1
|
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024; 13:3980. [PMID: 39683052 DOI: 10.3390/foods13233980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing antibiotic resistance is one of the world's greatest health problems, and biocide use in food disinfection, alongside other application fields, could increase antibiotic resistance. Effective and eco-friendly food decontamination treatment with minimal chemical intervention in food production is urgently needed. Synergistic antimicrobial interaction of photoactive compounds and blue-light-emitting diodes have recently been proven effective in agricultural and environmental applications. Curcumin-based non-thermal treatment has been reviewed in this work for the development of a safe and effective decontamination tool that could be adapted to the food industry. The antimicrobial mechanism of the synergistic interaction and the inhibitory efficacy against foodborne pathogens (bacteria in both vegetative form and spore, as well as in biofilms) are discussed. Further studies on curcumin and its derivative, as well as light illumination patterns, were compared for enhanced bactericidal efficacy. Moreover, studies relating to photodynamic inactivation treatment for food sanitation and food quality enhancement (cereal grains and other food products) were summarized, as well as the impact on food organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Haihong Yang
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Tülüce Y, Osmanoğlu D, Rağbetli MÇ, Altındağ F. Protective Action of Curcumin and Alpha-lipoic Acid, Against Experimental Ultraviolet-A/B Induced Dermal-injury in Rats. Cell Biochem Biophys 2024; 82:3535-3546. [PMID: 39060913 DOI: 10.1007/s12013-024-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The objective of this study was to examine the therapeutic efficacy of curcumin (CUR) and α-lipoic acid (ALA) in mitigating UV-A and UV-B-induced damage (UVAB) in rat dorsal skin. This was achieved through the utilisation of immunohistochemical (TUNEL), biochemical and stereological techniques. The rats in the UVAB, UVAB + CUR, and UVAB + ALA groups were subjected to UVAB irradiation for a period of two hours per day over the course of one month. The UVAB + CUR and UVAB + ALA groups were administered 100 mg/kg/day of curcumin and 100 mg/kg/day of α-lipoic acid via gavage 30 min prior to UVAB irradiation. The CUR group was administered 100 mg/kg/day of curcumin via gavage, while the ALA group received the same dose of α-lipoic acid. A significant change in the volume ratio of the dorsal skin epidermis and dermis was observed in the stereological findings of the rats in the UVAB group. These changes exhibited a favourable progression as a consequence of the CUR and ALA applications. In the UVAB group, TOS and OSI were significantly elevated as a consequence of the rise in oxidative stress. Conversely, the treatment groups demonstrated a notable reduction in TOS and OSI levels. The study also revealed a substantial increase in the number of apoptotic cells within the UVAB group. However, the treatment groups exhibited a significant decline in apoptotic cells. In conclusion, the findings suggest that CUR and ALA possess a protective effect against UVAB-induced skin damage.
Collapse
Affiliation(s)
- Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Türkiye.
| | - Derya Osmanoğlu
- Department of Medical Histology and Embryology, Institute of Health Sciences, Van Yüzüncü Yıl University, 65080, Van, Türkiye
| | - Murat Çetin Rağbetli
- Department of Medical Histology and Embryology, Faculty of Medicine, Karamanoğlu Mehmetbey University, 70100, Karaman, Türkiye
| | - Fikret Altındağ
- Department of Medical Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Türkiye
| |
Collapse
|
3
|
Dalton J, Rodrigues NN, Berndt D, Stavros VG. Evaluating the Fluorescence Quenching of Troxerutin for Commercial UV Sunscreen Filters. ACS PHYSICAL CHEMISTRY AU 2024; 4:750-760. [PMID: 39634638 PMCID: PMC11613208 DOI: 10.1021/acsphyschemau.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
2-Phenylbenzimidazole-5-sulfonic acid (PBSA) and disodium phenyl dibenzimidazole tetrasulfonate (DPDT) are commercially available ultraviolet (UV) sunscreen filters that are known to undergo radiative relaxation following the absorption of UV light. The release of high-energy photons from this relaxation can be detrimental to human health; therefore, fluorescence quenchers need to be incorporated in commercial sunscreen formulations containing PBSA or DPDT. Troxerutin is a fluorescence quencher utilized for DPDT commercially. Here, its ability to quench the fluorescence of both PBSA and DPDT is evaluated using a dual-pronged approach by breaking down the multicomponent problem into its constituent parts. First, PBSA and DPDT's femtosecond to nanosecond photodynamics are uncovered in solution and on the surface of a human skin mimic to ascertain a benchmark. Second, these results are compared to their photodynamics in the presence of troxerutin. A significant reduction in the fluorescence lifetime is observed for both PBSA and DPDT on a human skin mimic with the addition of troxerutin, which is attributed to a Dexter energy transfer (DET) or Förster resonance energy transfer (FRET) quenching mechanism. This finding demonstrates the hitherto unseen fluorescence quenching mechanism of troxerutin on a human skin mimic and its role in quenching the fluorescence of commercial UV sunscreen filters through a DET or FRET mechanism.
Collapse
Affiliation(s)
- Jack Dalton
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Natércia
d. N. Rodrigues
- IBB-Institute
for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | | | | |
Collapse
|
4
|
Kim J, Lee M, Cho W, Yoo E, Kim J, Gwon Y, Okayasu M, Lee J. Effect of Ceramides Derivatives from the Peach on Skin Function Improvement in UV-Irradiated Hairless Mice. Foods 2024; 13:3824. [PMID: 39682897 DOI: 10.3390/foods13233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the protective effects of a ceramides derivates from the peach (PF3) on photoaging by UV-irradiated hairless mice. Mice were randomly divided into seven groups: AIN93G without UVB exposure (normal control, NC), AIN93G with UVB exposure (control, C), AIN93G supplemented 100 mg/kg body weight (BW) of L-ascorbic acid with UVB exposure (AA), AIN93G supplemented 100 mg/kg BW of arbutin with UVB exposure (Arbutin), AIN93G supplemented 10 mg/kg BW of PF3 with UVB exposure (10PF3), AIN93G supplemented 20 mg/kg BW of PF3 with UVB exposure (20PF3), and AIN93G supplemented 40 mg/kg BW of PF3 with UVB exposure (40PF3). The study examined the impact of PF3 on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (real-time PCR), and Western blot analysis. The PF3 demonstrated significant protective effects against photoaging by reducing skin wrinkle formation, decreasing epidermal and dermal thickening, and improving skin hydration. It also enhanced the expression of moisture-related factors (hyaluronic acid synthase [HAS], long-chain ceramides [LCBs], dihydroceramide desaturase 1 [DEGS1], and type I collagen [COL1A]) and antioxidant enzyme activities while reducing pro-inflammatory cytokines and oxidative stress markers. The PF3 supplementation positively modulated skin wrinkle formation-related factors, increasing collagen-related gene expression and decreasing matrix metalloproteinases. Additionally, PF3 showed potential in regulating melanogenesis by reducing the nitric oxide and cAMP content, as well as the expression of melanogenesis-related proteins. These comprehensive findings suggest that PF3 supplementation may be an effective strategy for preventing and treating UVB-induced skin photoaging through multiple mechanisms, including improved skin structure, hydration, antioxidant defense, and reduced inflammation and pigmentation.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eunhee Yoo
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea
| | - Yuri Gwon
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea
| | - Musashi Okayasu
- OKAYASU Co., Ltd., 1004-2 Hirakata, Koshigaya City 343-0002, Japan
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Karkad AA, Pirković A, Milošević M, Stojadinović B, Šavikin K, Marinković A, Jovanović AA. Silibinin-Loaded Liposomes: The Influence of Modifications on Physicochemical Characteristics, Stability, and Bioactivity Associated with Dermal Application. Pharmaceutics 2024; 16:1476. [PMID: 39598599 PMCID: PMC11597119 DOI: 10.3390/pharmaceutics16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aims of the presented study were the development of four types of silibinin-loaded liposomes (multilamellar liposomes-MLVs, sonicated small unilamellar liposomes-SUVs, UV-irradiated liposomes, and lyophilized liposomes) and their physicochemical characterization and biological potential related to skin health benefits. METHODS The characterization was performed via the determination of the encapsulation efficiency (EE), particle size, polydispersity index, zeta potential, conductivity, mobility, storage stability, density, surface tension, viscosity, FT-IR, and Raman spectra. In addition, cytotoxicity on the keratinocytes and antioxidant and anti-inflammatory potential were also determined. RESULTS UV irradiation significantly changed the rheological and chemical properties of the liposomes and increased their cytotoxic effect. The lyophilization of the liposomes caused significant changes in their EE and physical characteristics, decreased their ABTS and DPPH radical scavenging potential, and increased their potential to reduce the expression of interleukin 1 beta (IL-1β) in cells treated with bacterial lipopolysaccharide. Sonication significantly changed the EE and physical and rheological properties of the liposomes, and slightly increased their cytotoxicity and reduction effect on IL-1β, while the anti-ABTS and anti-DPPH capacity of the liposomes significantly increased. All developed liposomes showed an increasing trend in particle size and a decreasing trend in zeta potential (absolute values) during storage. CONCLUSIONS Silibinin-loaded liposomes (MLVs and lyophilized) showed promising antioxidant activity (toward reactive oxygen species generated in cells) and anti-inflammatory effects (reducing macrophage inhibitory factor expression) on keratinocytes and did not lead to a change in their viability. Future perspectives will focus on wound healing, anti-aging, and other potential of developed liposomes with silibinin in sophisticated cell-based models of skin diseases, wounds, and aging.
