1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review from Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2024:S0006-3223(24)01624-X. [PMID: 39366539 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorders. We systematically review the literature between 2010-2023 focusing on the social communication construct of the RDoC framework. We provide an integrative summary of the research on facial and non-facial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic, glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., cortico-striatal connectivity), is also implicated in social communication. We highlight less researched, potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified and a roadmap for future research is provided. By leveraging genetic syndromes research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Anastasaki C, Chatterjee J, Koleske JP, Gao Y, Bozeman SL, Kernan CM, Marco Y Marquez LI, Chen JK, Kelly CE, Blair CJ, Dietzen DJ, Kesterson RA, Gutmann DH. NF1 mutation-driven neuronal hyperexcitability sets a threshold for tumorigenesis and therapeutic targeting of murine optic glioma. Neuro Oncol 2024; 26:1496-1508. [PMID: 38607967 PMCID: PMC11300021 DOI: 10.1093/neuonc/noae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation. METHODS We leverage a collection of Nf1-mutant mice that spontaneously develop OPGs to alter both germline and retinal neuron-specific midkine expression. Nf1-mutant mice harboring several different NF1 patient-derived germline mutations were employed to evaluate neuronal excitability and midkine expression. Two distinct Nf1-OPG preclinical mouse models were used to assess lamotrigine effects on tumor progression and growth in vivo. RESULTS We establish that neuronal midkine is both necessary and sufficient for Nf1-OPG growth, demonstrating an obligate relationship between germline Nf1 mutation, neuronal excitability, midkine production, and Nf1-OPG proliferation. We show anti-epileptic drug (lamotrigine) specificity in suppressing neuronal midkine production. Relevant to clinical translation, lamotrigine prevents Nf1-OPG progression and suppresses the growth of existing tumors for months following drug cessation. Importantly, lamotrigine abrogates tumor growth in two Nf1-OPG strains using pediatric epilepsy clinical dosing. CONCLUSIONS Together, these findings establish midkine and neuronal hyperexcitability as targetable drivers of Nf1-OPG growth and support the use of lamotrigine as a potential chemoprevention or chemotherapy agent for children with NF1-OPG.
Collapse
Affiliation(s)
- Corina Anastasaki
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jit Chatterjee
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua P Koleske
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yunqing Gao
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie L Bozeman
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloe M Kernan
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lara I Marco Y Marquez
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ji-Kang Chen
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Caitlin E Kelly
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Connor J Blair
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert A Kesterson
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David H Gutmann
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Pan Y, Hysinger JD, Yalçın B, Lennon JJ, Byun YG, Raghavan P, Schindler NF, Anastasaki C, Chatterjee J, Ni L, Xu H, Malacon K, Jahan SM, Ivec AE, Aghoghovwia BE, Mount CW, Nagaraja S, Scheaffer S, Attardi LD, Gutmann DH, Monje M. Nf1 mutation disrupts activity-dependent oligodendroglial plasticity and motor learning in mice. Nat Neurosci 2024; 27:1555-1564. [PMID: 38816530 PMCID: PMC11303248 DOI: 10.1038/s41593-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jared D Hysinger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - James J Lennon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Preethi Raghavan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole F Schindler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin M Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Benjamin E Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher W Mount
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Surya Nagaraja
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
6
|
Kerashvili N, Gutmann DH. The management of neurofibromatosis type 1 (NF1) in children and adolescents. Expert Rev Neurother 2024; 24:409-420. [PMID: 38406862 DOI: 10.1080/14737175.2024.2324117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a rare neurogenetic disorder characterized by multiple organ system involvement and a predisposition to benign and malignant tumor development. With revised NF1 clinical criteria and the availability of germline genetic testing, there is now an opportunity to render an early diagnosis, expedite medical surveillance, and initiate treatment in a prompt and targeted manner. AREAS COVERED The authors review the spectrum of medical problems associated with NF1, focusing specifically on children and young adults. The age-dependent appearance of NF1-associated features is highlighted, and the currently accepted medical treatments are discussed. Additionally, future directions for optimizing the care of this unique population of children are outlined. EXPERT OPINION The appearance of NF1-related medical problems is age dependent, requiring surveillance for those features most likely to occur at any given age during childhood. As such, we advocate a life stage-focused screening approach beginning in infancy and continuing through the transition to adult care. With early detection, it becomes possible to promptly institute therapies and reduce patient morbidity. Importantly, with continued advancement in our understanding of disease pathogenesis, future improvements in the care of children with NF1 might incorporate improved risk assessments and more personalized molecularly targeted treatments.
