. Cancer Lett 2024; 589:216831. [PMID: 38574882 DOI: 10.1016/j.canlet.2024.216831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.
Collapse
Affiliation(s)
- Chao Jiang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Qiujing Zhou
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Ke Yi
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; Department of Medical Oncology, Cancer Institute and Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
4
|
Riggi N, de Sousa E Melo F. Bioengineered 'mini-colons' shed light on cancer progression. Nature 2024; 629:292-293. [PMID: 38658717 DOI: 10.1038/d41586-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
|
5
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Liu CY, Girish N, Gomez ML, Kalski M, Bernard JK, Simons BD, Polk DB. Wound-healing plasticity enables clonal expansion of founder progenitor cells in colitis. Dev Cell 2023; 58:2309-2325.e7. [PMID: 37652012 PMCID: PMC10872951 DOI: 10.1016/j.devcel.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 09/02/2023]
Abstract
Chronic colonic injury and inflammation pose high risks for field cancerization, wherein injury-associated mutations promote stem cell fitness and gradual clonal expansion. However, the long-term stability of some colitis-associated mutational fields could suggest alternate origins. Here, studies of acute murine colitis reveal a punctuated mechanism of massive, neutral clonal expansion during normal wound healing. Through three-dimensional (3D) imaging, quantitative fate mapping, and single-cell transcriptomics, we show that epithelial wound repair begins with the loss of structural constraints on regeneration, forming fused labyrinthine channels containing epithelial cells reprogrammed to a non-proliferative plastic state. A small but highly proliferative set of epithelial founder progenitor cells (FPCs) subsequently emerges and undergoes extensive cell division, enabling fluid-like lineage mixing and spreading across the colonic surface. Crypt budding restores the glandular organization, imprinting the pattern of clonal expansion. The emergence and functions of FPCs within a critical window of plasticity represent regenerative targets with implications for preneoplasia.
Collapse
Affiliation(s)
- Cambrian Y Liu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | - Nandini Girish
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Marie L Gomez
- Program in Biomedical and Biological Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Martin Kalski
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jessica K Bernard
- Program in Craniofacial Biology, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
7
|
Pablo-Fontecha V, Hernández-Illán E, Reparaz A, Asensio E, Morata J, Tonda R, Lahoz S, Parra C, Lozano JJ, García-Heredia A, Martínez-Roca A, Beltran S, Balaguer F, Jover R, Castells A, Trullàs R, Podlesniy P, Camps J. Quantification of rare somatic single nucleotide variants by droplet digital PCR using SuperSelective primers. Sci Rep 2023; 13:18997. [PMID: 37923774 PMCID: PMC10624686 DOI: 10.1038/s41598-023-39874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 11/06/2023] Open
Abstract
Somatic single-nucleotide variants (SNVs) occur every time a cell divides, appearing even in healthy tissues at low frequencies. These mutations may accumulate as neutral variants during aging, or eventually, promote the development of neoplasia. Here, we present the SP-ddPCR, a droplet digital PCR (ddPCR) based approach that utilizes customized SuperSelective primers aiming at quantifying the proportion of rare SNVs. For that purpose, we selected five potentially pathogenic variants identified by whole-exome sequencing (WES) occurring at low variant allele frequency (VAF) in at-risk colon healthy mucosa of patients diagnosed with colorectal cancer or advanced adenoma. Additionally, two APC SNVs detected in two cancer lesions were added to the study for WES-VAF validation. SuperSelective primers were designed to quantify SNVs at low VAFs both in silico and in clinical samples. In addition to the two APC SNVs in colonic lesions, SP-ddPCR confirmed the presence of three out of five selected SNVs in the normal colonic mucosa with allelic frequencies ≤ 5%. Moreover, SP-ddPCR showed the presence of two potentially pathogenic variants in the distal normal mucosa of patients with colorectal carcinoma. In summary, SP-ddPCR offers a rapid and feasible methodology to validate next-generation sequencing data and accurately quantify rare SNVs, thus providing a potential tool for diagnosis and stratification of at-risk patients based on their mutational profiling.
Collapse
Affiliation(s)
- Verónica Pablo-Fontecha
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - Eva Hernández-Illán
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
| | - Andrea Reparaz
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Elena Asensio
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
| | - Jordi Morata
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Raúl Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Sara Lahoz
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Carolina Parra
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Anabel García-Heredia
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain
| | - Alejandro Martínez-Roca
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Francesc Balaguer
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010, Alicante, Spain
| | - Antoni Castells
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Ramon Trullàs
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Petar Podlesniy
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Jordi Camps
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Rosselló 149-153, 4th Floor, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain.
