1
|
Jeon YG, Kim SW, Kim JB. Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes. Adipocyte 2024; 13:2391511. [PMID: 39155481 PMCID: PMC11340756 DOI: 10.1080/21623945.2024.2391511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
3
|
Traynor S, Bhattacharya S, Batmanov K, Cheng L, Weller A, Moore N, Flesher C, Merrick D. Developmental regulation of dermal adipose tissue by BCL11b. Genes Dev 2024; 38:772-783. [PMID: 39266447 PMCID: PMC11444185 DOI: 10.1101/gad.351907.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including Bcl11b + cells, that regulate the development of dermal white adipose tissue (dWAT). We discovered that BCL11b expression modulates the Wnt signaling microenvironment to enable adipogenic differentiation in the dermal compartment. Subcutaneous and visceral adipose arises from a distinct population of Nefl + cells during embryonic organogenesis, whereas Pi16 + /Dpp4 + fibroadipogenic progenitors support obesity-stimulated hypertrophic expansion in the adult. Together, these results highlight the unique regulatory pathways used by anatomically distinct adipose depots, with important implications for human metabolic disease.
Collapse
Affiliation(s)
- Sarah Traynor
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shashwati Bhattacharya
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kirill Batmanov
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lan Cheng
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Angela Weller
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Natalie Moore
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carmen Flesher
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Li L, Feldman BJ. White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models. J Clin Invest 2024; 134:e172360. [PMID: 38949025 PMCID: PMC11213504 DOI: 10.1172/jci172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15's direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.
Collapse
Affiliation(s)
- Liang Li
- Department of Pediatrics, University of California, San Francisco (UCSF) School of Medicine, San Francisco, California, USA
| | - Brian J. Feldman
- Department of Pediatrics, University of California, San Francisco (UCSF) School of Medicine, San Francisco, California, USA
- Nutrition and Obesity Research Center, UCSF, San Francisco, California, USA
| |
Collapse
|
5
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
6
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
7
|
Huang Z, Gu C, Zhang Z, Arianti R, Swaminathan A, Tran K, Battist A, Kristóf E, Ruan HB. Supraclavicular brown adipocytes originate from Tbx1+ myoprogenitors. PLoS Biol 2023; 21:e3002413. [PMID: 38048357 PMCID: PMC10721186 DOI: 10.1371/journal.pbio.3002413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control, energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in supraclavicular areas and its prevalence is associated with cardiometabolic health. However, the developmental origin of supraclavicular BAT remains unknown. Here, using genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT (iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome proliferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), components of the transcriptional complex for brown fat determination, leads to supraclavicular BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover, human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck white adipocytes. Taken together, our observations reveal location-specific developmental origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human relevant supraclavicular BAT.
Collapse
Affiliation(s)
- Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chenxin Gu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aneesh Swaminathan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kevin Tran
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Alex Battist
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
8
|
Palacios-Marin I, Serra D, Jiménez-Chillarón JC, Herrero L, Todorčević M. Childhood obesity: Implications on adipose tissue dynamics and metabolic health. Obes Rev 2023; 24:e13627. [PMID: 37608466 DOI: 10.1111/obr.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep C Jiménez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
9
|
Nandy A, Helderman RCM, Thapa S, Jayapalan S, Richards A, Narayani N, Czech MP, Rosen CJ, Rendina-Ruedy E. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status. Bone Res 2023; 11:62. [PMID: 38001111 PMCID: PMC10673934 DOI: 10.1038/s41413-023-00297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/26/2023] Open
Abstract
Bone formation is a highly energy-demanding process that can be impacted by metabolic disorders. Glucose has been considered the principal substrate for osteoblasts, although fatty acids are also important for osteoblast function. Here, we report that osteoblasts can derive energy from endogenous fatty acids stored in lipid droplets via lipolysis and that this process is critical for bone formation. As such, we demonstrate that osteoblasts accumulate lipid droplets that are highly dynamic and provide the molecular mechanism by which they serve as a fuel source for energy generation during osteoblast maturation. Inhibiting cytoplasmic lipolysis leads to both an increase in lipid droplet size in osteoblasts and an impairment in osteoblast function. The fatty acids released by lipolysis from these lipid droplets become critical for cellular energy production as cellular energetics shifts towards oxidative phosphorylation during nutrient-depleted conditions. In vivo, conditional deletion of the ATGL-encoding gene Pnpla2 in osteoblast progenitor cells reduces cortical and trabecular bone parameters and alters skeletal lipid metabolism. Collectively, our data demonstrate that osteoblasts store fatty acids in the form of lipid droplets, which are released via lipolysis to support cellular bioenergetic status when nutrients are limited. Perturbations in this process result in impairment of bone formation, specifically reducing ATP production and overall osteoblast function.
Collapse
Affiliation(s)
- Ananya Nandy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ron C M Helderman
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Santosh Thapa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shobana Jayapalan
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alison Richards
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nikita Narayani
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Li Z, Rosen CJ. The Multifaceted Roles of Bone Marrow Adipocytes in Bone and Hematopoietic Homeostasis. J Clin Endocrinol Metab 2023; 108:e1465-e1472. [PMID: 37315208 DOI: 10.1210/clinem/dgad355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Bone marrow adipose tissue (BMAT) makes up a significant portion of the marrow space, ranging from 50% to 70%, in healthy adults. It expands with aging, obesity, anorexia nervosa, and irradiation, which are conditions associated with skeletal complications or hematopoietic disorders. Therefore, BMAT has been viewed as a negative component of the bone marrow niche for decades, although the mechanisms and causative relationships have not been well-addressed. Of note, recent studies have revealed that BMAT is a multifaceted tissue that can serve as an energy reservoir to fuel osteoblasts and hematopoietic cells under stressful situations, and also acts as an endocrine/paracrine organ to suppress bone formation and support hematopoiesis at steady-state conditions. In this review, we summarize the uniqueness of BMAT, the complex findings of previous studies, and update our understanding of the physiological roles of BMAT in bone and hematopoietic metabolism based on a newly established bone marrow adipocyte-specific mouse model.