Collapse
Affiliation(s)
- Amjed Abdullah Karkad
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
- Faculty of Medical Technology, Elmergib University, Msallata 7310500, Libya
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Stojadinović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|
6
|
Oyama T, Yanagihara K, Arai A, Kamiya T, Oyama M, Tanikawa T, Abe T, Hatanaka T. Ultraviolet, Did the Cell See It from the Side or the Bottom? Assessment and Modeling of UV Effects on Cultured Cells Using the CL-1000 UV-Crosslinker. BIOTECH 2024; 13:44. [PMID: 39584901 PMCID: PMC11587097 DOI: 10.3390/biotech13040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Numerous natural extracts and compounds have been evaluated for their ability to mitigate the adverse effects of ultraviolet (UV) overexposure. However, variability in the UV doses that trigger biological responses across studies likely arises from inconsistencies in UV exposure standardization. We hypothesize that these discrepancies are due to variations in culture plates and dishes. The UV dose (D) required to reduce cell viability by 50% differed by a factor of ten between 3.5 cm dishes and 96-well plates. Similarly, the EC50 dose for IL-6 release (D1/2) varied, potentially correlating with the surface area (S). UV exposure to wells with increasing height in 3.5 cm dishes resulted in a decrease in IL-6 release, suggesting that the greater the well height, the more it may influence UV exposure through reflection or shielding effects, thereby contributing to the physiological effects on the cells. To compare these differences among plates, we defined the height-to-diameter ratio (r). Analysis revealed a linear correlation between D1/2 and S in a log-log plot, and between D1/2 and r in a semi-log plot. From this, we defined two empirical indices σ and ρ for UV dose adjustment. A deductive model was also developed to derive a D' value that adjusts UV doses without requiring training. As with σ and ρ, the UV dose D was effectively adjusted using D' as well. These attempts suggest that D' offers a foundational framework for evaluating UVB effects on cultured cells.
Collapse
Affiliation(s)
- Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9–6 Nibancho, Chiyoda-ku, Tokyo 102–0084, Japan
| | - Kai Yanagihara
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan (M.O.); (T.T.); (T.H.)
| | - Anna Arai
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan (M.O.); (T.T.); (T.H.)
| | - Takanori Kamiya
- Hinoki Shinyaku Co., Ltd., 9–6 Nibancho, Chiyoda-ku, Tokyo 102–0084, Japan
| | - Midori Oyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan (M.O.); (T.T.); (T.H.)
| | - Takashi Tanikawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan (M.O.); (T.T.); (T.H.)
| | - Takehiko Abe
- Hinoki Shinyaku Co., Ltd., 9–6 Nibancho, Chiyoda-ku, Tokyo 102–0084, Japan
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan (M.O.); (T.T.); (T.H.)
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
7
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Gonçalves ASC, Leitão MM, Fernandes JR, Saavedra MJ, Pereira C, Simões M, Borges A. Photodynamic activation of phytochemical-antibiotic combinations for combatting Staphylococcus aureus from acute wound infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112978. [PMID: 39002192 DOI: 10.1016/j.jphotobiol.2024.112978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Staphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillin-resistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity. This study investigated the potential of photodynamic activation using phytochemical-antibiotic combinations to eliminate S. aureus under conditions representative of acute wound infections, aiming to mitigate the risk of chronicity. The strategy applied takes advantage of the promising antibacterial and photosensitising properties of phytochemicals, and their ability to act as antibiotic adjuvants. The antibacterial activity of selected phytochemicals (berberine, curcumin, farnesol, gallic acid, and quercetin; 6.25-1000 μg/mL) and antibiotics (ciprofloxacin, tetracycline, fusidic acid, oxacillin, gentamicin, mupirocin, methicillin, and tobramycin; 0.0625-1024 μg/mL) was screened individually and in combination against two S. aureus clinical strains (methicillin-resistant and -susceptible-MRSA and MSSA). The photodynamic activity of the phytochemicals was assessed using a light-emitting diode (LED) system with blue (420 nm) or UV-A (365 nm) variants, at 30 mW/cm2 (light doses of 9, 18, 27 J/cm2) and 5.5 mW/cm2 (light doses of 1.5, 3.3 and 5.0 J/cm2), respectively. Notably, all phytochemicals restored antibiotic activity, with 9 and 13 combinations exhibiting potentiating effects on MSSA and MRSA, respectively. Photodynamic activation with blue light (420 nm) resulted in an 8- to 80-fold reduction in the bactericidal concentration of berberine against MSSA and MRSA, while curcumin caused 80-fold reduction for both strains at the light dose of 18 J/cm2. Berberine and curcumin-antibiotic combinations when subjected to photodynamic activation (420 nm light, 10 min, 18 J/cm2) reduced S. aureus culturability by ≈9 log CFU/mL. These combinations lowered the bactericidal concentration of antibiotics, achieving a 2048-fold reduction for gentamicin and 512-fold reduction for tobramycin. Overall, the dual approach involving antimicrobial photodynamic inactivation and selected phytochemical-antibiotic combinations demonstrated a synergistic effect, drastically reducing the culturability of S. aureus and restoring the activity of gentamicin and tobramycin.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, Laboratoire National de Santé, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Bagherabadi M, Fleckenstein M, Moskalyk O, Belluati A, Avrutina O, Andrieu-Brunsen A. Grafting and controlled release of antimicrobial peptides from mesoporous silica. J Mater Chem B 2024; 12:8167-8180. [PMID: 39078254 DOI: 10.1039/d4tb00752b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The grafting of antimicrobial peptides onto mesoporous silica particles and their controlled release using a green light-responsive linker, which enables tunable release-concentration-time profiles, is presented. The mesoporous silica surface is functionalized with antimicrobial peptides employing sequential functionalization steps, including the grafting of 3-[(2-propynylcarbamate)propyl]triethoxysilane (PPTEOS) as anchor, boron-dipyrromethene (BODIPY) as photosensitive linker, and C14R peptides as antimicrobial agents. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance infrared (ATR-IR) spectroscopy, and thermogravimetric analysis (TGA) validate the successful fabrication and functionalization of mesoporous silica. The ester-1,2,3-triazole-BODIPY demonstrates high sensitivity to green light and enables C14R antimicrobial peptide release with adjusted concentration-time profiles. Under the applied conditions up to 64 μg mL-1 were released within 40 minutes. The antimicrobial activity of the released C14R on Escherichia coli. BL21(DE3) is demonstrated. Overall, the use of the photosensitive linker not only provides a promising avenue for controlling the release of biomolecules and therapeutics but also opens up opportunities for the development of materials for targeted release in wound dressings, for example.
Collapse
Affiliation(s)
- Mohadeseh Bagherabadi
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Marie Fleckenstein
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Oleksandr Moskalyk
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Andrea Belluati
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Olga Avrutina
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Annette Andrieu-Brunsen
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| |
Collapse
|
10
|
Zhang L, Gu W, Liu T, Pei H, Ma Y, Zhao Y, Huang S, Chen M. NDRG2 Deficiency Exacerbates UVB-Induced Skin Inflammation and Oxidative Stress Damage. Inflammation 2024:10.1007/s10753-024-02121-3. [PMID: 39145786 DOI: 10.1007/s10753-024-02121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
UVB radiation induces inflammatory and oxidative stress responses, contributing to skin damage, yet the underlying mechanisms are not fully understood. N-Myc downstream-regulated gene 2 (NDRG2), an emerging stress-associated gene, remains unexplored in UVB-induced skin injury. In this study, we detected skin NDRG2 expression after UVB irradiation for the first time and further used Ndrg2 knockout mice to clarify the role of NDRG2 in UVB-induced skin injury. Three-month-old male Ndrg2+/+ and Ndrg2-/- mice (16-18g) were exposed to UVB to induce acute skin damage, and then dorsal skin samples were collected for subsequent analyses. UVB-induced skin damage was scored. Western Blot Analysis, immunofluorescence (IF) double labeling, and immunohistochemistry (IHC) were employed to assess NDRG2 expression and/or distribution. The concentrations of TNF-α, IL-6, IL-1β, MPO, MMP8, superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining were employed to determine pathological changes. RNA sequencing and analysis were performed to estimate transcript expression levels and analyze mRNA expression. DESeq2 software was employed to identify differentially expressed genes (DEGs). DEGs were visualized using volcanic and heat maps. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to identify primary biological functions, metabolic pathways, or signal transduction pathways associated with DEGs. UVB-challenged Ndrg2-/- mice exhibited significantly exacerbated skin damage (erythema, edema, and erosion), neutrophil infiltration, and apoptosis compared to Ndrg2+/+ mice. Furthermore, UVB-challenged Ndrg2-/- mice displayed significantly elevated pro-inflammatory cytokines, myeloperoxidase (MPO), matrix metalloproteinase-8 (MMP8), and reduced antioxidant expression. RNA sequencing identified 1091 significantly differentially expressed genes enriched in inflammation, immune response, and oxidative stress pathways. In conclusion, the deficiency of Ndrg2 markedly exacerbated UVB-induced skin damage by promoting inflammatory responses and inhibiting antioxidant responses. This suggests that stabilizing NDRG2 expression holds promise as a therapeutic strategy for protecting against UVB-induced skin damage.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China
| | - Weijie Gu
- Department of Dermatology, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Tian Liu
- Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital and PLA Medical College, Beijing, 100048, China
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, 510010, China
| | - Haina Pei
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Yi Zhao
- Department of Dermatology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, Senior Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese, PLA General Hospital and PLA Medical College, Beijing, 100048, China.