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
8
|
Mamis K, Zhang R, Bozic I. Stochastic model for cell population dynamics quantifies homeostasis in colonic crypts and its disruption in early tumorigenesis. Proc Biol Sci 2023; 290:20231020. [PMID: 37848058 PMCID: PMC10581771 DOI: 10.1098/rspb.2023.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
The questions of how healthy colonic crypts maintain their size, and how homeostasis is disrupted by driver mutations, are central to understanding colorectal tumorigenesis. We propose a three-type stochastic branching process, which accounts for stem, transit-amplifying (TA) and fully differentiated (FD) cells, to model the dynamics of cell populations residing in colonic crypts. Our model is simple in its formulation, allowing us to estimate all but one of the model parameters from the literature. Fitting the single remaining parameter, we find that model results agree well with data from healthy human colonic crypts, capturing the considerable variance in population sizes observed experimentally. Importantly, our model predicts a steady-state population in healthy colonic crypts for relevant parameter values. We show that APC and KRAS mutations, the most significant early alterations leading to colorectal cancer, result in increased steady-state populations in mutated crypts, in agreement with experimental results. Finally, our model predicts a simple condition for unbounded growth of cells in a crypt, corresponding to colorectal malignancy. This is predicted to occur when the division rate of TA cells exceeds their differentiation rate, with implications for therapeutic cancer prevention strategies.
Collapse
Affiliation(s)
- Konstantinos Mamis
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ruibo Zhang
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Yao P, Xiao P, Huang Z, Tang M, Tang X, Yang G, Zhang Q, Li X, Yang Z, Xie C, Gong H, Wang G, Liu Y, Wang X, Li H, Jia D, Dai L, Chen L, Chen C, Liu Y, Xiao H, Zhang Y, Wang Y. Protein-level mutant p53 reporters identify druggable rare precancerous clones in noncancerous tissues. NATURE CANCER 2023; 4:1176-1192. [PMID: 37537298 DOI: 10.1038/s43018-023-00608-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Detecting and targeting precancerous cells in noncancerous tissues is a major challenge for cancer prevention. Massive stabilization of mutant p53 (mutp53) proteins is a cancer-specific event that could potentially mark precancerous cells, yet in vivo protein-level mutp53 reporters are lacking. Here we developed two transgenic protein-level mutp53 reporters, p53R172H-Akaluc and p53-mCherry, that faithfully mimic the dynamics and function of mutp53 proteins in vivo. Using these reporters, we identified and traced rare precancerous clones in deep noncancerous tissues in various cancer models. In classic mutp53-driven thymic lymphoma models, we found that precancerous clones exhibit broad chromosome number variations, upregulate precancerous stage-specific genes such as Ybx3 and enhance amino acid transport and metabolism. Inhibiting amino acid transporters downstream of Ybx3 at the early but not late stage effectively suppresses tumorigenesis and prolongs survival. Together, these protein-level mutp53 reporters reveal undercharacterized features and vulnerabilities of precancerous cells during early tumorigenesis, paving the way for precision cancer prevention.
Collapse
Affiliation(s)
- Pengle Yao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Xiao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zongyao Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gaoxia Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinpei Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengnan Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanxing Xie
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guihua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yutong Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
11
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Manojlovic Z, Wlodarczyk J, Okitsu C, Jin Y, Van Den Berg D, Lieber MR, Hsieh CL. Construction of high coverage whole-genome sequencing libraries from single colon crypts without DNA extraction or whole-genome amplification. BMC Res Notes 2023; 16:66. [PMID: 37106434 PMCID: PMC10142246 DOI: 10.1186/s13104-023-06333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Comprehensive and reliable genome-wide variant analysis of a small number of cells has been challenging due to genome coverage bias, PCR over-cycling, and the requirement of expensive technologies. To comprehensively identify genome alterations in single colon crypts that reflect genome heterogeneity of stem cells, we developed a method to construct whole-genome sequencing libraries from single colon crypts without DNA extraction, whole-genome amplification, or increased PCR enrichment cycles. RESULTS We present post-alignment statistics of 81 single-crypts (each contains four- to eight-fold less DNA than the requirement of conventional methods) and 16 bulk-tissue libraries to demonstrate the consistent success in obtaining reliable coverage, both in depth (≥ 30X) and breadth (≥ 92% of the genome covered at ≥ 10X depth), of the human genome. These single-crypt libraries are of comparable quality as libraries generated with the conventional method using high quality and quantities of purified DNA. Conceivably, our method can be applied to small biopsy samples from many tissues and can be combined with single cell targeted sequencing to comprehensively profile cancer genomes and their evolution. The broad potential application of this method offers expanded possibilities in cost-effectively examining genome heterogeneity in small numbers of cells at high resolution.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Urology, University of Southern California, 1441 Eastlake Ave., NTT5420, Los Angeles, CA, USA
| | - Jordan Wlodarczyk
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Cindy Okitsu
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Yuxin Jin
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Chih-Lin Hsieh
- Department of Urology, University of Southern California, 1441 Eastlake Ave., NTT5420, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Otsuka K, Iwasaki T. Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells. Int J Radiat Biol 2023; 99:1503-1521. [PMID: 36971595 DOI: 10.1080/09553002.2023.2194398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Strategy and Planning Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
14
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
16
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
17
|
Age-Associated Loss in Renal Nestin-Positive Progenitor Cells. Int J Mol Sci 2022; 23:ijms231911015. [PMID: 36232326 PMCID: PMC9569966 DOI: 10.3390/ijms231911015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.