Collapse
Affiliation(s)
- Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
11
|
Hirakawa H, Gao L, Tavakol DN, Vunjak-Novakovic G, Ding L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat Genet 2023; 55:1941-1952. [PMID: 37857934 DOI: 10.1038/s41588-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate after myeloablation, a procedure that adversely disrupts the bone marrow and drives leptin receptor-expressing cells, a key niche component, to differentiate extensively into adipocytes. Regeneration of the bone marrow niche is associated with the resolution of adipocytes, but the mechanisms remain poorly understood. Using Plin1-creER knock-in mice, we followed the fate of adipocytes in the regenerating niche in vivo. We found that bone marrow adipocytes were highly dynamic and dedifferentiated to leptin receptor-expressing cells during regeneration after myeloablation. Bone marrow adipocytes could give rise to osteolineage cells after skeletal injury. The cellular fate of steady-state bone marrow adipocytes was also plastic. Deletion of adipose triglyceride lipase (Atgl) from bone marrow stromal cells, including adipocytes, obstructed adipocyte dedifferentiation and led to severely compromised regeneration of HSCs as well as impaired B lymphopoiesis after myeloablation, but not in the steady state. Thus, the regeneration of HSCs and their niche depends on the cellular plasticity of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Hirakawa
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Longfei Gao
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel Naveed Tavakol
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, New York, NY, USA.
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Rosen CJ, Horowitz MC. Nutrient regulation of bone marrow adipose tissue: skeletal implications of weight loss. Nat Rev Endocrinol 2023; 19:626-638. [PMID: 37587198 PMCID: PMC10592027 DOI: 10.1038/s41574-023-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Adipose tissue is a dynamic component of the bone marrow, regulating skeletal remodelling and secreting paracrine and endocrine factors that can affect haematopoiesis, as well as potentially nourishing the bone marrow during periods of stress. Bone marrow adipose tissue is regulated by multiple factors, but particularly nutrient status. In this Review, we examine how bone marrow adipocytes originate, their function in normal and pathological states and how bone marrow adipose tissue modulates whole-body homoeostasis through actions on bone cells, haematopoietic stem cells and extra-medullary adipocytes during nutritional challenges. We focus on both rodent models and human studies to help understand the unique marrow adipocyte, its response to the external nutrient environment and its effects on the skeleton. We finish by addressing some critical questions that to date remain unanswered.
Collapse
Affiliation(s)
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Kim SP, Seward AH, Garcia-Diaz J, Alekos N, Gould NR, Aja S, Stains JP, Wolfgang MJ, Riddle RC. Peroxisome proliferator activated receptor-γ in osteoblasts controls bone formation and fat mass by regulating sclerostin expression. iScience 2023; 26:106999. [PMID: 37534168 PMCID: PMC10391670 DOI: 10.1016/j.isci.2023.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
The nuclear receptor peroxisome proliferator activated receptor-γ (PPARγ) is a key contributor to metabolic function via its adipogenic and insulin-sensitizing functions, but it has negative effects on skeletal homeostasis. Here, we questioned whether the skeletal and metabolic actions of PPARγ are linked. Ablating Pparg expression in osteoblasts and osteocytes produced a high bone mass phenotype, secondary to increased osteoblast activity, and a reduction in subcutaneous fat mass because of reduced fatty acid synthesis and increased fat oxidation. The skeletal and metabolic phenotypes in Pparg mutants proceed from the regulation of sclerostin production by PPARγ. Mutants exhibited reductions in skeletal Sost expression and serum sclerostin levels while increasing production normalized both phenotypes. Importantly, disrupting the production of sclerostin synergized with the insulin-sensitizing actions of a PPARγ agonist while preventing bone loss. These data suggest that modulating sclerostin action may prevent bone loss associated with anti-diabetic therapies and augment their metabolic actions.