| |
Collapse
|
11
|
Jiang H, Fu Q, Yang J, Qin H, Li A, Liu S, Liu M. Blue light irradiation suppresses oral squamous cell carcinoma through induction of endoplasmic reticulum stress and mitochondrial dysfunction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112963. [PMID: 38908147 DOI: 10.1016/j.jphotobiol.2024.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The therapeutic potential of blue light photobiomodulation in cancer treatment, particularly in inhibiting cell proliferation and promoting cell death, has attracted significant interest. Oral squamous cell carcinoma (OSCC) is a prevalent form of oral cancer, necessitating innovative treatment approaches to improve patient outcomes. In this study, we investigated the effects of 420 nm blue LED light on OSCC and explored the underlying mechanisms. Our results demonstrated that 420 nm blue light effectively reduced OSCC cell viability and migration, and induced G2/M arrest. Moreover, we observed that 420 nm blue light triggered endoplasmic reticulum (ER) stress and mitochondrial dysfunction in OSCC cells, leading to activation of the CHOP signal pathway and alterations in the levels of Bcl-2 and Bax proteins, ultimately promoting cell apoptosis. Additionally, blue light suppressed mitochondrial gene expression, likely due to its damage to mitochondrial DNA. This study highlights the distinct impact of 420 nm blue light on OSCC cells, providing valuable insights into its potential application as a clinical treatment for oral cancer.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200433, China; Zhongshan DB-light Technology Co., Ltd, 14th Floor, South Wing, Shumao Building, Torch Development Zone, Zhongshan City, Guangdong Province 528437, China.
| |
Collapse
|
12
|
Ivarsson J, Bennett A, Ferrara F, Strauch R, Vallase A, Iorizzo M, Pecorelli A, Lila MA, Valacchi G. Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage. Food Funct 2024; 15:7849-7864. [PMID: 38962816 DOI: 10.1039/d4fo01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel ex vivo co-culture model of human skin explants and primary endothelial cells. Skin explants, placed in transwell inserts, were exposed to UV, and subsequently co-cultured with endothelial cells. When the endothelial cells had been pretreated with the bioactive metabolites at physiological concentrations (hippuric acid 3000 nM, isoferulic acid 1000 nM, salicylic acid 130 nM, benzoic acid 900 nM, α-hydroxyhippuric acid 400 nM) cutaneous damage was prevented on the co-cultured with UV-challenged skin explants. Co-culture with non-pretreated endothelial cells did not protect skin explants. Specifically, the pretreatment was able to reduce skin lipid peroxidation (measured as 4-hydroxynonenal protein adducts), and pro-inflammatory enzymes such as cyclooxygenase 2 (COX-2) and NADPH oxidase 4 (NOX-4). Furthermore, pretreatment with the metabolites prevented UV-induced release of inflammatory cytokines such as IL-1β and IL-8 as well as nitric oxides (NO) levels. In addition, the metabolites showed an impressive ability to prevent the loss of cutaneous structural proteins including involucrin and collagen type 1. Of note, endothelial cells cultured with UV exposed skin explants exhibited increased oxidative stress demonstrated by heme oxygenase-1 (HO-1) up-regulation which was significantly prevented in the metabolite treated models. These findings highlight the ability of dietary polyphenolic metabolites to improve cutaneous defenses against extrinsic stressors.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Abby Bennett
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Renee Strauch
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Andrea Vallase
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| |
Collapse
|
13
|
Ding L, Zhang Q, Wang C, Yao C, Shan F, Li Q. A Clean and Health-Care-Focused Way to Reduce Indoor Airborne Bacteria in Calf House with Long-Wave Ultraviolet. Microorganisms 2024; 12:1472. [PMID: 39065239 PMCID: PMC11279370 DOI: 10.3390/microorganisms12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term exposure to a relatively high concentration of airborne bacteria emitted from intensive livestock houses could potentially threaten the health and welfare of animals and workers. There is a dual effect of air sterilization and promotion of vitamin D synthesis for the specific bands of ultraviolet light. This study investigated the potential use of A-band ultraviolet (UVA) tubes as a clean and safe way of reducing airborne bacteria and improving calf health. The composition and emission characteristics of airborne bacteria were investigated and used to determine the correct operating regime of UVA tubes in calf houses. Intermittent exceedances of indoor airborne bacteria were observed in closed calf houses. The measured emission intensity of airborne bacteria was 1.13 ± 0.09 × 107 CFU h-1 per calf. Proteobacteria were the dominant microbial species in the air inside and outside calf houses. After UVA radiation, the indoor culturable airborne bacteria decreased in all particle size ranges of the Anderson sampler, and it showed the highest reduction rate in the size range of 3.3-4.7 μm. The results of this study would enrich the knowledge of the source characteristics of the airborne bacteria in intensive livestock farming and contribute to the environmental control of cattle in intensive livestock production.
Collapse
Affiliation(s)
- Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Qing Zhang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chaoyuan Wang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Chunxia Yao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Feifei Shan
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
14
|
Zhang X, Liu M, Wang Z, Wang P, Kong L, Wu J, Wu W, Ma L, Jiang S, Ren W, Du L, Ma W, Liu X. A review of the botany, phytochemistry, pharmacology, synthetic biology and comprehensive utilization of Silybum marianum. Front Pharmacol 2024; 15:1417655. [PMID: 39055491 PMCID: PMC11269164 DOI: 10.3389/fphar.2024.1417655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Silybum marianum (L.) Gaertn, a herbaceous plant with a long history in traditional medicine for the treatment of hepatobiliary diseases, particularly in Europe, which has attracted attention for its remarkable therapeutic effect. This review systematically summarizes the research progress in the botany, phytochemistry, pharmacology, comprehensive utilization and synthetic biology of S. marianum. Up to now, more than 20 types of flavonolignan components have been isolated from S. marianum. In addition, the rearch on fatty acids and triterpenoids is also constantly improving. Among them, silybin is the most active compound in flavonolignans components. Its pharmacological effects in vivo and in vitro include anti-inflammatory, antioxidant, anti-tumour, hypoglycaemic, neuroprotective and immunoregulatory properties. The use of coniferyl alcohol and taxifolin as substrates to produce silybin and isosilybin under the action of enzyme catalysis is the commonly used biosynthetic pathway of silymarin, which provides support for a comprehensive analysis of the synthetic pathway of silymarin. In addition to medicinal use, the extracts of plants also have broad application prospects in the production of food, healthcare products, cosmetics and other aspects. In addition, the chemical composition, pharmacological mechanism and synthetic biology of S. marianum need to be further studied, which is very important for its clinical efficacy and resource development.
Collapse
Affiliation(s)
- Xiaozhuang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
15
|
Kim S, Jang SY, Jha RK, Choi J. Naturally Derived Luminescent Material in Engineered Silk and Its Application as a Fluorescent Dye with a Large Stokes Shift and Sensing Capability. ACS Biomater Sci Eng 2024; 10:4552-4561. [PMID: 38922676 DOI: 10.1021/acsbiomaterials.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Silkworms have provided valuable byproducts (spanning from high-quality textiles to health supplements) to humans for millennia. Despite their importance in sericultural economy and biotechnology, manifold possibilities inherent in the myriad natural or artificially generated silk varieties have been underestimated. In this paper, we report that the Yeonnokjam silk strain, which shows light-green color, contains quercetin fluorochrome (QueF) in sericin, and QueF can be used as a fluorescence dye with a large Stokes shift and high sensitivity to environmental temperature and pH, thus functioning as an environmental sensing material. A Stokes shift exceeding 180 nm, a quantum efficiency of 1.28%, and a rapid fluorescence decay of 0.67 ns are obtained, which are influenced by solvent polarities. Moreover, QueF can be used as a UV blocker as well, and its low cytotoxicity and biocompatibility further suggest promising prospects for diverse application in cosmetics and medical materials in the future.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seo-Young Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Rakesh Kumar Jha
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Swenson S, Silva-Hirschberg C, Freeland L, Chen KL, Marín-Ramos NI, Schönthal AH, Chen TC. Therapeutic effect of NEO400, perillyl alcohol conjugated to linoleic acid, in a mouse model of UV-induced skin damage. Photochem Photobiol 2024. [PMID: 38970228 DOI: 10.1111/php.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Excessive exposure to ultraviolet radiation (UVR) causes harmful effects on human skin. Pre-exposure application of sunscreen can be protective, but not after damage already has occurred. There is a need for agents that can be applied post-UVR exposure to repair the damage. We investigated a novel compound, NEO400, that appears to meet this medicinal need. NEO400 was created by conjugating linoleic acid to perillyl alcohol. UVR was repeatedly administered to the skin of mice over several weeks, where it caused the typical signs of UV damage, including scaling of the skin, DNA damage, and elevated levels of inflammatory cytokines. However, when NEO400 was applied immediately post-UVR, it triggered the appearance of markers for dermal stem cell proliferation, and no signs of skin damage emerged. Furthermore, when NEO400 was applied to skin that already had incurred significant damage, it accelerated skin healing. When applied individually, linoleic acid and perillyl alcohol were ineffective, indicating that they had to be conjugated in order to exert therapeutic efficacy. None of these skin-protective effects could be achieved with Aloe vera gel, a popular and widely used post-exposure remedy. Our study suggests that NEO400 holds potential as a regenerative treatment for excessively UVR-exposed skin.