Collapse
Affiliation(s)
- Nino Kerashvili
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
8
|
Furnari FB, Anastasaki C, Bian S, Fine HA, Koga T, Le LQ, Rodriguez FJ, Gutmann DH. Stem cell modeling of nervous system tumors. Dis Model Mech 2024; 17:dmm050533. [PMID: 38353122 PMCID: PMC10886724 DOI: 10.1242/dmm.050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.
Collapse
Affiliation(s)
- Frank B Furnari
- Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Bian
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Tongji University, 200070 Shanghai, China
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Sun J, Noss S, Banerjee D, Das M, Girirajan S. Strategies for dissecting the complexity of neurodevelopmental disorders. Trends Genet 2024; 40:187-202. [PMID: 37949722 PMCID: PMC10872993 DOI: 10.1016/j.tig.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.
Collapse
Affiliation(s)
- Jiawan Sun
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Serena Noss
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Deepro Banerjee
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Maitreya Das
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Santhosh Girirajan
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wilson AF, Barakat R, Mu R, Karush LL, Gao Y, Hartigan KA, Chen JK, Shu H, Turner TN, Maloney SE, Mennerick SJ, Gutmann DH, Anastasaki C. A common single nucleotide variant in the cytokine receptor-like factor-3 (CRLF3) gene causes neuronal deficits in human and mouse cells. Hum Mol Genet 2023; 32:3342-3352. [PMID: 37712888 PMCID: PMC10695679 DOI: 10.1093/hmg/ddad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Single nucleotide variants in the general population are common genomic alterations, where the majority are presumed to be silent polymorphisms without known clinical significance. Using human induced pluripotent stem cell (hiPSC) cerebral organoid modeling of the 1.4 megabase Neurofibromatosis type 1 (NF1) deletion syndrome, we previously discovered that the cytokine receptor-like factor-3 (CRLF3) gene, which is co-deleted with the NF1 gene, functions as a major regulator of neuronal maturation. Moreover, children with NF1 and the CRLF3L389P variant have greater autism burden, suggesting that this gene might be important for neurologic function. To explore the functional consequences of this variant, we generated CRLF3L389P-mutant hiPSC lines and Crlf3L389P-mutant genetically engineered mice. While this variant does not impair protein expression, brain structure, or mouse behavior, CRLF3L389P-mutant human cerebral organoids and mouse brains exhibit impaired neuronal maturation and dendrite formation. In addition, Crlf3L389P-mutant mouse neurons have reduced dendrite lengths and branching, without any axonal deficits. Moreover, Crlf3L389P-mutant mouse hippocampal neurons have decreased firing rates and synaptic current amplitudes relative to wild type controls. Taken together, these findings establish the CRLF3L389P variant as functionally deleterious and suggest that it may be a neurodevelopmental disease modifier.
Collapse
Affiliation(s)
- Anna F Wilson
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Rasha Barakat
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Rui Mu
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Leah L Karush
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Hongjin Shu
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, Box 8232, 660 South Euclid Avenue, St. Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Box 8504, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Box 8504, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
12
|
Kuhrt LD, Motta E, Elmadany N, Weidling H, Fritsche-Guenther R, Efe IE, Cobb O, Chatterjee J, Boggs LG, Schnauß M, Diecke S, Semtner M, Anastasaki C, Gutmann DH, Kettenmann H. Neurofibromin 1 mutations impair the function of human induced pluripotent stem cell-derived microglia. Dis Model Mech 2023; 16:dmm049861. [PMID: 37990867 PMCID: PMC10740172 DOI: 10.1242/dmm.049861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.