Collapse
Affiliation(s)
- Soohyun P. Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Avery H. Seward
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathalie Alekos
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicole R. Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Xiong X, Li W, Liu R, Saha P, Yechoor V, Ma K. Circadian clock control of MRTF/SRF pathway suppresses beige adipocyte thermogenic recruitment. J Mol Cell Biol 2023; 14:mjac079. [PMID: 36581314 PMCID: PMC10174720 DOI: 10.1093/jmcb/mjac079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The morphological transformation of adipogenic progenitors into mature adipocytes requires dissolution of actin cytoskeleton with loss of myocardin-related transcription factor (MRTF)/serum response factor (SRF) activity. Circadian clock confers temporal control in adipogenic differentiation, while the actin cytoskeleton-MRTF/SRF signaling transduces extracellular physical niche cues. Here, we define a novel circadian transcriptional control involved in actin cytoskeleton-MRTF/SRF signaling cascade that modulates beige fat thermogenic function. Key components of actin dynamic-MRTF/SRF pathway display circadian regulation in beige fat depot. The core clock regulator, brain and muscle arnt-like 1 (Bmal1), exerts direct transcriptional control of genes within the actin dynamic-MRTF/SRF cascade that impacts actin cytoskeleton organization and SRF activity. Employing beige fat-selective gene-targeting models together with pharmacological rescues, we further demonstrate that Bmal1 inhibits beige adipogenesis and thermogenic capacity in vivo via the MRTF/SRF pathway. Selective ablation of Bmal1 induces beigeing with improved glucose homeostasis, whereas its targeted overexpression attenuates thermogenic induction resulting in obesity. Collectively, our findings identify the clock-MRTF/SRF regulatory axis as an inhibitory mechanism of beige fat thermogenic recruitment with significant contribution to systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Weini Li
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pradip Saha
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Madsen S, Nelson ME, Deshpande V, Humphrey SJ, Cooke KC, Howell A, Diaz-Vegas A, Burchfield JG, Stöckli J, James DE. Deep Proteome Profiling of White Adipose Tissue Reveals Marked Conservation and Distinct Features Between Different Anatomical Depots. Mol Cell Proteomics 2023; 22:100508. [PMID: 36787876 PMCID: PMC10014311 DOI: 10.1016/j.mcpro.2023.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue, which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome. Adipocytes from SAT (SAdi) were enriched in pathways related to mitochondrial complex I and beiging, whereas visceral adipocytes (VAdi) were enriched in structural proteins and positive regulators of mTOR presumably to promote nutrient storage and cellular expansion. This indicates that SAdi are geared toward higher catabolic activity, while VAdi are more suited for lipid storage. By comparing adipocytes from mice fed chow or Western diet (WD), we define a core adaptive proteomics signature consisting of increased extracellular matrix proteins and decreased fatty acid metabolism and mitochondrial Coenzyme Q biosynthesis. Relative to SAdi, VAdi displayed greater changes with WD including a pronounced decrease in mitochondrial proteins concomitant with upregulation of apoptotic signaling and decreased mitophagy, indicating pervasive mitochondrial stress. Furthermore, WD caused a reduction in lipid handling and glucose uptake pathways particularly in VAdi, consistent with adipocyte de-differentiation. By overlaying the proteomics changes with diet in whole adipose tissue and isolated adipocytes, we uncovered concordance between adipocytes and tissue only in the visceral adipose tissue, indicating a unique tissue-specific adaptation to sustained WD in SAT. Finally, an in-depth comparison of isolated adipocytes and 3T3-L1 proteomes revealed a high degree of overlap, supporting the utility of the 3T3-L1 adipocyte model. These deep proteomes provide an invaluable resource highlighting differences between white adipose depots that may fine-tune their unique functions and adaptation to an obesogenic environment.
Collapse
Affiliation(s)
- Søren Madsen
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Vinita Deshpande
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anna Howell
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
16
|
Zhao L, Liu X, Gomez NA, Gao Y, Son JS, Chae SA, Zhu MJ, Du M. Stage-specific nutritional management and developmental programming to optimize meat production. J Anim Sci Biotechnol 2023; 14:2. [PMID: 36597116 PMCID: PMC9809060 DOI: 10.1186/s40104-022-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock. However, the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnormalities, impairing meat quality and processing functionality. Early stages of animal development set the long-term growth trajectory of offspring. However, due to the seasonal reproductive cycles of ruminant livestock, gestational nutrient deficiencies caused by seasonal variations, frequent droughts, and unfavorable geological locations negatively affect fetal development and their subsequent production efficiency and meat quality. Therefore, enrolling livestock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest. These crucial early developmental stages include embryonic, fetal, and postnatal stages, which have stage-specific effects on subsequent offspring development, body composition, and meat quality. This review summarizes contemporary research in the embryonic, fetal, and neonatal development, and the impacts of maternal nutrition on the early development and programming effects on the long-term growth performance of livestock. Understanding the developmental and metabolic characteristics of skeletal muscle, adipose, and fibrotic tissues will facilitate the development of stage-specific nutritional management strategies to optimize production efficiency and meat quality.
Collapse
Affiliation(s)
- Liang Zhao
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, PR China ,grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Xiangdong Liu
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Noe A Gomez
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Yao Gao
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Jun Seok Son
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA ,grid.411024.20000 0001 2175 4264Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, MD 21201 Baltimore, USA
| | - Song Ah Chae
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Mei-Jun Zhu
- grid.30064.310000 0001 2157 6568School of Food Science, Washington State University, WA Pullman, USA
| | - Min Du
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| |
Collapse
|
17
|
Liu H, Li P, Zhang S, Xiang J, Yang R, Liu J, Shafiquzzaman M, Biswas S, Wei Z, Zhang Z, Zhou X, Yin F, Xie Y, Goff SP, Chen L, Li B. Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nat Genet 2022; 54:1946-1958. [PMID: 36456880 DOI: 10.1038/s41588-022-01227-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Specialized connective tissues, including bone and adipose tissues, control various physiological activities, including mineral and energy homeostasis. However, the identity of stem cells maintaining these tissues throughout adulthood remains elusive. By conducting genetic lineage tracing and cell depletion experiments in newly generated knock-in Cre/CreERT2 lines, we show here that rare Prrx1-expressing cells act as stem cells for bone, white adipose tissue and dermis in adult mice, which are indispensable for the homeostasis and repair of these tissues. Single-cell profiling reveals the cycling and multipotent nature of Prrx1-expressing cells and the stemness of these cells is further validated by transplantation assays. Moreover, we identify the cell surface markers for Prrx1-expressing stem cells and show that the activities of these stem cells are regulated by Wnt signaling. These findings expand our knowledge of connective tissue homeostasis/regeneration and may help improve stem-cell-based therapies.