Collapse
|
18
|
Álvarez-Varela A, Novellasdemunt L, Barriga FM, Hernando-Momblona X, Cañellas-Socias A, Cano-Crespo S, Sevillano M, Cortina C, Stork D, Morral C, Turon G, Slebe F, Jiménez-Gracia L, Caratù G, Jung P, Stassi G, Heyn H, Tauriello DVF, Mateo L, Tejpar S, Sancho E, Stephan-Otto Attolini C, Batlle E. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. NATURE CANCER 2022; 3:1052-1070. [PMID: 35773527 DOI: 10.1038/s43018-022-00402-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) patient-derived organoids predict responses to chemotherapy. Here we used them to investigate relapse after treatment. Patient-derived organoids expand from highly proliferative LGR5+ tumor cells; however, we discovered that lack of optimal growth conditions specifies a latent LGR5+ cell state. This cell population expressed the gene MEX3A, is chemoresistant and regenerated the organoid culture after treatment. In CRC mouse models, Mex3a+ cells contributed marginally to metastatic outgrowth; however, after chemotherapy, Mex3a+ cells produced large cell clones that regenerated the disease. Lineage-tracing analysis showed that persister Mex3a+ cells downregulate the WNT/stem cell gene program immediately after chemotherapy and adopt a transient state reminiscent to that of YAP+ fetal intestinal progenitors. In contrast, Mex3a-deficient cells differentiated toward a goblet cell-like phenotype and were unable to resist chemotherapy. Our findings reveal that adaptation of cancer stem cells to suboptimal niche environments protects them from chemotherapy and identify a candidate cell of origin of relapse after treatment in CRC.
Collapse
Affiliation(s)
- Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Laura Novellasdemunt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sara Cano-Crespo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Morral
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Jiménez-Gracia
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniele V F Tauriello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lidia Mateo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
19
|
Vasquez EG, Nasreddin N, Valbuena GN, Mulholland EJ, Belnoue-Davis HL, Eggington HR, Schenck RO, Wouters VM, Wirapati P, Gilroy K, Lannagan TRM, Flanagan DJ, Najumudeen AK, Omwenga S, McCorry AMB, Easton A, Koelzer VH, East JE, Morton D, Trusolino L, Maughan T, Campbell AD, Loughrey MB, Dunne PD, Tsantoulis P, Huels DJ, Tejpar S, Sansom OJ, Leedham SJ. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 2022; 29:1213-1228.e8. [PMID: 35931031 PMCID: PMC9592560 DOI: 10.1016/j.stem.2022.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.
Collapse
Affiliation(s)
- Ester Gil Vasquez
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Nadia Nasreddin
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Gabriel N Valbuena
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Holly R Eggington
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Ryan O Schenck
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pratyaksha Wirapati
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Sulochana Omwenga
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alistair Easton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Dion Morton
- Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Timothy Maughan
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Petros Tsantoulis
- University of Geneva and Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
| | - Simon J Leedham
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK; Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland.
| |
Collapse
|
20
|
Galeota-Sprung B, Sniegowski P. Aging: Lifespan and the evolution of somatic mutation rates. Curr Biol 2022; 32:R753-R755. [PMID: 35820389 DOI: 10.1016/j.cub.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new study finds an inverse correlation between lifespan and somatic mutation rate in mammals. This suggests an evolutionary relationship between aging and somatic mutation rates, perhaps mediated by selection against noncancerous selfish lineages.
Collapse
Affiliation(s)
- Ben Galeota-Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA.
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA
| |
Collapse
|
21
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Abstract
A dynamic mode of stem-cell regulation has been discovered. Intestinal stem cells use migration to maintain a large pool of multifunctional cells, perhaps endowing the organ with robust responses to injury.
Collapse
|
23
|
Azkanaz M, Corominas-Murtra B, Ellenbroek SIJ, Bruens L, Webb AT, Laskaris D, Oost KC, Lafirenze SJA, Annusver K, Messal HA, Iqbal S, Flanagan DJ, Huels DJ, Rojas-Rodríguez F, Vizoso M, Kasper M, Sansom OJ, Snippert HJ, Liberali P, Simons BD, Katajisto P, Hannezo E, van Rheenen J. Retrograde movements determine effective stem cell numbers in the intestine. Nature 2022; 607:548-554. [PMID: 35831497 PMCID: PMC7614894 DOI: 10.1038/s41586-022-04962-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.