Collapse
Affiliation(s)
- Stephen Swenson
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Catalina Silva-Hirschberg
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Liliana Freeland
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kristen L Chen
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
- NeOnc Technologies, Inc., Los Angeles, California, USA
| |
Collapse
|
17
|
Han QJ, Zhu YP, Sun J, Ding XY, Wang X, Zhang QZ. PTGES2 and RNASET2 identified as novel potential biomarkers and therapeutic targets for basal cell carcinoma: insights from proteome-wide mendelian randomization, colocalization, and MR-PheWAS analyses. Front Pharmacol 2024; 15:1418560. [PMID: 39035989 PMCID: PMC11257982 DOI: 10.3389/fphar.2024.1418560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Basal cell carcinoma (BCC) is the most common skin cancer, lacking reliable biomarkers or therapeutic targets for effective treatment. Genome-wide association studies (GWAS) can aid in identifying drug targets, repurposing existing drugs, predicting clinical trial side effects, and reclassifying patients in clinical utility. Hence, the present study investigates the association between plasma proteins and skin cancer to identify effective biomarkers and therapeutic targets for BCC. Methods Proteome-wide mendelian randomization was performed using inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine the causal relationship between plasma proteins and skin cancer and its subtypes in the FinnGen R10 study and the SAIGE database of Lee lab. Significant association with skin cancer and its subtypes was defined as a false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was executed using a Bayesian model to evaluate five exclusive hypotheses. Strong colocalization evidence was defined as a posterior probability for shared causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide association studies (MR-PheWAS) were used to evaluate potential biomarkers and therapeutic targets for skin cancer and its subtypes within a phenome-wide human disease category. Results PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides RNASET2, five other plasma proteins were previously unknown in expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were significantly associated with BCC after FDR correction in the UKB-PPP and deCODE studies. Reverse MR showed no association between BCC and these proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS analysis showed that BCC was the most significant phenotype associated with PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study. Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and therapeutic targets for BCC within the phenome-wide human disease category. Conclusion The study identifies PTGES2 and RNASET2 plasma proteins as novel, reliable biomarkers and therapeutic targets for BCC, suggesting more effective clinical application strategies for patients.
Collapse
Affiliation(s)
- Qiu-Ju Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Yi-Pan Zhu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Jing Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xin-Yu Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xiuyu Wang
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
18
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
19
|
Moeed A, Thilmany N, Beck F, Puthussery BK, Ortmann N, Haimovici A, Badr MT, Haghighi EB, Boerries M, Öllinger R, Rad R, Kirschnek S, Gentle IE, Donakonda S, Petric PP, Hummel JF, Pfaffendorf E, Zanetta P, Schell C, Schwemmle M, Weber A, Häcker G. The Caspase-Activated DNase drives inflammation and contributes to defense against viral infection. Cell Death Differ 2024; 31:924-937. [PMID: 38849575 PMCID: PMC11239672 DOI: 10.1038/s41418-024-01320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria react to infection with sub-lethal signals in the apoptosis pathway. Mitochondrial signals can be inflammatory but mechanisms are only partially understood. We show that activation of the caspase-activated DNase (CAD) mediates mitochondrial pro-inflammatory functions and substantially contributes to host defense against viral infection. In cells lacking CAD, the pro-inflammatory activity of sub-lethal signals was reduced. Experimental activation of CAD caused transient DNA-damage and a pronounced DNA damage response, involving major kinase signaling pathways, NF-κB and cGAS/STING, driving the production of interferon, cytokines/chemokines and attracting neutrophils. The transcriptional response to CAD-activation was reminiscent of the reaction to microbial infection. CAD-deficient cells had a diminished response to viral infection. Influenza virus infected CAD-deficient mice displayed reduced inflammation in lung tissue, higher viral titers and increased weight loss. Thus, CAD links the mitochondrial apoptosis system and cell death caspases to host defense. CAD-driven DNA damage is a physiological element of the inflammatory response to infection.
Collapse
Affiliation(s)
- Abdul Moeed
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Nico Thilmany
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Frederic Beck
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bhagya K Puthussery
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Noemi Ortmann
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - M Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elham Bavafaye Haghighi
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ian E Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elisabeth Pfaffendorf
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Paola Zanetta
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Liu Z, Dang B, Li Z, Wang X, Liu Y, Wu F, Cao X, Wang C, Lin C. Baicalin attenuates acute skin damage induced by ultraviolet B via inhibiting pyroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112937. [PMID: 38743989 DOI: 10.1016/j.jphotobiol.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 μM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.
Collapse
Affiliation(s)
- Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhan Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
21
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
M P, B N, T K. Enhanced sun protection factor of octocrylene with green tea and bhringraj extracts. Cutan Ocul Toxicol 2024; 43:134-147. [PMID: 38608452 DOI: 10.1080/15569527.2024.2340440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES The aim of this study of sun protection factor boosting effect sunscreen compositions with herbal extract and combination with octocrylene. MATERIALS AND METHODS The standardized herbal extracts procured and studied their sun protection Factors. Camellia Sinensis (Green tea) leaf Extract, Eclipta prostrata (bhringraj) leaf extract are selected for the development of the herbal sunscreen composition along with octocrylene as synthetic sunscreen. The developed sunscreen composition contains defined concentration of herbal extracts and octocrylene were evaluated for their different physicochemical properties and stability. Sun protection factor boosting effect of herbal extracts is studied combination with octocrylene. RESULTS Invitro SPF studied for herbal extract individually and combination with octocrylene. The results of Invitro SPF study revealed the presence of green tea extract and, Eclipta prostrata (bhringraj) leaf extract shows excellent sun protection factor (SPF) boosting value of sunscreen composition containing 5% concentration of herbal extract and octocrylene. The sunscreen formulation containing 5% herbal extracts are stable for 12 weeks in an oven (45 °C). CONCLUSION The findings of this in-vitro SPF study revealed a sun protection boosting capacity of green tea extract and bhringraj extract confirmed. SUMMARY The over exposure of human skin to Ultra-Violet Radiation (UVR) can trigger photodamage, UV burn, pigmentation, erythema, and enhance the chance of dermal carcinoma. UVR causes DNA damage, which leads to dermal cancer. Daily sunscreens protect the skin from the adverse effects of sun rays, especially UVB (290-320 nm) and UVA (320-400 nm). The ozone layer filters UVC (200-290 nm) radiation when it enters into atmosphere of the earth. UVB causes sunburn, photo damage and cause mutagenic changes in nucleic acids. UVA increases ROS (Reactive Oxygen Species) accumulation. ROS is responsible for cell repair which leads to carcinogenesis, and the cause of photodamage. Herbal extracts contain polyphenols, and flavonoids act as a natural sunscreen that will filter Ultra-Violet (UVB) light and contain antioxidant characteristics to modulate the photo-oxidative damage that results from UV-induced Reactive Oxygen Species production. The UVR protection of most herbal extracts are required to attain the higher UV protection in the sun care products. The approaches for preparing sun care products with higher Sun Protection Factor (SPF) possible through Oil in water formulation with herbal extract combinations of octocrylene. The developed sunscreen composition containing different concentration of herbal extracts were evaluated for their other physicochemical properties and stability. Invitro SPF was studied for Camellia Sinensis (Green tea) Leaf Extract and Eclipta prostrata (bhringraj) leaf extract individually and in combination with octocrylene. The results of the Invitro SPF study revealed the Camellia Sinensis (Green tea) Leaf Extract with octocrylene shows better Sun protection factor than Eclipta prostrata (bhringraj) leaf extract with octocrylene. The Sun Protection Factor (SPF) enhancement value of sunscreen compositions was compared to both sunscreen macroemulsion and nanoemulsion.
Collapse
Affiliation(s)
- Pasupathi M
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai
- Cavinkare Private Limited, Teynampet, Chennai
| | - Natarajan B
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai
| | - Kumar T
- Cavinkare Private Limited, Teynampet, Chennai
| |
Collapse
|
23
|
Lee M, Kim D, Park MR, Kim S, Kim JL, Lee JW, Yang J, Kim OK, Lee J. Indian Gooseberry and Barley Sprout Complex Prevent Oxidative Stress and Photoaging of the Skin in Ultraviolet B-Irradiated SHK-I Mice. J Med Food 2024; 27:488-501. [PMID: 38579153 DOI: 10.1089/jmf.2023.k.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
This study investigated the protective effects of a complex of Indian gooseberry and barley sprout (IB complex) on oxidative stress and skin damage caused by ultraviolet B irradiation in SHK-I hairless mice. The study examined the impact of IB complex on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot analysis. The IB complex reduced skin hydration loss and wrinkle formation, while also demonstrating enhanced antioxidant activities. The IB complex maintained skin hydration via upregulation of hyaluronic acid and ceramide synthesis, including the regulation of hyaluronic acid synthase, long-chain ceramide formation, dihydroceramide desaturase 1 activity, and type I collagen production. The IB complex prevented wrinkle formation via downregulating JNK and upregulating TGF-β pathways. Moreover, IB complex blocked melanin production via inhibition of protein kinase A, cAMP response element-binding protein, and microphthalmia-associated transcription factor pathways. These results suggest that IB complex is a potential agent to protect the skin against photodamage caused by exposure to UVB radiation. The research protocols underwent approval from the Institutional Animal Care and Use Committee of Kyung Hee University (KHGASP-21-577), ensuring compliance with ethical standards.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin17104, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin17104, Korea
| | | | | | | | - Jong Wook Lee
- HLscience Co., Ltd., Uiwang-si, Korea
- Interdisciplinary Program of Biotechnology Industry, Chungbuk National University, Chungbuk, Korea
| | - Jinseong Yang
- Department of Food Science and Biotechnology, Graduate School, Kyung Hee University, Yongin, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin17104, Korea
- Clinical Nutrition Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
24
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
25
|
Camillo L, Zavattaro E, Veronese F, Gironi LC, Cremona O, Savoia P. Ex Vivo Analysis of Cell Differentiation, Oxidative Stress, Inflammation, and DNA Damage on Cutaneous Field Cancerization. Int J Mol Sci 2024; 25:5775. [PMID: 38891963 PMCID: PMC11171589 DOI: 10.3390/ijms25115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| | - Elisa Zavattaro
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| | - Federica Veronese
- AOU Maggiore della Carità di Novara, c.so Mazzini 18, 28100 Novara, Italy; (F.V.); (L.C.G.)
| | - Laura Cristina Gironi
- AOU Maggiore della Carità di Novara, c.so Mazzini 18, 28100 Novara, Italy; (F.V.); (L.C.G.)