Collapse
Affiliation(s)
- Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jinnan Xiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ruichen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Md Shafiquzzaman
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Zhou
- Institute of Traditional Chinese Medicine and Stem Cell Research, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Yin
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, China.,Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangli Xie
- Department Of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Stephen P Goff
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, and Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Lin Chen
- Department Of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China. .,Institute of Traditional Chinese Medicine and Stem Cell Research, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Abstract
The mammalian skeleton is integral to whole body physiology with a multitude of functions beyond mechanical support and locomotion, including support of hematopoiesis, mineral homeostasis and potentially other endocrine roles. Formation of the skeleton begins in the embryo and mostly from a cartilage template that is ultimately replaced by bone through endochondrial ossification. Skeletal development and maturation continue after birth in most species and last into the second decade of postnatal life in humans. In the mature skeleton, articular cartilage lining the synovial joint surfaces is vital for bodily movement and damages to the cartilage are a hallmark of osteoarthritis. The mature bone tissue undergoes continuous remodeling initiated with bone resorption by osteoclasts and completed with bone formation from osteoblasts. In a healthy state, the exquisite balance between bone resorption and formation is responsible for maintaining a stable bone mass and structural integrity, while meeting the physiological needs for minerals via controlled release from bone. Disruption of the balance in favor of bone resorption is the root cause for osteoporosis. Whereas osteoclasts pump molar quantities of hydrochloric acid to dissolve the bone minerals in a process requiring ATP hydrolysis, osteoblasts build bone mass by synthesizing and secreting copious amounts of bone matrix proteins. Thus, both osteoclasts and osteoblasts engage in energy-intensive activities to fulfill their physiological functions, but the bioenergetics of those and other skeletal cell types are not well understood. Nonetheless, the past ten years have witnessed a resurgence of interest in studies of skeletal cell metabolism, resulting in an unprecedented understanding of energy substrate utilization and its role in cell fate and activity regulation. The present review attempts to synthesize the current findings of glucose metabolism in chondrocytes, osteoblasts and osteoclasts. Advances with the other relevant cell types including skeletal stem cells and marrow adipocytes will not be discussed here as they have been extensively reviewed recently by others (van Gastel and Carmeliet, 2021). Elucidation of the bioenergetic mechanisms in the skeletal cells is likely to open new avenues for developing additional safe and effective bone therapies.
Collapse
Affiliation(s)
- Fanxin Long
- Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Department of Orthopedic Surgery, University of Pennsylvania, United States of America
| |
Collapse
|
19
|
Bragdon BC, Bennie A, Molinelli A, Liu Y, Gerstenfeld LC. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues. J Cell Physiol 2022; 237:2550-2560. [PMID: 35338481 PMCID: PMC9133217 DOI: 10.1002/jcp.30728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
Currently, there is no consensus whether there is a single or multiple postnatal stem cell population(s) that contribute to skeletal homeostasis and postnatal bone formation. A known population of cells that express Prx1 contributes to postnatal bone formation. Prx1 expression also connotes calvaria and appendicular tissues during embryonic development. A transgenic tamoxifen inducible Prx1 reporter mouse was used for lineage tracking, to characterize the postnatal contribution of Prx1 expressing cells in skeletal homeostasis and bone formation. Under homeostatic conditions Prx1 labeling gave rise to a transient yet rapid turnover cell population at the periosteal and endosteal surfaces, along muscle fibers, and within the medial layers of vessels both within the muscle and marrow compartments of the appendicular skeleton. Fracture and ectopic bone formation of both fore and hind limbs showed recruitment and expansion of Prx1-derived cells in newly formed bone tissues. Prx1 labeled cells were limited or absent at axial skeletal sites during both homeostasis and after induction of bone formation. Last, Prx1-derived cells differentiated into multiple cell lineages including vascular smooth muscle, adipose, cartilage, and bone cells. These results show that Prx1 expression retained its embryonic tissue specification and connotes a stem/progenitor cell populations of mesenchymal tissue progenitors.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Bennie
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amanda Molinelli
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yu Liu
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 290] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
21
|
Ko KI, Merlet JJ, DerGarabedian BP, Zhen H, Suzuki-Horiuchi Y, Hedberg ML, Hu E, Nguyen AT, Prouty S, Alawi F, Walsh MC, Choi Y, Millar SE, Cliff A, Romero J, Garvin MR, Seykora JT, Jacobson D, Graves DT. NF-κB perturbation reveals unique immunomodulatory functions in Prx1 + fibroblasts that promote development of atopic dermatitis. Sci Transl Med 2022; 14:eabj0324. [PMID: 35108061 DOI: 10.1126/scitranslmed.abj0324] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-κB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-κB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean J Merlet
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Brett P DerGarabedian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huang Zhen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Periodontology, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew L Hedberg
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen Hu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anh T Nguyen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Faizan Alawi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley Cliff
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jonathon Romero
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Michael R Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Shah S, Mudigonda S, Underhill TM, Salo PT, Mitha AP, Krawetz RJ. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:200-212. [PMID: 35259263 PMCID: PMC8929447 DOI: 10.1093/stcltm/szab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Sathvika Mudigonda
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Tully Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul T Salo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- Corresponding author: Roman J. Krawetz, McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3AA10, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
23
|
Mukherjee R, Sanchez-Gurmaches J. Fluorescent Genetic Tools for Studying Brown Fat Development and Function in Mice. Methods Mol Biol 2022; 2448:203-215. [PMID: 35167099 PMCID: PMC10112487 DOI: 10.1007/978-1-0716-2087-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Techniques to trace and isolate brown adipocyte precursor and adipocytes during development and disease are essential to fully understand brown adipose tissue development and function. Here we report several protocols using the R26R-mTmG reporter mice in thermogenic tissues based on confocal microscopy and fluorescence based flow cytometry. These techniques may be useful to understand the influence of genetic or environmental alterations in brown adipocyte precursors and adipocyte biology.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Harlan B, Park HG, Spektor R, Cummings B, Brenna JT, Soloway PD. Single-cell chromatin accessibility and lipid profiling reveals SCD1-dependent metabolic shift in adipocytes induced by bariatric surgery. PLoS One 2021; 16:e0261783. [PMID: 34972124 PMCID: PMC8719700 DOI: 10.1371/journal.pone.0261783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity promotes type 2 diabetes and cardiometabolic pathologies. Vertical sleeve gastrectomy (VSG) is used to treat obesity resulting in long-term weight loss and health improvements that precede weight loss; however, the mechanisms underlying the immediate benefits remain incompletely understood. Because adipose plays a crucial role in energy homeostasis and utilization, we hypothesized that VSG exerts its influences, in part, by modulating adipose functional states. We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or VSG. We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.