Collapse
Affiliation(s)
- Leonard D. Kuhrt
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Motta
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim (MCTN), University of Heidelberg, 68167 Mannheim, Germany
| | - Hannah Weidling
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH Metabolomics Platform, 13353 Berlin, Germany
| | - Ibrahim E. Efe
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucy G. Boggs
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Schnauß
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 518000
| |
Collapse
|
13
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
14
|
Wen J, Liu F, Cheng Q, Weygant N, Liang X, Fan F, Li C, Zhang L, Liu Z. Applications of organoid technology to brain tumors. CNS Neurosci Ther 2023; 29:2725-2743. [PMID: 37248629 PMCID: PMC10493676 DOI: 10.1111/cns.14272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Lacking appropriate model impedes basic and preclinical researches of brain tumors. Organoids technology applying on brain tumors enables great recapitulation of the original tumors. Here, we compared brain tumor organoids (BTOs) with common models including cell lines, tumor spheroids, and patient-derived xenografts. Different BTOs can be customized to research objectives and particular brain tumor features. We systematically introduce the establishments and strengths of four different BTOs. BTOs derived from patient somatic cells are suitable for mimicking brain tumors caused by germline mutations and abnormal neurodevelopment, such as the tuberous sclerosis complex. BTOs derived from human pluripotent stem cells with genetic manipulations endow for identifying and understanding the roles of oncogenes and processes of oncogenesis. Brain tumoroids are the most clinically applicable BTOs, which could be generated within clinically relevant timescale and applied for drug screening, immunotherapy testing, biobanking, and investigating brain tumor mechanisms, such as cancer stem cells and therapy resistance. Brain organoids co-cultured with brain tumors (BO-BTs) own the greatest recapitulation of brain tumors. Tumor invasion and interactions between tumor cells and brain components could be greatly explored in this model. BO-BTs also offer a humanized platform for testing the therapeutic efficacy and side effects on neurons in preclinical trials. We also introduce the BTOs establishment fused with other advanced techniques, such as 3D bioprinting. So far, over 11 brain tumor types of BTOs have been established, especially for glioblastoma. We conclude BTOs could be a reliable model to understand brain tumors and develop targeted therapies.
Collapse
Affiliation(s)
- Jie Wen
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fangkun Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Nathaniel Weygant
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine in GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Xisong Liang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fan Fan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chuntao Li
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Liyang Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
15
|
Gutmann DH. Putting a stop to nonsense: Revisiting gene correction therapy for neurofibromatosis type 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:810-812. [PMID: 37662971 PMCID: PMC10474342 DOI: 10.1016/j.omtn.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- David H. Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Draper GM, Panken DJ, Largaespada DA. Modeling human cancer predisposition syndromes using CRISPR/Cas9 in human cell line models. Genes Chromosomes Cancer 2023; 62:493-500. [PMID: 36959711 PMCID: PMC10517061 DOI: 10.1002/gcc.23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
The advancement of CRISPR mediated gene engineering provides an opportunity to improve upon preclinical human cell line models of cancer predisposing syndromes. This review focuses on using CRISPR/Cas9 genome editing tools to model various human cancer predisposition syndromes. We examine the genetic mutations associated with neurofibromatosis type 1, Li-Fraumeni syndrome, Gorlin syndrome, BRCA mutant breast and ovarian cancers, and APC mutant cancers. Furthermore, we discuss the possibilities of using next-generation CRISPR-derived precision gene editing tools to introduce a variety of genetic lesions into human cell lines. The goal is to improve the quality of preclinical models surrounding these cancer predisposition syndromes through dissecting the effects of these mutations on the development of cancer and to provide new insights into the underlying mechanisms of these cancer predisposition syndromes. These studies demonstrate the continued utility and improvement of CRISPR/Cas9-induced human cell line models in studying the genetic basis of cancer.