Collapse
Affiliation(s)
- Maria Azkanaz
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Bernat Corominas-Murtra
- Institute of Biology, University of Graz, Graz, Austria
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Saskia I J Ellenbroek
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lotte Bruens
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anna T Webb
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Laskaris
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Koen C Oost
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Simona J A Lafirenze
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Royal Academy of Arts and Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Hendrik A Messal
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dustin J Flanagan
- CRUK Beatson Institute, Glasgow, UK
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - David J Huels
- Oncode Institute, Utrecht, The Netherlands
- CRUK Beatson Institute, Glasgow, UK
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Felipe Rojas-Rodríguez
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Miguel Vizoso
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hugo J Snippert
- Oncode Institute, Utrecht, The Netherlands
- Molecular Cancer Research, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Pekka Katajisto
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Edouard Hannezo
- Institute for Science and Technology Austria, Klosterneuburg, Austria.
| | - Jacco van Rheenen
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
25
|
Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol 2022; 40:720-730. [PMID: 34980912 PMCID: PMC9110299 DOI: 10.1038/s41587-021-01109-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).
Collapse
Affiliation(s)
- Calum Gabbutt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- London Interdisciplinary Doctoral Training Programme (LIDo), London, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Isabel Martin
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Roshani Patel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Susan K Clark
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Andrew Latchford
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Hageb A, Thalheim T, Nattamai KJ, Möhrle B, Saçma M, Sakk V, Thielecke L, Cornils K, Grandy C, Port F, Gottschalk KE, Mallm JP, Glauche I, Galle J, Mulaw MA, Geiger H. Reduced adhesion of aged intestinal stem cells contributes to an accelerated clonal drift. Life Sci Alliance 2022; 5:5/8/e202201408. [PMID: 35487692 PMCID: PMC9057243 DOI: 10.26508/lsa.202201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Analysis of clonal dynamics of intestinal stem cells supports an accelerated clonal drift upon aging, likely because of reduced adhesion of aged ISCs because of reduced canonical Wnt signaling. Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model. However, it is not clear whether the drift model is still valid in aged ISCs. Tracking of clonal dynamics by clonal tracing revealed that aged crypts drift into monoclonality substantially faster than young ones. However, ISC tracing experiments, in vivo and ex vivo, implied a similar clonal expansion ability of both young and aged ISCs. Single-cell RNA sequencing for 1,920 high Lgr5 ISCs from young and aged mice revealed increased heterogeneity among subgroups of aged ISCs. Genes associated with cell adhesion were down-regulated in aged ISCs. ISCs of aged mice indeed show weaker adhesion to the matrix. Simulations applying a single cell–based model of the small intestinal crypt demonstrated an accelerated clonal drift at reduced adhesion strength, implying a central role for reduced adhesion for affecting clonal dynamics upon aging.
Collapse
Affiliation(s)
- Ali Hageb
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Torsten Thalheim
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Bettina Möhrle
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Cornils
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Grandy
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Fabian Port
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Kay-E Gottschalk
- Institute for Experimental Physics, Ulm University, Ulm, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Jörg Galle
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Medhanie A Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
27
|
Replicative history marks transcriptional and functional disparity in the CD8 + T cell memory pool. Nat Immunol 2022; 23:791-801. [PMID: 35393592 PMCID: PMC7612726 DOI: 10.1038/s41590-022-01171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Clonal expansion is a core aspect of T cell immunity. However, little is known with respect to the relationship between replicative history and the formation of distinct CD8+ memory T cell subgroups. To address this issue, we developed a genetic-tracing approach, termed the DivisionRecorder, that reports the extent of past proliferation of cell pools in vivo. Using this system to genetically ‘record’ the replicative history of different CD8+ T cell populations throughout a pathogen-specific immune response, we demonstrate that the central memory T cell (TCM) pool is marked by a higher number of prior divisions than the effector memory T cell pool, due to the combination of strong proliferative activity during the acute immune response and selective proliferative activity after pathogen clearance. Furthermore, by combining DivisionRecorder analysis with single cell transcriptomics and functional experiments, we show that replicative history identifies distinct cell pools within the TCM compartment. Specifically, we demonstrate that lowly divided TCM display enriched expression of stem-cell-associated genes, exist in a relatively quiescent state, and are superior in eliciting a proliferative recall response upon activation. These data provide the first evidence that a stem cell like memory T cell pool that reconstitutes the CD8+ T cell effector pool upon reinfection is marked by prior quiescence.