Collapse
Affiliation(s)
- Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bethany Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Paul D. Soloway
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
25
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Xiang J, Zhang S, Xu R, Chu H, Biswas S, Yu S, Miao D, Li W, Li S, Brown AJ, Yang H, Xu Y, Li B, Liu H. Elevated HB-EGF expression in neural stem cells causes middle age obesity by suppressing Hypocretin/Orexin expression. FASEB J 2021; 35:e21345. [PMID: 33715219 DOI: 10.1096/fj.202001945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Obesity is common in the middle aged population and it increases the risks of diabetes, cardiovascular diseases, certain cancers, and dementia. Yet, its etiology remains incompletely understood. Here, we show that ectopic expression of HB-EGF, an important regulator of neurogenesis, in Nestin+ neuroepithelial progenitors with the Cre-LoxP system leads to development of spontaneous middle age obesity in male mice accompanied by hyperglycemia and insulin resistance. The Nestin-HB-EGF mice show decreases in food uptake, energy expenditure, and physical activity, suggesting that reduced energy expenditure underlies the pathogenesis of this obesity model. However, HB-EGF expression in appetite-controlling POMC or AgRP neurons or adipocytes fails to induce obesity. Mechanistically, HB-EGF suppresses expression of Hypocretin/Orexin, an orexigenic neuropeptide hormone, in the hypothalamus of middle aged Nestin-HB-EGF mice. Hypothalamus Orexin administration alleviates the obese and hyperglycemic phenotypes in Nestin-HB-EGF mice. This study uncovers an important role for HB-EGF in regulating Orexin expression and energy expenditure and establishes a midlife obesity model whose pathogenesis involves age-dependent changes in hypothalamus neurons.
Collapse
Affiliation(s)
- Jinnan Xiang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyang Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyao Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshang Chu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxiang Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Weidong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shentian Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Yuhong Xu
- Pharmacy School, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Center for Traditional Chinese Medicine and Stem Cell Research, The Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Huijuan Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Development of an Optimized Clearing Protocol to Examine Adipocyte Subpopulations in White Adipose Tissue. Methods Protoc 2021; 4:mps4020039. [PMID: 34199437 PMCID: PMC8293430 DOI: 10.3390/mps4020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Organic solvent dibenzyl ether (DBE)-based protocols have been widely used in adipose tissue clearing. However, benzyl alcohol/benzyl benzoate (BABB)-based clearing has been shown to offer better transparency in other tissues. The addition of diphenyl ether (DPE) to BABB (BABB-D4) is often included to preserve fluorescent signals, but its effects on adipose tissue transparency and shrinkage have not been explored. Distinct adipocyte subpopulations contribute to its cellular composition and biological activity. Here, we compared clearing solvents to create an optimized clearing methodology for the study of adipocyte subpopulations. Adipose tissues were cleared with BABB, BABB-D4, and DBE, and post-clearing transparency and tissue shrinkage were measured. An optimized protocol, including BABB-D4 clearing, delipidation, and extensive immunofluorescence blocking steps, was created to examine the spatial distribution of Wt-1 positive progenitor-derived (Type-1) adipocytes in intact mesenteric fat. Both BABB and BABB-D4 lead to significantly increased tissue transparency with reduced tissue shrinkage compared to DBE-cleared adipose tissue. Type-1 adipocytes are found in a clustered distribution with predominant residence in fat associated with the ileum and colon. This paper details an optimized clearing methodology for adipose tissue with increased tissue transparency and reduced shrinkage, and therefore will be a useful tool for investigating adipose tissue biology.
Collapse
|
28
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
29
|
Wu N, Sun H, Tan J, Zhang Y, Su B. Comments on "MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche". J Mol Cell Biol 2021; 13:458-459. [PMID: 34010396 PMCID: PMC8436688 DOI: 10.1093/jmcb/mjab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine‒Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Felix JB, Cox AR, Hartig SM. Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion. Trends Endocrinol Metab 2021; 32:320-332. [PMID: 33712368 PMCID: PMC8035226 DOI: 10.1016/j.tem.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
White adipose tissue (WAT) depends on coordinated regulation of transcriptional and metabolic pathways to respond to whole-body energy demands. We highlight metabolites that contribute to biosynthetic reactions for WAT expansion. Recent studies have precisely defined how byproducts of carbohydrate and lipid metabolism affect physiological and endocrine functions in adipocytes. We emphasize the critical emerging roles of short-chain fatty acids (SCFAs) and tricarboxylic acid (TCA) cycle metabolites that connect lipogenesis to WAT energy balance and endocrine functions. These insights address how adipocytes use small molecules generated from central carbon metabolism to measure responses to nutritional stress.
Collapse
Affiliation(s)
- Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Ito K, Schneeberger M, Gerber A, Jishage M, Marchildon F, Maganti AV, Cohen P, Friedman JM, Roeder RG. Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. Genes Dev 2021; 35:729-748. [PMID: 33888560 PMCID: PMC8091968 DOI: 10.1101/gad.346791.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
In this study, Ito et al. sought to understand the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue. Using multiple genetic approaches to assess requirements for MED1 in adipocyte formation and function in mice, they show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.