Collapse
Affiliation(s)
- Garrett M Draper
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, USA
- Comparative Molecular Biosciences PhD Program, University of Minnesota Twin Cities, Minneapolis, USA
| | - Daniel J Panken
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, USA
| |
Collapse
|
17
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Kim YE, Kim YS, Lee HE, So KH, Choe Y, Suh BC, Kim JH, Park SK, Mathern GW, Gleeson JG, Rah JC, Baek ST. Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway. Cell Rep 2023; 42:112003. [PMID: 36641749 DOI: 10.1016/j.celrep.2023.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong-Seok Kim
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jong-Cheol Rah
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
19
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
20
|
Garg S, Williams S, Jung J, Pobric G, Nandi T, Lim B, Vassallo G, Green J, Evans DG, Stagg CJ, Parkes LM, Stivaros S. Non-invasive brain stimulation modulates GABAergic activity in neurofibromatosis 1. Sci Rep 2022; 12:18297. [PMID: 36316421 PMCID: PMC9622815 DOI: 10.1038/s41598-022-21907-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive phenotypes common to neurodevelopmental conditions such as autism. GABAergic dysregulation underlies working memory impairments seen in NF1. This mechanistic experimental study investigates whether application of anodal transcranial direct current stimulation (atDCS) can modulate GABA and working memory in NF1. Thirty-one NF1 adolescents 11-18 years, were recruited to this single-blind sham-controlled cross-over randomized trial. AtDCS or sham stimulation was applied to the left Dorsolateral Prefrontal Cortex (DLPFC) and MR Spectroscopy was collected before and after intervention in the left DLPFC and occipital cortex. Task-related functional MRI was collected before, during, and after stimulation. Higher baseline GABA+ in the left DLPFC was associated with faster response times on baseline working memory measures. AtDCS was seen to significantly reduced GABA+ and increase brain activation in the left DLPFC as compared to sham stimulation. Task performance was worse in the aTDCS group during stimulation but no group differences in behavioural outcomes were observed at the end of stimulation. Although our study suggests aTDCS modulates inhibitory activity in the DLPFC, further work is needed to determine whether repeated sessions of atDCS and strategies such as alternating current stimulation offer a better therapeutic approach.
Collapse
Affiliation(s)
- Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.
| | - Steve Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - JeYoung Jung
- School of Psychology, Precision Imaging Beacon, University of Nottingham, Nottingham, UK
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ben Lim
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Stavros Stivaros
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
21
|
Kitamura RA, Maxwell KG, Ye W, Kries K, Brown CM, Augsornworawat P, Hirsch Y, Johansson MM, Weiden T, Ekstein J, Cohen J, Klee J, Leslie K, Simeonov A, Henderson MJ, Millman JR, Urano F. Multidimensional analysis and therapeutic development using patient iPSC-derived disease models of Wolfram syndrome. JCI Insight 2022; 7:156549. [PMID: 36134655 PMCID: PMC9675478 DOI: 10.1172/jci.insight.156549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Wolfram syndrome is a rare genetic disorder largely caused by pathogenic variants in the WFS1 gene and manifested by diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Recent genetic and clinical findings have revealed Wolfram syndrome as a spectrum disorder. Therefore, a genotype-phenotype correlation analysis is needed for diagnosis and therapeutic development. Here, we focus on the WFS1 c.1672C>T, p.R558C variant, which is highly prevalent in the Ashkenazi Jewish population. Clinical investigation indicated that patients carrying the homozygous WFS1 c.1672C>T, p.R558C variant showed mild forms of Wolfram syndrome phenotypes. Expression of WFS1 p.R558C was more stable compared with the other known recessive pathogenic variants associated with Wolfram syndrome. Human induced pluripotent stem cell-derived (iPSC-derived) islets (SC-islets) homozygous for WFS1 c.1672C>T variant recapitulated genotype-related Wolfram syndrome phenotypes. Enhancing residual WFS1 function through a combination treatment of chemical chaperones mitigated detrimental effects caused by the WFS1 c.1672C>T, p.R558C variant and increased insulin secretion in SC-islets. Thus, the WFS1 c.1672C>T, p.R558C variant causes a mild form of Wolfram syndrome phenotypes, which can be remitted with a combination treatment of chemical chaperones. We demonstrate that our patient iPSC-derived disease model provides a valuable platform for further genotype-phenotype analysis and therapeutic development for Wolfram syndrome.