Collapse
|
28
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
29
|
Ding L, Yang Y, Lu Q, Cao Z, Weygant N. Emerging Prospects for the Study of Colorectal Cancer Stem Cells using Patient-Derived Organoids. Curr Cancer Drug Targets 2022; 22:195-208. [DOI: 10.2174/1568009622666220117124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Human colorectal cancer (CRC) patient-derived organoids (PDOs) are a powerful ex vivo platform to directly assess the impact of molecular alterations and therapies on tumor cell proliferation, differentiation, response to chemotherapy, tumor-microenvironment interactions, and other facets of CRC biology. Next-generation sequencing studies have demonstrated that CRC is a highly heterogeneous disease with multiple distinct subtypes. PDOs are a promising new tool to study CRC due to their ability to accurately recapitulate their source tumor and thus reproduce this heterogeneity. This review summarizes the state-of-the-art for CRC PDOs in the study of cancer stem cells (CSCs) and the cancer stem cell niche. Areas of focus include the relevance of PDOs to understanding CSC-related paracrine signaling, identifying interactions between CSCs and the tumor microenvironment, and modeling CSC-driven resistance to chemotherapies and targeted therapies. Finally, we summarize current findings regarding the identification and verification of CSC targets using PDOs and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Ling Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| |
Collapse
|
30
|
Abstract
A simple, universal and fundamental definition of adult stem cell communities is proposed. Key principles of cell lineage methods for defining adult stem cell numbers, locations and behaviors are critically evaluated, emphasizing the imperatives of capturing the full spectrum of individual stem cell behaviors, examining a variety of experimental time periods and avoiding unwarranted assumptions. The focus is first on defining fundamentals and then addresses stem cell heterogeneity, potential hierarchies and how individual cells serve the function of a stem cell community.
Collapse
|
31
|
Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine. Cell Rep 2021; 37:110044. [PMID: 34818540 PMCID: PMC8668154 DOI: 10.1016/j.celrep.2021.110044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
β-hydroxybutyrate (β-OHB) is an essential metabolic energy source during fasting and functions as a chromatin regulator by lysine β-hydroxybutyrylation (Kbhb) modification of the core histones H3 and H4. We report that Kbhb on histone H3 (H3K9bhb) is enriched at proximal promoters of critical gene subsets associated with lipolytic and ketogenic metabolic pathways in small intestine (SI) crypts during fasting. Similar Kbhb enrichment is observed in Lgr5+ stem cell-enriched epithelial spheroids treated with β-OHB in vitro. Combinatorial chromatin state analysis reveals that H3K9bhb is associated with active chromatin states and that fasting enriches for an H3K9bhb-H3K27ac signature at active metabolic gene promoters and distal enhancer elements. Intestinal knockout of Hmgcs2 results in marked loss of H3K9bhb-associated loci, suggesting that local production of β-OHB is responsible for chromatin reprogramming within the SI crypt. We conclude that modulation of H3K9bhb in SI crypts is a key gene regulatory event in response to fasting. Terranova et al. demonstrate that fasting induces production of HMGCS2 and β-hydroxybutyrate in small intestine (SI) crypt cells. This causes enrichment of H3K9bhb within regulatory regions of critical metabolic genes in crypt epithelial cells. Loss of intestinal Hmgcs2 impairs H3K9bhb enrichment and affects expression of H3K9bhb-associated metabolic gene programs.
Collapse
|
32
|
Heino S, Fang S, Lähde M, Högström J, Nassiri S, Campbell A, Flanagan D, Raven A, Hodder M, Nasreddin N, Xue HH, Delorenzi M, Leedham S, Petrova TV, Sansom O, Alitalo K. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. SCIENCE ADVANCES 2021; 7:eabj0512. [PMID: 34788095 PMCID: PMC8598008 DOI: 10.1126/sciadv.abj0512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Somatic mutations in APC or CTNNB1 genes lead to aberrant Wnt signaling and colorectal cancer (CRC) initiation and progression via-catenin–T cell factor/lymphoid enhancer binding factor TCF/LEF transcription factors. We found that Lef1 was expressed exclusively in Apc-mutant, Wnt ligand–independent tumors, but not in ligand-dependent, serrated tumors. To analyze Lef1 function in tumor development, we conditionally deleted Lef1 in intestinal stem cells of Apcfl/fl mice or broadly from the entire intestinal epithelium of Apcfl/fl or ApcMin/+ mice. Loss of Lef1 markedly increased tumor initiation and tumor cell proliferation, reduced the expression of several Wnt antagonists, and increased Myc proto-oncogene expression and formation of ectopic crypts in Apc-mutant adenomas. Our results uncover a previously unknown negative feedback mechanism in CRC, in which ectopic Lef1 expression suppresses intestinal tumorigenesis by restricting adenoma cell dedifferentiation to a crypt-progenitor phenotype and by reducing the formation of cancer stem cell niches.
Collapse
Affiliation(s)
- Sarika Heino
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Shentong Fang
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Marianne Lähde
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Alexander Raven
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Simon Leedham
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Kari Alitalo
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Lodestijn SC, van den Bosch T, Nijman LE, Moreno LF, Schlingemann S, Sheraton VM, van Neerven SM, Koning JJ, Vieira Braga FA, Paauw NJ, Lecca MC, Lenos KJ, Morrissey E, Miedema DM, Winton DJ, Bijlsma MF, Vermeulen L. Continuous clonal labeling reveals uniform progenitor potential in the adult exocrine pancreas. Cell Stem Cell 2021; 28:2009-2019.e4. [PMID: 34358441 PMCID: PMC8577826 DOI: 10.1016/j.stem.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.