Collapse
Affiliation(s)
- Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Alan Gerber
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Francois Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Aarthi V Maganti
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
32
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
33
|
Extracellular Vesicles from Adipose Tissue Stem Cells in Diabetes and Associated Cardiovascular Disease; Pathobiological Impact and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21249598. [PMID: 33339409 PMCID: PMC7766415 DOI: 10.3390/ijms21249598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are pluripotent mesenchymal stem cells found in relatively high percentages in the adipose tissue and able to self-renew and differentiate into many different types of cells. “Extracellular vesicles (EVs), small membrane vesicular structures released during cell activation, senescence, or apoptosis, act as mediators for long distance communication between cells, transferring their specific bioactive molecules into host target cells”. There is a general consensus on how to define and isolate ADSCs, however, multiple separation and characterization protocols are being used in the present which complicate the results’ integration in a single theory on ADSCs’ and their derived factors’ way of action. Metabolic syndrome and type 2 diabetes mellitus (T2DM) are mainly caused by abnormal adipose tissue size, distribution and metabolism and so ADSCs and their secretory factors such as EVs are currently investigated as therapeutics in these diseases. Moreover, due to their relatively easy isolation and propagation in culture and their differentiation ability, ADSCs are being employed in preclinical studies of implantable devices or prosthetics. This review aims to provide a comprehensive summary of the current knowledge on EVs secreted from ADSCs both as diagnostic biomarkers and therapeutics in diabetes and associated cardiovascular disease, the molecular mechanisms involved, as well as on the use of ADSC differentiation potential in cardiovascular tissue repair and prostheses.
Collapse
|
34
|
Cox AR, Chernis N, Bader DA, Saha PK, Masschelin PM, Felix JB, Sharp R, Lian Z, Putluri V, Rajapakshe K, Kim KH, Villareal DT, Armamento-Villareal R, Wu H, Coarfa C, Putluri N, Hartig SM. STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes 2020; 69:2630-2641. [PMID: 32994273 PMCID: PMC7679774 DOI: 10.2337/db20-0384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Natasha Chernis
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K Saha
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Peter M Masschelin
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jessica B Felix
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Robert Sharp
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Vasanta Putluri
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Sean M Hartig
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Shah S, Mudigonda S, Mitha AP, Salo P, Krawetz RJ. Epidural fat mesenchymal stem cells: Important microenvironmental regulators in health, disease, and regeneration: Do EF-MSCs play a role in dural homeostasis/maintenance? Bioessays 2020; 43:e2000215. [PMID: 33191529 DOI: 10.1002/bies.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are present in fat tissues throughout the body, yet little is known regarding their biological role within epidural fat. We hypothesize that debridement of epidural fat and/or subsequent loss of MSCs within this tissue, disrupts homeostasis in the vertebral environment resulting in increased inflammation, fibrosis, and decreased neovascularization leading to poorer functional outcomes post-injury/operatively. Clinically, epidural fat is commonly considered a space-filling tissue with limited functionality and therefore typically discarded during surgery. However, the presence of MSCs within epidural fat suggests that itis more biologically active than historically believed and may contribute to the regulation of homeostasis and regeneration in the dural environment. While the current literature supports our hypothesis, it will require additional experimentation to determine if epidural fat is an endogenous driver of repair and regeneration and if so, this tissue should be minimally perturbed from its original location in the spinal canal. Also see the video abstract here https://youtu.be/MIol_IWK1os.
Collapse
Affiliation(s)
- Sophia Shah
- McCaig institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Sathvika Mudigonda
- McCaig institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Salo
- McCaig institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman J Krawetz
- McCaig institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Almeida M, Kim H, Han L, Zhou D, Thostenson J, Porter RM, Ambrogini E, Manolagas SC, Jilka RL. Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell 2020; 19:e13247. [PMID: 33048436 PMCID: PMC7681065 DOI: 10.1111/acel.13247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 01/13/2023] Open
Abstract
Marrow adipocytes and osteoblasts differentiate from common mesenchymal progenitors in a mutually exclusive manner, and diversion of these progenitors toward adipocytes in old age has been proposed to account for the decline in osteoblasts and the development of involutional osteoporosis. This idea has been supported by evidence that thiazolidinedione (TZD)‐induced activation of PPARγ, the transcription factor required for adipocyte differentiation, increases marrow fat and causes bone loss. We functionally tested this hypothesis using C57BL/6J mice with conditional deletion of PPARγ from early mesenchymal progenitors targeted by the Prx1‐Cre transgene. Using a longitudinal littermate‐controlled study design, we observed that PPARγ is indispensable for TZD‐induced increase in marrow adipocytes in 6‐month‐old male mice, and age‐associated increase in marrow adipocytes in 22‐month‐old female mice. In contrast, PPARγ is dispensable for the loss of cortical and trabecular bone caused by TZD or old age. Instead, PPARγ restrains age‐dependent development of cortical porosity. These findings do not support the long‐standing hypothesis that increased marrow adipocyte differentiation contributes to bone loss in old age but reveal a novel role of mesenchymal cell PPARγ in the maintenance of cortical integrity.
Collapse
Affiliation(s)
- Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ha‐Neui Kim
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Li Han
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Daohong Zhou
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Jeff Thostenson
- Department of Biostatistics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ryan M. Porter
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elena Ambrogini
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Stavros C. Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Robert L. Jilka
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
37
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
38
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|
39
|
Hsiao WY, Jung SM, Tang Y, Haley JA, Li R, Li H, Calejman CM, Sanchez-Gurmaches J, Hung CM, Luciano AK, DeMambro V, Wellen KE, Rosen CJ, Zhu LJ, Guertin DA. The Lipid Handling Capacity of Subcutaneous Fat Is Programmed by mTORC2 during Development. Cell Rep 2020; 33:108223. [PMID: 33027655 PMCID: PMC7607535 DOI: 10.1016/j.celrep.2020.108223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.