Collapse
Affiliation(s)
- Rie Asada Kitamura
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kristina G Maxwell
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjuan Ye
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Kelly Kries
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Cris M Brown
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Punn Augsornworawat
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Martin M Johansson
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, Israel
| | - Joseph Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Joshua Cohen
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Justin Klee
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Kent Leslie
- Amylyx Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Jeffrey R Millman
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Anastasaki C, Mo J, Chen JK, Chatterjee J, Pan Y, Scheaffer SM, Cobb O, Monje M, Le LQ, Gutmann DH. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun 2022; 13:2785. [PMID: 35589737 PMCID: PMC9120229 DOI: 10.1038/s41467-022-30466-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal activity is emerging as a driver of central and peripheral nervous system cancers. Here, we examined neuronal physiology in mouse models of the tumor predisposition syndrome Neurofibromatosis-1 (NF1), with different propensities to develop nervous system cancers. We show that central and peripheral nervous system neurons from mice with tumor-causing Nf1 gene mutations exhibit hyperexcitability and increased secretion of activity-dependent tumor-promoting paracrine factors. We discovered a neurofibroma mitogen (COL1A2) produced by peripheral neurons in an activity-regulated manner, which increases NF1-deficient Schwann cell proliferation, establishing that neurofibromas are regulated by neuronal activity. In contrast, mice with the Arg1809Cys Nf1 mutation, found in NF1 patients lacking neurofibromas or optic gliomas, do not exhibit neuronal hyperexcitability or develop these NF1-associated tumors. The hyperexcitability of tumor-prone Nf1-mutant neurons results from reduced NF1-regulated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function, such that neuronal excitability, activity-regulated paracrine factor production, and tumor progression are attenuated by HCN channel activation. Collectively, these findings reveal that NF1 mutations act at the level of neurons to modify tumor predisposition by increasing neuronal excitability and activity-regulated paracrine factor production. Neuronal activity is emerging as a driver of nervous system tumors. Here, the authors show in mouse models of Neurofibromatosis-1 (NF1) that Nf1 mutations differentially drive both central and peripheral nervous system tumor growth in mice through reduced hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Juan Mo
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022; 17:1033-1047. [PMID: 35487213 PMCID: PMC9133703 DOI: 10.1016/j.stemcr.2022.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/28/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are valuable in disease modeling because of their potential to expand and differentiate into virtually any cell type and recapitulate key aspects of human biology. Functional genomics are genome-wide studies that aim to discover genotype-phenotype relationships, thereby revealing the impact of human genetic diversity on normal and pathophysiology. In this review, we make the case that human iPSCs (hiPSCs) are a powerful tool for functional genomics, since they provide an in vitro platform for the study of population genetics. We describe cutting-edge tools and strategies now available to researchers, including multi-omics technologies, advances in hiPSC culture techniques, and innovations in drug development. Functional genomics approaches based on hiPSCs hold great promise for advancing drug discovery, disease etiology, and the impact of genetic variation on human biology.
Collapse
Affiliation(s)
- Imogen R Brooks
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - Cristina M Garrone
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Caoimhe Kerins
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Sofia Syntaka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Jessie Z Xu
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK; Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
25
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
26
|
Abstract
Although tumourigenesis occurs due to genetic mutations, the role of epigenetic dysregulations in cancer is also well established. Epigenetic dysregulations in cancer may occur as a result of mutations in genes encoding histone/DNA-modifying enzymes and chromatin remodellers or mutations in histone protein itself. It is also true that misregulated gene expression without genetic mutations in these factors could also support tumour initiation and progression. Interestingly, metabolic rewiring has emerged as a hallmark of cancer due to gene mutations in specific metabolic enzymes or dietary/environmental factors. Recent studies report an intricate cross-talk between epigenetic and metabolic reprogramming in cancer. This review discusses the role of epigenetic and metabolic dysregulations and their cross-talk in tumourigenesis with a special focus on gliomagenesis. We also discuss the role of recently developed human embryonic stem cells/induced pluripotent stem cells-derived organoid models of gliomas and how these models are proving instrumental in uncovering human-specific cellular and molecular complexities of gliomagenesis.
Collapse
Affiliation(s)
- Bismi Phasaludeen
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Anastasaki C, Wilson AF, Chen AS, Wegscheid ML, Gutmann DH. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protoc 2022; 3:101173. [PMID: 35199037 PMCID: PMC8844852 DOI: 10.1016/j.xpro.2022.101173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cerebral organoids (COs) can serve as an in vitro model for studying normal and pathologic human brain development. Here, we optimized existing protocols to streamline the generation of forebrain COs from hiPSCs. We employ these COs to define the impact of disease-causing mutations on cell fate, differentiation, maturation, and morphology relevant to neurodevelopmental disorders. Although limited to forebrain CO identity, this schema requires minimal external interference and is amenable to low-throughput biochemical assays. For complete details on the use and execution of this profile, please refer to Anastasaki et al. (2020) and Wegscheid et al. (2021).