Collapse
Affiliation(s)
- Sophie C Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van den Bosch
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Leandro F Moreno
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sophie Schlingemann
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vivek M Sheraton
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, the Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Nanne J Paauw
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands
| | - Maria C Lecca
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Daniël M Miedema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Douglas J Winton
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Yalchin M, Baker AM, Graham TA, Hart A. Predicting Colorectal Cancer Occurrence in IBD. Cancers (Basel) 2021; 13:2908. [PMID: 34200768 PMCID: PMC8230430 DOI: 10.3390/cancers13122908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with colonic inflammatory bowel disease (IBD) are at an increased risk of developing colorectal cancer (CRC), and are therefore enrolled into a surveillance programme aimed at detecting dysplasia or early cancer. Current surveillance programmes are guided by clinical, endoscopic or histological predictors of colitis-associated CRC (CA-CRC). We have seen great progress in our understanding of these predictors of disease progression, and advances in endoscopic technique and management, along with improved medical care, has been mirrored by the falling incidence of CA-CRC over the last 50 years. However, more could be done to improve our molecular understanding of CA-CRC progression and enable better risk stratification for patients with IBD. This review summarises the known risk factors associated with CA-CRC and explores the molecular landscape that has the potential to complement and optimise the existing IBD surveillance programme.
Collapse
Affiliation(s)
- Mehmet Yalchin
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ann-Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Trevor A. Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ailsa Hart
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
| |
Collapse
|
35
|
Yum MK, Han S, Fink J, Wu SHS, Dabrowska C, Trendafilova T, Mustata R, Chatzeli L, Azzarelli R, Pshenichnaya I, Lee E, England F, Kim JK, Stange DE, Philpott A, Lee JH, Koo BK, Simons BD. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 2021; 594:442-447. [PMID: 34079126 PMCID: PMC7614896 DOI: 10.1038/s41586-021-03605-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.
Collapse
Affiliation(s)
- Min Kyu Yum
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Juergen Fink
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Catherine Dabrowska
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Teodora Trendafilova
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roxana Mustata
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lemonia Chatzeli
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roberta Azzarelli
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Irina Pshenichnaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Frances England
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Anna Philpott
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Joo-Hyeon Lee
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Intravital microscopy to illuminate cell state plasticity during metastasis. Curr Opin Cell Biol 2021; 72:28-35. [PMID: 34020117 DOI: 10.1016/j.ceb.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Microenvironmental cues in tumors induce in a wide variety of cellular states that subsequently lead to cancer cells with distinct cellular identity, behavior, and fate. Recent literature suggests that the ability to change cellular states, a process defined as cell state plasticity, enable cells to rapidly adapt to their changing environment during tumor progression and metastasis. In this review, we will discuss how recent high-resolution intravital microscopy studies have been instrumental to reveal the real-time dynamics of tumor cell state plasticity during the different steps of the metastatic cascade. In addition, we will highlight the role of tumor plasticity during anticancer treatment response, and how plasticity can be used as a potential druggable target.
Collapse
|
38
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
39
|
Sheahan BJ, Freeman AN, Keeley TM, Samuelson LC, Roper J, Hasapis S, Lee CL, Dekaney CM. Epithelial Regeneration After Doxorubicin Arises Primarily From Early Progeny of Active Intestinal Stem Cells. Cell Mol Gastroenterol Hepatol 2021; 12:119-140. [PMID: 33571711 PMCID: PMC8082264 DOI: 10.1016/j.jcmgh.2021.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS aISCs (aISCs) are sensitive to acute insults including chemotherapy and irradiation. Regeneration after aISC depletion has primarily been explored in irradiation (IR). However, the cellular origin of epithelial regeneration after doxorubicin (DXR), a common chemotherapeutic, is poorly understood. METHODS We monitored DXR's effect on aISCs by enumerating Lgr5-eGFP+ and Olfm4+ crypts, cleaved caspase-3 (CASP3+) immunofluorescence, and time-lapse organoid imaging. Lineage tracing from previously identified regenerative cell populations (Bmi1+, Hopx+, Dll1+, and Defa6+) was performed with DXR damage. Lineage tracing from aISCs was compared with lineage tracing from early progeny cells (transit-amplifying cells arising from aISCs 1 day predamage) in the context of DXR and IR. We compared stem cell and DNA damage response (DDR) transcripts in isolated aISCs and early progeny cells 6 and 24 hours after DXR. RESULTS Epithelial regeneration after DXR primarily arose from early progeny cells generated by aISCs. Early progeny cells upregulated stem cell gene expression and lacked apoptosis induction (6 hours DXR: 2.5% of CASP3+ cells, p<0.0001). aISCs downregulated stem cell gene expression and underwent rapid apoptosis (6 hours DXR: 63.4% of CASP3+ cells). There was minimal regenerative contribution from Bmi1+, Hopx+, Dll1+, and Defa6+-expressing populations. In homeostasis, 48.4% of early progeny cells were BrdU+, and expressed low levels of DDR transcripts. CONCLUSIONS We show that DXR effectively depleted aISCs in the small intestine and subsequent epithelial regeneration depended on nonquiescent early progeny cells of aISCs. The chemoresistant phenotype of the early progeny cells may rely on a dampened DDR in contrast to aISCs' robust DDR, which facilitates expeditious apoptosis.