Collapse
Affiliation(s)
- Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuefeng Tang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John A. Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Division of Endocrinology, Developmental Biology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amelia K. Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Kathryn E. Wellen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA,Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center, Scarborough, MN 04074, USA
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A. Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA,Lead Contact,Correspondence:
| |
Collapse
|
40
|
Ruan HB. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol 2020; 12:775-784. [PMID: 32569352 PMCID: PMC7816678 DOI: 10.1093/jmcb/mjaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic continues to rise as a global health challenge. Thermogenic brown and beige adipocytes dissipate chemical energy as heat, providing an opportunity for developing new therapeutics for obesity and related metabolic diseases. Anatomically, brown adipose tissue is distributed as discrete depots, while beige adipocytes exist within certain depots of white adipose tissue. Developmentally, brown and beige adipocytes arise from multiple embryonic progenitor populations that are distinct and overlapping. Functionally, they respond to a plethora of stimuli to engage uncoupling protein 1-dependent and independent thermogenic programs, thus improving systemic glucose homeostasis, lipid metabolism, and the clearance of branched-chain amino acids. In this review, we highlight recent advances in our understanding of the molecular and cellular mechanisms that contribute to the developmental and functional heterogeneity of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Jiang M, Liu R, Liu L, Kot A, Liu X, Xiao W, Jia J, Li Y, Lam KS, Yao W. Identification of osteogenic progenitor cell-targeted peptides that augment bone formation. Nat Commun 2020; 11:4278. [PMID: 32855388 PMCID: PMC7453024 DOI: 10.1038/s41467-020-17417-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Activation and migration of endogenous mesenchymal stromal cells (MSCs) are critical for bone regeneration. Here, we report a combinational peptide screening strategy for rapid discovery of ligands that not only bind strongly to osteogenic progenitor cells (OPCs) but also stimulate osteogenic cell Akt signaling in those OPCs. Two lead compounds are discovered, YLL3 and YLL8, both of which increase osteoprogenitor osteogenic differentiation in vitro. When given to normal or osteopenic mice, the compounds increase mineral apposition rate, bone formation, bone mass, and bone strength, as well as expedite fracture repair through stimulated endogenous osteogenesis. When covalently conjugated to alendronate, YLLs acquire an additional function resulting in a “tri-functional” compound that: (i) binds to OPCs, (ii) targets bone, and (iii) induces “pro-survival” signal. These bone-targeted, osteogenic peptides are well suited for current tissue-specific therapeutic paradigms to augment the endogenous osteogenic cells for bone regeneration and the treatment of bone loss. Activation of osteogenic cells is essential for bone regeneration. Here, the authors screen a peptide library and identify 2 compounds that promote osteogenic progenitor cell differentiation in vitro, and show that they increase bone formation and fracture repair in mice.
Collapse
Affiliation(s)
- Min Jiang
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Lixian Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Xueping Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Figueroa CA, Bajgain P, Stohn JP, Hernandez A, Brooks DJ, Houseknecht KL, Rosen CJ. Deletion of α-Synuclein in Prrx1-positive cells causes partial loss of function in the central nervous system (CNS) but does not affect ovariectomy induced bone loss. Bone 2020; 137:115428. [PMID: 32417536 PMCID: PMC8260189 DOI: 10.1016/j.bone.2020.115428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
α-Synuclein is a small 140 amino acid polypeptide encoded by the Snca gene that is highly expressed in neural tissue, but it is also found in osteoblasts, erythroblasts, macrophages, and adipose tissue. Previously, using co-expression network analysis we found that Snca was a key regulator of skeletal homeostasis, and its deletion partially prevented bone loss after ovariectomy (OVX). Here we tested the hypothesis that Snca deletion in mesenchymal progenitors using the Prrx1Cre (Prrx1, Paired-related homeobox 1) limb enhancer would protect bone mass after OVX. Prrx1Cre;Sncafl/fl and littermate controls (Sncafl/fl) were sham operated or ovariectomized (OVX) at 8 weeks of age and sacrificed at 20 weeks. Independently, eight-week female and male Prrx1Cre;Sncafl/fl mice and littermate controls were administered a high fat (60% fat) or low fat (10% fat) diet for 15 weeks. Bone loss was not prevented in either genotype after ovariectomy, but the Prrx1Cre;Sncafl/fl. mice were partially protected from weight gain after OVX and high fat diet (HFD). Serum catecholamine levels were lower in the Prrx1Cre;Sncafl/fl both on a low fat diet (LFD) and HFD versus fl/fl controls. Importantly, mutant mice exhibited a number of physical and behavioral phenotypes that were associated with conditional deletion of Snca in several brain regions. Cells labeled with Prrx1 were noted throughout the central nervous system (CNS). These data support earlier preliminary reports of Prrx1 expression in neural progenitors, and raise a cautionary note about the evaluation of skeletal and body composition phenotypes when using this Cre driver to study osteoprogenitor development.
Collapse
Affiliation(s)
| | - Pratima Bajgain
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - J Patrizia Stohn
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA..
| | - Clifford J Rosen
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| |
Collapse
|
43
|
Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J 2020; 477:583-600. [PMID: 32026949 DOI: 10.1042/bcj20190467] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
A central function of adipose tissue is in the management of systemic energy homeostasis that is achieved through the co-ordinated regulation of energy storage and mobilization, adipokine release, and immune functions. With the dramatic increase in the prevalence of obesity and obesity-related metabolic disease over the past 30 years, there has been extensive interest in targeting adipose tissue for therapeutic benefit. However, in order for this goal to be achieved it is essential to establish a comprehensive atlas of adipose tissue cellular composition and define mechanisms of intercellular communication that mediate pathologic and therapeutic responses. While traditional methods, such as fluorescence-activated cell sorting (FACS) and genetic lineage tracing, have greatly advanced the field, these approaches are inherently limited by the choice of markers and the ability to comprehensively identify and characterize dynamic interactions among stromal cells within the tissue microenvironment. Single cell RNA sequencing (scRNAseq) has emerged as a powerful tool for deconvolving cellular heterogeneity and holds promise for understanding the development and plasticity of adipose tissue under normal and pathological conditions. scRNAseq has recently been used to characterize adipose stem cell (ASC) populations and has provided new insights into subpopulations of macrophages that arise during anabolic and catabolic remodeling in white adipose tissue. The current review summarizes recent findings that use this technology to explore adipose tissue heterogeneity and plasticity.