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna F. Wilson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander S. Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle L. Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
29
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
30
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
31
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
32
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
33
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Wang W, Cui XW, Gu YH, Wei CJ, Li YH, Ren JY, Chung MH, Aimaier RHGL, Zhang HB, Li QF, Wang ZC. Combined Cyclin-Dependent Kinase Inhibition Overcomes MAPK/Extracellular Signal-Regulated Kinase Kinase Inhibitor Resistance in Plexiform Neurofibroma of Neurofibromatosis Type I. J Invest Dermatol 2021; 142:613-623.e7. [PMID: 34534577 DOI: 10.1016/j.jid.2021.07.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
MAPK/extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitors (MEKis) have recently achieved surprising success in treating unresectable plexiform neurofibromas (PNFs). However, few studies have investigated the mechanisms of MEKi resistance in patients with PNF. We determined the efficacy of six different MEKis for treating PNFs, explored drug resistance mechanisms, and identified potential combination therapies to overcome resistance. By screening drug efficacy among six MEKis in human NF1-deficient PNF cell lines, TAK-733 was found to reduce PNF cell viability the most. We then cultured the TAK-733‒resistant cells and explored the potential targets for further treatment. Both high-throughput drug screening and RNA sequencing analyses of MEKi-resistant PNF cells identified cyclin-dependent kinase inhibitors as potential agents for PNFs. Dinaciclib, a cyclin-dependent kinase inhibitor, showed synergistic effects on MEKi-resistant cells. Coadministration of dinaciclib and TAK-733 significantly reduced cell viability and inhibited sphere formation and colony formation. Dinaciclib did not affect MEK signaling but decreased the expression of several prosurvival proteins, including survivin and cyclin-dependent kinase 1, to induce apoptosis and inhibit mitosis. TAK-733/dinaciclib combination therapy induced tumor reduction in PNF patient‒derived xenografts mouse models. Therefore, the combination of MEKi and cyclin-dependent kinase inhibitor may be promising for treating inoperable PNFs, especially when drug resistance exists. Our findings provide evidence for future clinical trials with MEKi-resistant patients with PNF.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Re-Han-Gu-Li Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Bing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Abstract
Organoids are self-organizing, expanding 3D cultures derived from stem cells. Using tissue derived from patients, these miniaturized models recapitulate various aspects of patient physiology and disease phenotypes including genetic profiles and drug sensitivities. As such, patient-derived organoid (PDO) platforms provide an unprecedented opportunity for improving preclinical drug discovery, clinical trial validation, and ultimately patient care. This article reviews the evolution and scope of organoid technology, highlights recent encouraging results using PDOs as potential patient "avatars" to predict drug response and outcomes, and discusses critical parameters for widespread clinical adoption. These include improvements in assay speed, reproducibility, standardization, and automation which are necessary to realize the translational potential of PDOs as clinical tools. The multiple entry points where PDOs may contribute valuable insights in drug discovery and lessen the risks associated with clinical trials are also discussed.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
36
|
Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, Gutmann DH, Le LQ. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest 2021; 131:139807. [PMID: 33108355 DOI: 10.1172/jci139807] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome caused by NF1 gene mutation, in which affected patients develop Schwann cell lineage peripheral nerve sheath tumors (neurofibromas). To investigate human neurofibroma pathogenesis, we differentiated a series of isogenic, patient-specific NF1-mutant human induced pluripotent stem cells (hiPSCs) into Schwannian lineage cells (SLCs). We found that, although WT and heterozygous NF1-mutant hiPSCs-SLCs did not form tumors following mouse sciatic nerve implantation, NF1-null SLCs formed bona fide neurofibromas with high levels of SOX10 expression. To confirm that SOX10+ SLCs contained the cells of origin for neurofibromas, both Nf1 alleles were inactivated in mouse Sox10+ cells, leading to classic nodular cutaneous and plexiform neurofibroma formation that completely recapitulated their human counterparts. Moreover, we discovered that NF1 loss impaired Schwann cell differentiation by inducing a persistent stem-like state to expand the pool of progenitors required to initiate tumor formation, indicating that, in addition to regulating MAPK-mediated cell growth, NF1 loss also altered Schwann cell differentiation to promote neurofibroma development. Taken together, we established a complementary humanized neurofibroma explant and, to our knowledge, first-in-kind genetically engineered nodular cutaneous neurofibroma mouse models that delineate neurofibroma pathogenesis amenable to future therapeutic target discovery and evaluation.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zhiguo Chen