| | - Ottavio Cremona
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Paola Savoia
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| |
Collapse
|
26
|
Fan S, Lopez Llorens L, Perona Martinez FP, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Human Keratinocytes during UVB Exposure. ACS Sens 2024; 9:2440-2446. [PMID: 38743437 PMCID: PMC11129351 DOI: 10.1021/acssensors.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lluna Lopez Llorens
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Felipe P Perona Martinez
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
27
|
Mo X, Chen X, Pan X, Lu Y, Pan G, Xie J, Pan Z, Li L, Tian H, Li Y. Protective effect of Helianthus annuus seed byproduct extract on ultraviolet radiation-induced injury in skin cells. Photochem Photobiol 2024; 100:756-771. [PMID: 37727996 DOI: 10.1111/php.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Helianthus annuus seed byproduct is a residual product obtained after seed oil extraction. The present study investigated the preventive and repair effects of the H. annuus seed byproduct ethanol extract (HSE) on ultraviolet radiation (UVR)-induced injury in human immortalized keratinocytes (HaCaTs) and human skin fibroblasts (HSFs). Results revealed that the total phenolic acid and oligosaccharide content in HSE was >50%. HSE had a stronger preventive effect on UVR-induced injury than the repair effect. Moreover, phenolic acids were the main active component of HSE mediating the preventative effect. In HaCaTs and HSFs, HSE prevented UVR-induced injury by inhibiting excessive ROS production. It reduced the secretion of tumor necrosis TNF-α, IL-1α, IL-1β, IL-6, and IL-8 by inhibiting the level of ROS, thus reducing inflammation-mediated injury to skin cells. In addition, HSE inhibited the expression of various mRNA kinases in the MAPK-ERK/p38/JNK pathway. This downregulated the expression of activator protein-1 (AP-1) mRNA and further reduced the secretion of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-9 as well as reduced UVR-induced injury to the cells. In conclusion, HSE is a broad-spectrum, natural UV filter with high efficiency and low toxicity that has the potential to be used in sunscreen products.
Collapse
Affiliation(s)
- Xiaoying Mo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaochun Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaojiao Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yantong Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Guangjuan Pan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jielan Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenzhen Pan
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- National Demonstration Center for Experimental Traditional Chinese Pharmacology (Guangxi University of Chinese Medicine), Nanning, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui Tian
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yaohua Li
- Key Laboratory of TCM Extraction and Purification and Quality Analysis (Guangxi University of Chinese Medicine), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- National Demonstration Center for Experimental Traditional Chinese Pharmacology (Guangxi University of Chinese Medicine), Nanning, China
| |
Collapse
|
28
|
Ma Y, Li Y, Yao Y, Huang T, Lan C, Li L. Mechanistic studies on protective effects of total flavonoids from Ilex latifolia Thunb. on UVB-radiated human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Photochem Photobiol 2024. [PMID: 38644599 DOI: 10.1111/php.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The aim of the present research is to investigate anti-UVB radiation activity of total flavonoids from Ilex latifolia Thunb. (namely large-leaved Kuding tea) on human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Network pharmacology was used to screen target genes of active ingredients from Ilex latifolia Thunb. associated with UVB irradiation. The possible signaling pathways were analyzed by KEGG enrichment and verified by cellular experiments. Molecular docking was used to assess the affinity between the active ingredients and the core targets. The prediction of network pharmacology and molecular docking was identified by series experiment in UVB-irradiated HaCaT cells. Network pharmacology results showed that the active ingredients of Ilex latifolia Thunb. for anti-UVB irradiation were mainly flavonoids, and the possible signaling pathways were involved in PI3K-AKT, apoptosis, MAPKs, NF-κB, and JAK-STAT3. Molecular docking indicated key binding activity between AKT1-Glycitein, STAT3-Formononetin, CASP3-Formononetin, TNF-Kaempferol, CASP3-Luteolin, and AKT1-Quercetin. The total flavonoid pretreatment (0.25-1.0 mg/mL) down-regulated the expression of IL-6, IL-1β, and TNF-α in the cells determined by ELISA. The expression of phosphor PI3K, phosphor AKT, phosphor JAK, phosphor STAT3, phosphor JNK, and phosphor p38 MAPKs and COX-2 proteins in cytosolic and NF-κB p65 protein in nucleus were down-regulated and determined by western blot. It also protected UVB-irradiated cells from apoptosis by reducing apoptosis rate and down-regulating active-caspase 3. In a word, the total flavonoid treatment protected HaCaT cells from UVB injuries effectively, and the potential mechanism involves PI3K-AKT, JAK-STAT3, MAPK, and NF-κB pathway by anti-inflammatory and apoptosis action in cells. The mechanism in vivo experiment needs to be further confirmed in future.
Collapse
Affiliation(s)
- Yunge Ma
- Pharmacy College, Henan University, Kaifeng, China
| | - Yingyan Li
- Pharmacy College, Henan University, Kaifeng, China
| | - Yike Yao
- Pharmacy College, Henan University, Kaifeng, China
| | - Tao Huang
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
| | - Chong Lan
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| | - Liyan Li
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| |
Collapse
|
29
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
30
|
Pihl C, Andersen F, Bjerring P, Haedersdal M, Lerche CM. Efficacy of Combinational Treatment versus Nicotinamide Monotherapy in the Prevention of Ultraviolet Radiation-Induced Skin Cancer. Dermatology 2024; 240:453-461. [PMID: 38599196 DOI: 10.1159/000538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Ultraviolet radiation (UVR) is the primary risk factor for keratinocyte carcinomas. Oral supplementation with nicotinamide (NAM) is reported to reduce the formation of new keratinocyte carcinomas. NAM's photoprotection is mediated by enhanced DNA repair. We wanted to explore whether NAM in combination with antiproliferative (metformin [Met]) or antioxidant (phloroglucinol [PG]) compounds could potentially enhance its photoprotective effects. METHODS Hairless mice (C3.Cg-Hrhr/TifBomTac) were treated orally with either a standard dose of NAM monotherapy (NAM-mono; 600 mg/kg) or NAM (400 mg/kg) combined with Met (200 mg/kg) (NAM-Met) or PG (75 mg/kg) (NAM-PG). Mice were irradiated with 3.5 standard erythema doses of UVR three times per week to induce tumour development. Photoprotective effects were based on (i) tumour onset of the first three tumours, (ii) skin photodamage, and (iii) DNA damage (cyclobutane pyrimidine dimers [CPDs] and pyrimidine-pyrimidone (6-4) photoproducts [6-4PPs]). RESULTS All mice treated with NAM demonstrated a delay in tumour onset and reduced tumour burden compared to the UV control group (NAM, NAM-Met, NAM-PG vs. UV control: p ≤ 0.015). NAM-mono and NAM-PG increased time until all three tumours with no difference between them, indicating a similar degree of photoprotection. NAM-mono had no effect on DNA damage compared to the UV control group (p > 0.05), whereas NAM-PG reduced 6-4PP lesions (p < 0.01) but not CPDs (p > 0.05) compared to NAM-mono. NAM-Met delayed the onset of the third tumour compared to the UV control but demonstrated a quicker onset compared to NAM-mono, suggesting inferior photoprotection compared to nicotinamide monotherapy. CONCLUSION NAM-PG was as effective in delaying UVR-induced tumour onset as NAM-mono. The reduction in 6-4PP lesions may indicate that the mechanism of NAM-PG is better suited for photoprotection than NAM-mono. NAM-mono was superior to NAM-Met, indicating a dose dependency of NAM's photoprotection. These results highlight the potential for combining photoprotective compounds to enhance photoprotection.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Dermatology, Private Hospital Molholm, Vejle, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, Aalborg, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Wang Y, Yang M, Wang J, Shuai Y, Xu Z, Wan Q, Zhong S, Mao C, Ping W, Yang M. Design of Bombyx mori ( B. mori) Silk Fibroin Microspheres for Developing Biosafe Sunscreen. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15798-15808. [PMID: 38507684 DOI: 10.1021/acsami.3c17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.
Collapse
Affiliation(s)
- Yecheng Wang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Mei Yang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Jie Wang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Yajun Shuai
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Zongpu Xu
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Quan Wan
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Suting Zhong
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 000000, China
| | - Weidong Ping
- Department of Plastic Surgery, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou 310013, China
| | - Mingying Yang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
32
|
Qutbuddin Y, Guinart A, Gavrilović S, Al Nahas K, Feringa BL, Schwille P. Light-Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311176. [PMID: 38215457 DOI: 10.1002/adma.202311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/14/2024]
Abstract
Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Svetozar Gavrilović
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Kareem Al Nahas
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
33
|
Wang T, Guo L, Wu S, Xu Y, Song J, Yang Y, Zhang H, Li D, Li Y, Jiang X, Gu Z. Polyphenolic Platform Ameliorated Sanshool for Skin Photoprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310012. [PMID: 38359060 DOI: 10.1002/advs.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuwei Wu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junmei Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou, 511434, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
34
|
Böscke R. [Difficult-to-treat chronic rhinosinusitis-when the standard treatment is not effective and biologics are not available]. HNO 2024; 72:231-241. [PMID: 38472346 DOI: 10.1007/s00106-024-01443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND In recent years, significant improvements have been made in the treatment options for uncontrolled chronic rhinosinusitis (CRS) refractory to standard medical and surgical therapy. This is the result of a better understanding of the pathophysiology and the resulting development of biologicals for CRS with nasal polyps (CRSwNP). However, biologics are not (yet) available for all patients in Europe. OBJECTIVE Based on the session "Difficult-to-treat CRS, when biologics are not available" at the 29th Congress of the European Rhinologic Society (ERS) 2023 in Sofia, Bulgaria, the treatment options for uncontrolled CRS with the exclusion of biologics will be discussed. MATERIALS AND METHODS The content of the presentations "Is there a place for antibiotics?" "Indications for revision surgery," "Novel systemic treatment options," "Novel local treatment options," and "Phototherapy for nasal polyps" are outlined and supported by a review of the literature. RESULTS Various treatment options are available for managing uncontrolled CRS, even if biologic treatments are unavailable. Treatment options for type‑2 (T2) CRS include steroid rinses, repeated short-term oral steroids, steroid-eluting stents, and extended sinus surgery. In the case of nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD), acetylsalicylic acid (ASA) desensitization can be considered. Non-T2 endotypes or CRS without nasal polyps (CRSsNP) may benefit from several weeks of macrolides and xylitol rinses. CONCLUSION To accurately assess the efficacy of second-line therapies for treatment of difficult-to-treat CRS within an endotype-specific framework, additional controlled clinical trials are needed that take into account the heterogeneity of CRS endotypes.