Collapse
Affiliation(s)
- Breanna J. Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Ally N. Freeman
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Stephanie Hasapis
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University, Durham, North Carolina,Department of Pathology, Duke University, Durham, North Carolina
| | - Christopher M. Dekaney
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,Correspondence Address requests for correspondence to: Christopher M. Dekaney, PhD, 1060 William Moore Drive, Campus Box 8401, Raleigh, North Carolina 27607.
| |
Collapse
|
40
|
Yu ZL, Chen YF, Zheng B, Cai ZR, Zou YF, Ke J, Lan P, Gao F, Wu XJ. Protein-protein interaction analysis reveals a novel cancer stem cell related target TMEM17 in colorectal cancer. Cancer Cell Int 2021; 21:94. [PMID: 33549114 PMCID: PMC7868027 DOI: 10.1186/s12935-021-01794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with stem cell property. Increased evidence suggest that CSCs could be responsible for chemoresistance and recurrence in colorectal cancer (CRC). However, a reliable therapeutic target on CSCs is still lacking. METHODS Here we describe a two-step strategy to generate CSC targets with high selectivity for colon stem cell markers, specific proteins that are interacted with CSC markers were selected and subsequently validated in a survival analysis. TMEM17 protein was found and its biological functions in CRC cells were further examined. Finally, we utilized the Gene Set Enrichment Analysis (GSEA) to investigate the potential mechanisms of TMEM17 in CRC. RESULTS By combining protein-protein interaction (PPI) database and high-throughput gene profiles, network analysis revealed a cluster of colon CSCs related genes. In the cluster, TMEM17 was identified as a novel CSCs related gene. The results of in-vitro functional study demonstrated that TMEM17 depletion can suppress the proliferation of CRC cells and sensitize CRC cells to chemotherapy drugs. Enrichment analysis revealed that the expression of TMEM17 is associated with the magnitude of activation of the Wnt/β-catenin pathway. Further validation in clinical samples demonstrated that the TMEM17 expression was much higher in tumor than normal tissue and was associated with poor survival in CRC patients. CONCLUSION Collectively, our finding unveils the critical role of TMEM17 in CRC and TMEM17 could be a potential effective therapeutic target for tumor recurrence and chemoresistance in the colorectal cancer (CRC).
Collapse
Affiliation(s)
- Zhao-Liang Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Bin Zheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Ze-Rong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yi-Feng Zou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Feng Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, China.
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, China.
| |
Collapse
|
41
|
Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nat Cell Biol 2021; 23:23-31. [PMID: 33398177 DOI: 10.1038/s41556-020-00617-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
A detailed understanding of intestinal stem cell (ISC) self-renewal and differentiation is required to treat chronic intestinal diseases. However, the different models of ISC lineage hierarchy1-6 and segregation7-12 are subject to debate. Here, we have discovered non-canonical Wnt/planar cell polarity (PCP)-activated ISCs that are primed towards the enteroendocrine or Paneth cell lineage. Strikingly, integration of time-resolved lineage labelling with single-cell gene expression analysis revealed that both lineages are directly recruited from ISCs via unipotent transition states, challenging the existence of formerly predicted bi- or multipotent secretory progenitors7-12. Transitory cells that mature into Paneth cells are quiescent and express both stem cell and secretory lineage genes, indicating that these cells are the previously described Lgr5+ label-retaining cells7. Finally, Wnt/PCP-activated Lgr5+ ISCs are molecularly indistinguishable from Wnt/β-catenin-activated Lgr5+ ISCs, suggesting that lineage priming and cell-cycle exit is triggered at the post-transcriptional level by polarity cues and a switch from canonical to non-canonical Wnt/PCP signalling. Taken together, we redefine the mechanisms underlying ISC lineage hierarchy and identify the Wnt/PCP pathway as a new niche signal preceding lateral inhibition in ISC lineage priming and segregation.
Collapse
|
42
|
Thorsen AS, Khamis D, Kemp R, Colombé M, Lourenço FC, Morrissey E, Winton D. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech 2021; 14:dmm046706. [PMID: 33093165 PMCID: PMC7823168 DOI: 10.1242/dmm.046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of β-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.