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tracey Shipman
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Papke
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kevin Yin
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA.,Simmons Comprehensive Cancer Center and.,Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
37
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
38
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
39
|
Wegscheid ML, Anastasaki C, Hartigan KA, Cobb OM, Papke JB, Traber JN, Morris SM, Gutmann DH. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep 2021; 36:109315. [PMID: 34233200 PMCID: PMC8278229 DOI: 10.1016/j.celrep.2021.109315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T>C, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly A Hartigan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason B Papke
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer N Traber
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie M Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Mai HN, Kim EJ, Jung HS. Application of hiPSCs in tooth regeneration via cellular modulation. J Oral Biosci 2021; 63:225-231. [PMID: 34033906 DOI: 10.1016/j.job.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-based technology provides limitless resources for customized development of organs without any ethical concerns. In theory, iPSCs generated from terminally differentiated cells can be induced to further differentiate into all types of organs that are derived from the embryonic germ layers. Since iPSC reprogramming technology is relatively new, extensive efforts by the researchers have been put together to optimize the protocols to establish in vitro differentiation of human iPSCs (hiPSCs) into various desirable cell types/organs. HIGHLIGHTS In the present study, we review the potential application of iPSCs as an efficient alternative to primary cells for modulating signal molecules. Furthermore, an efficient culture system that promotes the differentiation of cell lineages and tissue formation has been reviewed. We also summarize the recent studies wherein tissue engineering of the three germ layers has been explored. Particularly, we focus on the current research strategies for iPSC-based tooth regeneration via molecular modulation. CONCLUSION In recent decades, robust knowledge regarding the hiPSC-based regenerative therapy has been accumulated, especially focusing on cellular modulation. This review provides the optimization of the procedures designed to regenerate specific organs.
Collapse
Affiliation(s)
- Han Ngoc Mai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
41
|
Brossier NM, Thondapu S, Cobb OM, Dahiya S, Gutmann DH. Temporal, spatial, and genetic constraints contribute to the patterning and penetrance of murine neurofibromatosis-1 optic glioma. Neuro Oncol 2021; 23:625-637. [PMID: 33080011 DOI: 10.1093/neuonc/noaa237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain tumors are the most common solid tumors of childhood, but little is understood about the factors that influence their development. Pediatric low-grade gliomas in particular display unique temporal and spatial localization associated with different genetic mutations (eg, BRAF genomic alterations, mutations in the neurofibromatosis type 1 [NF1] gene) for reasons that remain unclear. NF1 low-grade gliomas typically arise in the optic pathway of young children as optic pathway gliomas (OPGs), likely from a cell of origin that resides within the third ventricular zone (TVZ). However, the factors that contribute to their distinct temporal patterning and penetrance have not been adequately explored. METHODS TVZ neuroglial progenitor cells (NPCs) were analyzed over the course of mouse brain development. Progenitors isolated by fluorescence-activated cell sorting (FACS) were assessed for functional and molecular differences. The impact of different germline Nf1 mutations on TVZ NPC properties was analyzed using genetically engineered mice. RESULTS We identify 3 individual factors that could each contribute to Nf1 optic glioma temporal patterning and penetrance. First, there are 3 functionally and molecularly distinct populations of mouse TVZ NPCs, one of which ("M" cells) exhibits the highest clonogenic incidence, proliferation, and abundance during embryogenesis. Second, TVZ NPC proliferation dramatically decreases after birth. Third, germline Nf1 mutations differentially increase TVZ NPC proliferation during embryogenesis. CONCLUSIONS The unique temporal patterning and penetrance of Nf1 optic glioma reflects the combined effects of TVZ NPC population composition, time-dependent changes in progenitor proliferation, and the differential impact of the germline Nf1 mutation on TVZ NPC expansion.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Sharanya Thondapu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
42
|
Ramirez E, Morris SM, Turner TN, Gutmann DH. Familial Lipomas Without Classic Neurofibromatosis-1 Caused by a Missense Germline NF1 Mutation. NEUROLOGY-GENETICS 2021; 7:e582. [PMID: 33884301 PMCID: PMC8054955 DOI: 10.1212/nxg.0000000000000582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Erika Ramirez