Collapse
Affiliation(s)
- Robert Böscke
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Evangelisches Krankenhaus Oldenburg, Medizinischer Campus der Carl-von-Ossietzky Universität Oldenburg, Steinweg 13-17, 26122, Oldenburg, Deutschland.
| |
Collapse
|
35
|
Vahidinia Z, Azami Tameh A, Barati S, Izadpanah M, Seyed Hosseini E. Nrf2 activation: a key mechanism in stem cell exosomes-mediated therapies. Cell Mol Biol Lett 2024; 29:30. [PMID: 38431569 PMCID: PMC10909300 DOI: 10.1186/s11658-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes are nano-sized membrane extracellular vesicles which can be released from various types of cells. Exosomes originating from inflammatory or injured cells can have detrimental effects on recipient cells, while exosomes derived from stem cells not only facilitate the repair and regeneration of damaged tissues but also inhibit inflammation and provide protective effects against various diseases, suggesting they may serve as an alternative strategy of stem cells transplantation. Exosomes have a fundamental role in communication between cells, through the transfer of proteins, bioactive lipids and nucleic acids (like miRNAs and mRNAs) between cells. This transfer significantly impacts both the physiological and pathological functions of recipient cells. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, is able to mitigate damage caused by oxidative stress and inflammation through various signaling pathways. The positive effects resulting from the activation of the Nrf2 signaling pathway in different disorders have been documented in various types of literature. Studies have confirmed that exosomes derived from stem cells could act as Nrf2 effective agonists. However, limited studies have explored the Nrf2 role in the therapeutic effects of stem cell-derived exosomes. This review provides a comprehensive overview of the existing knowledge concerning the role of Nrf2 signaling pathways in the impact exerted by stem cell exosomes in some common diseases.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Seyed Hosseini
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
36
|
Jang Y, Na HW, Shin DY, Lee J, Han JP, Kim HS, Kim SJ, Choi EJ, Lee C, Hong YD, Kim HJ, Seo YR. Integrative analysis of RNA-sequencing and microarray for the identification of adverse effects of UVB exposure on human skin. Front Public Health 2024; 12:1328089. [PMID: 38444441 PMCID: PMC10913594 DOI: 10.3389/fpubh.2024.1328089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background Ultraviolet B (UVB) from sunlight represents a major environmental factor that causes toxic effects resulting in structural and functional cutaneous abnormalities in most living organisms. Although numerous studies have indicated the biological mechanisms linking UVB exposure and cutaneous manifestations, they have typically originated from a single study performed under limited conditions. Methods We accessed all publicly accessible expression data of various skin cell types exposed to UVB, including skin biopsies, keratinocytes, and fibroblasts. We performed biological network analysis to identify the molecular mechanisms and identify genetic biomarkers. Results We interpreted the inflammatory response and carcinogenesis as major UVB-induced signaling alternations and identified three candidate biomarkers (IL1B, CCL2, and LIF). Moreover, we confirmed that these three biomarkers contribute to the survival probability of patients with cutaneous melanoma, the most aggressive and lethal form of skin cancer. Conclusion Our findings will aid the understanding of UVB-induced cutaneous toxicity and the accompanying molecular mechanisms. In addition, the three candidate biomarkers that change molecular signals due to UVB exposure of skin might be related to the survival rate of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hye-Won Na
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Su Ji Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Eun-Jeong Choi
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Yong Deog Hong
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| |
Collapse
|
37
|
Kallioğlu MA, Sharma A, Kallioğlu A, Kumar S, Khargotra R, Singh T. UV index-based model for predicting synthesis of (pre-)vitamin D3 in the mediterranean basin. Sci Rep 2024; 14:3541. [PMID: 38347060 PMCID: PMC10861575 DOI: 10.1038/s41598-024-54188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
The importance of solar radiation for the body's ability to synthesize Vitamin D3 is well documented, yet the precise amount of sun exposure required to avoid Vitamin D insufficiency is less clear. To address this knowledge gap, this study sought to utilize the sun in a suitable period at the optimum dose by utilizing numerical simulations to determine the amount of Vitamin D3 synthesis in the skin according to season, time of day, and geographical location in Turkey. The study was carried out in three stages; in the first stage, daily, monthly, and annual values were determined in cases where the solar zenith angle has the active UV-B wavelength. The second stage determined the level of Vitamin D that can be synthesized in all skin types at 25% solar radiation exposure. In the third stage, the sun exposure time required for 1000 International Units (IU) for all skin types was calculated. According to the analysis, the yearly period of active synthesis of D3 on Earth lasts from the beginning of March to the third week of October. During the day, it is between 10:00 and 16:00. For 1000 IU/day, the average annual estimated times (minutes) are 5.05 for Type I, 6.3 for Type II, 7.6 for Type III, 11.35 for Type IV, 15.15 for Type V, and 25.25 for Type VI. The results of this paper will impact awareness for academic-medical users.
Collapse
Affiliation(s)
| | - Ashutosh Sharma
- College of Science and Engineering, James Cook University, Townsville, QLD, 4810, Australia
| | - Ayşan Kallioğlu
- Department of Neurology, Faculty of Medicine, Cigli Research and Training Hospital, Izmir Bakırçay University, 8780, Çiğli - İzmir, Turkey
| | - Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Rohit Khargotra
- Institute of Materials Engineering, Faculty of Engineering, Pannonia University, Veszprem, 8200, Hungary.
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem u. 10., Veszprém, 8200, Hungary.
| | - Tej Singh
- Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University, Budapest, Budapest, 1117, Hungary
| |
Collapse
|
38
|
Wang K, You X, Qu Z, Che D, Cao X. Livin is protective in UVB-induced skin photodamage by regulating keratinocyte activation and inflammatory responses. J Cell Mol Med 2024; 28:e18124. [PMID: 38332512 PMCID: PMC10853578 DOI: 10.1111/jcmm.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
UVB radiation can lead to skin photodamage, which might arise from keratinocyte (KC) activation. Nuclear factor kappa B (NF-κB) assumes an essential function in the context of UVB-triggered skin photodamage. Initiating the NF-κB cascade leads to the release of inflammatory factors from KCs. Livin can modulate both KC activation and function, yet it remains uncertain whether and how Livin regulates KC activation induced by UVB. To explore the involvement of Livin in UVB-triggered skin photodamage and its impact on skin damage through NF-κB activation. Immunofluorescence staining was used to analyse the expression of Livin in individuals with skin photodamage and in mice treated with UVB radiation. KC-specific Livin knockout (LivinΔKC ) mice and HaCaT cells with Livin knockdown were employed to examine the function of Livin in regulating KC activation induced by UVB radiation. Additionally, the impact of Livin on the NF-κB cascade during KC activation was confirmed via western blot analysis. In patients with skin photodamage, UVB-treated mice and HaCaT cells, Livin expression was reduced in KCs. LivinΔKC mice displayed heightened sensitivity to UVB radiation, resulting in more pronounced skin damage and inflammatory responses compared to the control Livinfl/fl mice. Following UVB exposure, both LivinΔKC mice and Livin-knockdown HaCaT cells released elevated levels of cytokines compared to their respective controls. Moreover, the UVB-induced activation of NF-κB in HaCaT cells was significantly enhanced following Livin knockdown. Our findings propose that Livin within KCs could contribute to reducing UVB-induced skin photodamage by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Kaijie Wang
- Department of Dermatology, The 1st affiliated hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiaolan You
- Department of Dermatology, The 1st affiliated hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Zhenri Qu
- Department of Dermatology, The 1st affiliated hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Delu Che
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xianwei Cao
- Department of Dermatology, The 1st affiliated hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
39
|
Lou J, Cui S, Li J, Jin G, Fan Y, Huang N. Causal relationship between the gut microbiome and basal cell carcinoma, melanoma skin cancer, ease of skin tanning: evidence from three two-sample mendelian randomisation studies. Front Immunol 2024; 15:1279680. [PMID: 38304424 PMCID: PMC10830803 DOI: 10.3389/fimmu.2024.1279680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives The present study used publicly available genome-wide association study (GWAS) summary data to perform three two-sample Mendelian randomization (MR) studies, aiming to examine the causal links between gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Methods SNPs associated with exposures to basal cell carcinoma, melanoma skin cancer and ease of skin tanning from the genome-wide association study data of UK Biobank and MRC-IEU (MRC Integrative Epidemiology Unit), and the meta-analysis data from Biobank and MRC-IEU were used as instrumental variables (IVs). The casual estimates were assessed with a two-sample Mendelian randomisation test using the inverse-variance-weighted (IVW) method, Wald ratio, MR-Egger method, maximum likelihood, weighted median, simple mode, and weighted mode. Results After the application of MR analysis, diffirent effects of multiple groups of gut microbiota was observed for BCC, melanoma skin cancer and ease of skin tanning. The relationships between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning were supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Conclusion Our study initially identified potential causal roles between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning, and highlighted the role of gut microbiome in the progression of basal cell carcinoma, melanoma skin cancer, ease of skin tanning.