Collapse
|
44
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Shin S, Pang Y, Park J, Liu L, Lukas BE, Kim SH, Kim KW, Xu P, Berry DC, Jiang Y. Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. eLife 2020; 9:56189. [PMID: 32553115 PMCID: PMC7338051 DOI: 10.7554/elife.56189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes arise from distinct progenitor populations during developmental and adult stages but little is known about how developmental progenitors differ from adult progenitors. Here, we investigate the role of platelet-derived growth factor receptor alpha (PDGFRα) in the divergent regulation of the two different adipose progenitor cells (APCs). Using in vivo adipose lineage tracking and deletion mouse models, we found that developmental PDGFRα+ cells are adipogenic and differentiated into mature adipocytes, and the deletion of Pdgfra in developmental adipose lineage disrupted white adipose tissue (WAT) formation. Interestingly, adult PDGFRα+ cells do not significantly contribute to adult adipogenesis, and deleting Pdgfra in adult adipose lineage did not affect WAT homeostasis. Mechanistically, embryonic APCs require PDGFRα for fate maintenance, and without PDGFRα, they underwent fate change from adipogenic to fibrotic lineage. Collectively, our findings indicate that PDGFRα+ cells and Pdgfra gene itself are differentially required for WAT development and adult WAT homeostasis.
Collapse
Affiliation(s)
- Sunhye Shin
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Yiyu Pang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Lifeng Liu
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Brandon E Lukas
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Seung Hyeon Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Ki-Wook Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, United States
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| |
Collapse
|
46
|
Abstract
The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin. Summary: The lateral plate mesoderm is the origin of several major cell types and organ systems in the vertebrate body plan. How this mesoderm territory emerges and partitions into its downstream fates provides clues about vertebrate development and evolution.
Collapse
Affiliation(s)
- Karin D Prummel
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA.,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA .,Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
47
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
48
|
Lecoutre S, Kwok KHM, Petrus P, Lambert M, Breton C. Epigenetic Programming of Adipose Tissue in the Progeny of Obese Dams. Curr Genomics 2020; 20:428-437. [PMID: 32477000 PMCID: PMC7235387 DOI: 10.2174/1389202920666191118092852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and the resulting accelerated growth in neonates predispose offspring to obesity and associated metabolic diseases that may persist across generations. In this context, the adipose tissue has emerged as an important player due to its involvement in metabolic health, and its high potential for plasticity and adaptation to environmental cues. Recent years have seen a growing interest in how maternal obesity induces long-lasting adipose tissue remodeling in offspring and how these modifications could be transmitted to subsequent generations in an inter- or transgenerational manner. In particular, epigenetic mechanisms are thought to be key players in the developmental programming of adipose tissue, which may partially mediate parts of the transgenerational inheritance of obesity. This review presents data supporting the role of maternal obesity in the developmental programming of adipose tissue through epigenetic mechanisms. Inter- and transgenerational effects on adipose tissue expansion are also discussed in this review.
Collapse
Affiliation(s)
- Simon Lecoutre
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France.,Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Kelvin H M Kwok
- Department of Biosciences and Nutrition, Karolinska Insitutet, 141 86 Stockholm, Sweden
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Christophe Breton
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
49
|
Taguchi K, Kajita K, Kitada Y, Fuwa M, Asano M, Ikeda T, Kajita T, Ishizaka T, Kojima I, Morita H. Role of small proliferative adipocytes: possible beige cell progenitors. J Endocrinol 2020; 245:65-78. [PMID: 31990671 PMCID: PMC7040459 DOI: 10.1530/joe-19-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.
Collapse
Affiliation(s)
- Koichiro Taguchi
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuo Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Correspondence should be addressed to K Kajita:
| | - Yoshihiko Kitada
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahide Ikeda
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tatsuo Ishizaka
- Department of General Internal Medicine and Rheumatology, Gifu Municipal Hospital, Gifu, Japan
| | - Itaru Kojima
- Laboratory of Cell Physiology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
50
|
Distinct signaling and transcriptional pathways regulate peri-weaning development and cold-induced recruitment of beige adipocytes. Proc Natl Acad Sci U S A 2020; 117:6883-6889. [PMID: 32139607 PMCID: PMC7104269 DOI: 10.1073/pnas.1920419117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adipose tissue provides a defense against starvation and environmental cold. These dichotomous functions are performed by three distinct cell types: energy-storing white adipocytes, and thermogenic beige and brown adipocytes. Previous studies have demonstrated that exposure to environmental cold stimulates the recruitment of beige adipocytes in the white adipose tissue (WAT) of mice and humans, a process that has been extensively investigated. However, beige adipose tissue also develops during the peri-weaning period in mice, a developmental program that remains poorly understood. Here, we address this gap in our knowledge using genetic, imaging, physiologic, and genomic approaches. We find that, unlike cold-induced recruitment in adult animals, peri-weaning development of beige adipocytes occurs in a temperature- and sympathetic nerve-independent manner. Instead, the transcription factor B cell leukemia/lymphoma 6 (BCL6) acts in a cell-autonomous manner to regulate the commitment but not the maintenance phase of beige adipogenesis. Genome-wide RNA-sequencing (seq) studies reveal that BCL6 regulates a core set of genes involved in fatty acid oxidation and mitochondrial uncoupling, which are necessary for development of functional beige adipocytes. Together, our findings demonstrate that distinct transcriptional and signaling mechanisms control peri-weaning development and cold-induced recruitment of beige adipocytes in mammals.
Collapse
|