- Department of Neurology (E.R., S.M.M., D.H.G.) and Department of Genetics (T.N.T.), Washington University School of Medicine, St. Louis, MO
| | - Stephanie M Morris
- Department of Neurology (E.R., S.M.M., D.H.G.) and Department of Genetics (T.N.T.), Washington University School of Medicine, St. Louis, MO
| | - Tychele N Turner
- Department of Neurology (E.R., S.M.M., D.H.G.) and Department of Genetics (T.N.T.), Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- Department of Neurology (E.R., S.M.M., D.H.G.) and Department of Genetics (T.N.T.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
43
|
NGS Gene Panel Analysis Revealed Novel Mutations in Patients with Rare Congenital Diarrheal Disorders. Diagnostics (Basel) 2021; 11:diagnostics11020262. [PMID: 33567694 PMCID: PMC7915612 DOI: 10.3390/diagnostics11020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Congenital diarrheal disorders (CDDs) are early-onset enteropathies generally inherited as autosomal recessive traits. Most patients with CDDs require rapid diagnosis as they need immediate and specific therapy to avoid a poor prognosis, but their clinical picture is often overlapping with a myriad of nongenetic diarrheal diseases. We developed a next-generation sequencing (NGS) panel for the analysis of 92 CDD-related genes, by which we analyzed patients suspect for CDD, among which were (i) three patients with sucrose-isomaltase deficiency; (ii) four patients with microvillous inclusion disease; (iii) five patients with congenital tufting enteropathy; (iv) eight patients with glucose-galactose malabsorption; (v) five patients with congenital chloride diarrhea. In all cases, we identified the mutations in the disease-gene, among which were several novel mutations for which we defined pathogenicity using a combination of bioinformatic tools. Although CDDs are rare, all together, they have an incidence of about 1%. Considering that the clinical picture of these disorders is often confusing, a CDD-related multigene NGS panel contributes to unequivocal and rapid diagnosis, which also reduces the need for invasive procedures.
Collapse
|
44
|
Modeling tumors of the peripheral nervous system associated with Neurofibromatosis type 1: Reprogramming plexiform neurofibroma cells. Stem Cell Res 2020; 49:102068. [PMID: 33160273 DOI: 10.1016/j.scr.2020.102068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Plexiform neurofibromas (pNFs) are benign tumors of the peripheral nervous system (PNS) that can progress towards a deadly soft tissue sarcoma termed malignant peripheral nerve sheath tumor (MPNST). pNFs appear during development in the context of the genetic disease Neurofibromatosis type 1 (NF1) due to the complete loss of the NF1 tumor suppressor gene in a cell of the neural crest (NC) - Schwann cell (SC) axis of differentiation. NF1(-/-) cells from pNFs can be reprogrammed into induced pluripotent stem cells (iPSCs) that exhibit an increased proliferation rate and maintain full iPSC properties. Efficient protocols for iPSC differentiation towards NC and SC exist and thus NC cells can be efficiently obtained from NF1(-/-) iPSCs and further differentiated towards SCs. In this review, we will focus on the iPSC modeling of pNFs, including the reprogramming of primary pNF-derived cells, the properties of pNF-derived iPSCs, the capacity to differentiate towards the NC-SC lineage, and how well iPSC-derived NF1(-/-) SC spheroids recapitulate pNF-derived primary SCs. The potential uses of NF1(-/-) iPSCs in pNF modeling and a future outlook are discussed.
Collapse
|
45
|
Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020; 49:102063. [PMID: 33137568 PMCID: PMC7849931 DOI: 10.1016/j.scr.2020.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis. We further discuss the benefits and challenges accompanying the use of hPSC models for cancer research and discuss their broad applicability in drug discovery, biomarker identification, decoding molecular mechanisms, and the deconstruction of clonal and intra-tumoral heterogeneity. In summary, hPSC-derived organoids provide powerful models to recapitulate the pathogenic states in cancer and to perform drug discovery.
Collapse
|
46
|
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2020; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
|
47
|
Provenzano F, Pérez MJ, Deleidi M. Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends Mol Med 2020; 27:47-59. [PMID: 33008729 DOI: 10.1016/j.molmed.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Microglia have long been considered a homogenous cell population that uniformly responds to extrinsic factors. Here, we describe how the recent development of single-cell technologies has revealed the heterogeneity of both human and mouse microglia and identified distinct microglial states linked to specific developmental, aging, and disease stages. We discuss progress and future developments in data analysis, essential tools for the comprehension of big data derived from single-cell omics, and the necessity of integrating such data with functional studies to correlate genetic cues with the relevant biological functions of microglia. Defining the functional correlates of distinct microglia states is fundamental to dissecting the 'microglial etiology' of aging and complex neurological diseases and identifying novel therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - María José Pérez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|