Collapse
|
40
|
Cheng L, Liu J, Wang Q, Hu H, Zhou L. The Protective Effect of a Human Umbilical Cord Mesenchymal Stem Cell Supernatant on UVB-Induced Skin Photodamage. Cells 2024; 13:156. [PMID: 38247847 PMCID: PMC10814745 DOI: 10.3390/cells13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The skin is constantly exposed to a range of environmental stressors, including ultraviolet (UV) radiation, which can cause damage to the skin. Repairing UV-damaged skin has been a major focus of research in recent years. The therapeutic potential of human umbilical cord mesenchymal stem cells (HUCMSCs) exhibits anti-photoaging properties. In this study, we developed a strategy for concentrating an HUCMSC supernatant, and examined the protective effects of CHS on UVB exposure in vitro and in vivo. Our results demonstrate that CHS repairs UVB exposure by promoting cell viability and migration and reducing senescent and apoptosis cells. We further found that the photoprotective effect of CHS is due to autophagy activation. Moreover, CHS reduces wrinkles and senescent cells, increases collagen expression, and improves immune function in UVB exposure-induced skin damage. In summary, our study provides a new approach for repairing cell damage, and suggests that CHS might be a potential candidate for preventing UVB-induced skin photodamage.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541001, China;
| | - Qi Wang
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Huozhen Hu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China; (L.C.); (Q.W.)
| |
Collapse
|
41
|
Li A, Chen AJ, Xu J, Wen ZY, Bai GL, Wang ZY, Jiang YX, Wang P. Rapamycin protects mouse skin from ultraviolet B-induced photodamage by modulating Hspb2-mediated autophagy and apoptosis. Mol Biol Rep 2024; 51:80. [PMID: 38183537 DOI: 10.1007/s11033-023-08954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Continuous exposure to UVB is the main extrinsic cause of skin photodamage, which is associated with oxidative stress, DNA damage, apoptosis and degradation of collagen. Rapamycin, a mechanistic target inhibitor of rapamycin complex 1 (mTORC1), has been shown to play a crucial role anti-tumor and aging retardation, but its mechanism of action in UVB-induced photodamage still remains unknown. In this study, we investigated the role of rapamycin and Hspb2 (also known as Hsp27) in UVB-induced photodamage in mice. METHODS AND RESULTS We constructed skin acute photodamage models on the ears of WT and Hspb2 KO mice, respectively, and administered rapamycin treatment. Histological results showed that knockout of the hspb2 exacerbated the skin damage, as evidenced by thickening of the epidermis, breakage and disruption of collagen fibers and reduction in their number, which is reversed by rapamycin treatment. In addition, hspb2 knockout promoted UVB-induced apoptosis and reduced autophagy levels, with a significant increase in p53 levels and Bax/Bcl-2 ratio, a reduction in LC3II/I ratio and an increase in p62 levels in the KO mice compared to those in WT mice after the same dose of UVB irradiation. Rapamycin was also found to inhibit collagen degradation induced by hspb2 knockdown through activation of the TGF-β/Smad signaling pathway. CONCLUSIONS Rapamycin can alleviate skin photodamage from Hspb2 knockout to some extent. It may be a potential therapeutic drug for skin photodamage. In this study, we investigated the role of rapamycin and Hspb2 in UVB-induced photodamage in mice. Histological results showed that knockout of the hspb2 exacerbated the skin damage, as evidenced by thickening of the epidermis, breakage and disruption of collagen fibers and reduction in their number, which is reversed by rapamycin treatment. In addition, hspb2 knockout promoted UVB-induced apoptosis and reduced autophagy levels. Rapamycin was also found to inhibit collagen degradation induced by hspb2 knockdown through activation of the TGF-β/Smad signaling pathway. We conclude that rapamycin and Hspb2 exert a synergistic protective effect in skin photodamage.
Collapse
Affiliation(s)
- Ang Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Xu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhu-Yuan Wen
- College of Pediatrics, Chongqing Medical University, Chongqing, 400016, China
| | - Gen-Long Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zi-Yue Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Xin Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
42
|
Sommerfeld F, Weyersberg L, Vatter P, Hessling M. Photoinactivation of the bacteriophage PhiX174 by UVA radiation and visible light in SM buffer and DMEM-F12. BMC Res Notes 2024; 17:3. [PMID: 38167092 PMCID: PMC10759336 DOI: 10.1186/s13104-023-06658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE It has been observed that viruses can be inactivated by UVA radiation and visible light. The aim of this study is to investigate whether a medium that contains a photosensitizer might have an influence on viral reduction under irradiation by UVA, violet or blue light. Test virus is the bacteriophage PhiX174 in the photosensitizer-free SM buffer and DMEM-F12, which contains the known photosensitizer riboflavin. RESULTS The determined PhiX174 D90 doses in SM buffer and DMEM were 36.8 J/cm² and 13.6 J/cm² at 366 nm, 153.6 J/cm² and 129.1 J/cm² at 408 nm and 4988 J/cm² and 2477.1 J/cm² at 455 nm, respectively. It can be concluded that the medium has a large influence on the results. This might be caused by the photosensitizer riboflavin in DMEM-F12. As riboflavin is a key component in many cell culture media, irradiation experiments with viruses in cell culture media should be avoided if the investigation of intrinsical photoinactivation properties of viruses is aimed for.
Collapse
Affiliation(s)
- Florian Sommerfeld
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Laura Weyersberg
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Petra Vatter
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany
| | - Martin Hessling
- Department of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081, Ulm, Germany.
| |
Collapse
|
43
|
Fontbonne A, Teme B, Abric E, Lecerf G, Callejon S, Moga A, Cadars B, Giraud F, Chavagnac-Bonneville M, Ardiet N, Guyoux A, Trompezinski S. Positive and ecobiological contribution in skin photoprotection of ectoine and mannitol combined in vivo with UV filters. J Cosmet Dermatol 2024; 23:308-315. [PMID: 37539499 DOI: 10.1111/jocd.15893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Chronic exposure to ultraviolet (UV) irradiation causes immunosuppression, photoaging, and carcinogenesis by induction of a cascade of skin damages. Sunscreens currently on the market are not absorbing UV rays uniformly throughout the full UV range, high sun protection factor (SPF) sunscreens absorb most of UVB rays but are less effective in absorbing the UVA part of the spectrum. In the context, one approach could consist of preserving the skin natural resources and mechanisms, which is the foundation of the ecobiological approach, by combing UV filters and antioxidants to enhance their photoprotective effect. METHODS First, the photoprotection properties of ectoine and mannitol association were characterized by the quantification of glutathione, reactive oxygen species, and double-stranded DNA breaks and by the epidermal Langerhans cells functionality. Second, the protection of squalene oxidation, catalase activity, and trans-urocanic acid (UCA) by the ectoine and mannitol association combined or not with SPF30 UV filters was assessed in vivo via non-invasive skin samplings in 10 subjects on irradiated areas. RESULTS Using in vitro irradiated skin cell models, we demonstrated that this association significantly preserved intracellular glutathione levels, reduced DNA strand breaks induced by oxidative stress, and maintained Langerhans cell functionality. In vivo this association combined with UV filters presented significantly higher protection of three natural defense systems altered by UV compared to UV filters alone: squalene oxidation, catalase activity, and preservation of trans-UCA. CONCLUSION This study demonstrates the ecobiological potential of combining UV filters with biological protection to increase skin photoprotection provided by specific active ingredients with antioxidative and immunosuppressive properties.
Collapse
Affiliation(s)
- Arnaud Fontbonne
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | - Baba Teme
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | - Elise Abric
- Research and Development Department, NAOS Group, Aix-en-Provence, France
| | | | - Sylvie Callejon
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | | | - Benoît Cadars
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | - Félix Giraud
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | - Marlène Chavagnac-Bonneville
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| | - Nathalie Ardiet
- Research and Development Department, NAOS Group, Aix-en-Provence, France
| | - Aurélie Guyoux
- Research and Development Department, NAOS Group, Aix-en-Provence, France
| | - Sandra Trompezinski
- Research and Development Department, NAOS Group, Aix-en-Provence, France
- NAOS Institute of Life Science, Aix-en-Provence, France
| |
Collapse
|
44
|
Boada MD, Gutierrez S, Eisenach JC. Effects of systemic oxytocin administration on ultraviolet B-induced nociceptive hypersensitivity and tactile hyposensitivity in mice. Mol Pain 2024; 20:17448069241226553. [PMID: 38172079 PMCID: PMC10846038 DOI: 10.1177/17448069241226553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
45
|
Promkatkaew M, Boonsri P, Suramitr S, Karpkird T, Wolschann P, Hannongbua S. Stability improvement of UV-filter between methoxy cinnamic acid derivatives and cyclodextrins inclusion complexes based on DFT and TD-DFT investigations. J Mol Graph Model 2023; 125:108619. [PMID: 37666055 DOI: 10.1016/j.jmgm.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Structures and UV-vis absorption spectra of the host-guest interaction of the methoxy cinnamic acid (MCA) derivatives and cyclodextrins (CDs) were performed by using the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. All geometries of MCA derivatives (4-MCA, 245-MCA, 246-MCA), three types of CD (αCD, βCD, γCD), and five host-guest inclusion complexes between MCA and CD consisting of 4-MCA/αCD (1), 4-MCA/βCD (2), 245-MCA/βCD (3), 246-MCA/βCD (4), and 246-MCA/γCD (5) were fully optimized by using the M06-2X/6-31G (d,p) levels of theory. Two orientations (A and B) of the MCA guest molecule were considered. Upon examining the optimized geometry, five complexes of the methoxy cinnamic acid molecules are located inside the cavity of CD. Orientation B was more stable than orientation A because of the stronger intermolecular hydrogen bonds between the hydroxyl group of CD and the carboxylic group of MCA. The results indicated that the intermolecular hydrogen bond is mainly the driving force of formation between methoxy cinnamic acid and cyclodextrins. To reveal the host-guest interaction that is relevant to UV-filter compounds, the UV-vis absorption spectra were performed using TD-DFT calculations. The obtained results confirmed that orientation B is the most stable orientation and can absorb in both UVB and UVA regions which is similar to the parent MCA. Therefore, this knowledge will bring to understand the host-guest interaction between methoxy cinnamic acid and cyclodextrin complexes. The theoretical results are expected to provide valuable information for improving the stability of further UV-filter compounds.