Collapse
Affiliation(s)
- Ann-Sofie Thorsen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Doran Khamis
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Filipe C. Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
43
|
Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development 2020; 147:dev169862. [PMID: 33191272 DOI: 10.1242/dev.169862] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammary gland is a unique tissue and the defining feature of the class Mammalia. It is a late-evolving epidermal appendage that has the primary function of providing nutrition for the young, although recent studies have highlighted additional benefits of milk including the provision of passive immunity and a microbiome and, in humans, the psychosocial benefits of breastfeeding. In this Review, we outline the various stages of mammary gland development in the mouse, with a particular focus on lineage specification and the new insights that have been gained by the application of recent technological advances in imaging in both real-time and three-dimensions, and in single cell RNA sequencing. These studies have revealed the complexity of subpopulations of cells that contribute to the mammary stem and progenitor cell hierarchy and we suggest a new terminology to distinguish these cells.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
44
|
Al Zouabi L, Bardin AJ. Stem Cell DNA Damage and Genome Mutation in the Context of Aging and Cancer Initiation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036210. [PMID: 31932318 DOI: 10.1101/cshperspect.a036210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| |
Collapse
|
45
|
Paterson C, Clevers H, Bozic I. Mathematical model of colorectal cancer initiation. Proc Natl Acad Sci U S A 2020; 117:20681-20688. [PMID: 32788368 PMCID: PMC7456111 DOI: 10.1073/pnas.2003771117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quantifying evolutionary dynamics of cancer initiation and progression can provide insights into more effective strategies of early detection and treatment. Here we develop a mathematical model of colorectal cancer initiation through inactivation of two tumor suppressor genes and activation of one oncogene, accounting for the well-known path to colorectal cancer through loss of tumor suppressors APC and TP53 and gain of the KRAS oncogene. In the model, we allow mutations to occur in any order, leading to a complex network of premalignant mutational genotypes on the way to colorectal cancer. We parameterize the model using experimentally measured parameter values, many of them only recently available, and compare its predictions to epidemiological data on colorectal cancer incidence. We find that the reported lifetime risk of colorectal cancer can be recovered using a mathematical model of colorectal cancer initiation together with experimentally measured mutation rates in colorectal tissues and proliferation rates of premalignant lesions. We demonstrate that the order of driver events in colorectal cancer is determined primarily by the fitness effects that they provide, rather than their mutation rates. Our results imply that there may not be significant immune suppression of untreated benign and malignant colorectal lesions.
Collapse
Affiliation(s)
- Chay Paterson
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, The Netherlands;
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
- University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195;
| |
Collapse
|
46
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
47
|
Abstract
Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common ("universal") functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.
Collapse
|
48
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Morral C, Stanisavljevic J, Hernando-Momblona X, Mereu E, Álvarez-Varela A, Cortina C, Stork D, Slebe F, Turon G, Whissell G, Sevillano M, Merlos-Suárez A, Casanova-Martí À, Moutinho C, Lowe SW, Dow LE, Villanueva A, Sancho E, Heyn H, Batlle E. Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell 2020; 26:845-861.e12. [PMID: 32396863 DOI: 10.1016/j.stem.2020.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/20/2020] [Accepted: 04/19/2020] [Indexed: 01/12/2023]
Abstract
Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.
Collapse
Affiliation(s)
- Clara Morral
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Jelena Stanisavljevic
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Elisabetta Mereu
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Gavin Whissell
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Anna Merlos-Suárez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Àngela Casanova-Martí
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain
| | - Catia Moutinho
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lukas E Dow
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10021, USA
| | - Alberto Villanueva
- Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), ICO, Oncobell Program, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Holger Heyn
- CNAG-Centre for Genomic Regulation (CRG), BIST, Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain.
| |
Collapse
|
50
|
Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S, Wucherpfennig K, Barefoot M, Shivdasani RA. Replicational Dilution of H3K27me3 in Mammalian Cells and the Role of Poised Promoters. Mol Cell 2020; 78:141-151.e5. [PMID: 32027840 PMCID: PMC7376365 DOI: 10.1016/j.molcel.2020.01.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Polycomb repressive complex 2 (PRC2) places H3K27me3 at developmental genes and is causally implicated in keeping bivalent genes silent. It is unclear if that silence requires minimum H3K27me3 levels and how the mark transmits faithfully across mammalian somatic cell generations. Mouse intestinal cells lacking EZH2 methyltransferase reduce H3K27me3 proportionately at all PRC2 target sites, but ∼40% uniform residual levels keep target genes inactive. These genes, derepressed in PRC2-null villus cells, remain silent in intestinal stem cells (ISCs). Quantitative chromatin immunoprecipitation and computational modeling indicate that because unmodified histones dilute H3K27me3 by 50% each time DNA replicates, PRC2-deficient ISCs initially retain sufficient H3K27me3 to avoid gene derepression. EZH2 mutant human lymphoma cells also require multiple divisions before H3K27me3 dilution relieves gene silencing. In both cell types, promoters with high basal H3K4me2/3 activate in spite of some residual H3K27me3, compared to less-poised promoters. These findings have implications for PRC2 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Unmesh Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kodandaramireddy Nalapareddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shaon Chakrabarti
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|