Collapse
Affiliation(s)
- Malinee Promkatkaew
- Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi, 20230, Thailand.
| | - Pornthip Boonsri
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Songwut Suramitr
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thitinun Karpkird
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
46
|
Montero P, Roger I, Milara J, Cortijo J. Damaging effects of UVA, blue light, and infrared radiation: in vitro assessment on a reconstructed full-thickness human skin. Front Med (Lausanne) 2023; 10:1267409. [PMID: 38105899 PMCID: PMC10722227 DOI: 10.3389/fmed.2023.1267409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Exposure to solar radiation can cause a range of skin damage, including sunburn, erythema, skin carcinogenesis, the release of reactive oxygen species (ROS), inflammation, DNA damage, and photoaging. Other wavelengths beyond UVB, such as UVA, blue light, and infrared radiation, can also contribute to the harmful effects of solar radiation. Reconstructed full-thickness human skin has the potential to serve as effective predictive in vitro tools for evaluating the effects of solar radiation on the skin. The aim of this work was to evaluate the damaging effects of UVA, blue light, and infrared radiation in a full-thickness skin model in terms of viability, inflammation, photoaging, tissue damage, photocarcinogenesis. Methods Full thickness skin models were purchased from Henkel (Phenion FT; Düsseldorf, Germany), and irradiated with increasing doses of UVA, blue light, or infrared radiation. Different endpoints were analyzed on the tissues: Hematoxylin-eosin staining, inflammation mediators, photoaging-related dermal markers and oxidative stress marker GPX1, evaluated by real-time quantitative PCR, as well as photocarcinogenesis markers by Western Blot. Results and Discussion The results showed differential responses in cytokine release for each light source. In terms of photoaging biomarkers, collagen, metalloproteinases 1 and 9, elastin, and decorin were modulated by UVA and blue light exposure, while not all these markers were affected by infrared radiation. Furthermore, exposure to UVA and blue light induced loss of fibroblasts and modulation of the photocarcinogenesis markers p53 and p21. In conclusion, the presented results suggest that the various wavelengths of solar light have distinct and differential damaging effects on the skin. Understanding the differential effects of UVA, blue light, and infrared radiation can serve as a valuable tool to investigate the efficacy of photoprotective agents in full thickness skin models.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Badry R, El-Nahass MM, Nada N, Elhaes H, Ibrahim MA. UV filters and high refractive index materials based on carboxymethyl cellulose sodium and CuO@ZnO core/shell nanoparticles. Sci Rep 2023; 13:21159. [PMID: 38036662 PMCID: PMC10689428 DOI: 10.1038/s41598-023-48345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Nanoparticles have substantially contributed to the field of skincare products with ultraviolet (UV) filters to preserve human skin from sun damage. Thus, the current study aims to develop new polymer nanocomposites for the efficient block of UV light that results from the stratospheric ozone layer loss. Co-precipitation method was used to successfully synthesis CuO@ZnO core/shell NPs with a well-crystalline monoclinic CuO core and wurzite ZnO shell. Using the casting method, core/shell NPs were successfully introduced to carboxymethyl cellulose sodium (CMC). The CMC nanocomposites displayed considerably broader optical response extending from near-ultraviolet to visible light, which was likely due to heterojunction between the p-CuO core and n-ZnO shell and defects originating from the synthetic process. The transmittance of pure CMC in the UV, visible, and near IR regions is significantly reduced with the addition of 2 and 4 wt% of CuO@ZnO core/shell NPs to CMC. 99% of UV light is absorbed when 4 wt% of CuO@ZnO core/shell NPs are added. The addition of different concentrations of CMC nanocomposite to one of the sunblock in Egyptian market were studied and showing the highest Sun Protection Factor of 22. Moreover, optical dispersion parameters and refractive index were improved strongly with core/shell NPs addition.
Collapse
Affiliation(s)
- Rania Badry
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Mahmoud M El-Nahass
- Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| | - Nadra Nada
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Hanan Elhaes
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
- Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
48
|
Park K, Frey MW. Designing an Effective and Scalable UV-Protective Cooling Textile with Nanoporous Fibers. NANO LETTERS 2023; 23:10398-10405. [PMID: 37931913 PMCID: PMC10683759 DOI: 10.1021/acs.nanolett.3c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Although radiative cooling concepts guarantee reduction of air conditioning energy consumption by maximizing the scattering of solar radiation and dissipation of thermal radiation of a human body or building, large-scale implementation is challenging due to the need of radical adaptation in manufacturing processes, materials, and design. Here, we introduce an extremely thin layer of nanoporous microfibers without any additional materials or post-treatments. The optical and thermal effectiveness of porous fibers are presented to report a nondisruptive method of preventing the transmission of energy-intensive radiation such as ultraviolet radiation (UV) through textiles. Results show ∼1.4 °C cooling by adding 1 g/m2 (GSM) of porous fibers on a 160 GSM cotton t-shirt, and 91% of UV was prevented with 7.5 GSM of a porous fiber mat. This minimalistic additive approach would widen the scope of optical and radiative cooling research and accelerate both functional and sustainable materials research to be more accessible.
Collapse
Affiliation(s)
- Kyuin Park
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| | - Margaret W. Frey
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| |
Collapse
|
49
|
Amodeo D, Manzi P, De Palma I, Puccio A, Nante N, Barcaccia M, Marini D, Pietrella D. Efficacy of Violet-Blue (405 nm) LED Lamps for Disinfection of High-Environmental-Contact Surfaces in Healthcare Facilities: Leading to the Inactivation of Microorganisms and Reduction of MRSA Contamination. Pathogens 2023; 12:1338. [PMID: 38003802 PMCID: PMC10674356 DOI: 10.3390/pathogens12111338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Effective disinfection procedures in healthcare facilities are essential to prevent transmission. Chemical disinfectants, hydrogen peroxide vapour (HPV) systems and ultraviolet (UV) light are commonly used methods. An emerging method, violet-blue light at 405 nm, has shown promise for surface disinfection. Its antimicrobial properties are based on producing reactive oxygen species (ROS) that lead to the inactivation of pathogens. Studies have shown significant efficacy in reducing bacterial levels on surfaces and in the air, reducing nosocomial infections. The aim of this study was to evaluate the antimicrobial effectiveness of violet-blue (405 nm) LED lamps on high-contact surfaces in a hospital infection-control laboratory. High-contact surfaces were sampled before and after 7 days of exposure to violet-blue light. In addition, the effect of violet-blue light on MRSA-contaminated surfaces was investigated. Exposure to violet-blue light significantly reduced the number of bacteria, yeasts and moulds on the sampled surfaces. The incubator handle showed a low microbial load and no growth after irradiation. The worktable and sink showed an inconsistent reduction due to shaded areas. In the second experiment, violet-blue light significantly reduced the microbial load of MRSA on surfaces, with a greater reduction on steel surfaces than on plastic surfaces. Violet-blue light at 405 nm has proven to be an effective tool for pathogen inactivation in healthcare settings Violet-blue light shows promise as an additional and integrated tool to reduce microbial contamination in hospital environments but must be used in combination with standard cleaning practices and infection control protocols. Further research is needed to optimise the violet-blue, 405 nm disinfection method.
Collapse
Affiliation(s)
- Davide Amodeo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Pietro Manzi
- Hospital of Santa Maria di Terni, 05100 Terni, Italy;
| | - Isa De Palma
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Alessandro Puccio
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | - Nicola Nante
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (A.P.); (N.N.)
| | | | - Daniele Marini
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| | - Donatella Pietrella
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06100 Perugia, Italy; (D.M.); (D.P.)
| |
Collapse
|
50
|
Touma F, Lambert M, Martínez Villarreal A, Gantchev J, Ramchatesingh B, Litvinov IV. The Ultraviolet Irradiation of Keratinocytes Induces Ectopic Expression of LINE-1 Retrotransposon Machinery and Leads to Cellular Senescence. Biomedicines 2023; 11:3017. [PMID: 38002016 PMCID: PMC10669206 DOI: 10.3390/biomedicines11113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons have played an important role in evolution through their transposable activity. The largest and the only currently active human group of mobile DNAs are the LINE-1 retrotransposons. The ectopic expression of LINE-1 has been correlated with genomic instability. Narrow-band ultraviolet B (NB-UVB) and broad-band ultraviolet B (BB-UVB) phototherapy is commonly used for the treatment of dermatological diseases. UVB exposure is carcinogenic and can lead, in keratinocytes, to genomic instability. We hypothesize that LINE-1 reactivation occurs at a high rate in response to UVB exposure on the skin, which significantly contributes to genomic instability and DNA damage leading to cellular senescence and photoaging. Immortalized N/TERT1 and HaCaT human keratinocyte cell lines were irradiated in vitro with either NB-UVB or BB-UVB. Using immunofluorescence and Western blotting, we confirmed UVB-induced protein expression of LINE-1. Using RT-qPCR, we measured the mRNA expression of LINE-1 and senescence markers that were upregulated after several NB-UVB exposures. Selected miRNAs that are known to bind LINE-1 mRNA were measured using RT-qPCR, and the expression of miR-16 was downregulated with UVB exposure. Our findings demonstrate that UVB irradiation induces LINE-1 reactivation and DNA damage in normal keratinocytes along with the associated upregulation of cellular senescence markers and change in miR-16 expression.
Collapse
Affiliation(s)
- Fadi Touma
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Marine Lambert
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Amelia Martínez Villarreal
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Jennifer Gantchev
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Brandon Ramchatesingh
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Ivan V. Litvinov
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
- Department of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|